HEALTH CONSULTATION

DOEBOY DUMP

JACKSONVILLE, DUVAL COUNTY, FLORIDA

CERCLIS NO. FLD980846448

Prepared by:

Exposure Investigation and Consultation Branch Division of Health Assessment and Consultation Agency for Toxic Substances and Disease Registry

BACKGROUND AND STATEMENT OF ISSUES

The U.S. Environmental Protection Agency (EPA) Region IV requested the Agency for Toxic Substances and Disease Registry (ATSDR) to review the results of environmental samples (i.e., soil, sediment and groundwater samples) obtained from Doeboy Dump Site, and provide a public health opinion regarding exposure to the contaminants reported.

The Doeboy Dump Site is situated on 35 acres in a residential area near the intersection of Doeboy and 45th Street in Jacksonville, Florida. The site contains a burrow pit 5 acres in size, which received trash, debris, and industrial waste in the past. The pit contains surface water and is connected to Moncrief Creek by two drainage ditches. Moncrief Road forms the eastern boundary of the site, and residences are on the west, south and north. No official records exist for the disposal activities at the site. The site is not fenced, and therefore it is easily accessible. EPA has reported that children play on-site and people fish at the burrow pit on-site.

EPA requested their Superfund Technical Assessment and Response Team (START) (Tetra Tech Em, Inc.) to conduct an expanded site inspection at the site to determine whether the site has the potential to be placed on the National Priorities List. During the week of January 18, 1999, Tetra Tech Em, Inc., conducted the expanded site inspection of the site (see attached sampling map). They collected background soil samples, surface water and sediment samples from Moncrief Creek. Also, they collected 7 on-site surface soil samples (from 0-3 inches); 6 subsurface soil (depth not specified) samples from on-site; 3 groundwater samples from potable residential wells; 3 from temporary monitoring wells that were installed within the site's boundary; and 1 background samples (6 from Moncrief Creek and 2 from the burrow pit on-site); and 8 sediment samples from similar locations along Moncrief Creek. The samples were analyzed for EPA's target list compounds, which included volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs), metals and cyanide [1]. See attachments for sampling results.

DISCUSSION

The results of surface soil samples indicated that low levels of PAHs and PCBs were detected at sampling stations DD-SS-03, DD-SS-04, DD-SS-05, DD-SS-06, and DD-SS-07 (see attached map). Furthermore, surface soil samples obtained from DD-SS-02 and DD-SS-05 contained lead at 580 parts per million (ppm) and 1,200 ppm, respectively. Lead was also detected at 1,000 ppm in subsurface soil samples obtained from sampling location DD-SS-05, and at 1,200 ppm at sampling location DD-SS-06. Also, the results of subsurface soil samples revealed the presence of various carcinogenic and non-carcinogenic PAHs, which totaled slightly below100 parts per million (ppm) at sampling location DD-SS07. At this sampling location, the carcinogenic PAHs totaled 40 ppm, and the non-carcinogenic PAHs totaled 57 ppm.

In general, ATSDR considers soil lead levels below 500 ppm in vegetated residential areas not a health threat to humans other than the most sensitive population. Exposure to elevated levels of lead may cause serious adverse health effects, particularly in young children. Young children and fetuses are especially sensitive to the toxic effects of lead exposures. Factors influencing this susceptibility include: (1) the immaturity of the blood brain barrier; (2) hand-to-mouth behavior; (3) pica behavior (ingestion of at least 1 gram of soil/day); (4) nutritional status of the child; (5) low body weight; and (6) passive diffusion of contaminants across the placenta to the developing fetus [2].

Because of these factors, children are more at risk of developing adverse health effects than adolescents and adults. Children who play in surface soil at DD-SS-02 and DD-SS-05 could be exposed to lead, which may result in elevated body burdens. Blood lead levels at 10 micrograms/deciliter or greater have been linked to adverse developmental effects in fetuses, hearing impairment, stunting of growth and reductions in intelligence quotients in children [2].

Polycyclic aromatic hydrocarbons occur as mixtures in a number of environmental products such as soot, coal tar, petroleum, cutting oils and air pollutants. They are lipid soluble and can easily penetrate or cross the skin barrier. Animal (rodents or rats) studies have shown that skin application of carcinogenic PAHs such as benz (a) anthracene, benz (a) pyrene and 3, methylcholanthrene results quickly in carcinoma (cancerous growth) formation. Several reports have shown the occurrence of dermal and ocular irritation, burns, and warts, itching, vesiculation, and ulceration following acute or prolonged skin contact with PAHs. However, no human studies were located regarding adverse systemic effects on the liver, kidney, eye, or heart following dermal exposure to PAHs [3]. Generally, because subsurface soil contaminants are not easily accessible it is unlikely for exposure to PAHs to occur at this site. EPA has indicated that children often play at this site. Therefore, opportunities for exposure to on-site subsurface soil contaminants may exist if children dig into the ground while playing.

At this site, 2 groundwater samples obtained from temporary monitoring wells installed within the site's boundary contained elevated levels of lead [29 parts per billion (ppb) and 51 ppb]. Several residential wells are located within a 4 mile radius of the site, which draw water from the underlying aquifer. Sodium was detected in the potable well water samples from the residential wells at 16 ppm and at 17 ppm. Other chemicals detected in the residential well water samples are not at levels of health concern. A groundwater sample collected from a temporary monitoring well installed outside of the site's boundary, which is considered a background sample contained sodium at 12 ppm. The results of surface water and sediment samples obtained from Moncrief Creek did not indicate that contaminants were present at levels of health concern. The Drinking Water Equivalent Level for sodium is 20 ppm. The DWEL is an estimate of a lifetime exposure concentration protective of adverse, non-cancer health effects, that assumes all of the exposure to a contaminant is from a drinking water source. Although sodium detected in groundwater samples from these wells are lower than the DWEL of 20 ppm, persons who are hypertensive and consume this water on a daily basis should be aware of the additional sodium in there diet.

