# "An Introduction to Judicious Use of Antibiotics

Antibiotic Stewardship Program

Ivan Guerrero, MD Private ID practitioner Jacksonville – Florida 9/30/16

# **Objectives**

- -Discuss untoward effects of antibiotic use
- -Define antibiotic stewardship
- -Describe 6 goals of antibiotic stewardship programs
- -Describe a rationale for antibiotic selection
- Describe directed and empiric antibiotic therapy
  Describe and give examples of 4 tenets of appropriate antibiotic use

## Outline

- Introduction
- Untoward Effects of Antibiotics
- Antibiotic Stewardship
- Principles of Antibiotic Selection
- Tenets of Appropriate Antibiotic Use
- Conclusion

## Introduction

- The modern age of antibiotic therapeutics was launched in the 1930s with sulfonamides and the 1940s with penicillin
- Since then, many antibiotic drugs have been developed, most aimed at the treatment of bacterial infections
- These drugs have played an important role in the dramatic decrease in morbidity and mortality due to infectious diseases
- While the absolute number of antibiotic drugs is large, there are few unique antibiotic targets

# Outline

- Introduction
- Untoward Effects of Antibiotics
- Antibiotic Stewardship
- Principles of Antibiotic Selection
- Tenets of Appropriate Antibiotic Use
- Conclusion

## **Untoward Effects of Antibiotics**

- Antibiotic resistance
- Adverse drug events (ADEs)
  - Hypersensitivity/allergy
  - Drug side effects
  - Clostridium difficile infection
  - Antibiotic associated diarrhea/colitis
- Increased health-care costs

### Clostridium difficile Infection (CDI) A potentially deadly colitis

- Antibiotics are the single most important risk factor for CDI
- Incidence and mortality increasing
- A more virulent NAP1/BI strain also seen with increasing frequency

Redelings, et al. EID, 2007;13:1417 CDC. Get Smart for health care. Access at www.cdc.gov/Getsmart/healthcare



# Association Between Antibiotic Use and Nonsusceptible Pneumococcal Infection

|          |              | % <i>S. pneumoniae</i> who had recent antibiotic use |             |            |         |
|----------|--------------|------------------------------------------------------|-------------|------------|---------|
| Study    | Infection    | Nonsusceptible                                       | Susceptible | Odds Ratio | p-value |
| Jackson  | Invasive     | 56%                                                  | 14%         | 9.3        | 0.009   |
| Pallares | Invasive     | 65%                                                  | 17%         | 9.3        | <0.001  |
| Tan      | Invasive     | 70%                                                  | 39%         | 3.7        | 0.02    |
| Nava     | Invasive     | 30%                                                  | 11%         | 3.5        | <0.001  |
| Moreno   | Bacteremia   | 57%                                                  | 4%          | 3.6        | <0.001  |
| Block    | Otitis media | 69%                                                  | 25%         | 6.7        | <0.001  |

Dowell & Schwartz, Am Fam Physician. 1997 55(5):1647

# Fluoroquinolone Use and Resistance among Gram-Negative Isolates, 1993-2000

National ICU Surveillance Study



## Limited Number of New Antibiotics to **Combat Antibiotic Resistance** New Systemic Antibiotics Approved by the FDA



Clin Infect Dis. 2011;52:S397-S428

# Frequency of ADEs due to Antibiotics in Outpatient Setting

- 142,505 estimated emergency department visits/year due to untoward effects of antibiotics
  - Antibiotics account for 19.3% of drug related adverse events
    - 78.7% for allergic events
    - 19.2% for adverse events (e.g. diarrhea, vomiting)
  - Approximately 50% due to penicillin & cephalosporin classes
  - 6.1% required hospital admission

Shehab N et al. Clin Infect Dis. 2008;47:735

# Consequences of Hospital Antibiotic Use

- At one tertiary care center 70% of Medicare patients received an antibiotic in 2010
- Approximately 50% of this use was unnecessary or inappropriate
- Untoward consequences of antibiotic therapy identified in this and other studies:
  - Inadequate treatment of infection
  - Increased hospital readmissions
  - ADEs



Polk et al. In: PPID, 7<sup>th</sup> ed. 2010 Luther, Ohl. IDSA Abstract 2011

# Outline

- Introduction
- Untoward Effects of Antibiotics
- Antibiotic Stewardship
- Principles of Antibiotic Selection
- Tenets of Appropriate Antibiotic Use
- Conclusion

## Antibiotic Stewardship

- Definition: A system of informatics, data collection, personnel, and policy/procedures which promotes the optimal selection, dosing, and duration of therapy for antimicrobial agents throughout the course of their use
- Purpose:
  - Limit inappropriate and excessive antibiotic use
  - Improve and optimize therapy and clinical outcomes for the individual infected patient

Ohl CA. *Seminar Infect Control* 2001;1:210-21. Dellit TH, et. al. Clin Infect Dis. 2007;44:159-177

