The Human Health Risk Assessment Process

Hazardous Waste Site Risk Assessment Team
Bureau of Environment Health
Division of Disease Control and Health Protection
Florida Department of Health

Steps completed for a basic Human Health Risk Assessment

Discuss previous actions

Review results

Evaluate exposure

Determine exposure for situation

Determine Total Exposure

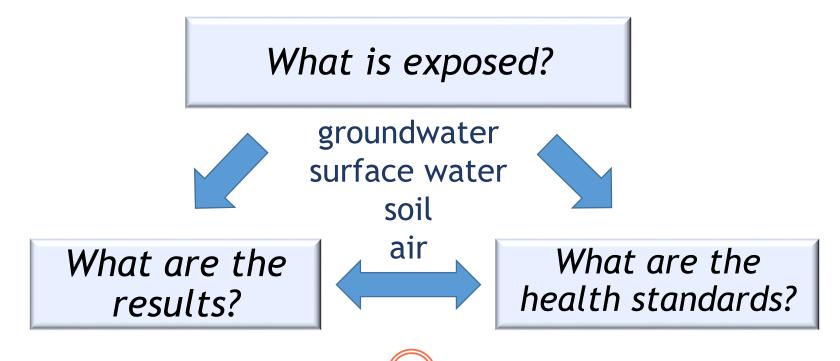
Calculate likelihood of specific effects, such as cancer

1. Discuss previous actions taken

- Discussions with other agencies, such as the Florida Department of Environmental protection, include, but are not limited to:
 - o Environmental evaluation
 - Previous activities around the location
 - Any possible contamination of area

Please understand we do not conduct tests. However, we need results to continue the health risk analysis.

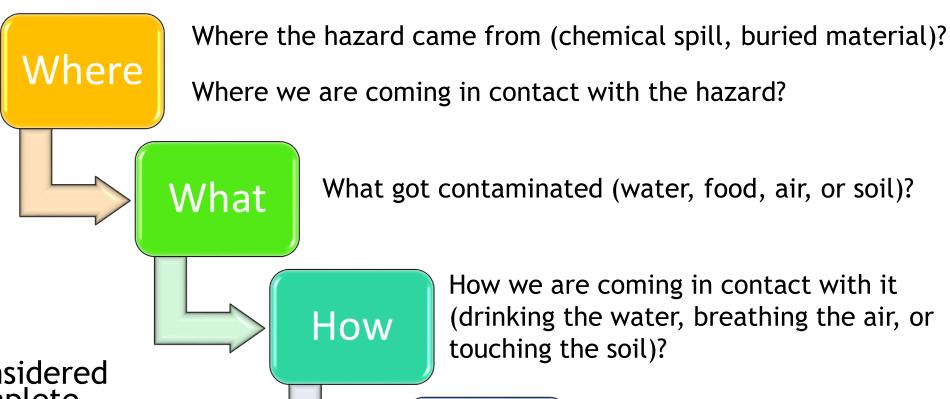
2. Review results


- Reviewing of the test results include:
- How were the samples collected?
 (e.g. water, food, air, or soil)
- O Which chemicals were detected?
- O Did a certified lab test the samples?

Please note that if the lab is not certified for the test, results are not valid.

2. Review results ... cont ...

Valid environmental data are compared to existing health standards for that source (=comparison values):


2. Review results ... cont ...

- Valid environmental data are compared to existing health standards (=comparison values):
 - Find the safety level for the chemical for that source (water, food, air, or soil)
 - o Are the results above or below the safety level?
 - ☐ Results below the safety level, low health risk assumed
 - ☐ Results above the safety level, assessment will continue.

Based on the chemical(s) detected and the source tested, possible exposures can be looked at.

3. Exposure Evaluation

Factors considered for a complete pathway analysis

Who is exposed? (e.g. worker, resident, child, adult, etc.)

4. Determine Exposure for Situations

Water - consumption (drinking),
 contact (swimming, washing hands),
 breathing aerosols (showering, irrigation)

- Food consumption
- Soil consumption, contact

Now that we have an idea for types of exposures, we look at the current situation.

