Public Health Assessment
Main Street MGP/Confederate Park Site
Jacksonville, Duval County, Florida
FDEP Site ID # 185118
January 16, 2015

Prepared by:
Florida Department of Health
Division of Disease Control and Health Protection
Under Cooperative Agreement with
U. S. Department of Health and Human Services
Agency for Toxic Substances and Disease Registry
Table of Contents

Foreword... iii
Summary.. 1
Background and Statement of Issues .. 3
 Site Description... 4
 Confederate Park... 4
 E. H. Thompson.. 4
 Park View Inn... 5
 Warren Partnership... 5
 Site Visit... 5
Demographics... 6
Land Use.. 6
Community Health Concerns Evaluation.. 6
Discussion.. 7
Pathway Analyses... 7
 Completed Exposure Pathways... 7
 Potential Exposure Pathway... 8
 Eliminated Exposure Pathways... 8
Public Health Implications... 9
Environmental Data.. 12
 Soil.. 12
 Fish... 13
Identifying Contaminants of Concern... 13
 Arsenic... 14
 Barium... 15
 Chlordane... 16
 Dieldrin... 16
 Dioxins... 17
 Heptachlor epoxide... 18
 Lead.. 19
 Polycyclic Aromatic Hydrocarbons (PAHs).. 19
 Polychlorinated Biphenyls (PCBs).. 20
On-Site Surface Soil – Worker Exposure.. 21
On-Site Surface Soil – Park Visitor Exposure.. 23
On-Site Fish – Recreational Fisherman Exposure.. 25
Health Outcome Data... 29
Child Health Considerations.. 29
Community Health Concerns Evaluation... 30
Conclusions.. 30
Recommendations.. 31
Public Health Action Plan... 31
 Actions Taken... 31
 Actions Planned.. 31
Report Preparation.. 32
References... 33
Appendices 35
Tables 36
Figures 47
PAH Toxicity Equivalency Factors .. 51
Glossary 53
Foreword

The Florida Department of Health (Florida DOH) evaluates the public health threat of hazardous waste sites through a cooperative agreement with the federal Agency for Toxic Substances and Disease Registry (ATSDR) in Atlanta, Georgia. This report was supported by funds from a cooperative agreement with the ATSDR, U.S. Department of Health and Human Services. This document has not been reviewed and cleared by ATSDR. This health assessment is part of an ongoing effort to evaluate health effects associated with the Main Street Manufactured Gasification Plant (MGP)/Confederate Park site in Jacksonville, Florida. The Florida DOH evaluates site-related public health issues through the following processes:

- Evaluating exposure: Florida DOH scientists begin by reviewing available information about environmental conditions at the site. The first task is to find out how much contamination is present, where it is on the site, and how human exposures might occur. The U.S. Environmental Protection Agency (EPA) provided the information for this assessment.

- Evaluating health effects: If Florida DOH finds evidence that exposures to hazardous substances are occurring or might occur, their scientists will determine whether that exposure could be harmful to human health. Florida DOH focuses this report on public health; that is, the health impact on the community as a whole, and bases it on existing scientific information.

- Developing recommendations: In this report, the Florida DOH outlines, in plain language, its conclusions regarding any potential health threat posed by contaminated soil, groundwater, and vapor, and offers recommendations for reducing or eliminating human exposure to contaminants. The role of the Florida DOH in dealing with hazardous waste sites is primarily advisory. For that reason, the evaluation report will typically recommend actions for other agencies, including the U.S. EPA and the Florida Department of Environmental Protection (FDEP). If, however, an immediate health threat exists or is imminent, Florida DOH will issue a public health advisory warning people of the danger, and will work to resolve the problem.

- Soliciting community input: The evaluation process is interactive. The Florida DOH starts by soliciting and evaluating information from various government agencies, individuals or organizations responsible for cleaning up the site, and those living in communities near the site. Florida DOH shares any conclusions about the site with the groups and organizations providing the information. Once Florida DOH prepares an evaluation report, they seek feedback from the public.
If you have questions or comments about this report, Florida DOH encourages you to contact us.

Please write to: Division of Disease Control and Health Protection
Bureau of Epidemiology
Public Health Toxicology Section
Florida Department of Health
4052 Bald Cypress Way, Bin # A-12
Tallahassee, FL 32399-1712

Or call: 850-245-4401 or toll-free in Florida: 1-877-798-2772
Summary

INTRODUCTION
At the former Main Street Manufactured Gas Plant (MGP)/Confederate Park site, the Florida Department of Health’s (DOH) top priority is to ensure nearby residents have the best information to safeguard their health.

The site is just north of downtown Jacksonville, Florida and is bounded by Phelps Street to the north, Hubbard Street to the east, State Street to the south, and Main Street to the west. Between 1875 and 1913, the Main Street MGP was an active manufactured gas plant. It used coal to make gas for lamps and stoves. Over time, the plant polluted on-site soil and groundwater. Additional sources may have also contributed to the pollution since 1913. Groundwater and soil pollution is mostly contained within the borders of the site.

CONCLUSION #1
If recreational fishermen consume fish from Hogans Creek, it might harm their health.

BASIS FOR DECISION #1
Although maximum doses for fish consumption were below minimal risk levels and increased cancer risks were very low or extremely low, there are other industrial sites along Hogans Creek. Some of these sites may contribute pollutants that were not analyzed for by the United States Environmental Protection Agency (EPA). Since EPA tested the fish in 2010, there is also the possibility that pollutant levels may have increased.

NEXT STEPS #1
Florida DOH recommends recreational fishermen and others not consume fish from Hogans Creek. Florida DOH also recommends the City of Jacksonville maintain fish advisory signs along Hogans Creek.

CONCLUSION #2
Surface soil in Confederate Park may still have site-related pollution from past stormwater runoff in the area where Hogans Creek used to be. This area is south of Hogans Creek’s current location, north of Orange Street, and between Hubbard/Newnan and Market Streets.

BASIS FOR DECISION #2
Surface soil pollutant levels are uncertain since the City of Jacksonville did not test any soil in this area. Since the City is not planning to clean this area, it could be a future source of exposure.
NEXT STEPS #2: Florida DOH recommends the City test surface soil (0-3 inches deep) from the off-site area bounded by Hogans Creek, Orange, Hubbard/Newnan, and Market Streets.

CONCLUSION #3: Four samples are too few to determine the extent of surface soil pollution for the entire 8.6 acre Confederate Park site.

BASIS FOR DECISION #3: Because the City of Jacksonville only collected 4 surface soil samples (0-12 inches deep) over the entire site, large areas were not sampled.

NEXT STEPS #3: If the City does not remove surface soil as part of their cleanup, they should test more surface soil samples (0-3 inches deep) to find the full extent of pollution in on-site surface soil.

CONCLUSION #4: Incidental ingestion (swallowing) of pollutants in on-site surface soils is not likely to harm workers’ health.

BASIS FOR DECISIONS #4: Based on just a few (4) samples, pollutants in the on-site surface soils are below levels likely to harm health. Contact with these levels would result in, at most, a “very low” to “extremely low” increased cancer risk.

CONCLUSION #5: Incidental ingestion of pollutants in on-site surface soils is not likely to harm the health of Confederate Park visitors.

BASIS FOR DECISIONS #5: Based on just a few samples, pollutants in the on-site surface soils are below levels likely to harm health. Contact with these levels would result in, at most, a “very low” to “extremely low” increased cancer risk.

FOR MORE INFORMATION: If you have concerns about your health or the health of your children, you should contact your health care provider. You may also call the Florida DOH toll-free at 877-798-2772 and ask for information about the former Main Street MGP/Confederate Park site.
Background and Statement of Issues

The purpose of this public health assessment is to assess the public health threat from toxic chemicals at the former Jacksonville Main Street Manufactured Gasification Plant (MGP)/Confederate Park site. The Florida DOH initiated this assessment.

The site encompasses Confederate Park, the E.H. Thompson property, the Park View Inn property (former Main Street MGP location), the Warren Partnership property, and the Orange Street right-of-way. Collectively, this report refers to these properties as the site. The site is within Section 13 Township 2S and Range 26E just north of downtown Jacksonville (Figure 1). It is bounded by Main Street (formerly known as Pine Street) to the west, State Street to the south, Phelps Street to the north, and Hubbard Street to the east (Figure 2). The site is approximately 11.7 acres.

The 1884 Sanborn Map depicted an MGP operating as the Jacksonville Gas Works in the location of what is now the Park View Inn property. Subsequent Sanborn Maps (1887, 1891, 1897, and 1903) show the expansion of the MGP. The MGP is no longer present in the 1913 Sanborn Map. In 1929, the City dredged a new creek bed and relocated Hogans Creek northward from what is now Orange Street to its current location [Geosyntec 2011].

FDEP discovered contamination at the former Main Street MGP in 1991 during a petroleum investigation for the E. H. Thompson property.

Area residents and businesses receive their drinking water from JEA (formerly the Jacksonville Electric Authority). A JEA municipal well field dating back to 1922 is west of Main Street and Confederate Park. Total depths of the wells range from 1,276 to 1,319 ft. Casing depths range from 501 to 532 ft. The Floridan aquifer is the principal source of potable water in the Jacksonville area. The top of the Floridan aquifer is located between 500 and 550 ft. below land surface (BLS) in this area [Geosyntec 2011].

In 2010, the EPA found fish (largemouth bass and mullet) from Hogans Creek at Confederate Park contained contaminants (arsenic, chlordane, dieldrin, heptachlor epoxide, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and dioxins) above the screening levels established by the Florida DOH [EPA 2011]. The Florida DOH in Duval County (DOH-Duval) recommended a fish consumption advisory for Hogans Creek and the City of Jacksonville posted signs.

Hogans Creek bisects the southern portion of Confederate Park. Hogans Creek flows to the southeast before discharging into the St. Johns River. The land north of Hogans Creek slopes southward, with surface drainage collected by the pond located near the center of the Park or Hogans Creek. The portion of the Park south of Hogans Creek appears to drain to the north towards the creek. A subsurface pipe, designed to prevent the pond from overflowing, connects the pond to Hogans Creek. However, during heavy rain events, both the pond and Hogans Creek overflow and minor flooding occurs south of the
pond and along Hogans Creek. Surface water runoff from the Park View Inn, E.H. Thompson, and Warren Partnership properties all flow north toward Hogans Creek. Surficial aquifer groundwater flow in the area of the site is toward Hogans Creek [Geosyntec 2011].

This assessment considers the health of nearby workers, visitors to Confederate Park, and individuals eating fish from Hogans Creek and explores possible associations with site-related contaminants. This assessment requires the use of assumptions, judgments, and incomplete data. These factors contribute to uncertainty in evaluating the health threat. Assumptions and judgments in this assessment err on the side of protecting public health and may overestimate the risk to public health.

Site Description

The former Jacksonville Main Street MGP/Confederate Park site covers approximately 11.7 acres bounded by Main Street to the west, State Street to the south, Phelps Street to the north, and Hubbard Street to the east. The site consists of five parcels; Confederate Park, the E.H. Thompson property, the Park View Inn Property (former Main Street MGP location), the Warren Partnership property, and the Orange Street right-of-way.

Confederate Park

The City of Jacksonville owns Confederate Park at 956 Hubbard Street. The total area of Confederate Park is approximately 8.6 acres. About 6.1 acres of the Park is west of Hubbard Street; the remaining portion of Confederate Park (2.5 acres) is east of Hubbard Street. The portion of Confederate Park west of Hubbard Street is a grassed lawn gently sloping from north to south, with a few trees. Hogans Creek divides the Park into two distinct areas. Most of Confederate Park is north of Hogans Creek (about 5.5 acres). This portion of the Park is fenced; however, it is accessible during the day. The City locks this portion of the Park at night to prevent access. The portion of Confederate Park south of Hogans Creek is about 0.6 acres. Access to this portion of the Park is restricted at all times by fencing and a locked gate. The Park consists of a decorative pond, which connects to Hogans Creek via an underground drainage pipe, concrete walkways, a Civil War Monument (Memorial to the Women of the Confederacy), a maintenance building, and a small office building. In the mid-1990s, the City dredged the pond and removed four feet of sediment. The City did not report testing for contamination during the sediment removal [Felicia Boyd & Associates, 2001].

E. H. Thompson

The E. H. Thompson property has a total area of approximately 0.9 acre, with almost half that amount covered with structures. The property is at 937 Main Street, at the intersection of Main Street and Orange Street, south-southwest of Confederate Park.
An automobile dealership and service center once used the property. It housed three underground storage tanks (UST) and one above ground storage tank (AST) including a 1,200-gallon kerosene UST, a 550-gallon gasoline UST, a 300-gallon UST, and a 750-gallon used oil AST. In 1993, the site owner removed the USTs and the AST [PACO 1993]. Reports do not indicate the dates for installation of the tanks. The configuration of the structures and fencing equipped with a locking, rolling gate restricts access to the E. H. Thompson property.

Park View Inn

The Park View Inn property is at 901 North Main Street across Orange Street from the E. H. Thompson property and encompasses a total area of 1.5 acres. The Park View Inn building, demolished in 2011, was a six-story structure built in 1966 as a full service hotel with an interior courtyard area and a parking garage. The inn covered the entire city block bounded by Orange Street to the north, State Street to the south, Ocean Street to the west, and Main Street to the east. Only the parking garage remains.