ATSDR Child Health Initiative

ATSDR's Child Health Initiative recognizes that the unique vulnerabilities of infants and children must be recognized and considered in any analysis of adverse health effects of communities impacted by contamination of hazardous substances. At this site, exposure to surface and subsurface soil contaminants at certain locations is likely to occur.

CONCLUSIONS

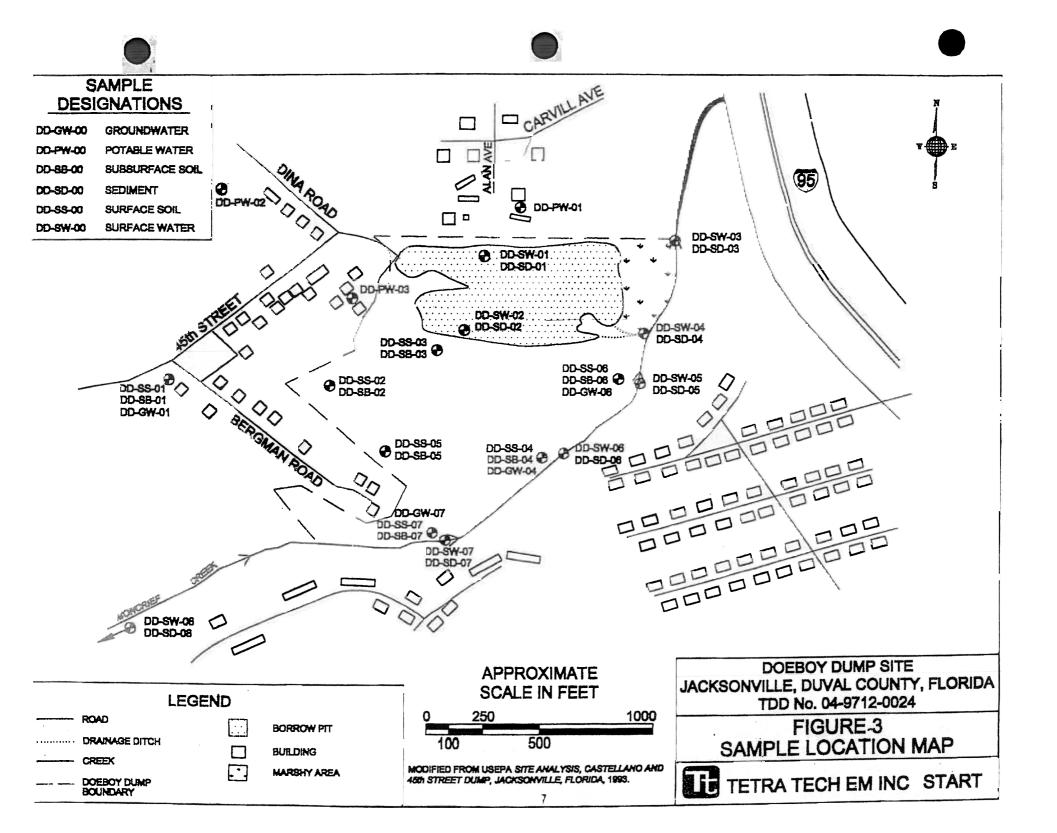
- 1 There exists a potential health hazard from exposure to lead to those children who play frequently in contaminated surface soils at sampling station DD-SS-02 and DD-SS-05.
- 2. Frequent contact with subsurface soil contaminants (lead and PAHs) at certain areas (i.e., DD-SS-05, DD-SS-06, and DD-SS-07) on-site pose a potential public health threat from dermal, oral or inhalation exposure.
- 3. Surface water and sediment samples obtained from Moncrief Creek did not reveal elevated levels of contamination.
- 4. Potable drinking water samples from the private wells did not contain contaminants at levels of health concern.
- 5. Groundwater samples obtained from a temporary monitoring well installed on-site contained elevated levels of lead.
- 6. The limited environmental sampling may not fully characterize the extent of contamination.

RECOMMENDATIONS

- 1. Prevent frequent exposure or contact with contaminants at or near sampling locations DD-SS-02, DD-SS-05, DD-SS-06 and DD-SS-07.
- 2. Conduct additional environmental sampling (i.e., soil, sediment, surface water) to fully characterize the extent of contamination.

Preparer of report:

Robert L. Williams, Ph.D. Environmental Toxicologist ATSDR/DHAC/EICB


Reviewed by:

Robert Safay Regional Representative, Region IV ATSDR/DHAC/ORO

Susan Moore Section Chief Exposure Investigations and Consultations Branch Division of Health Assessment and Consultation

REFERENCES

- 1. Expanded Site Inspection Report, Doeboy Dump Site, Jacksonville, Florida, prepared by Tetra Tech EM, Inc., for U.S. Environmental Protection Agency Region IV, August 6, 1999.
- 2. Toxicological Profile for Lead, U.S. Public Health Service, ATSDR, Atlanta, Georgia, October 1991.
- 3. Toxicological Profile for Polycyclic Aromatic Hydrocarbons, U.S. Public Health Service, ATSDR, Atlanta, Georgia, August 1995.