## Antibiotic Stewardship

- Is pertinent to inpatient, outpatient, and long-term care settings
- Is practiced at the
  - Level of the patient
  - Level of a health-care facility or system, or network
- Should be a core function of the medical staff (i.e. doctors and other healthcare providers)
- Utilizes the expertise and experience of clinical pharmacists, microbiologists, infection control practitioners and information technologists

# Six Goals of Antibiotic Stewardship Programs

- 1. Reduce antibiotic consumption and inappropriate use
- 2. Reduce *Clostridium difficile* infections
- 3. Improve patient outcomes
- 4. Increase adherence/utilization of treatment guidelines
- 5. Reduce adverse drug events
- 6. Decrease or limit antibiotic resistance
  - Hardest to show
  - Best data for health-care associated gram negative organisms

# Antibiotic Stewardship Improves Clinical Outcomes



Percent

Fishman N. Am J Med 2006;119:S53.

## Antibiotic Stewardship Reduces *C. difficile* Infection and Gram Negative Resistance

Rates of Resistant Enterobacteriaceae



Carling P et al. Infect Control Hosp Epidemiol. 2003;24(9):699-706.

Rates of *C. difficile* AAD

## Outline

- Introduction
- Untoward Effects of Antibiotics
- Antibiotic Stewardship
- Principles of Antibiotic Selection
- Tenets of Appropriate Antibiotic Use
- Conclusion

# Nine Factors to Consider When Selecting an Antibiotic

- 1. Spectrum of coverage
- 2. Patterns of resistance
- 3. Evidence or track record for the specified infection
- 4. Achievable serum, tissue, or body fluid concentration (e.g. cerebrospinal fluid, urine)
- 5. Allergy
- 6. Toxicity
- 7. Formulation (IV vs. PO); if PO assess bioavailability
- 8. Adherence/convenience (e.g. 2x/day vs. 6x/day)
- 9. Cost

## Principles of Antibiotic Therapy

#### Empiric Therapy (85%)

- Infection not well defined ("best guess")
- Broad spectrum
- Multiple drugs
- Evidence usually only 2
  Le randomized controlled trials
- More adverse reactions
- More expensive

#### Directed Therapy (15%)

- Infection well defined
- Narrow spectrum
- One, seldom two drugs
- Evidence usually stronger
- Less adverse reactions

• Less expensive

# Why So Much Empiric Therapy?

- Need for prompt therapy with certain infections
  - Life or limb threatening infection
  - Mortality increases with delay in these cases
- Cultures difficult to do to provide microbiologic definition (i.e. pneumonia, sinusitis, cellulitis)
- Negative cultures
- Provider Beliefs
  - Fear of error or missing something
  - Not believing culture data available
  - "Patient is really sick, they should have 'more' antibiotics"
  - Myth of "double coverage" for gram-negatives e.g. pseudomonas
  - "They got better on drug X, Y, and Z so I will just continue those"

# To Increase Directed Therapy for Inpatients:

- Define the infection 3 ways
  - Anatomically, microbiologically, pathophysiologically
- Obtain cultures before starting antibiotics
- Use imaging, rapid diagnostics and special procedures early in the course of infection
- Have the courage to make a diagnosis
- Do not rely solely on "response to therapy" to guide therapeutic decisions; follow recommended guidelines
- If empiric therapy is started, reassess at 48-72 hours
  - Move to directed therapy (de-escalation or streamlining)

# To Increase use of Directed Therapy for Outpatients:

- Define the infection 3 ways
  - Anatomically, microbiologically, pathophysiologically
- Obtain cultures before starting antibiotics
  - Often difficult in outpatients (acute otitis media, sinusitis, community-acquired pneumonia)
- Narrow therapy often with good supporting evidence
  - Amoxicillin or amoxicillin/clavulinate for AOM, sinusitis and CAP
  - Penicillin for Group A Streptococcal pharyngitis
  - 1<sup>st</sup> generation cephalosporin or clindamycin for simple cellulitis
  - Trimethoprim/sulfamethoxazole or cipro/levofloxacin for cystitis

## Outline

- Introduction
- Untoward Effects of Antibiotics
- Antibiotic Stewardship
- Principles of Antibiotic Selection
- Tenets of Appropriate Antibiotic Use
- Conclusion

# Tenet 1: Treat Bacterial Infection, not Colonization

- Many patients become colonized with potentially pathogenic bacteria but are not infected
  - Asymptomatic bacteriuria or foley catheter colonization
  - Tracheostomy colonization in chronic respiratory failure
  - Chronic wounds and decubiti
  - Lower extremity stasis ulcers
  - Chronic bronchitis
- Can be difficult to differentiate
  - Presence of WBCs not always indicative of infection
  - Fever may be due to another reason, not the positive culture