The property occupies the same city block as the former Main Street MGP. The Parkview Inn had a 2,000-gallon No. 2 fuel oil UST near the northwest corner of the building (installation date unknown). The owner took the UST out of service in the 1980s and abandoned it in place in November 2002. Access to the property is unrestricted [Geosyntec 2011].

Warren Partnership

The Warren Partnership property is at 925 North Ocean Street. The total area of the Warren Partnership property, which the owners now use as a light manufacturing facility, is approximately 1.6 acres. However, consultants only investigated the northern-most portion of the property and the area along the Orange Street right-of-way as part of the Main Street MPG/Confederate Park site investigation.

The property has four, one-story buildings constructed in 1950 for light manufacturing. The property owners once used it as an automobile dealership and service center and housed a 3,000-gallon gasoline UST and a 500-gallon used oil UST. The owners have not used the USTs since 1970 and removed them in 1992 [Jones 2001]. The installation date(s) of the USTs is not known.

Access to the Warren Partnership property is from Ocean Street or through a locking gate on Newnan Street [Geosyntec 2011].

Site Visit

On March 17, 2014, Florida DOH visited the Main Street MGP/Confederate Park site. We observed flooding in Confederate Park between Hogans Creek and the decorative pond due to heavy rainfall earlier in the day. The water level in Hogans Creek was higher than average. Access to Confederate Park north of Hogans Creek is through unlocked
gates. Access to Confederate Park south of Hogans Creek is restricted by the creek and fencing. Hogans Creek is easily accessible north of the site and passes through local recreational areas. Hogans Creek south of the site is less accessible and passes through some residential areas before entering industrial areas and then the St. Johns River. Florida DOH observed debris, indicating people congregate along Hogans Creek just south of the site, but there were no indications of fishing. We observed fish advisory signs at Confederate Park.

Demographics

Florida DOH examines demographic and land use data to identify sensitive populations, such as young children, the elderly and women of childbearing age, to determine whether these sensitive populations are exposed to any potential health risks. Demographics also provide details on population mobility and residential history in a particular area. This information helps Florida DOH evaluate how long residents might have been exposed to contaminants.

Approximately 14,160 people live within a 1.0-mile radius of the site. Sixty-four percent (64%) are African-American, 32% are white, 3% are of Hispanic origin, and 1% represents other racial or ethnic groups. Sixteen percent (16%) are less than 18 years old, and 84% are older than 18. Fifty-nine percent (59%) have a high school diploma or less, and 41% have at least some college. Ninety-four percent (94%) speak only English, and 79% make less than $50,000 a year (EPA 2010).

Land Use

Land use bordering the site is commercial and industrial. The majority of Confederate Park has limited recreational use but nearby residents use the park west of Hubbard Street for a dog walk, playground, and basketball court. Land use farther to the north and west of the site is predominantly residential. Land use to the south and west of the site is predominantly commercial and industrial.

Community Health Concerns

On March 17, 2014, nearby residents and other interested parties attended a community meeting where the City of Jacksonville presented plans for cleanup at the Main Street MGP/Confederate Park site. Health concerns involved use of the dog park and the impact of contamination on drinking water and irrigation wells. The City said cleanup plans would protect public health.

Florida DOH solicited additional health concerns during the public comment period on this public health assessment by sending community updates to 300 addresses near the site. This update also summarized the conclusions and recommendations and provided recipients with a comment form to return. Only three forms were returned and none included health concerns to address in this final report.
Discussion

Pathway Analyses

Chemical contamination in the environment can harm your health but only if you have contact with those contaminants (exposure). Without contact or exposure, there is no harm to health. If there is contact or exposure, how much of the contaminants you contact (concentration), how often you contact them (frequency), for how long you contact them (duration), and the danger level of the contaminant (toxicity) all determine the risk of harm.

Knowing or estimating the frequency with which people could have contact with hazardous substances is essential to assessing the public health importance of these contaminants. The method for assessing whether a health hazard exists to people is to determine whether there is a completed exposure pathway from a contaminant source to a receptor population and whether exposures to contamination are high enough to be of health concern.

An exposure pathway is a series of steps starting with the release of a contaminant in environmental media and ending at the interface with the human body. A completed exposure pathway consists of five elements:

1. A source of contamination like a hazardous waste site.
2. An environmental medium like air, water or soil that can hold or move the contamination.
3. A point where people come into contact with a contaminated medium like water at the tap or soil in the yard.
4. An exposure route like ingesting (contaminated soil, water or fish) or breathing (contaminated air).
5. A population who could be exposed to contamination like nearby residents.

Generally, the ATSDR/Florida DOH consider three exposure categories: 1) completed exposure pathways; that is, all five elements of a pathway are present; 2) potential exposure pathways; that is, one or more of the elements may not be present, but information is insufficient to eliminate or exclude the element; and 3) eliminated exposure pathways; that is, a receptor population does not come into contact with contaminated media. ATSDR/Florida DOH use exposure pathways to evaluate specific ways in which people were, are, or will be exposed to environmental contamination in the past, present, and future.

Completed Exposure Pathways

Incidental ingestion of on-site soil by workers is a completed exposure pathway. The former Main Street MGP is the source and on-site surface soil is the medium and point of
exposure. Incidental ingestion is the route of exposure and workers are the exposed population. Workers were exposed in the past, are being exposed now, and may be exposed in the future (Table 1).

Incidental ingestion of on-site soil by park visitors is also a completed exposure pathway. The former Main Street MGP is the source and on-site surface soil is the medium and point of exposure. Incidental ingestion is the route of exposure and park visitors are the exposed population. Park visitors were exposed in the past, are being exposed now, and may be exposed in the future (Table 1).

Ingestion of fish by recreational fishers is another completed exposure pathway. The former Main Street MGP and other industrial sites are the source. Fish are the exposure medium. Hogans Creek or the on-site pond is the point of exposure. Ingestion is the route of exposure and recreational fishers are the exposed population. People who eat these fish were exposed in the past, are being exposed now, and may be exposed in the future (Table 1).

Potential Exposure Pathway

For this assessment, Florida DOH evaluated the potential long-term health threat from incidental ingestion (swallowing) of very small amounts of surface soil (0-12 inches deep) from two currently restricted areas of Confederate Park south of Hogans Creek. One area is between Main Street and Hubbard/Newnan and the other is between Hubbard/Newnan and Market Street.

For this potential exposure pathway, the former Main Street MGP hazardous waste site is the source. Spills and improper disposal of by-products and waste material have contaminated the soil. Surface soil is the medium and these two currently restricted areas would be the points of exposure if the City ever allows access to visitors. Ingestion would be the exposure route and park visitors would be the exposed population (Table 2).

Eliminated Exposure Pathways

Florida DOH concludes that incidental ingestion of sub-surface soil or sediments are eliminated exposure pathways. Drinking or showering with water from local private or municipal drinking water wells and vapor intrusion into on-site buildings were also eliminated (Table 3).

There is no evidence of exposure to sub-surface soils at or sediments near the site. Cement, asphalt and buildings cover most of the on-site sub-surface soil and access is restricted to those areas not covered. There are currently no businesses conducting excavation or other activities that might regularly expose people to subsurface soil or sediments on or near the site.
Drinking and showering with water from nearby private or municipal wells are also eliminated exposure pathways. JEA supplies water to residential and commercial properties in this area and tests annually. Consultants identified one private well within a one quarter mile radius but it is used for irrigation only.

Surface water is an eliminated exposure pathway since it is unlikely people would drink from or swim in the on-site pond or Hogans Creek.

There is no evidence of exposure at the site due to vapor intrusion into on-site buildings. Most of the buildings at the site are unoccupied. In addition, groundwater flow in the area is away from the buildings used by workers.

Public Health Implications

Health scientists look at what chemicals are present and in what amounts. They compare those amounts to health guidelines. These guidelines are set far below known or suspected levels associated with health effects.

This public health assessment also considers health concerns of nearby residents and explores possible associations with site-related contaminants. This assessment requires the use of assumptions and judgments, and relies on incomplete data. These factors contribute to uncertainty in evaluating the health threat. Assumptions and judgments in the assessment of the site’s impact on public health err on the side of protecting public health and may overestimate the risk.

Florida DOH estimates the health risk for individuals exposed to the highest measured level of contamination. Florida DOH provides site-specific public health recommendations on the basis of toxicological literature, levels of environmental contaminants, evaluation of potential exposure pathways, duration of exposure, and characteristics of the exposed population. Whether a person will be harmed depends on the type and amount of contaminant, how they are exposed, how long they are exposed, how much contaminant is absorbed, genetics, and individual lifestyles.

After identifying contaminants of concern, Florida DOH evaluates exposures by estimating daily doses for children and adults. Kamrin [1988] explains the concept of dose as follows:

“...all chemicals, no matter what their characteristics, are toxic in large enough quantities. Thus, the amount of a chemical a person is exposed to is crucial in deciding the extent of toxicity that will occur. In attempting to place an exact number on the amount of a particular compound that is harmful, scientists recognize they must consider the size of an organism. It is unlikely, for example, that the same amount of a particular chemical that will cause toxic effects in a 1-pound rat will also cause toxicity in a 1-ton elephant.
Thus instead of using the amount that is administered or to which an organism is exposed, it is more realistic to use the amount per weight of the organism. Thus, 1 ounce administered to a 1-pound rat is equivalent to 2,000 ounces to a 2,000-pound (1-ton) elephant. In each case, the amount per weight is the same; 1 ounce for each pound of animal.”

This amount per weight is the dose. Toxicology uses dose to compare toxicity of different chemicals in different animals. Florida DOH uses the units of milligrams (mg) of contaminant per kilogram (kg) of body weight per day (mg/kg/day) to express doses in this assessment. A milligram is 1/1,000 of a gram (3-4 grains of rice weigh approximately 100 mg); a kilogram is approximately two (2) pounds.

To calculate the daily doses of each contaminant, the Florida DOH uses standard factors for dose calculation [ATSDR 2005; EPA 1997]. Florida DOH assumes that people are exposed daily to the maximum concentration measured and makes the health protective assumption that 100% of the ingested chemical is absorbed into the body. The exception is arsenic, which has an oral bioavailability factor of 33% in soil [FDEP 2005]. This means FDEP determined that 33% of the arsenic ingested in soil is absorbed into the body.

Florida DOH and ATSDR use the following formula to estimate a dose:

\[
D = \frac{(C \times IR \times EF \times CF)}{BW}
\]

- **D** = exposure dose (milligrams per kilogram per day or mg/kg/day)
- **C** = contaminant concentration (milligrams per kilogram or mg/kg)
- **IR** = intake rate of contaminated sediment (milligrams per day or mg/day)
- **EF** = exposure factor (unitless)
- **CF** = conversion factor (10^6 kilograms per milligram or kg/mg)
- **BW** = body weight (kilograms or kg)

\[
EF = \frac{F \times ED}{AT}
\]

- **EF** = exposure factor (unitless)
- **F** = frequency of exposure (days/year)
- **ED** = exposure duration (years)
- **AT** = averaging time (days) (ED x 365 days/year for noncarcinogens; Lifetime exposure duration x 365 days/year for carcinogens)

ATSDR groups health effects by duration of exposure. Acute exposures are those with duration of 14 days or less; intermediate exposures are those with duration of 15 – 364 days; and chronic exposures are those that occur for 365 days or more (or an equivalent period for animal exposures). ATSDR Toxicological Profiles also provide information on the environmental transport and regulatory status of contaminants.
To estimate exposure from incidental ingestion (swallowing) of contaminated soil, Florida DOH uses the following standard assumptions:

1) Children ages 6 months to 1 year incidentally ingest an average of 60 milligrams (mg) and an upper percentile of ingestion of 100 mg of soil per day.
2) Children ages 1 to 21 years incidentally ingest an average of 100 mg and an upper percentile of ingestion of 200 mg of soil per day (about the weight of a postage stamp).
3) Adults incidentally ingest an average of 50 mg and an upper percentile of ingestion of 100 mg of soil per day.
4) Children’s average weights vary with age: (0.5 to 1 year: 9.2 kg), (1 to 2 years: 11.4 kg), (2 to 6 years: 17.4 kg), (6 to 11 years: 31.8 kg), (11 to 21 years: 64.2 kg).
5) Adults ages 21 to 65 weigh an average of 80 kg, or about 176 pounds.
6) Adults ages 65 and older weigh an average of 76 kg.
7) The frequency of exposure is assumed to be 365 days per year.
8) Lifetime exposure duration for adults is 78 years.
9) Exposure duration for children is 6 years.

Florida DOH compares estimated exposure doses to ATSDR chemical-specific minimal risk levels (MRLs). MRLs are comparison values that establish exposure levels many times lower than levels where scientists observed no effects in animals or human studies. ATSDR designed the MRL to protect the most sensitive, vulnerable individuals in a population. The MRL is an exposure level below which noncancerous harmful effects are unlikely, even after daily exposure over a lifetime. Although ATSDR considers concentrations at or below the relevant comparison value reasonably safe, exceeding a comparison value does not imply adverse health effects are likely.

If contaminant concentrations are above comparison values, Florida DOH further analyzes exposure variables (for example, duration and frequency), toxicology of the contaminants, past epidemiology studies, and the weight of evidence for health effects. Florida DOH uses chronic MRLs where possible because exposures are usually longer than a year. If chronic MRLs are not available, they use intermediate length MRLs [ATSDR 2005].