TABLE 7 SUMMARY OF SURFACE SOIL ANALYTICAL RESULTS DOEBOY DUMP SITE

	FDEP" SCREENING VALUES	EPA [®] SCREENING VALUES	DDSS01 Background	DDSS02	DDSS03	DDSS04	DDSS05	DDSS06	DDSS07
EXTRACTABLES (UG/KG)		Real MANAGerophics of							
BENZO(A)ANTHRACENE	1,400	870	350U	46J	620	120J	180J	460	780
BENZO(B)FLUORANTHENE	1,400	870	3501	98.J	1,200J	210J	210J	360J	1,000
BENZO(GHI)PERYLENE	2,300,000	NE	350U	B5J	530	140J	110.1	220.1	490.1
BENZO(K)FLUORANTHENE	15,000	870	350U	98.J	1,200J	110J	160J	310J	590
BENZO-A-PYRENE	100 '	87	350U	50J	630	140J	180J	320J	640
CHRYSENE	140,000	87,000	3500	49J	770	160J	200J	440	820
FLUORANTHENE	2,900,000	3,100,000	3500	721	940	170J	340J	780	1,100
INDENO (1,2,3-CD) PYRENE	1,500	870	3500	79J	480	150J	120J	240J	500J
PHENANTHRENE	2,000,000	NE	350U		380J	1505	1205	360J	4401
PYRENE	2,200,000	2,300,000	3500	54J	1,100	150J	320J	720	880
	1 6,200,000	E.19991030	5300	1 010	1,100	1000	5200	1 149	000
MISCELLANEOUS EXTRACTABLES (UG/KG)* 2 UNIDENTIFIED COMPOUNDS	1	1		1		1	-	10000	r
BENZOPYRENE (NOT A)	NE	NE		1,300JN 78JN					
11 UNIDENTIFIED COMPOUNDS	NE	NE		10JN			16,000J	-	
4 UNIDENTIFIED COMPOUNDS	NE	NE					10,0000	2,200J	
6 UNIDENTIFIED COMPOUNDS	NE	NE				- 6,000J		2,2003	12 232
8 UNIDENTIFIED COMPOUNDS	NE	NE			6,400J	0,0005			
ACETOPHENONE	2,700,000	NE			0,4000		410JN	1	
BENZALDEHYDE	2,200,000	NE			10000	1.0.77.001.0	230JN		
BENZENEACETONITRILE	NE	NE				490JN	200011	1	1
BENZOFLUORANTHENE (NOT B OR K)	NE	NE		101201	500JN	455514			
BENZOPYRENE (NOT A)	NE	NE			000011			500JN	
DIBENZPYRENE	NE	NE		- Carlo - P	520JN	1.	1.1.1		1
HEPTACHLOROBIPHENYL (4 ISOMERS)	NE	NE			3,300JN			1000 C	
HEXACHLOROBIPHENYL (6 ISOMERS)	NE	NE			6,500JN		CONDITION OF	Contraction of the	1
OCTACHLOROBIPHENYL (3 ISOMERS)	NE	NE			1,700JN				
PARACYCLOPHANE	NE	NE				1.	330JN		
PENTACHLOROBIPHENYL (2 ISOMERS)	NE	NE			900JN			1.000	10.
8 UNIDENTIFIED COMPOUNDS	NE	NE	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	19000		CONTRACT -	2.9540.5		7,500J
BENZOFLUORANTHENE (NOT B OR K)	NE	NE							660JN
PCB/PESTICIDES (UG/KG)		the second second	and the state of the state	1	Strate states	and the second	-	0.011 - 1004 - 116	Children and Anna
4,4'-DDE (P,P'-DDE)	3,300	1,900	3.9	12	370C	13	27	34	9,8
4.4'-DDT (P.P'-DDT)	3,300		a land a second second		3,900C		87	160	
GAMMA-CHLORDANE /2	the second se	1,900	110	-				13N	
PCB-1248 (AROCLOR 1248)	3,000	1,800	1.8U	3.5N	**	7.4	170	PILI	
PCB-1260 (AROCLOR 1260)	500	320	350				170	390	230
100-1200 (MROGLOR 1260)	500	320	35U	320	30,000C	400	270	390	230