4. Determine Exposure for Situations

...cont... EXAMPLE

Where did it come from?

How did I get exposed?

leaking drum

What got exposed?

faucet water

Depending on where this occurred (at home or work), the risk of exposure can change.

4. Determine Exposure for Situations

...cont...

Where is exposure?

Exposed for 8 hours a day

Limited consumption

At Home

Exposed for longer time
Consumption
Showering

At a park

Exposed for a couple of hours a week

Consumption

Playing (contact to soil)

Swimming

Trespassing

Exposed for a couple of hours a day

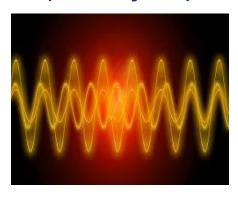
Consumption

Walking

Another factor is how much one was exposed!

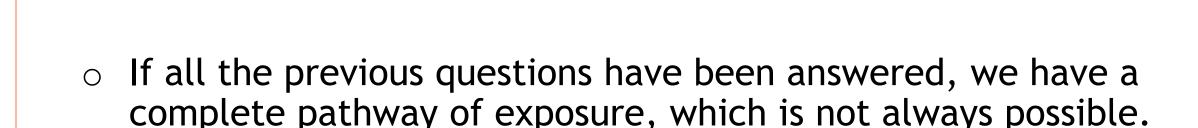
5. Determine Total Exposure

Chemical Concentration (how much)



Longer exposure
Higher concentration
Exposed more often

Duration (how long)



Frequency (how often)

Increased Risk of Health Affects

6. Solving the Exposure Questions

- When studying all the information gathered, it is possible to calculate a health risk to the situation.
- The results are communicated out to the public.

6. Solving the Exposure Questions ... cont ...

Cancer Risk results are communicated as following:

1 in 10 people	"very high" increased cancer risk
1 in 100 people	"high" increased cancer risk
1 in 1,000 people	"moderate" increased cancer risk
1 in 10,000 people	"low" increased cancer risk
1 in 100,000 people	"very low" increased cancer risk
1 in 1,000,000 people	"extremely low" increased cancer risk

(Example) Children's (age 6 to 11yrs) dose calculation for exposure to 15mg/kg of arsenic in soil for 5 years = $1.6*10^{-5}$

<u>**0.16**</u> children in <u>**1,000,000**</u> may show an increased cancer risk, therefore, the increase cancer risk is extremely low

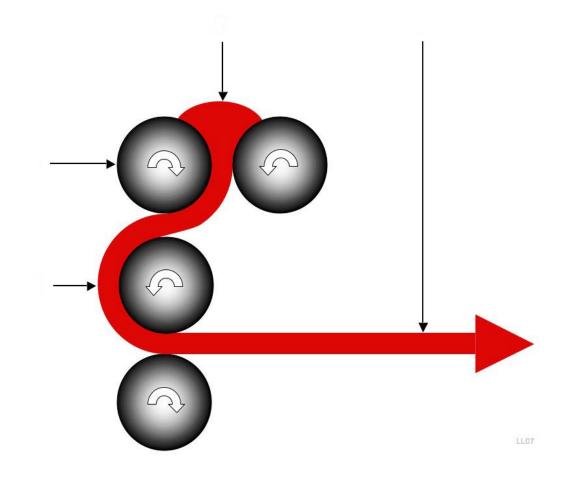
6. Solving the Exposure Questions ... cont ...

- When the HQ is greater than 1, assumption is there may be noncancer health affects.
- When the HQ is less than and/or equal than 1, the assumption is that there won't be non-cancer health affects.

(Example) Children's (age 6 to 11yrs) HQ for exposure to 15mg/kg of arsenic in soil for 5 years = 0.13

<u>**0.13** is less than 1</u>, therefore no non-cancer risk is assumed

The Human Health Risk Assessment Process – In Summary



Determine exposures

Calculate risks

Communicate results

Contact Us!

PHToxicology@FLHealth.gov

or

Toll-Free at 1-877-798-2771

More information about us:

HazWaste.FloridaHealth.gov