Risk – For noncancer illnesses, Florida DOH estimates the health risk by comparing the exposure dose to MRLs.

For cancer illnesses, Florida DOH and ATSDR use the following equation to estimate cancer risk:

\[
\text{Risk (unitless)} = D \times SF
\]

D = exposure dose (mg/kg/day). See above equation.
SF = cancer slope factor in milligrams per kilogram per day (mg/kg/day)^(-1)
For carcinogens that have a mutagenic mode of action, such as benzo(a)pyrene (BaP), Florida DOH and ATSDR use the following equation to estimate the cancer risk for various age groups:

\[
\text{Risk} = D \times SF \times ADAF
\]

\(D\) = exposure dose (mg/kg/day). See above equation.

\(SF\) = cancer slope factor in milligrams per kilogram per day (mg/kg/day)

\(ADAF\) = age-dependent adjustment factor

This is a high estimate of the increased cancer risk. The actual increased cancer risk is likely lower. Because of large uncertainties in the way scientists estimate cancer risks, the actual cancer may be as low as zero. If there is no cancer slope (potency) factor, Florida DOH/ATSDR cannot quantify the cancer risk.

To put the cancer risk into perspective, Florida DOH/ATSDR uses the following descriptors for the different numeric cancer risks:

- 1 in \(10^{1}\) = “very high” increased risk
- 1 in \(10^{2}\) = “high” increased risk
- 1 in \(10^{3}\) = “moderate” increased risk
- 1 in \(10^{4}\) = “low” increased risk
- 1 in \(10^{5}\) = “very low” increased risk
- 1 in \(10^{6}\) = “extremely low” increased risk

To select one of the above increased cancer risk descriptors, Florida DOH rounds the calculated cancer risk to the nearest power of ten. For example, a calculated increased cancer risk of \(8.4 \times 10^{5}\) would round to \(10 \times 10^{5}\) or \(1 \times 10^{6}\), which is a “very low” increased cancer risk.

Health scientists know too little about the combined toxic effect of multiple contaminants to assess the health risk from exposure to mixtures. Therefore, this report assessed the health threat based on exposure to individual contaminants.

Environmental Data

Soil

This assessment only addresses surface soil sample data from 0 to 12 inches below land surface (BLS) and does not include samples taken from 0 to 24 inches BLS. Considering soil samples 0 to 24 inches BLS may underestimate the true concentration of water-insoluble contaminants deposited on and likely to remain at the ground surface.
Consultants collected on-site surface soils from beneath impervious material, such as asphalt, as well as from exposed soil. Because people are not exposed to soil beneath impervious material, Florida DOH evaluated only those samples from exposed soil.

Consultants collected 32 soil samples from 0 to 24 inches BLS in May 2003. They also collected four soil samples from 0 to 12 inches BLS (Figure 3). However, they did not collect any soil samples from the area of the former creek bed downstream of the site. This area is south of Hogans Creek, north of Orange Street, and between Hubbard/Newnan and Market Streets. Stormwater runoff from the site may have deposited contaminants in this area of the former creek bed.

Florida DOH considers four (4) surface soil samples (0-12 inches BLS) for the size of this site as too few to determine the extent of surface soil contamination. Therefore, for purposes of this assessment, the City has not adequately characterized the extent of on-site surface soil contamination.

Consultants analyzed soil samples for metals, PAHs, volatile organic chemicals (VOCs), and cyanide [Geosyntec 2003]. They found surface soil samples contaminated with arsenic, PAHs, lead and/or barium above screening guidelines (Table 4).

Fish

In December 2010, the EPA collected largemouth bass (top predator) and striped mullet (bottom-dweller) from Hogans Creek between Main and Hubbard Streets [EPA 2011]. They analyzed eight composite samples (five bass and three mullet) for pesticides, PCBs, PAHs, metals, and dioxins. All bass and mullet exceeded Florida DOH recreational fishermen screening values (SVs) for dieldrin, total PCBs, total benzo(a)pyrene equivalence (BaP TEq), and dioxins. Additionally, all mullet samples exceeded SVs for technical chlordane, heptachlor epoxide, and inorganic arsenic. One largemouth bass sample exceeded the SV for technical chlordane and one exceeded the SV for heptachlor epoxide (Table 9).

For the purpose of this assessment, EPA has adequately characterized fish quality in Hogans Creek.

Identifying Contaminants of Concern

Florida DOH compares the maximum concentrations of contaminants found at a site to ATSDR and other comparison values. Comparison values are specific for the medium contaminated (soil, water, air, etc.). They screen the environmental data using these comparison values:

- ATSDR Cancer Risk Evaluation Guide (CREG)
- ATSDR Environmental Media Evaluation Guides (EMEGs)
When determining which comparison value to use, Florida DOH follows ATSDR’s general hierarchy and uses professional judgment.

Florida DOH selects for further evaluation contaminants with maximum concentrations above a comparison value. Comparison values, however, are not thresholds of toxicity. Florida DOH and ATSDR do not use them to predict health effects or to establish cleanup levels. A concentration above a comparison value does not necessarily mean harm will occur. It does indicate, however, the need for further evaluation.

Maximum contaminant concentrations below comparison values are not likely to cause illness and Florida DOH/ATSDR does not evaluate them further.

By comparing the highest measured concentrations in soil ATSDR and EPA screening guidelines, Florida DOH selected arsenic, benzo(a)pyrene toxic equivalents (BaP TEq) as a measurement for PAHs, barium, and lead as contaminants of concern (COCs). Using the Florida DOH SVs for fish, Florida DOH chose arsenic, chlordane, dieldrin, heptachlor epoxide, BaP TEq, total PCBs, and dioxin TEqs as COCs for fish sampled.

Selection of these contaminants does not necessarily mean there is a public health risk. Rather, Florida DOH selected these contaminants for scrutiny. Concentrations of other contaminants are below screening guidelines and are not likely to cause illness. Florida DOH/ATSDR does not evaluate these contaminants further.

Arsenic

Arsenic is a naturally occurring metal widely distributed in soil. Scientists usually find it combined with oxygen, chlorine, and sulfur. Most arsenic compounds have no smell or special taste [ATSDR 2007a].

Arsenic, like most metals, is not well absorbed through the skin. If you get arsenic-contaminated soil on your skin, only a small amount will go through your skin into your body, so skin contact is usually not a health risk [ATSDR 2007a]. The lack of air monitoring data prevents an evaluation of the risk from breathing arsenic-contaminated dust.

Ingesting very high levels of arsenic can result in death. Exposure to lower levels can cause nausea and vomiting, decreased production of red and white blood cells, abnormal
heart rhythm, damage to blood vessels, and a sensation of "pins and needles" in hands and feet. Ingesting or breathing low levels of inorganic arsenic for a long time can cause a darkening of the skin and the appearance of small "corns" or "warts" on the palms, soles, and torso. Skin contact with inorganic arsenic may cause redness and swelling.

Several studies have shown that ingestion of inorganic arsenic can increase the risk of skin cancer and cancer in the liver, bladder, and lungs. Inhalation of inorganic arsenic can cause increased risk of lung cancer. The Department of Health and Human Services (DHHS) and the EPA have determined that inorganic arsenic is a known human carcinogen. The International Agency for Research on Cancer (IARC) has determined that inorganic arsenic is carcinogenic to humans.

There is some evidence that long-term exposure to arsenic in children may result in lower IQ scores. There is also some evidence that exposure to arsenic in the womb and early childhood may increase mortality in young adults [ATSDR 2007a].

State and federal environmental agencies base their arsenic cleanup standards on workplace studies and laboratory animal studies. Because of uncertainties in these studies, their cleanup standards include large safety factors to ensure public health. Although concentrations slightly above these cleanup standards may not necessarily cause harm, the responsible party should clean up the soil to protect public health.

Barium

Barium is a silvery-white metal that exists in nature only in ores containing mixtures of elements. It combines with other chemicals such as sulfur or carbon and oxygen to form barium compounds. The oil and gas industries use barium compounds to make drilling muds. Drilling muds make it easier to drill through rock by keeping the drill bit lubricated. Industries also use barium compounds to make paint, bricks, ceramics, glass, and rubber.

Doctors sometimes use barium sulfate to perform medical tests and to take x-rays of the gastrointestinal tract.

Heath scientists have found barium causes gastrointestinal disturbances and muscular weakness when people are exposed to it at levels above the EPA drinking water standards for relatively short periods. Some people who eat or drink amounts of barium above background levels found in food and water for a short period may experience vomiting, abdominal cramps, diarrhea, difficulties in breathing, increased or decreased blood pressure, numbness around the face, and muscle weakness. Eating or drinking very large amounts of barium compounds that easily dissolve can cause changes in heart rhythm or paralysis and possibly death. Animals that drank barium over long periods had damage to the kidneys, decreases in body weight, and some died. The greatest potential source of barium exposure is through food and drinking water. However, the amount of barium in foods and drinking water are typically too low to be of concern.
The DHHS and the IARC have not classified barium as to its carcinogenicity. The EPA has determined that barium is not likely to be carcinogenic to humans following ingestion and that there is insufficient information to determine whether it will be carcinogenic to humans following inhalation exposure [ATSDR 2013].

Chlordane

Chlordane is a manufactured (man-made) chemical used as a pesticide in the United States from 1948 to 1988. Technical chlordane is not a single chemical, but is actually a mixture of pure chlordane mixed with many related chemicals. It does not occur naturally in the environment. It is a thick liquid that is colorless to amber. Chlordane has a mild, irritating smell. Some of its trade names are Octachlor and Velsicoll 1068. Until 1983, the United States used chlordane as a pesticide on crops like corn and citrus and on home lawns and gardens. Because of concern about damage to the environment and harm to human health, the EPA banned all uses of chlordane in 1983 except to control termites. In 1988, EPA banned all uses.

Chlordane affects the nervous system, the digestive system, and the liver in people and animals. Headaches, irritability, confusion, weakness, vision problems, vomiting, stomach cramps, diarrhea, and jaundice have occurred in people who breathed air containing high concentrations of chlordane or accidentally swallowed small amounts of chlordane. Large amounts of chlordane taken by mouth can cause convulsions and death. The International Agency for Research on Cancer has determined that chlordane is not classifiable as to its carcinogenicity to humans. Studies of workers who made or used chlordane do not show that exposure to chlordane is related to cancer, but the information is not sufficient to know for sure. Mice fed low levels of chlordane in food developed liver cancer [ATSDR 2001a].

The EPA recommends that a child should not drink water with more than 60 parts of chlordane per billion parts of drinking water (60 ppb) for longer than one (1) day. EPA has set a limit in drinking water of 2 ppb. EPA requires that people report spills or releases of chlordane into the environment of 1 pound or more. The Food and Drug Administration (FDA) limits the amount of chlordane and its breakdown products in most fruits and vegetables to less than 300 ppb and less than 100 ppb in animal fat and fish [ATSDR 1995a].

Dieldrin

Aldrin and dieldrin are insecticides with similar chemical structures. We discuss them together in this report because aldrin quickly breaks down to dieldrin in the body and in the environment. Pure aldrin and dieldrin are white powders with a mild chemical odor. The less pure commercial powders have a tan color. Neither substance occurs naturally in the environment. From the 1950s until 1970, aldrin and dieldrin were widely used pesticides for crops like corn and cotton. Because of concerns about damage to the
environment and potentially to human health, EPA banned all uses of aldrin and dieldrin in 1974, except to control termites. In 1987, EPA banned all uses.

Aldrin and dieldrin affect health in similar ways. Health scientists have seen symptoms of aldrin and dieldrin poisoning in people who were exposed to very large amounts of these pesticides during their manufacture. They have also seen symptoms of poisoning in people who intentionally or accidentally ate or drank large amounts of aldrin or dieldrin. Most of these people experienced convulsions or other nervous system effects, and some had kidney damage. Some people who intentionally ate or drank large amounts of aldrin or dieldrin died. Health effects in people exposed to smaller amounts of aldrin or dieldrin occur because levels of the chemicals build up in the body over time. Exposure to moderate levels of aldrin or dieldrin for a long time causes headaches, dizziness, irritability, vomiting, or uncontrollable muscle movements. Some sensitive people seem to develop a condition in which aldrin or dieldrin causes the body to destroy its own blood cells. The IARC has determined that aldrin and dieldrin are not classifiable as to their carcinogenicity to humans. Based on studies in animals, the EPA has determined that aldrin and dieldrin are probable human carcinogens [ATSDR 2002].

The federal government has developed regulatory standards and guidelines to protect people from the harmful health effects of aldrin and dieldrin. In 1974, EPA banned all uses of aldrin or dieldrin except as a termite killer. In 1981, EPA required labeling changes to warn against applying these chemicals near water supplies, heating ducts, or crawl spaces. They also warned against applying them too frequently. Even though EPA banned all uses of aldrin and dieldrin in 1987, the chemicals persist in the environment. EPA advises lifetime drinking water exposure concentration limits for aldrin and dieldrin of 0.001 and 0.002 milligrams per liter (mg/L), respectively, for protection against adverse non-cancer health effects, which assume all of the exposure to the contaminants are from drinking water. Regarding cancer risk, EPA advises a drinking water exposure concentration limit of 0.0002 mg/L for aldrin and dieldrin that would, in theory, limit the lifetime risk for developing cancer from exposure to each compound to 1 extra cancer case in 10,000 people.