TABLE 7 SUMMARY OF SURFACE SOIL ANALYTICAL RESULTS DOEBOY DUMP SITE

	FDEP* SCREENING VALUES	EPA ⁵ SCREENING VALUES	DDSS01 Background	DDSS02	DDSS03	DDS\$04	DDSS05	DDSS06	DDSS07
METALS (MG/KG)					and the second second		1.000	19-14 (J. 19-1-1	2
ALUMINUM	72,000	78,000	1,700	6,700	3,000	1,900	4,300	1,400	4,300
ARSENIC	0,8	0.43	1.2U	4.9	5.4J	-	8.1		9
BARIUM	110	5,500	87J	208	140	110	300J	49	120
BERYLLIUM	120	160	0.06U	0.2	-			-	-
CADMIUM	75	39	1.2	5.7JN	4	1.5	3.5		
CALCIUM	NE	NE	3,000	6,200	15,000	5,000	10,000	6,700	15,000
COBALT	4,700	4,700	1.2J	3.4J	3.6J	0.88J	5.5J	0.52J	1.6J
COPPER	110	3,100	19J	160J	220J	401	210J	40.1	56J
CYANIDE	30	1,600	0.33U	0,85	0.68	0.91	1.2		
IRON	23,000	23,000	6,000	35,000	26,000	4,800	42,000	3,800	12,000
LEAD	400	NE	180	580	350	270	1200 %	120	140
MAGNESIUM	NE	1,600	230J	730J	740J	3701	6201	250J	1,000J
MANGANESE	1,600	1,600	110	290	220	87	470	40	72
NICKEL	110	1,600	4.1J	17	38	6.6J	26	3.1J	7.21
POTASSIUM	NE	NE	110J	360	280	150	190J	130	370
SELENIUM	390	390	0,66U	1.4	0.79J			-	-
SILVER	390	390	0.32J	7.3	2.1	0.5	5.6	**	
TOTAL MERCURY	NE	NE	45	350	200	57	100	45.	150
	3.4	NE	0.05U	**	0.32	0.19	0.7		
VANADIUM	15	550	5.6J	10.1	LG	18	17	5.7J	17J
ZINC	23,000	23,000	550	7303	750J	260J	2,100	260J	340J
DATA QUALIFIERS AND ABBREV MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram	IATIONS								
SQL - Sample quantitation limit EPA - U.S. Environmental Protection FDEP - Florida Department of Enviro	n Agency onmental Protection								
NE - Not established N-Presumptive evidence of presenc NR-Not reported	e of material								
J-Estimated value J-Material was analyzed for but not DD - Doeboy Dump	detected								
SS - Surface soil			÷.						
DD - dichlorodiphenyldichloroethau DDE - dichlorodiphenyldichloroethyl DDT - dichlorodiphenyltrichloroether PCB - polychlorinated biphenyl	ene ne								
 Miscellaneous compounds are no Shaded areas indicate elevated con Sample data is flagged as "U" or Bolded	centrations of constituen	2		y as detected	t in individual	samples; SC	2L isnot provid	ded.	

TABLE 8 SUMMARY OF SUBSURFACE SOIL ANALYTICAL RESULTS DOEBOY DUMP SITE

	DDSB01 Background	DDSB02	DDSB03	DDSB04	DDSB05	DDSB06	DDSB07
VOLATILES (UG/KG)	htter zweise oost een te				10		
ACETONE	10U	-	-	-	-	140	170J
CHLOROBENZENE	10U			11J	-		390
MISCELLANEOUS VOLATILES (UG/KG)*						(C	
3 UNIDENTIFIED COMPOUNDS	NR			-		290J	
CAMPHENE	NR					21JN	
EXTRACTABLES (UG/KG)						**************************************	
1.4-DICHLOROBENZENE	340U	-	-	-	T -	-	430J
2-METHYLNAPHTHALENE	340U	-			-	-	420J
ACENAPHTHENE	3400	-	42.1	46.1	-	-	1,600
BENZO(A)ANTHRACENE	340U	-	330J		140.1	230J	8,400
BENZO(B)FLUORANTHENE	340U	56J	320J	-	180J	190J	6,000
BENZO(GHI)PERYLENE	340U		340J	-	120J	190J	2,500
BENZO(K)FLUORANTHENE	340U	56J	170J	-	150J	260J	4,500
BENZO (A) PYRENE	340U		260J	-	140J	210J	5,800
BIS(2-ETHYLHEXYL) PHTHALATE	340U		840	-	1,000	-	810
CARBAZOLE	340U	-	54J	-	-		1,800
CHRYSENE	340U	-	350	-	170J	270J	9,000
DIBENZO(A,H)ANTHRACENE	340U		94J		52J	100J	1,400
DIBENZOFURAN	340U	-	-	-	-	-	1,400
FLUORANTHENE	340U	42J	630		250J	310J	22,000
FLUORENE	340U			-	-	-	2,500
INDENO (1.2,3-CD) PYRENE	340U		200J	-	120J	180J	3,200
NAPHTHALENE	340U	-	-	-		-	670J
PHENANTHRENE	340U	-	360	-		-	18,000
PYRENE	340U	-	500	**	210J	320J	14,000
MISCELLANEOUS EXTRACTABLES (UG/KG)*	a second	A1.		XX			
25 UNIDENTIFIED COMPOUNDS	NR		1	V. Sanata	27.000J	15 18 19 19 19	
METHYLBENZENESULFONAMIDE (2 ISOMERS)	NR				1,400JN		
19 UNIDENTIFIED COMPOUNDS	NR				LUNCE -		27,000.
BENZOFLUORANTHENE (NOT B OR K) (2 ISOMER							6,400Jf
BENZOFLUORENE	NR						920JN
BENZONAPHTHOTHIOPHENE	NR	1.		100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	1		900JN
BINAPHTHALENE	NR						820JN
CYCLOPENTAPHENANTHRENE	NR	1000		- a the second	10-10-10-17-10-10-10-10-10-10-10-10-10-10-10-10-10-	1.11.11.11.11	2,000J
DDD/DDT ISOMERS	NR					0	910JN
DIBENZOTHIOPHENE	NR			144.2		100	1,100JM
METHYLANTHRACENE (2 ISOMERS)	NR	C. Section					3,600JN
METHYLCHRYSENE	NR			100		Contraction of the	1,200,1
PHENYLNAPHTHALENE	NR		0.11.12	1.1.1.			1,600J
3 UNIDENTIFIED COMPOUNDS	NR		1,300J				
6 UNIDENTIFIED COMPOUNDS	NR			Contraction -		7,300J	1
ANTHRACENEDIONE	NR		130JN				
BENZANTHRACENONE	NR		C. Strategie			360JN	
BENZANTHRACENONE (2 ISOMERS)	NR		170JN				
BENZOFLUORANTHENE (NOT B OR K)	NR		C. C	12112		290JN	
BENZOPYRENE (NOT A)	NR		410JN	12.00			
HEPTACHLOROBIPHENYL	NR		74JN				
HEXACHLOROBIPHENYL	NR		110JN	1.			
5 UNIDENTIFIED COMPOUNDS	NR	5,000J					