# Tenet 1: Treat Bacterial Infection, not Colonization

Example: Asymptomatic bacteriuria

- ≥10<sup>5</sup> colony forming units is often used as a diagnostic criteria for a positive urine culture
- It does NOT prove infection; it is just a number to state that the culture is <u>unlikely</u> due to contamination
- Pyuria also is not predictive on its own
- It is the presence of symptoms AND pyuria AND bacteruria that denotes infection



# Prevalence of Asymptomatic Bacteriuria

| Age (years)                         | Women | Men  |  |  |  |
|-------------------------------------|-------|------|--|--|--|
| 20                                  | 1%    | 1%   |  |  |  |
| 70                                  | 20%   | 15%  |  |  |  |
| >70 + long-term care                | 50%   | 40%  |  |  |  |
| Spinal cord injury                  | 50%   | 50%  |  |  |  |
| (with intermittent catheterization) |       |      |  |  |  |
| Chronic urinary catheter            | 100%  | 100% |  |  |  |
| Ileal loop conduit                  | 100%  | 100% |  |  |  |

Nicolle LE. Int J Antimicrob Agents. 2006 Aug;28 Suppl 1:S42-8.

Treatment of Asymptomatic Bacteriuria in the Elderly Multiple prospective randomized clinical trials have shown no benefit

- No improvement in "mental status"
- No difference in the number of symptomatic UTIs
- No improvement in chronic urinary incontinence
- No improvement in survival



# Summary of Asymptomatic Bacteriuria Treatment

- Treat symptomatic patients with pyuria and bacteriuria
- Don't treat asymptomatic patients with pyuria and/or bacteriuria
- Define the symptomatic infection anatomically
- Dysuria and frequency without fever equals cystitis
- Dysuria and frequency with fever, flank pain, and/or nausea and vomiting equals pyelonephritis
- Remember prostatitis in the male with cystitis symptoms

# Tenet 2: Do not Treat Sterile Inflammation or Abnormal Imaging Without Infection

Example: community-acquired pneumonia (CAP)

- CAP: often a difficult diagnosis
- X-rays can be difficult to interpret. Infiltrates may be due to non-infectious causes.
- Examples:
  - -Atelectasis
  - -Malignancy
  - -Hemorrhage
  - -Pulmonary edema



## Community-Acquired Pneumonia (CAP)



 Pneumonia is not present in up to 30% of patients treated

 Do not treat abnormal x-rays with antibiotics if the patient does not have systemic evidence of inflammation (fever, wbc, sputum production, etc)

 Discontinue antibiotics initially started for pneumonia if alternative diagnosis revealed

# Tenet 3: Do not Treat Viral Infections with Antibiotics

- Acute bronchitis
- Common colds
- Sinusitis with symptoms less than 7 days
- Sinusitis not localized to the maxillary sinuses
- Pharyngitis not due to Group A *Streptococcus spp.*



Gonzales R, et al. Annals of Intern Med 2001;134:479 Gonzales R, et al. Annals of Intern Med 2001;134:400 Gonzales R, et al. Annals of Intern Med 2001;134:521

# Tenet 4: Limit Duration of Antibiotic Therapy to the Appropriate Length

- Ventilator-associated pneumonia: 8 days
- Most community-acquired pneumonia: 5 days
- Cystitis: 3 days
- Pyelonephritis: 7 days if fluoroquinolone used
- Intra-abdominal with source control: 4-7 days
- Cellulitis: 5-7 days

Hayashi Y, Paterson DL. Clin Infect Dis 2011; 52:1232

## Other Tenets of Antibiotic Stewardship

- Re-evaluate, de-escalate or stop therapy at 48-72 hours based on diagnosis and microbiologic results
- Re-evaluate, de-escalate or stop therapy with transitions of care (e.g. ICU to step-down or ward)
- Do not give antibiotic with overlapping activity
- Do not "double-cover" gram-negative rods (i.e. *Pseudomonas sp.*) with 2 drugs with overlapping activity

## Other Tenets of Antibiotic Stewardship

- Limit duration of surgical prophylaxis to <24 hours perioperatively
- Use rapid diagnostics if available (e.g. respiratory viral PCR)
- Solicit expert opinion if needed
- Prevent infection
  - Use good hand hygiene and infection control practices
  - Remove catheters

## Outline

- Introduction
- Untoward Effects of Antibiotics
- Antibiotic Stewardship
- Principles of Antibiotic Selection
- Tenets of Appropriate Antibiotic Use
- Conclusion

# Conclusion

- The therapeutic benefit of antibiotics should be balanced with their unintended adverse consequences
- Inappropriate antibiotic use is associated with increased antibiotic resistance, adverse drug effects and *Clostridium difficile* infection
- Antibiotic stewardship is important for preserving existing antibiotics and improving patient outcomes
- Antibiotic prescribing should be prudent, thoughtful and rational