Dioxins

"Dioxins" refers to a group of toxic chemical compounds that share certain chemical structures and biological characteristics. Forest fires, backyard burning of trash, certain industrial activities, and residue from past commercial burning of waste can release dioxins into the environment. Dioxins break down very slowly and past releases of dioxins from both man-made and natural sources still exist in the environment.

Studies have shown that exposure to dioxins at high enough levels may cause a number of adverse health effects, including cancer. The health effects associated with dioxins depend on a variety of factors including: the level of exposure, when someone was exposed, and for how long and how often someone was exposed.
The most obvious non-cancer health effect in people exposed to large amounts of dioxin is chloracne. Chloracne cases have typically been the result of accidents or significant contamination events. Chloracne is a severe skin disease with acne-like lesions that occur mainly on the face and upper body. Other non-cancer effects of exposure to large amounts of dioxin include developmental and reproductive effects, damage to the immune system, interference with hormones, skin rashes, skin discoloration, excessive body hair, and possibly mild liver damage.

EPA has taken actions to reduce dioxin emissions to the environment by placing regulatory controls on all of the major industrial sources of dioxin, including large and small municipal waste combustors, hospital medical waste incinerators, commercial, industrial and solid waste incinerators, and secondary aluminum smelters. As a result, air emissions of dioxins have been reduced 90 percent from 1987 levels [EPA 2012].

Heptachlor epoxide

Heptachlor is a manufactured chemical and does not occur naturally. Pure heptachlor is a white powder that smells like camphor (mothballs). The less pure grade is tan. Trade names include Heptagran®, Basaklor®, Drinox®, Soleptax®, Termide®, Gold Crest H-60®, and Velsicol 104®. The United States used heptachlor extensively in the past for killing insects in homes, buildings, and on food crops. These uses stopped in 1988. Currently it can only be used for fire ant control in underground power transformers. Heptachlor epoxide is also a white powder. Bacteria and animals break down heptachlor to form heptachlor epoxide. The epoxide is more likely found in the environment than heptachlor [ATSDR 2007b].

There is no reliable information on heptachlor health effects in humans. Health scientists have observed liver damage, excitability, and decreases in fertility in animals ingesting heptachlor. The effects are worse when the exposure levels were high or when exposure lasted many weeks. Although there is very little information on heptachlor epoxide, it is likely that similar effects would also occur after exposure to this compound. Lifetime exposure to heptachlor resulted in liver tumors in animals. IARC and the EPA have classified heptachlor as a possible human carcinogen. EPA also considers heptachlor epoxide as a possible human carcinogen.

The EPA requires that drinking water should not contain more than 0.0004 milligrams heptachlor per liter of water (0.0004 mg/L) and 0.0002 mg heptachlor epoxide per liter of water (0.0002 mg/L). The FDA regulates the amount of heptachlor and heptachlor epoxide in raw food crops and edible seafood. The limit in food crops is 0.01 parts heptachlor per million parts food (0.01 ppm). The limit in milk is 0.1 parts per million of milk fat. The limit in edible seafood is 0.3 ppm.
Lead

Lead is a naturally-occurring bluish-gray metal found in small amounts in the soil. Lead is in all parts of our environment. Much of it comes from human activities including burning fossil fuels, mining, and manufacturing. Because of health concerns, lead from paints, ceramic products, caulkings, and pipe solder has been dramatically reduced in recent years. In 1996, the government banned the use of lead as an additive to gasoline in the United States.

Adults and children may be exposed to lead by hand-to-mouth contact with lead-containing soil or dust. Most exposure comes from accidental ingestion rather than dermal exposure. Health scientists have long recognized environmental exposure to lead as a public health problem, particularly among children. Studies show that excessive concentrations of lead in soil increase blood lead levels in young children [ATSDR 2007c].

Lead, like most metals, is not well absorbed through the skin. Soil that contains lead may get on your skin, but only a small portion of the lead will pass through your skin and enter your blood. The only kinds of lead compounds that easily penetrate the skin are the additives in leaded gasoline, which manufacturers no longer sell to the general public. Therefore, the general public is not likely to encounter lead that can enter through the skin [ATSDR 2007c]. The lack of air monitoring data prevents an evaluation of the risk from breathing lead-contaminated dust in this public health assessment.

Exposure to lead can happen from breathing workplace air or dust, eating contaminated foods, or drinking contaminated water. Children can be exposed from eating lead-based paint chips or playing in contaminated soil. Lead can damage the nervous system, kidneys, and reproductive system. Signs and symptoms associated with lead toxicity include decreased learning capacity and memory, lowered Intelligence Quotient (IQ), speech and hearing impairments, fatigue and lethargy.

Florida DOH used EPA’s Adult Lead Methodology model [EPA 1996] to estimate the blood lead levels for adult workers and park visitors. Estimated blood lead levels more accurately predict health effects than traditional dose estimates.

Polycyclic Aromatic Hydrocarbons (PAHs)

PAHs are a group of over 100 different chemicals formed during the incomplete burning of coal, oil and gas, garbage, or other organic substances like tobacco or charbroiled meat. Health scientists usually find PAHs as a mixture containing two or more of these compounds, such as soot.

PAHs detected in soils at the site include anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, benzo(a)pyrene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene,
phenanthrene and pyrene. To evaluate toxicity, ATSDR relates the toxicities of the carcinogenic PAH family members to the toxicity of BaP. They estimate carcinogenic activity relative to BaP as the toxicity equivalency factor, or TEF. TEFs are in Appendix C. To determine the PAH toxicity equivalent (TEQ), concentrations of carcinogenic PAHs other than BaP are multiplied by their respective TEF and then added to the concentration of BaP. ATSDR considers the PAH TEQ concentration the most valid measure of cancer-producing potency of a complex mixture of PAH compounds.

Animal studies have shown that PAHs can cause harmful effects on the skin, body fluids, and ability to fight disease after both short- and long-term exposure. However, health scientists have not seen these effects in people. The DHHS has determined that some PAHs may reasonably be expected to be carcinogens [ATSDR 1995b]. Because health scientists believe PAHs may cause cancer through a mutagenic mode, ATSDR and Florida DOH use age-dependent adjustment factors to estimate the increased cancer risk.

Polychlorinated Biphenyls (PCBs)

PCBs are a mixture of individual chemicals, which the United States no longer produces, but are still in the environment. Industries used PCBs as coolants and lubricants in transformers, capacitors, and other electrical equipment because they do not burn easily and are good insulators. PCBs have no known smell or taste. Many commercial PCB mixtures in the U.S. go by the trade name Aroclor.

The most commonly observed health effects in people exposed to large amounts of PCBs are skin conditions such as acne and rashes. Studies in exposed workers have shown changes in blood and urine that may indicate liver damage. PCB exposures in the general population are not likely to result in skin and liver effects. Most of the studies of health effects of PCBs in the general population examined children of mothers who were exposed to PCBs. Animals that ate food containing large amounts of PCBs for short periods of time had mild liver damage and some died. Animals that ate smaller amounts of PCBs in food over several weeks or months developed various kinds of health effects, including anemia; acne-like skin conditions; and liver, stomach, and thyroid gland injuries. Other effects of PCBs in animals include changes in the immune system, behavioral alterations, and impaired reproduction. Health scientists do not associate PCBs with birth defects. The DHHS has concluded that PCBs may reasonably be anticipated to be carcinogens. The EPA and the IARC have determined that PCBs are probably carcinogenic to humans [ATSDR 2001].

The EPA has set a limit of 0.0005 milligrams of PCBs per liter of drinking water (0.0005 mg/L). People must report to EPA all discharges, spills or accidental releases of one (1) pound or more of PCBs into the environment. The FDA requires that infant foods, eggs, milk and other dairy products, fish and shellfish, poultry and red meat contain no more than 0.2-3 parts of PCBs per million parts (0.2-3 ppm) of food. Many states have established fish and wildlife consumption advisories for PCBs.
On-Site Surface Soil – Worker Exposure

Consultants collected four on-site surface soil samples (SS-3, SS-16, SS-26 and SS-28) from 0 to 12 inches deep (Table 4). Figure 3 shows the four sample locations. Florida DOH calculations used a soil intake of 100 mg/day, adult worker (outdoor with low soil contact) weighing 80 kg (approximately 176 pounds), exposed five (5) times per week with an exposure duration of 25 years. Based on a limited number of samples, Florida DOH does not expect exposures to surface soil on the Main Street MGP/Confederate Park site to harm workers’ health. Estimated increased cancer risks are “very low” to “extremely low.”

Arsenic
Florida DOH estimated adult worker exposure using a maximum on-site soil concentration for arsenic of 5.7 mg/kg and a bioavailability factor of 0.33.

Noncancer illnesses
A maintenance worker who incidentally ingests very small amounts of surface soil from the site with the highest arsenic levels is unlikely to develop noncancer illnesses. The maximum worker arsenic noncancer dose (1.6 x 10^-6 mg/kg/day) is less than ATSDR’s chronic MRL (3 x 10^-4 mg/kg/day) and thus unlikely to cause noncancer illnesses (Table 5).

Cancer
Workers who incidentally ingest surface soil with the highest arsenic levels at the site over a 25-year period are at an “extremely low” increased estimated risk of cancer (Table 5). Multiplying the maximum arsenic cancer dose (5.2 x 10^-7 mg/kg/day) by the EPA cancer slope factor (1.5 mg/kg/day^-1) results in an increased estimated cancer risk of 8 in 10 million (0.0000008 or 8 x 10^-7).

To put this into context, the American Cancer Society estimates that one out of every three Americans (or 3,333,333 in 10,000,000) will be diagnosed with some form of cancer in their lifetime. Adding the estimated increased cancer risk from exposure to arsenic in the surface soil at the Site would increase the cancer incidence from 3,333,333 in 10,000,000 to 3,333,341 in 10,000,000.

Barium
Florida DOH estimated adult worker exposure using a maximum on-site soil concentration for barium of 190 mg/kg.

Noncancer illnesses
A maintenance worker who incidentally ingests very small amounts of surface soil from the site with the highest barium levels is unlikely to develop noncancer illnesses. The maximum worker barium dose (1.7 x 10^-4 mg/kg/day) is less than ATSDR’s chronic MRL (2 x 10^-2 mg/kg/day) and thus unlikely to cause noncancer illnesses (Table 5).

Cancer
The U.S. DHHS and the IARC have not classified barium as to its carcinogenicity. The EPA has determined that barium is not likely to be carcinogenic to humans following ingestion and that there is insufficient information to determine whether it will be carcinogenic to humans following inhalation exposure [ATSDR 2013].

Lead
Florida DOH estimated adult worker exposure using a maximum on-site soil concentration for lead of 920 mg/kg.

Noncancer illnesses
Estimated blood lead levels more accurately predict health effects than traditional dose estimates. Using EPA’s Adult Lead Methodology model [EPA 1996], Florida DOH estimates that exposure to the highest concentration of lead in surface soil on the site (920 mg/kg) would result in approximately 2.3 to 2.8 micrograms of lead per deciliter blood (μg/dL) in adult workers (Table 6). In general, adults with blood lead levels less than 5 μg/dL are not likely to suffer any noncancer illness (ATSDR 2007c). For adult workers, the U.S. Occupational Safety and Health Administration (OSHA) recommends an evaluation when blood lead levels exceed 40 μg/dL.

Cancer
The U.S. DHHS has determined that lead is reasonably anticipated to be a human carcinogen based on limited evidence from studies in humans and sufficient evidence from animal studies. EPA has determined that lead is a probable human carcinogen. The IARC has determined that inorganic lead is probably carcinogenic to humans [ATSDR 2007c].

EPA has not established a cancer slope factor for lead. Therefore, Florida DOH was unable to calculate a lifetime increased cancer risk.

PAHs
Florida DOH estimated adult worker exposure using a maximum on-site soil concentration for PAHs as measured as a BaP TEq of 6.1 mg/kg and 20-year exposure duration. Calculations also used a soil intake of 100 mg/day and an 80 kg (approximately 176 pound) adult worker exposed five (5) times per week.

Noncancer illnesses
Florida DOH estimated exposure using the maximum commercial soil concentration for each of the ATSDR noncarcinogenic PAHs (1-methylnaphthalene, 2- methylnaphthalene, acenaphthene, anthracene, fluoranthene, fluorene, naphthalene, and pyrene). Florida DOH also compared the maximum concentration for laboratory results of additional noncarcinogenic PAHs against the EPA noncarcinogenic screening levels. A maintenance worker who incidentally ingests very small amounts of surface soil with the highest noncarcinogenic PAH levels is unlikely to develop noncancer illnesses. Florida DOH did not calculate doses for the noncarcinogenic PAHs since all maximum concentrations were below ATSDR and/or EPA noncarcinogenic screening levels.
Cancer
Workers who incidentally ingest (swallow) very small amounts of surface soil with the highest BaP TEq levels at the site over a 20-year period are at a “very low” increased estimated risk of cancer (Table 5). Multiplying the maximum BaP TEq dose (0.000005 mg/kg/day) by the EPA cancer slope factor (7.3 mg/kg/day⁻¹) results in an increased estimated cancer risk of approximately 10 in one million (0.0000099 or 9.9 x 10⁻⁶).