TABLE 8
SUMMARY OF SUBSURFACE SOIL ANALYTICAL RESULTS
DOEBOY DUMP SITE

	DDSB01 Background	DDSB02	DDSB03	DDSB04	DDSB05	DDSB06	DDSB07
PCB/PESTICIDES (UG/KG)							
4,4'-DDD (P,P'-DDD)	3.4UJ		-	_	-	40.)	820CJ
4,4'-DDE (P.P'-DDE)	3.4U	3.6J	73	17	-	60	260
4,4'-DDT (P.P'-DDT)	3.4U	-	-	-	-	110	540C
ALPHA-BHC	1.7U	_	-		-	-	99
DELTA-BHC	1.7U	-		-	-	-	160
ENDRIN	3.4U	<u> </u>	7		-		-
GAMMA-BHC (LINDANE)	1.7U	-	-	-	-	-	200
GAMMA-CHLORDANE /2	1.7U	3.5	79	-	-	61	120N
PCB-1248 (AROCLOR 1248)	34U	-	-	-	260	-	-
PCB-1260 (AROCLOR 1260)	34U	56	1,200C	93	2.200C	-	-
METALS (MG/KG)							
ALUMINUM	970	1,400	3,700	1,400	13,000	1.500	4,700
ARSENIC	0.75U	2.3	6.9		13	3.5	8.9
BARIUM	4.4UJ	16	120	14	200J	260	98
CADMIUM	0.06U		2.5JN	-	5.9J	2.1	-
CALCIUM	140	1.400	18,000	900	10,000	12,000	27,000
CHROMIUM	2U	8.4	17	3.6	130	38	33
COBALT	0.32U	0.54J	2.4J	-	9.7J	1.4J	1.9J
COPPER	JUJ	19J	150J	8.3J	280J	100J	89J
CYANIDE	0.1U	0.96	1.6		29	-	-
IRON	1200	6,000	29,000	2,100	100,000	9,500	12,000
LEAD	3.4	77	390	37	1,000J	1,200	250
MAGNESIUM	40UJ	-	690J	-	740J	370J	1,600.
MANGANESE	18	77	530	9.8	610	69	50
NICKEL	0.62U	2.1J	18	1.3J	47	11	9.7J
POTASSIUM	41J	120	120	90	110J	120	260
SILVER	0.14U	1.1.1	2.4	-	19JN	0.75J	-
SODIUM	24	39	200	100	160	110	200
TOTAL MERCURY	0.05U	-	0.27		3	0.18	0.35
VANADIUM	1.9J	5.73	13	4.5J	6.6J	5.8	15J
ZINC	12	66J	1.200J	55J	1,800	790J	580J