To put this into context, the American Cancer Society estimates that one out of every three Americans (or 333,333 in 1,000,000) will be diagnosed with some form of cancer in their lifetime. Adding the estimated increased cancer risk from exposure to BaP TEq levels in the surface soil at the Site would increase the cancer incidence from 333,333 in 1,000,000 to approximately 333,343 in 1,000,000.

On-Site Surface Soil – Park Visitor Exposure

Consultants collected three on-site surface samples (SS-16, SS-26 and SS-28) from 0 to 12 inches deep (Table 4). Florida DOH did not use sample SS-3 in these calculations since the City collected it in a section of the park restricted to visitors. Figure 3 shows the three sample locations. Florida DOH calculations used a soil intake of 100 mg/day, park visitor weighing 70 kg (approximately 154 pounds), exposed four (4) times per week with an exposure duration of 20 years. Florida DOH used the adult visitor exposure scenario to represent the most common user of this section of the park. Children are more likely to use other sections of the park. Based on a limited number of samples, Florida DOH does not expect exposures to surface soil on the Main Street MGP/Confederate Park site to harm park visitors’ health. Estimated increased cancer risks are “very low” to “extremely low.”

Arsenic
Florida DOH estimated adult visitor exposure using a maximum on-site soil concentration for arsenic of 5.7 mg/kg and a bioavailability factor of 0.33 [FDEP 2005].

Noncancer illnesses
A park visitor who incidentally ingests very small amounts of surface soil from the site with the highest arsenic levels is unlikely to develop noncancer illnesses. The maximum visitor arsenic noncancer dose (1.5 x 10⁻⁶ mg/kg/day) is less than ATSDR’s chronic MRL (3 x 10⁻⁴ mg/kg/day) and thus unlikely to cause noncancer illnesses (Table 7).

Cancer
Visitors who incidentally ingest surface soil with the highest arsenic levels at the site over a 20-year period are at an “extremely low” increased estimated risk of cancer (Table 7). Multiplying the maximum arsenic cancer dose (4 x 10⁻⁷ mg/kg/day) by the EPA cancer slope factor (1.5 mg/kg/day⁻¹) results in an increased estimated cancer risk of 6 in 10 million (0.0000006 or 6 x 10⁻⁶).

To put this into context, the American Cancer Society estimates that one out of every three Americans (or 3,333,333 in 10,000,000) will be diagnosed with some form of
cancer in their lifetime. Adding the estimated increased cancer risk from exposure to arsenic in the surface soil at the Site would increase the cancer incidence from 3,333,333 in 10,000,000 to 3,333,339 in 10,000,000 people.

Barium
Florida DOH estimated adult visitor exposure using a maximum on-site soil concentration for barium of 190 mg/kg.

Noncancer illnesses
A park visitor who incidentally ingests very small amounts of surface soil from the site with the highest barium levels is unlikely to develop noncancer illnesses. The maximum visitor barium dose (1.7×10^{-4} mg/kg/day) is less than ATSDR’s chronic MRL (2×10^{-1} mg/kg/day) and thus unlikely to cause noncancer illnesses (Table 7).

Cancer
The U.S. DHHS and the IARC have not classified barium as to its carcinogenicity. The EPA has determined that barium is not likely to be carcinogenic to humans following ingestion and that there is insufficient information to determine whether it will be carcinogenic to humans following inhalation exposure [ATSDR 2013].

Lead
Florida DOH estimated adult visitor exposure using a maximum on-site soil concentration for lead of 920 mg/kg.

Noncancer illnesses
Estimated blood lead levels more accurately predict health effects than traditional dose estimates. Using EPA’s Adult Lead Methodology model [EPA 1996], Florida DOH estimates that exposure to the highest concentration of lead in surface soil on the site (920 mg/kg) would result in approximately 2.3 to 2.8 micrograms of lead per deciliter blood (μg/dL) in adult park visitors (Table 6). In general, adults with blood lead levels less than 5 μg/dL are not likely to suffer any noncancer illness [ATSDR 2007c].

Cancer
The U.S. DHHS has determined that lead is reasonably anticipated to be a human carcinogen based on limited evidence from studies in humans and sufficient evidence from animal studies. EPA has determined that lead is a probable human carcinogen. The IARC has determined that inorganic lead is probably carcinogenic to humans [ATSDR 2007c].

EPA has not established a cancer slope factor for lead. Therefore, Florida DOH was unable to calculate a lifetime increased cancer risk.

PAHs
Florida DOH estimated adult visitor exposure using a maximum on-site soil concentration for PAHs as measured as a BaP TEq of 3.6 mg/kg and 20-year exposure
duration. Calculations also used a soil intake of 100 mg/day and a 70 kg (approximately 154 pounds) visitor exposed 4 times per week.

Noncancer illnesses
Florida DOH estimated exposure using the maximum commercial soil concentration for each of the ATSDR noncancerous PAHs (1-methylnaphthalene, 2- methylnaphthalene, acenaphthene, anthracene, fluoranthene, fluorene, naphthalene, and pyrene). Florida DOH also compared the maximum concentration for laboratory results of additional noncancerous PAHs against the EPA noncancerous screening levels. A park visitor who incidentally ingests very small amounts of surface soil with the highest noncancerous PAH levels is unlikely to develop noncancer illnesses. Florida DOH did not calculate doses for the noncancerous PAHs since all maximum concentrations were below ATSDR and/or EPA noncancerous screening levels.

Cancer
Visitors who incidentally ingest (swallow) very small amounts of surface soil with the highest BaP TEq levels at the site over a 20-year period are at a “very low” increased estimated risk of cancer (Table 7). Multiplying the maximum BaP TEq dose (8 x 10^-7 mg/kg/day) by the EPA cancer slope factor (7.3 mg/kg/day^-1) results in an increased estimated cancer risk of 6 in a million (0.000006 or 6 x 10^-6).

To put this into context, the American Cancer Society estimates that one out of every three Americans (or 333,333 in 1,000,000) will be diagnosed with some form of cancer in their lifetime. Adding the estimated increased cancer risk from exposure to BaP TEq levels in the surface soil at the site would increase the cancer incidence from 333,333 in 1,000,000 to approximately 333,339 in 1,000,000.

On-Site Fish – Recreational Fisherman Exposure
EPA collected five composite fish samples for largemouth bass and three composite samples for striped mullet from Hogans Creek between Main Street and Hubbard Street in 2010. Florida DOH calculations used a fish intake of 32 g/day (1 fish meal per week) and a 70 kg (approximately 154 lbs) recreational fisherman with an exposure duration of 33 years. Although EPA collected the samples from within the boundaries of Confederate Park only, Florida DOH believes these samples would be representative of bass and mullet along the length of Hogans Creek.

Florida DOH does not expect some consumption of fish taken from Hogans Creek to harm recreational fishermen’s health. Although maximum doses of arsenic, pesticides, PAHs, PCBs, and dioxins were below minimal risk levels and increased cancer risks were very low or extremely low, there are other industrial sites along Hogans Creek. Some of these sites may contribute contaminants that EPA did not analyze. There is also the possibility that contaminant concentrations in fish may have increased since 2010.
Therefore, Florida DOH recommends recreational fishermen and others not consume fish from Hogans Creek. Florida DOH also recommends the City of Jacksonville maintain fish advisory signs along Hogans Creek.

Arsenic
Florida DOH estimated exposure using a maximum on-site fish tissue concentration for arsenic of 0.049 mg/kg (Table 8).

Noncancer illnesses
A recreational fisherman who ingests fish from the site with the highest arsenic levels is unlikely to develop noncancer illnesses. The maximum arsenic noncancer dose (3.2 \(\times\) 10^{-6} mg/kg/day) is less than ATSDR’s chronic MRL (3 \(\times\) 10^{-4} mg/kg/day) and thus unlikely to cause noncancer illnesses (Table 9).

Cancer
Fishermen who ingest fish with the highest arsenic levels at the site over a 33-year period are at an “extremely low” increased estimated risk of cancer (Table 9). Multiplying the maximum arsenic cancer dose (1 \(\times\) 10^{-6} mg/kg/day) by the EPA cancer slope factor (1.5 mg/kg/day^{-1}) results in an increased estimated cancer risk of approximately 2 in 1 million (0.000002 or 2 \(\times\) 10^{-6}).

To put this into context, the American Cancer Society estimates that one out of every three Americans (or 333,333 in 1,000,000) will be diagnosed with some form of cancer in their lifetime. Adding the estimated increased cancer risk from exposure to arsenic in the surface soil at the site would increase the cancer incidence from 333,333 in 1,000,000 to 333,335 in 1,000,000.

Chlordane (sum of cis- and trans- isomers)
Florida DOH estimated exposure using a maximum on-site fish tissue concentration for chlordane of 0.038 mg/kg (Table 8).

Noncancer illnesses
A recreational fisherman who ingests fish from the site with the highest chlordane levels is unlikely to develop noncancer illnesses. The maximum chlordane noncancer dose (2.5 \(\times\) 10^{-6} mg/kg/day) is less than ATSDR’s chronic MRL (5 \(\times\) 10^{-4} mg/kg/day) and thus unlikely to cause noncancer illnesses (Table 9).

Cancer
Fishermen who ingest fish with the highest chlordane levels at the site over a 33-year period are at an “extremely low” increased estimated risk of cancer (Table 9). Multiplying the maximum chlordane cancer dose (1 \(\times\) 10^{-6} mg/kg/day) by the EPA cancer slope factor (0.35 mg/kg/day^{-1}) results in an increased estimated cancer risk of approximately 4 in 10 million (0.00000035 or 3.5 \(\times\) 10^{-7}).

To put this into context, the American Cancer Society estimates that one out of every three Americans (or 3,333,333 in 10,000,000) will be diagnosed with some form of cancer in their lifetime. Adding the estimated increased cancer risk from exposure to
chlordane in the fish at the site would increase the cancer incidence from 3,333,333 in 10,000,000 to 3,333,337 in 10,000,000.

Dieldrin
Florida DOH estimated exposure using a maximum on-site fish tissue concentration for dieldrin of 0.037 mg/kg (Table 8).

Noncancer illnesses
A recreational fisherman who ingests fish from the site with the highest dieldrin levels is unlikely to develop noncancer illnesses. The maximum dieldrin noncancer dose (2.4 x 10^{-6} mg/kg/day) is less than ATSDR’s chronic MRL (5 x 10^{-5} mg/kg/day) and thus unlikely to cause noncancer illnesses (Table 9).

Cancer
Fishermen who ingest fish with the highest dieldrin levels at the site over a 33-year period are at a “very low” increased estimated risk of cancer (Table 9). Multiplying the maximum dieldrin cancer dose (1.1 x 10^{-6} mg/kg/day) by the EPA cancer slope factor (16 mg/kg/day·¹) results in an increased estimated cancer risk of approximately 2 in 100,000 (0.000016 or 1.6 x 10^{-5}).

To put this into context, the American Cancer Society estimates that one out of every three Americans (or 33,333 in 100,000) will be diagnosed with some form of cancer in their lifetime. Adding the estimated increased cancer risk from exposure to dieldrin in the fish at the site would increase the cancer incidence from 33,333 in 100,000 to 33,335 in 100,000.

Heptachlor epoxide
Florida DOH estimated exposure using a maximum on-site fish tissue concentration for heptachlor epoxide of 0.0059 mg/kg (Table 9).

Noncancer illnesses
A recreational fisherman who ingests fish from the site with the highest heptachlor epoxide levels is unlikely to develop noncancer illnesses. The maximum heptachlor epoxide noncancer dose (3.8 x 10^{-7} mg/kg/day) is less than ATSDR’s chronic MRL (1.3 x 10^{-5} mg/kg/day) and thus unlikely to cause noncancer illnesses (Table 9).

Cancer
Fishermen who ingest fish with the highest heptachlor epoxide levels at the site over a 33-year period are at an “extremely low” increased estimated risk of cancer (Table 9). Multiplying the maximum heptachlor epoxide cancer dose (1.6 x 10^{-7} mg/kg/day) by the EPA cancer slope factor (9.1 mg/kg/day·¹) results in an increased estimated cancer risk of approximately 2 in a million (0.0000015 or 1.5 x 10^{-6}).

To put this into context, the American Cancer Society estimates that one out of every three Americans (or 333,333 in 1,000,000) will be diagnosed with some form of cancer in their lifetime. Adding the estimated increased cancer risk from exposure to heptachlor
epoxide in the fish at the site would increase the cancer incidence from 333,333 in 1,000,000 to 333,335 in 1,000,000.

PAHs
Florida DOH estimated exposure using a maximum on-site fish tissue concentration for PAHs as BaP TEq of 0.016 mg/kg (Table 8).

Noncancer illnesses
Florida DOH did not calculate doses for noncarcinogenic PAHs since the data was not provided in the EPA fish tissue assessment report [EPA 2011].

Cancer
Fishermen who ingest fish with the highest BaP TEq levels at the site over a 33-year period are at an “extremely low” increased estimated risk of cancer (Table 9). Multiplying the maximum BaP TEq dose (4.4 x 10^-7 mg/kg/day) by the EPA cancer slope factor (7.3 mg/kg/day^-1) results in an increased estimated cancer risk of approximately 3 in a million (0.0000032 or 3.2 x 10^-6).