TABLE 10
SUMMARY OF GROUNDWATER AND POTABLE WATER ANALYTICAL RESULTS
DOEBOY DUMP SITE

	FDEP" SCREENING VALUES	EPA ^b SCREENING VALUES	DDGW01 Background	DDGW04	DDGW06	DDGW07	DDPW02 Control	ODPW01	DDPW01D Duplicate	DDPW03
VOLATILES (UG/L)	6 H R. 746	x norman ter	114 6 LA 114 A	12.049.4	C. C. S. State Contraction		And the second	194.272.1112		
CHLOROBENZENE	100	100	100	12	-	86	10	-	-	-
ISCELLANEOUS VOLATILES (UG/L)*				at a stational and			5		· · · · · · · · · · · · · · · · · · ·	
5 UNIDENTIFIED COMPOUNDS	NE	NE	91J		and the states					1
EXTRACTABLES (UG/L)										
ACENAPHTHENE	. 20	NE	100	14	1J	-	5U	-	-	-
CARBAZOLE	4	NE	10U	15	6J	4J	NA			
MISCELLANEOUS EXTRACTABLES (UG/L)*										
BENZOIC ACID	28,000	NE	NR	NL8	r	1		1	1	
CHLOROISOCYANATOBENZENE	NE	NE	NR	2JN						
HYDROXYBENZENEACETIC ACID, METHYL ESTER	NE	NE	NR	4JN						
PARACHLOROPHENOL	NE	NE	NR			3JN	nas des constant	and the second		Server is a million of
TERTIARYBUTYLPHENOL	NE	NE	NR	2JN						
METALS (UG/L)	and the second strength of the				Privation and classic for your of		and a second			1
BARIUM	2,000	2,000	110	620	440	580	150	38	38	54
CALCIUM	NE	NE	9,300	180,000	200,000	100,000	57,000	62,000	62,000	76,000
COPPER	1,000	1,300	2,5J	26	17J	18.1	5.7J	5.4J	<u>9</u> J	3.8.1
IRON	300	NE	200U	15,000	7,800	29,000	12U	-	-	-
LEAD ,	15	15	2.1U	51	15	29	1.9U	-	-	4.1
MAGNESIUM	NE	NE	7,300	37,000	37,000	29,000	21,000	13,000	13,000	19,000
MANGANESE	50	NE	100	390	550	480	U89,0	-	-	41
NICKEL	100	NE	4U	5.2J	-	-	3.10	-	-	-
POTASSIUM	NE	NE	1,600.1	24,000J	26,000J	12,000J	1,800J	2,100J	2,100J	1,300J
SODIUM	160,000	NE	18,000	57,000	170,000	42,000	12,000	17,000	17,000	16,000
ZINC	49	NE	1.4U	2,4J	-	-	1.4U	-		55
2110	5,000	NE	100	140	180	79	6U	42	30	
 a FDEP groundwater screening standards dated May 26, b EPA primary drinking water standards dated September c A complete listing of analytical results can be found in A 	er 21, 1998.	Strat		·····						
REMARKS a FDEP groundwater screening standards dated May 26, b EPA primary drinking water standards dated September c A complete listing of analytical results can be found in A DATA QUALIFIERS AND ABBREVIATIONS	er 21, 1998.			· · · · · · · · · · · · · · · · · · ·		·				
a FDEP groundwater screening standards dated May 26, b EPA primary drinking water standards dated Septembe c A complete listing of analytical results can be found in A DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER:	er 21, 1998.									
a FDEP groundwater screening standards dated May 26, b EPA primary drinking water standards dated September c A complete listing of analytical results can be found in A DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER: SQL - Sample quantitation limit	er 21, 1998.									
a FDEP groundwater screening standards dated May 26, b EPA primary drinking water standards dated September c A complete listing of analytical results can be found in A DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER: SQL - Sample quantitation limit EPA - U.S. Environmental Protection Agency	ar 21, 1998. Appendix A.							······		
a FDEP groundwater screening standards dated May 26, b EPA primary drinking water standards dated September c A complete listing of analytical results can be found in A DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER: SQL - Sample quantitation limit EPA - U.S. Environmental Protection Agency FDEP - Florida Department of Environmental Protect	ar 21, 1998. Appendix A.									
a FDEP groundwater screening standards dated May 26, b EPA primary drinking water standards dated September c A complete listing of analytical results can be found in A DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER: SQL - Sample quantitation limit EPA - U.S. Environmental Protection Agency FDEP - Florida Department of Environmental Protect NE - Not established	ar 21, 1998. Appendix A.									
a FDEP groundwater screening standards dated May 26, b EPA primary drinking water standards dated September c A complete listing of analytical results can be found in A DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER: SQL - Sample quantitation limit EPA - U.S. Environmental Protection Agency FDEP - Florida Department of Environmental Protect NE - Not established N - Presumptive evidence of presence of material	ar 21, 1998. Appendix A.									
a FDEP groundwater screening standards dated May 26, b EPA primary drinking water standards dated September c A complete listing of analytical results can be found in A DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER: SQL - Sample quantitation limit EPA - U.S. Environmental Protection Agency FDEP - Florida Department of Environmental Protect NE - Not established N - Presumptive evidence of presence of material J - Estimated value	ar 21, 1998. Appendix A.									
FDEP groundwater screening standards dated May 26, EPA primary drinking water standards dated September <u>A complete listing of analytical results can be found in A</u> DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER: SQL - Sample quantitation limit EPA - U.S. Environmental Protection Agency FDEP - Florida Department of Environmental Protection Not established N - Presumptive evidence of presence of material J - Estimated value U - Material was analyzed for but not detected	ar 21, 1998. Appendix A.									
FDEP groundwater screening standards dated May 26, EPA primary drinking water standards dated September <u>A complete listing of analytical results can be found in A</u> DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER: SQL - Sample quantitation limit EPA - U.S. Environmental Protection Agency FDEP - Florida Department of Environmental Protection Not established N - Presumptive evidence of presence of material J - Estimated value U - Material was analyzed for but not detected DD - Doeboy Dump	ar 21, 1998. Appendix A.									
a FDEP groundwater screening standards dated May 26, b EPA primary drinking water standards dated September c A complete listing of analytical results can be found in A DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER: SQL - Sample quantitation limit EPA - U.S. Environmental Protection Agency FDEP - Florida Department of Environmental Protect NE - Not established N - Presumptive evidence of presence of material J - Estimated value U - Material was analyzed for but not detected DD - Doeboy Dump	ar 21, 1998. Appendix A.					-				
FDEP groundwater screening standards dated May 26, EPA primary drinking water standards dated September <u>A complete listing of analytical results can be found in A</u> <u>DATA QUALIFIERS AND ABBREVIATIONS</u> UG/L - Micrograms per LITER: SQL - Sample quantitation limit EPA - U.S. Environmental Protection Agency FDEP - Florida Department of Environmental Protection Not established N - Presumptive evidence of presence of material J - Estimated value U - Material was analyzed for but not detected DD - Doeboy Dump GW - Groundwater well	ar 21, 1998. Appendix A.					-				
A Complete listing of analytical results can be found in A DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER: SQL - Sample quantitation limit EPA - U.S. Environmental Protection Agency FDEP - Florida Department of Environmental Protect Not established N - Presumptive evidence of presence of material J - Estimated value U - Material was analyzed for but not detected DD - Doeboy Dump GW - Groundwater well PW-Potable well	ar 21, 1998. Appendix A.									
A FDEP groundwater screening standards dated May 26, b EPA primary drinking water standards dated September c A complete listing of analytical results can be found in A DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER: SQL - Sample quantitation limit EPA - U.S. Environmental Protection Agency FDEP - Florida Department of Environmental Protection Not established N - Presumptive evidence of presence of material J - Estimated value U - Material was analyzed for but not detected DD - Doeboy Dump GW - Groundwater well PW-Potable well NR - Not reported	ar 21, 1998. Appendix A.									
 a FDEP groundwater screening standards dated May 26, b EPA primary drinking water standards dated September c A complete listing of analytical results can be found in A DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER: SQL - Sample quantitation limit EPA - U.S. Environmental Protection Agency FDEP - Florida Department of Environmental Protection Ne resumptive evidence of presence of material J - Estimated value U - Material was analyzed for but not detected DD - Doeboy Dump GW - Groundwater well PW-Potable well NK - Not reported NA - Not analyzed 	ar 21, 1998. Appendix A.									
A Complete listing of analytical results can be found in A DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER: SQL - Sample quantitation limit EPA - U.S. Environmental Protection Agency FDEP - Florida Department of Environmental Protect Not established N - Presumptive evidence of presence of material J - Estimated value U - Material was analyzed for but not detected DD - Doeboy Dump GW - Groundwater well PW-Potable well NR - Not reported NA - Not analyzed * - Miscellaneous compounds are not on the target a Shaded areas indicate elevated concentrations of co	analyle compound	list and are repo	orted only as det	ected in indiv	<i>v</i> idual sample	es; SQL is no	ot provided.		-	
A FDEP groundwater screening standards dated May 26, b EPA primary drinking water standards dated September c A complete listing of analytical results can be found in A DATA QUALIFIERS AND ABBREVIATIONS UG/L - Micrograms per LITER: SQL - Sample quantitation limit EPA - U.S. Environmental Protection Agency FDEP - Florida Department of Environmental Protection Not established N - Presumptive evidence of presence of material J - Estimated value U - Material was analyzed for but not detected DD - Doeboy Dump GW - Groundwater well PW-Potable well NR - Not reported	analyle compound onstituents.	list and are repo	-	ected in indiv	vidual sample	es; SQL is no	ot provided.		-	