To put this into context, the American Cancer Society estimates that one out of every three Americans (or 333,333 in 1,000,000) will be diagnosed with some form of cancer in their lifetime. Adding the estimated increased cancer risk from exposure to BaP TEq in the fish at the site would increase the cancer incidence from 333,333 in 1,000,000 to 333,336 in 1,000,000.

PCBs (total)
Florida DOH estimated exposure using a maximum on-site fish tissue concentration for PCBs of 0.24 mg/kg (Table 8).

Noncancer illnesses
A recreational fisherman who ingests fish from the site with the highest PCBs levels is unlikely to develop noncancer illnesses. The maximum PCBs noncancer dose (1.6 x 10^-5 mg/kg/day) is less than ATSDR’s chronic MRL (2 x 10^-5 mg/kg/day) and thus unlikely to cause noncancer illnesses (Table 9).

Cancer
Fishermen who ingest fish with the highest dieldrin levels at the site over a 33-year period are at a “very low” increased estimated risk of cancer (Table 8). Multiplying the maximum PCBs cancer dose (6.6 x 10^-6 mg/kg/day) by the EPA cancer slope factor (2.0 mg/kg/day^-1) results in an increased estimated cancer risk of approximately 1 in 100,000 (0.0000013 or 1.3 x 10^-5).

To put this into context, the American Cancer Society estimates that one out of every three Americans (or 33,333 in 100,000) will be diagnosed with some form of cancer in their lifetime. Adding the estimated increased cancer risk from exposure to PCBs in the fish at the site would increase the cancer incidence from 33,333 in 100,000 to 33,334 in 100,000.
Dioxins TEq
Florida DOH estimated exposure using a maximum on-site fish tissue concentration for dioxins of 8.4×10^{-7} mg/kg (Table 8).

Noncancer illnesses
A recreational fisherman who ingests fish from the site with the highest dioxins levels is unlikely to develop noncancer illnesses. The maximum dioxins noncancer dose (5.5×10^{-11} mg/kg/day) is less than ATSDR’s chronic MRL (7×10^{-10} mg/kg/day) and thus unlikely to cause noncancer illnesses (Table 9).

Cancer
Fishermen who ingest fish with the highest dioxins levels at the site over a 33-year period are at an “extremely low” increased estimated risk of cancer (Table 9). Multiplying the maximum dioxins cancer dose (2×10^{-11} mg/kg/day) by the EPA cancer slope factor ($130,000$ mg/kg/day$^{-1}$) results in an increased estimated cancer risk of approximately 3 in a million (0.0000026 or 2.6×10^{-6}).

To put this into context, the American Cancer Society estimates that one out of every three Americans (or 333,333 in 1,000,000) will be diagnosed with some form of cancer in their lifetime. Adding the estimated increased cancer risk from exposure to dioxins in the fish at the site would increase the cancer incidence from 333,333 in 1,000,000 to 333,336 in 1,000,000.

Health Outcome Data
Florida DOH epidemiologists did not evaluate actual area cancer rates because maximum estimated increased cancer risks for exposure to contaminants of concern in the surface soil and fish at this site is “very low” to “extremely low.”

Child Health Considerations
This assessment takes into account the special vulnerabilities of children. It specifically considered the health risk for children playing in the surface soil of properties near the Confederate Park site. Florida DOH found that children rarely use the section of the site addressed in this report. Florida DOH considers adult workers and visitors to be the primary users and more likely to be affected by soil contamination at this site than children.
Community Health Concerns Evaluation

1. Residents of the neighborhood near the site are concerned about the health risk from contaminated drinking water.

 JEA supplies water to residential and commercial properties in this area and tests annually. One private well was identified within a one-quarter mile radius but is used for irrigation only. Florida DOH does not expect contamination from this site to impact drinking water or irrigation wells.

2. Residents of the neighborhood near the site are concerned about the health risk from surface soil at the section of Confederate Park currently used for a dog walking area.

 It does not appear that contamination has impacted the dog park.

Conclusions

Overall, Florida DOH finds the Main Street MGP/Confederate Park hazardous waste site is no apparent public health hazard. Florida DOH has reached the following five conclusions.

1. If recreational fishermen consume fish from Hogans Creek, it might harm their health. Although the highest doses of arsenic, pesticides, PAHs, PCBs, and dioxins were below minimal risk levels and increased cancer risks were very low or extremely low, there are other industrial sites along Hogans Creek. Some of these sites may contribute pollutants that EPA did not analyze. There is also the chance that pollutant levels may have increased since 2010.

2. The City of Jacksonville did not test any soil in an area where Hogans Creek used to be: south of its current location, north of Orange Street, and between Hubbard/Newnan and Market Streets. Surface soil in this area may still have PAHs from past site stormwater runoff. Since the City is not planning to clean this area, it could be a future source of exposure.

3. The City of Jacksonville only collected four surface soil samples (0-12 inches deep) over the entire site. For a site this size, four samples are too few to determine the extent of surface soil pollution.

4. Based on just a few (4) samples, Florida DOH does not expect PAHs in surface soil on the site to harm workers’ health. Increased cancer risks are “very low” to “extremely low.”

5. Based on just a few samples, Florida DOH does not expect PAHs in surface soil on the site to harm park visitors’ health. Increased cancer risks are “very low” to “extremely low.”
Recommendations

1. Florida DOH recommends recreational fishermen and others not consume fish from Hogans Creek. Florida DOH also recommends the City of Jacksonville maintain fish advisory signs along Hogans Creek.

2. Florida DOH recommends the City of Jacksonville collect eight surface soil samples (0-3 inches deep) from the off-site area bounded by Hogans Creek, Orange, Hubbard/Newnan, and Market Streets. Florida DOH recommends the City analyze these samples for COCs found at this site (arsenic, barium, lead, and PAHs (as BaP TEq)).

3. Since the City of Jacksonville plans to remove on-site surface soil as part of their cleanup, Florida DOH does not recommend more surface soil testing at this time. If, however, the City does not remove surface soil, then they should collect and analyze more surface soil samples (0-3 inches deep) to find the full extent of pollution in the surface soil on the site.

Public Health Action Plan

Actions Taken

In 2011, the Florida DOH in Duval County recommended a fish consumption advisory for Hogans Creek and the City of Jacksonville posted signs.

On March 17, 2014, FDOH attended a public meeting at the Jacksonville Public Library, 303 North Laura Street. The City and their consultants presented cleanup plans for the site. Approximately 10 nearby residents attended the meeting.

Florida DOH shared the draft report with approximately 300 community members to address any additional health concerns in the final report. There were no health concerns expressed relating to the draft report. In a letter to Florida DOH dated January 6, 2015, the Urban Core Citizens Planning Advisory Committee voted to concur with the Department’s conclusions and recommendations.

The Florida DOH will consider review of new data by request.
Report Preparation

The Florida DOH prepared this Health Consultation for the former Main Street Gasification Plant/Confederate Park site under a cooperative agreement with the federal ATSDR. It is in accordance with the approved agency methods, policies, and procedures existing at its publication. Florida DOH completed an editorial review of this report.

Author
Alan Willett, MS
Public Health Toxicology
Bureau of Epidemiology
Division of Disease Control and Health Protection
850-245-4401

Florida DOH Reviewer
Randy Merchant, MS
Public Health Toxicology
Bureau of Epidemiology
Division of Disease Control and Health Protection
850-245-4401

Florida DOH Reviewer
Kendra Goff, PhD, DABT
Public Health Toxicology Administrator
Bureau of Epidemiology
Division of Disease Control and Health Protection
850-245-4401
References

[EPA 2013b] Integrated Risk Information System (IRIS) www.epa.gov/IRIS/

Appendix A

Tables
Table 1. Completed Human Exposure Pathways at the Main Street MGP/Confederate Park Site

<table>
<thead>
<tr>
<th>Completed Pathway Name</th>
<th>Source</th>
<th>Environmental Media</th>
<th>Point of Exposure</th>
<th>Route of Exposure</th>
<th>Exposed Population</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker on-site soil ingestion</td>
<td>Former MGP</td>
<td>surface soil</td>
<td>On-site</td>
<td>Incidental ingestion</td>
<td>Workers</td>
<td>Past, present, and future</td>
</tr>
<tr>
<td>Park visitor on-site soil ingestion</td>
<td>Former MGP</td>
<td>surface soil</td>
<td>On-site</td>
<td>Incidental ingestion</td>
<td>Park visitors</td>
<td>Past, present, and future</td>
</tr>
<tr>
<td>Eating fish</td>
<td>Former MGP and other urban sources</td>
<td>Fish</td>
<td>Hogans Creek or On-site Pond</td>
<td>Ingestion</td>
<td>Recreational Fishers</td>
<td>Past, present, and future</td>
</tr>
</tbody>
</table>

Table continues on the next page...
<table>
<thead>
<tr>
<th>Potential Pathway Name</th>
<th>Source</th>
<th>Environmental Media</th>
<th>Point of Exposure</th>
<th>Route of Exposure</th>
<th>Exposed Population</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidental ingestion (swallowing) of restricted on-site soil</td>
<td>Former MGP</td>
<td>Surface soil</td>
<td>Confederate Park South of Hogans Creek between Hubbard/Newnan</td>
<td>Ingestion</td>
<td>Park visitors</td>
<td>Future</td>
</tr>
<tr>
<td>Incidental ingestion (swallowing) of restricted off-site soil</td>
<td>Former MGP</td>
<td>Surface soil</td>
<td>Confederate Park South of Hogans Creek between Hubbard/Newnan & Market</td>
<td>Ingestion</td>
<td>Park visitors</td>
<td>Future</td>
</tr>
</tbody>
</table>
Table 3. Eliminated Human Exposure Pathways at the Main Street MGP/Confederate Park Site

<table>
<thead>
<tr>
<th>Eliminated Pathway Name</th>
<th>Source</th>
<th>Environmental Media</th>
<th>Point of Exposure</th>
<th>Route of Exposure</th>
<th>Exposed Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-site subsurface soil</td>
<td>Former MGP</td>
<td>Soil</td>
<td>On-site</td>
<td>Ingestion</td>
<td>None</td>
</tr>
<tr>
<td>Off-site subsurface soil</td>
<td>Former MGP</td>
<td>Soil</td>
<td>Off-site</td>
<td>Ingestion</td>
<td>None</td>
</tr>
<tr>
<td>Sediments</td>
<td>Former MGP</td>
<td>Sediment</td>
<td>Hogans Creek or on-site pond</td>
<td>Ingestion</td>
<td>None</td>
</tr>
<tr>
<td>Drinking water from municipal wells</td>
<td>Former MGP</td>
<td>Deep aquifer groundwater</td>
<td>Tap water</td>
<td>Ingestion</td>
<td>None</td>
</tr>
<tr>
<td>Drinking water from shallow wells</td>
<td>Former MGP</td>
<td>Surficial aquifer groundwater</td>
<td>Private drinking water wells</td>
<td>Ingestion</td>
<td>None</td>
</tr>
<tr>
<td>Surface water</td>
<td>Former MGP</td>
<td>Surface water</td>
<td>Hogans Creek or on-site pond</td>
<td>Ingestion</td>
<td>None</td>
</tr>
<tr>
<td>Vapor intrusion into on-site buildings</td>
<td>Former MGP</td>
<td>Indoor air</td>
<td>On-site buildings</td>
<td>Inhalation</td>
<td>None</td>
</tr>
</tbody>
</table>
Table 4. Contaminant Concentrations in On-Site Surface Soil (0 to 1 Foot Deep) at the Main Street MGP/Confederate Park Site

<table>
<thead>
<tr>
<th>Contaminants</th>
<th>Concentration Range (mg/kg)</th>
<th>Maximum Concentration in Surface Soil (mg/kg) (sample#)</th>
<th>Soil Screening Guideline (mg/kg)*</th>
<th>Source of Screening Guideline</th>
<th># of Samples Above Screening Guideline/Total # Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>1.3 – 5.7</td>
<td>5.7 (SS-16)</td>
<td>0.47</td>
<td>CREG</td>
<td>4/4</td>
</tr>
<tr>
<td>Barium</td>
<td>26 - 190</td>
<td>190 (SS-16)</td>
<td>110</td>
<td>FDEP Residential SCTL</td>
<td>1/4</td>
</tr>
<tr>
<td>Lead</td>
<td>190 - 920</td>
<td>920 (SS-16)</td>
<td>400</td>
<td>FDEP Residential SCTL</td>
<td>2/4</td>
</tr>
<tr>
<td>PAHs as BaP TEq</td>
<td>0.47 – 6.1</td>
<td>6.1 (SS-3)</td>
<td>0.1</td>
<td>CREG</td>
<td>4/4</td>
</tr>
</tbody>
</table>

Data Source = [Geosyntec 2003]

BaP TEq = Benzo(a)Pyrene Toxicity Equivalents
CREG = ATSDR cancer risk evaluation guide
FDEP = Florida Department of Environmental Protection
mg/kg = milligrams per kilogram
PAH = polycyclic aromatic hydrocarbon
SCTL = soil cleanup target level

* Screening guidelines only used to select chemicals for further scrutiny, not to judge the risk of illness.
Table 5. Estimated Worker Dose and Increased Cancer Risk From Inadvertent Ingestion of Surface Soil on the Main Street MGP/Confederate Park Site