TABLE 11
SUMMARY OF SURFACE WATER ANALYTICAL RESULTS
DOEBOY DUMP SITE

	FDEP ^a SCREENING VALUES	EPA ^b SCREENING VALUES	DDSW08 Background	DDSW01 Borrow Pit	DDSW02 Borrow Pit	DDSW03 Moncrief Creek	DDSW04 Moncrief Creek	DDSW05 Moncrief Creek	DDSW05D Moncrief Creek Duplicate	DDSW06 Moncrief Creek	DDSW07 Moncrief Creek
VOLATILES (UG/L)	a dipant an				-		L		Dupicate		I
CHLOROBENZENE	17	105	10U	T _	T	-				23	T
METALS (UG/L)							L			23	-
ALUMINUM	13	NE	84U		1	2 200	r	r			
COPPER	2.9	2.9	4.4J	12J		2,300	-				-
CYANIDE	1 1	NE	10U	1	28	32	10J	10J	9.1J	2.1J	9.1J
IRON	300	NE	980	-			-	24			-
LEAD	5.6	8.5	the state of the s	1,400	2,600	5,500	840	1,000	1,000	4,600	2,400
MAGNESIUM	NE S.8		3.6	11	31	34	8.8	-	-	4.2	7J
MANGANESE	NE	NE	16,000	59,000	64,000	150,000	90,000	54,000	54,000	23,000	40,000
NICKEL	8.3	NE 8.3	45	100	110	170	71	77	75	170	97
POTASSIUM	NE	NE	3.1U			4.4J					-
SODIUM	NE	NE	3,600J 20,000	23,000J	25,000J	65,000J		21,000J	20,000J	5,700J	14,000J
VANADIUM	NE	NE	20,000 1.4U	400,000 1.4J	470,000 2.1J	1,200,000 8.6J	660,000	_360,000	360,000	66,000	280,000
DATA QUALIFIERS AI UG/L - Micrograms per SQL - Sample quantitat N - Presumptive eviden NR - Not reported NE - Not established J - Estimated value U - Material was analyz	liter ion limit ce of presence o ed for but not dei	f material									
DD - Doeboy Dump Site SW - Sediment Surface * - Miscellaneous comp samples; SQL is not pro	water ounds are not on	the target analy	te compound lis	st and are re	eported only	y as detect	ed in indivi	dual			
Shaded areas indicate of - Sample data is flagged	elevated concent	ration of constitu	ionto								