<table>
<thead>
<tr>
<th>Contaminants</th>
<th>Maximum On-Site Soil Concentration (0-1' deep) (mg/kg)</th>
<th>Estimated Worker Maximum Inadvertent Soil Ingestion Dose (noncancer) (mg/kg/day)</th>
<th>ATSDR Minimal Risk Level (mg/kg/day)</th>
<th>Estimated Worker Maximum Inadvertent Soil Ingestion Dose (cancer) (mg/kg/day)</th>
<th>Oral Cancer Slope Factor (mg/kg-day)(^1)</th>
<th>Source of Oral Cancer Slope Factor</th>
<th>Estimated Increased Cancer Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>5.7</td>
<td>(1.6 \times 10^{-6})(^{[a]})</td>
<td>(3 \times 10^{-4}) (chronic)</td>
<td>(5.2 \times 10^{-7})(^{[a]})</td>
<td>1.5</td>
<td>EPA IRIS</td>
<td>(8 \times 10^{-7}) (extremely low)</td>
</tr>
<tr>
<td>Barium</td>
<td>190</td>
<td>(1.6 \times 10^{-4})</td>
<td>(2 \times 10^{-2}) (chronic)</td>
<td>NA</td>
<td>none (^{[2]})</td>
<td>none (^{[2]})</td>
<td>NA</td>
</tr>
<tr>
<td>Lead</td>
<td>920</td>
<td>(< 5 \mu g/dL)(^*)</td>
<td>none (^{[2]})</td>
<td>NA</td>
<td>none (^{[2]})</td>
<td>none (^{[2]})</td>
<td>NA</td>
</tr>
<tr>
<td>PAHs as BaP TEq</td>
<td>6.1</td>
<td>NA</td>
<td>none (^{[2]})</td>
<td>1.7 \times 10^{-5}</td>
<td>7.3</td>
<td>EPA IRIS</td>
<td>(1 \times 10^{-5}) (very low)</td>
</tr>
</tbody>
</table>

Data Source = [Geosyntec 2003]

ATSDR = Agency for Toxic Substances and Disease Registry

BaP TEq = Benzo(a)Pyrene Toxicity Equivalents

EPA IRIS = U.S. Environmental Protection Agency Integrated Risk Information System (EPA 2013b)

mg/kg = milligrams per kilogram

mg/kg/day = milligrams per kilogram per day

NA = non-applicable

PAH = polycyclic aromatic hydrocarbon

\(\mu g/dL\) = micrograms per deciliter

\(^{[a]}\) = Arsenic dose reflects a bioavailability factor of 0.33 (see Technical Report for 62-777 F.A.C.)

\(^*\) = This is an estimate, using EPA's IEUBK model, of the blood lead level in children exposed to soil with a lead concentration of 920 mg/kg.

\(^{[2]}\) = Minimal risk levels for lead have not been established but the Centers for Disease Control and Prevention considers blood lead levels in children above 5\(\mu g/dL\) to be elevated

\(^{[3]}\) = The Centers for Disease Control and Prevention has not calculated a minimal risk level for PAHs but the estimated maximum dose at this site is well below the oral no adverse effect level of 1.3 mg/kg/day
Table 6. **Blood Lead Concentrations (PbBs) in Adult Workers and Visitors From Incidental Ingestion (Swallowing) of Surface Soil at the Main Street MGP/Confederate Park Site**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description of Variable</th>
<th>Units</th>
<th>GSDi and PbBo from Analysis of NHANES 1999-2004</th>
<th>GSDi and PbBo from Analysis of NHANES III (Phases 1&2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbS</td>
<td>Soil lead concentration</td>
<td>ug/g or ppm</td>
<td>920</td>
<td>920</td>
</tr>
<tr>
<td>R_{fetal/maternal}</td>
<td>Fetal/maternal PbB ratio</td>
<td>--</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>BKSF</td>
<td>Biokinetic Slope Factor</td>
<td>ug/dL per ug/day</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>GSD_{i}</td>
<td>Geometric standard deviation PbB</td>
<td>--</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>PbB_{0}</td>
<td>Baseline PbB</td>
<td>ug/dL</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>IR_{S}</td>
<td>Soil ingestion rate (including soil-derived indoor dust)</td>
<td>g/day</td>
<td>0.050</td>
<td>0.050</td>
</tr>
<tr>
<td>IR_{S+D}</td>
<td>Total ingestion rate of outdoor soil and indoor dust</td>
<td>g/day</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>W_{S}</td>
<td>Weighting factor; fraction of IR_{S+D} ingested as outdoor soil</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>K_{SD}</td>
<td>Mass fraction of soil in dust</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>AFS_{S,D}</td>
<td>Absorption fraction (same for soil and dust)</td>
<td>--</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>EF_{S,D}</td>
<td>Exposure frequency (same for soil and dust)</td>
<td>days/yr</td>
<td>219</td>
<td>219</td>
</tr>
<tr>
<td>AT_{S,D}</td>
<td>Averaging time (same for soil and dust)</td>
<td>days/yr</td>
<td>365</td>
<td>365</td>
</tr>
<tr>
<td>PbB_{adult}</td>
<td>PbB of adult worker, geometric mean</td>
<td>ug/dL</td>
<td>2.3</td>
<td>2.8</td>
</tr>
<tr>
<td>PbB_{fetal, 0.95}</td>
<td>95th percentile PbB among fetuses of adult workers</td>
<td>ug/dL</td>
<td>5.5</td>
<td>8.6</td>
</tr>
<tr>
<td>PbB_{t}</td>
<td>Target PbB level of concern (e.g., 10 ug/dL)</td>
<td>ug/dL</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>P(PbB_{fetal} > PbB_{t})</td>
<td>Probability that fetal PbB > PbB_{t}, assuming lognormal distribution</td>
<td>%</td>
<td>0.4%</td>
<td>3.2%</td>
</tr>
</tbody>
</table>

Source = U.S. EPA [1996]

NHANES = National Health and Nutrition Examination Survey
Table 7. Estimated Park Visitor Dose and Increased Cancer Risk From Inadvertent Ingestion of Surface Soil on the Main Street MGP/Confederate Park Site

<table>
<thead>
<tr>
<th>Contaminants</th>
<th>Maximum On-Site Soil Concentration (0-1’ deep) (mg/kg)</th>
<th>Estimated Worker Inadvertent Soil Ingestion Dose (noncancer) (mg/kg/day)</th>
<th>ATSDR Minimal Risk Level (mg/kg/day)</th>
<th>Estimated Worker Inadvertent Soil Ingestion Dose (cancer) (mg/kg/day)</th>
<th>Oral Cancer Slope Factor (mg/kg-day)</th>
<th>Source of Oral Cancer Slope Factor</th>
<th>Estimated Increased Cancer Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>5.7</td>
<td>1.5×10^{-5} [a]</td>
<td>3×10^{-4} (chronic)</td>
<td>4×10^{-7} [a]</td>
<td>1.5</td>
<td>EPA IRIS</td>
<td>6×10^{-7} (extremely low)</td>
</tr>
<tr>
<td>Barium</td>
<td>190</td>
<td>1.7×10^{-4}</td>
<td>2×10^{-2} (chronic)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Lead</td>
<td>920</td>
<td>< 5 \mu g/dL [\ast]</td>
<td>none **</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>PAHs as BaP</td>
<td>3.6</td>
<td>none ***</td>
<td>8×10^{-7}</td>
<td>7.3</td>
<td>EPA IRIS</td>
<td>6.0×10^{-6} (very low)</td>
<td></td>
</tr>
</tbody>
</table>

ATSDR = Agency for Toxic Substances and Disease Registry
BaP TEq = Benzo(a)Pyrene Toxicity Equivalents
EPA IRIS = U.S. Environmental Protection Agency Integrated Risk Information System (EPA 2013b)
mg/kg = milligrams per kilogram
mg/kg/day = milligrams per kilogram per day
NA = non-applicable
PAH = polycyclic aromatic hydrocarbon
\mu g/dL = micrograms per deciliter
\[a\] = Arsenic dose reflects a bioaccumulation factor of 0.33 (see Technical Report for 62-777 F.A.C.)
\[\ast\] = This is an estimate, using EPA's IEUBK model, of the blood lead level in children exposed to soil with a lead concentration of 920 mg/kg.
\[\ast\ast\ast\] = Minimal risk levels for lead have not been established but the Centers for Disease Control and Prevention considers blood lead levels in children above 5\mu g/dL to be elevated
\[\ast\ast\ast\ast\] = The Centers for Disease Control and Prevention has not calculated a minimal risk level for PAHs but the estimated maximum dose at this site is well below the oral no adverse effect level of 1.3 mg/kg/day
<table>
<thead>
<tr>
<th>Contaminants</th>
<th>Concentration Range (mg/kg)</th>
<th>Maximum Concentration in Fish Tissue (mg/kg) (sample#)</th>
<th>FDOH* Screening Guideline (mg/kg)*</th>
<th># of Samples Above Screening Guideline/Total # Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (inorganic *)</td>
<td>0.0081 – 0.049</td>
<td>0.049 (H-MUL2)</td>
<td>0.015</td>
<td>3/8</td>
</tr>
<tr>
<td>Chlordane (sum of cis- and trans- isomers)</td>
<td>0.013 – 0.038</td>
<td>0.038 (H-MUL3)</td>
<td>0.017</td>
<td>4/8</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>0.0068 – 0.037</td>
<td>0.037 (H-MUL3)</td>
<td>0.0014</td>
<td>8/8</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>0.0021 – 0.0059</td>
<td>0.0059 (H-MUL3)</td>
<td>0.0024</td>
<td>4/8</td>
</tr>
<tr>
<td>PAHs as BaP TEq</td>
<td>0.011 – 0.016</td>
<td>0.016 (H-MUL1)</td>
<td>0.003</td>
<td>8/8</td>
</tr>
<tr>
<td>PCBs (total)b</td>
<td>0.05 – 0.24</td>
<td>0.24 (H-MUL3)</td>
<td>0.05</td>
<td>8/8</td>
</tr>
<tr>
<td>Dioxins TEq</td>
<td>$3.4 \times 10^{-7} – 8.4 \times 10^{-7}$</td>
<td>8.4×10^{-7} (H-LMBd1)</td>
<td>1.5×10^{-7}</td>
<td>8/8</td>
</tr>
</tbody>
</table>

Data source = [EPA 2011]
* Arsenic (inorganic) (Calculated at 10% of total Arsenic [USFDA 1993])
* Total PCBs (Sum of PCB congeners)
* H-MUL is a composite fish tissue sample from mullet taken from Hogans Creek at the site
* H-LMB is a composite fish tissue sample from largemouth bass taken from Hogans Creek at the site
* FDOH, 2012. Fish Tissue Screening Values. Florida Department of Health, Bureau of Epidemiology, Tallahassee, FL.

BaP TEq = Benzo(a)Pyrene Toxicity Equivalents
mg/kg = milligrams per kilogram
PAH = polycyclic aromatic hydrocarbon
PCB = polychlorinated biphenyl

* Screening guidelines only used to select chemicals for further scrutiny, not to judge the risk of illness.
Table 9. Maximum Dose and Increased Cancer Risk From Fish Consumption at the Main Street MGP/Confederate Park Site

<table>
<thead>
<tr>
<th>Contaminants</th>
<th>Maximum Fish Tissue Concentration (mg/kg)</th>
<th>Estimated Worker Maximum Inadvertent Soil Ingestion Dose (noncancer) (mg/kg/day)</th>
<th>ATSDR Minimal Risk Level (mg/kg/day)</th>
<th>Estimated Worker Maximum Inadvertent Soil Ingestion Dose (cancer) (mg/kg/day)</th>
<th>Oral Cancer Slope Factor (mg/kg-day)</th>
<th>Source of Oral Cancer Slope Factor</th>
<th>Estimated Increased Cancer Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (inorganic (a))</td>
<td>0.049</td>
<td>3.2 x 10^{-7}</td>
<td>3 x 10^{-4} (chronic)</td>
<td>3.2 x 10^{-6}</td>
<td>1.5</td>
<td>EPA IRIS</td>
<td>5 x 10^{-6}</td>
</tr>
<tr>
<td>Chlordane (sum of cis- and trans-)</td>
<td>0.038</td>
<td>2.5 x 10^{-6}</td>
<td>5 x 10^{-4} (chronic)</td>
<td>1 x 10^{-6}</td>
<td>0.35</td>
<td>EPA IRIS</td>
<td>3.7 x 10^{-7}</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>0.037</td>
<td>2.4 x 10^{-6}</td>
<td>5 x 10^{-5} (chronic)</td>
<td>1 x 10^{-6}</td>
<td>16</td>
<td>EPA IRIS</td>
<td>1.6 x 10^{-6}</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>0.0059</td>
<td>3.8 x 10^{-7}</td>
<td>1.3 x 10^{-5} (chronic)</td>
<td>1.6 x 10^{-7}</td>
<td>9.1</td>
<td>EPA IRIS</td>
<td>1.5 x 10^{-6}</td>
</tr>
<tr>
<td>PAHs as BaP TEq</td>
<td>0.016</td>
<td>NA</td>
<td>none *</td>
<td>4.4 x 10^{-7}</td>
<td>7.3</td>
<td>EPA IRIS</td>
<td>3.2 x 10^{-6}</td>
</tr>
<tr>
<td>PCBs (total) (b)</td>
<td>0.24</td>
<td>1.6 x 10^{-5}</td>
<td>2 x 10^{-5} (Aroclor 1254)</td>
<td>6.6 x 10^{-6}</td>
<td>2</td>
<td>EPA IRIS</td>
<td>1.3 x 10^{-5}</td>
</tr>
<tr>
<td>Dioxins TEq (fish)</td>
<td>8.4 x 10^{-7}</td>
<td>5.5 x 10^{-11}</td>
<td>7 x 10^{-10} (chronic)</td>
<td>2 x 10^{-11}</td>
<td>130,000</td>
<td>TAC</td>
<td>2.6 x 10^{-6}</td>
</tr>
</tbody>
</table>