TABLE 12 SUMMARY OF SEDIMENT ANALYTICAL DATA DOEBOY DUMP SITE

	FDEP ^a SCREENING VALUES	EPA ^b SCREENING VALUES	DDSD08 Background	DDSD01 Borrow Pit Duplicate	DDSD01D Borrow Pit	DDSD02 Borrow Pit	DDSD03 Moncrief Creek	DDSD04 Moncrief Creek	DDSD05 Moncrief Creek	DDSD06 Moncrief Creek	DDSD07 Moncrief Creek
MISCELLANEOUS EXTRACTABLES (UG/KG)*			Duchgiound	Duplicate	ļ		I		L		
2 UNIDENTIFIED COMPOUNDS	NE	NE	NR	1 1001							
4 UNIDENTIFIED COMPOUNDS	NE	NE	NR	1,400J							
BENZOFLUORANTHENE (NOT B OR K)	NE	NE	NR							010.00	2,500J
BENZOPYRENE (NOT A) 2 UNIDENTIFIED COMPOUNDS	NE	NE	NR						190JN	310JN	180JN
BENZOELLIOBANTUSIIS (1107 S CONT	NE	NE	1500J						IBOTH		
BENZOFLUORANTHENE (NOT B OR K) 1 UNIDENTIFIED COMPOUND	NE	NE	120JN								
2 UNIDENTIFIED COMPOUNDS	NE	NE	NR		720J						
BENZOPYRENE (NOT A)	NE	NE	NR			1700J					
3 UNIDENTIFIED COMPOUNDS	NE	NE	NR			230JN					
BENZOFLUORANTHENE (NOT B OR K)	NE	NE	NR				2.000J				
PCB/PESTICIDES (UG/KG)	NE	NE	NR					130JN			
						- 4. j				·	
DIELDRIN	NE	3.3	1.9J	_		40	_ 1			1.5J	
PCB-1260 (AROCLOR 1260)	NE	33	460			260	50	-	-		<u> </u>
METALS (MG/KG)			400		L	260	50			-	
COBALT	NE										
COPPER	NE	NE	0.55J	-		2.1J	-		-	0.46J	0.58J
IRON	NE	18.7	19J	1.8J	1.7J	110J	17J	16J	13J	15J	20J
LEAD		NE	2900	310	310	24,000	3,000	1,600	1,900	3,100	3,500
MANGANESE	NE	30.2	75	3.2	3.2	320	53	64	60	57	76
NICKEL	NE	NE	34	3J	3.8J	160	21	9.6	9.5	34	46
SILVER	NE	15.9	2.2J	-	-	12	2.1J	1.5J	1.4J	2.2J	2.4J
SODIUM	NE	2	0.21U	-		2.7J	-	-	-	-	-
The second s	NE	NE	62	200	240	530	1,500	640	620	190	350
REMARKS											
a FDEP sediment screening values have anti-								2		•	
						e		Sector Sector	· · · · · · · · · · · · · · · · · · ·		
a FDEP sediment screening values have not been of	established.		· · · · · · · · · · · · · · · · · · ·		and the second s			·			
S C A Scullient Screening Values dated lung 1007						1. 1. 6		ning and a			
c A complete listing of analytical results can be four											
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS											
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram											
<u>C A complete listing of analytical results can be four</u> DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram											
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram SQL - Sample quantitation limit											
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram SQL - Sample quantitation limit					,						
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram SQL - Sample quantitation limit N - Presumptive evidence of presence of material											
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram SQL - Sample quantitation limit N - Presumptive evidence of presence of material NE - Not established											
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram SQL - Sample quantitation limit N - Presumptive evidence of presence of material NE - Not established NR - Not reported											
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram SQL - Sample quantitation limit N - Presumptive evidence of presence of material NE - Not established NR - Not reported J - Estimated value											
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram SQL - Sample quantitation limit N - Presumptive evidence of presence of material NE - Not established NR - Not reported J - Estimated value											
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram JG/KG - Micrograms per kilogram SQL - Sample quantitation limit N - Presumptive evidence of presence of material NE - Not established NR - Not reported J - Estimated value J - Material was analyzed for but not detected DD - Doeboy Dump Site											
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram UG/KG - Milligrams per kilogram SQL - Sample quantitation limit N - Presumptive evidence of presence of material NE - Not established NR - Not reported J - Estimated value J - Material was analyzed for but not detected DD - Doeboy Dump Site SD - Sediment											
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram SQL - Sample quantitation limit N - Presumptive evidence of presence of material NE - Not established NR - Not reported J - Estimated value J - Material was analyzed for but not detected DD - Doeboy Dump Site SD - Sediment PCB - polychlorinated biohemy	nd in Appendix A.										
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram UG/KG - Micrograms per kilogram SQL - Sample quantitation limit N - Presumptive evidence of presence of material NE - Not established NR - Not reported J - Estimated value J - Material was analyzed for but not detected DD - Doeboy Dump Site SD - Sediment PCB - polychlorinated biohemy	nd in Appendix A.										
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram JG/KG - Micrograms per kilogram SQL - Sample quantitation limit N - Presumptive evidence of presence of material NE - Not established NR - Not reported J - Estimated value J - Material was analyzed for but not detected DD - Doeboy Dump Site SD - Sediment PCB - polychlorinated biohemy	nd in Appendix A.	and are reported	d only as detect	ed in individ	ual samoles						
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram JG/KG - Micrograms per kilogram SQL - Sample quantitation limit N - Presumptive evidence of presence of material NE - Not established NR - Not reported J - Estimated value J - Material was analyzed for but not detected DD - Doeboy Dump Site SD - Sediment PCB - polychlorinated biphenyl - Miscellaneous compounds are not on the target a SQL is not provided.	nalyte compound list	and are reported	d only as detect	ed in individ	ual samples	:					
C A complete listing of analytical results can be four DATA QUALIFIERS AND ABBREVIATIONS MG/KG - Milligrams per kilogram JG/KG - Micrograms per kilogram SQL - Sample quantitation limit N - Presumptive evidence of presence of material NE - Not established NR - Not reported J - Estimated value J - Material was analyzed for but not detected DD - Doeboy Dump Site SD - Sediment PCB - polychlorinated bioberval	nd in Appendix A.		d only as detect	ed in individ	ual samples	•					