Data source = [EPA 2011]
(a) Arsenic (inorganic) (Calculated at 10% of total Arsenic (USFDA 1993))
(b) Total PCBs (Sum of PCB congeners)
ATSDR = Agency for Toxic Substances and Disease Registry
BaP TEq = Benzo(a)Pyrene Toxicity Equivalents
EPA IRIS = U.S. Environmental Protection Agency Integrated Risk Information System (EPA 2013b)
LOAEL = lowest observed adverse effect level
mg/kg = milligrams per kilogram
mg/kg/day = milligrams per kilogram per day

45
NA = non-applicable
PAH = polycyclic aromatic hydrocarbon
PCB = polychlorinated biphenyl
TAC = Toxic Air Contaminant document, California Office of Environmental Health Hazard Assessment (OEHHA)
* = The Centers for Disease Control and Prevention has not calculated a minimal risk level for carcinogenic PAHs but the estimated maximum dose at this site is well below the oral no adverse effect level of 1.3 mg/kg/day
Figure 1. Main Street MGP/Confederate Park Site Map
Figure 2. Main Street MGP/Confederate Park Site Layout
Figure 3. Main Street MGP/Confederate Park Site Surface Soil Sample Locations
Appendix C

PAH Toxicity Equivalency Factors
PAH Toxicity Equivalency Factors (TEF)

<table>
<thead>
<tr>
<th>Compound</th>
<th>TEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acenaphthene</td>
<td>0.001</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>0.001</td>
</tr>
<tr>
<td>Anthracene</td>
<td>0.01</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>0.1</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>1</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>0.1</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>0.1</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>0.01</td>
</tr>
<tr>
<td>Chrysene</td>
<td>0.01</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>5</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>0.001</td>
</tr>
<tr>
<td>Fluorene</td>
<td>0.001</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>0.1</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>0.001</td>
</tr>
<tr>
<td>Pyrene</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Note: Data from Toxicological Profile for Polycyclic Aromatic Hydrocarbons (ATSDR 1995)
Glossary

Absorption
The process of taking in. For a person or animal, absorption is the process of a substance getting into the body through the eyes, skin, stomach, intestines, or lungs.

Acute
Occurring over a short time (compare with chronic).

Acute exposure
Contact with a substance that occurs once or for only a short time (up to 14 days) (compare with intermediate duration exposure and chronic exposure).

Additive effect
A biologic response to exposure to multiple substances that equals the sum of responses of all the individual substances added together (compare with antagonistic effect and synergistic effect).

Adverse health effect
A change in body function or cell structure that might lead to disease or health problems.

Aerobic
Requiring oxygen (compare with anaerobic).

Ambient
Surrounding (for example, ambient air).

Anaerobic
Requiring the absence of oxygen (compare with aerobic).

Analyte
A substance measured in the laboratory. A chemical for which a sample (such as water, air, or blood) is tested in a laboratory. For example, if the analyte is mercury, the laboratory test will determine the amount of mercury in the sample.

Analytic epidemiologic study
A study that evaluates the association between exposure to hazardous substances and disease by testing scientific hypotheses.

Antagonistic effect
A biologic response to exposure to multiple substances that is less than would be expected if the known effects of the individual substances were added together (compare with additive effect and synergistic effect).
Background level
An average or expected amount of a substance or radioactive material in a specific environment, or typical amounts of substances that occur naturally in an environment.

Biodegradation
Decomposition or breakdown of a substance through the action of microorganisms (such as bacteria or fungi) or other natural physical processes (such as sunlight).

Biologic indicators of exposure study
A study that uses (a) biomedical testing or (b) the measurement of a substance (an analyte), its metabolite, or another marker of exposure in human body fluids or tissues to confirm human exposure to a hazardous substance (also see exposure investigation).

Biologic monitoring
Measuring hazardous substances in biologic materials (such as blood, hair, urine, or breath) to determine whether exposure has occurred. A blood test for lead is an example of biologic monitoring.

Biologic uptake
The transfer of substances from the environment to plants, animals, and humans.

Biomedical testing
Testing of persons to find out whether a change in a body function might have occurred because of exposure to a hazardous substance.

Biota
Plants and animals in an environment. Some of these plants and animals might be sources of food, clothing, or medicines for people.

Body burden
The total amount of a substance in the body. Some substances build up in the body because they are stored in fat or bone or because they leave the body very slowly.

CAP
See Community Assistance Panel.

Cancer
Any one of a group of diseases that occurs when cells in the body become abnormal and grow or multiply out of control.

Cancer risk
A theoretical risk of for getting cancer if exposed to a substance every day for 70 years (a lifetime exposure). The true risk might be lower.

Carcinogen
A substance that causes cancer.
Case study
A medical or epidemiologic evaluation of one person or a small group of people to gather information about specific health conditions and past exposures.

Case-control study
A study that compares exposures of people who have a disease or condition (cases) with people who do not have the disease or condition (controls). Exposures that are more common among the cases may be considered as possible risk factors for the disease.

CAS registry number
A unique number assigned to a substance or mixture by the American Chemical Society Abstracts Service.

Central nervous system
The part of the nervous system that consists of the brain and the spinal cord.

CERCLA (see Comprehensive Environmental Response, Compensation, and Liability Act of 1980)

Chronic
Occurring over a long time (more than 1 year) (compare with acute).

Chronic exposure
Contact with a substance that occurs over a long time (more than 1 year) (compare with acute exposure and intermediate duration exposure).

Cluster investigation
A review of an unusual number, real or perceived, of health events (for example, reports of cancer) grouped together in time and location. Cluster investigations are designed to confirm case reports, determine whether they represent an unusual disease occurrence, and, if possible, explore possible causes and contributing environmental factors.

Community Assistance Panel (CAP)
A group of people, from a community and from health and environmental agencies, who work with ATSDR to resolve issues and problems related to hazardous substances in the community. CAP members work with ATSDR to gather and review community health concerns, provide information on how people might have been or might now be exposed to hazardous substances, and inform ATSDR on ways to involve the community in its activities.

Comparison value (CV)
Calculated concentration of a substance in air, water, food, or soil that is unlikely to cause harmful (adverse) health effects in exposed people. The CV is used as a screening level during the public health assessment process. Substances found in amounts greater than their CVs might be selected for further evaluation in the public health assessment process.
Completed exposure pathway (see exposure pathway).

Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA)
CERCLA, also known as Superfund, is the federal law that concerns the removal or cleanup of hazardous substances in the environment and at hazardous waste sites. ATSDR, which was created by CERCLA, is responsible for assessing health issues and supporting public health activities related to hazardous waste sites or other environmental releases of hazardous substances.

Concentration
The amount of a substance present in a certain amount of soil, water, air, food, blood, hair, urine, breath, or any other media.

Contaminant
A substance that is either present in an environment where it does not belong or is present at levels that might cause harmful (adverse) health effects.

Delayed health effect
A disease or injury that happens as a result of exposures that might have occurred in the past.

Dermal
Referring to the skin. For example, dermal absorption means passing through the skin.

Dermal contact
Contact with (touching) the skin (see route of exposure).

Descriptive epidemiology
The study of the amount and distribution of a disease in a specified population by person, place, and time.

Detection limit
The lowest concentration of a chemical that can reliably be distinguished from a zero concentration.

Disease prevention
Measures used to prevent a disease or reduce its severity.

Disease registry
A system of ongoing registration of all cases of a particular disease or health condition in a defined population.

DOD
United States Department of Defense.
DOE
United States Department of Energy.

Dose (for chemicals that are not radioactive)
The amount of a substance to which a person is exposed over some time period. Dose is a measurement of exposure. Dose is often expressed as milligram (amount) per kilogram (a measure of body weight) per day (a measure of time) when people eat or drink contaminated water, food, or soil. In general, the greater the dose, the greater the likelihood of an effect. An "exposure dose" is how much of a substance is encountered in the environment. An "absorbed dose" is the amount of a substance that actually got into the body through the eyes, skin, stomach, intestines, or lungs.

Dose (for radioactive chemicals)
The radiation dose is the amount of energy from radiation that is actually absorbed by the body. This is not the same as measurements of the amount of radiation in the environment.

Dose-response relationship
The relationship between the amount of exposure (dose) to a substance and the resulting changes in body function or health (response).

Environmental media
Soil, water, air, biota (plants and animals), or any other parts of the environment that can contain contaminants.

Environmental media and transport mechanism
Environmental media include water, air, soil, and biota (plants and animals). Transport mechanisms move contaminants from the source to points where human exposure can occur. The environmental media and transport mechanism is the second part of an exposure pathway.

EPA
United States Environmental Protection Agency.

Epidemiologic surveillance
The ongoing, systematic collection, analysis, and interpretation of health data. This activity also involves timely dissemination of the data and use for public health programs.

Epidemiology
The study of the distribution and determinants of disease or health status in a population; the study of the occurrence and causes of health effects in humans.

Exposure
Contact with a substance by swallowing, breathing, or touching the skin or eyes. Exposure may be short-term (acute exposure), of intermediate duration, or long-term (chronic exposure).
Exposure assessment
The process of finding out how people come into contact with a hazardous substance, how often and for how long they are in contact with the substance, and how much of the substance they are in contact with.

Exposure-dose reconstruction
A method of estimating the amount of people’s past exposure to hazardous substances. Computer and approximation methods are used when past information is limited, not available, or missing.

Exposure investigation
The collection and analysis of site-specific information and biologic tests (when appropriate) to determine whether people have been exposed to hazardous substances.

Exposure pathway
The route a substance takes from its source (where it began) to its end point (where it ends), and how people can come into contact with (or get exposed to) it. An exposure pathway has five parts: a source of contamination (such as an abandoned business); an environmental media and transport mechanism (such as movement through groundwater); a point of exposure (such as a private well); a route of exposure (eating, drinking, breathing, or touching), and a receptor population (people potentially or actually exposed). When all five parts are present, the exposure pathway is termed a completed exposure pathway.

Exposure registry
A system of ongoing follow-ups of people who have had documented environmental exposures.

Feasibility study
A study by EPA to determine the best way to clean up environmental contamination. A number of factors are considered, including health risk, costs, and what methods will work well.

Geographic information system (GIS)
A mapping system that uses computers to collect, store, manipulate, analyze, and display data. For example, GIS can show the concentration of a contaminant within a community in relation to points of reference such as streets and homes.

Grand rounds
Training sessions for physicians and other health care providers about health topics.

Groundwater
Water beneath the earth’s surface in the spaces between soil particles and between rock surfaces (compare with surface water).

Half-life ($t_{\frac{1}{2}}$)
The time it takes for half the original amount of a substance to disappear. In the environment, the half-life is the time it takes for half the original amount of a substance to disappear when it is changed to another chemical by bacteria, fungi, sunlight, or other chemical processes. In the
human body, the half-life is the time it takes for half the original amount of the substance to disappear, either by being changed to another substance or by leaving the body. In the case of radioactive material, the half-life is the amount of time necessary for one-half the initial number of radioactive atoms to change or transform into another atom (that is normally not radioactive). After two half-lives, 25% of the original number of radioactive atoms remain.

Hazard
A source of potential harm from past, current, or future exposures.

Hazardous Substance Release and Health Effects Database (HazDat)
The scientific and administrative database system developed by ATSDR to manage data collection, retrieval, and analysis of site-specific information on hazardous substances, community health concerns, and public health activities.

Hazardous waste
Potentially harmful substances that have been released or discarded into the environment.

Health consultation
A review of available information or collection of new data to respond to a specific health question or request for information about a potential environmental hazard. Health consultations are focused on a specific exposure issue. Health consultations are therefore more limited than a public health assessment, which reviews the exposure potential of each pathway and chemical (compare with public health assessment).

Health education
Programs designed with a community to help it know about health risks and how to reduce these risks.

Health investigation
The collection and evaluation of information about the health of community residents. This information is used to describe or count the occurrence of a disease, symptom, or clinical measure and to estimate the possible association between the occurrence and exposure to hazardous substances.

Health promotion
The process of enabling people to increase control over, and to improve, their health.

Health statistics review
The analysis of existing health information (i.e., from death certificates, birth defects registries, and cancer registries) to determine if there is excess disease in a specific population, geographic area, and time period. A health statistics review is a descriptive epidemiologic study.

Indeterminate public health hazard
The category used in ATSDR’s public health assessment documents when a professional judgment about the level of health hazard cannot be made because information critical to such a decision is lacking.
Incidence
The number of new cases of disease in a defined population over a specific time period (contrast with prevalence).

Ingestion
The act of swallowing something through eating, drinking, or mouthing objects. A hazardous substance can enter the body this way (see route of exposure).

Inhalation
The act of breathing. A hazardous substance can enter the body this way (see route of exposure).

Intermediate duration exposure
Contact with a substance that occurs for more than 14 days and less than a year (compare with acute exposure and chronic exposure).

In vitro
In an artificial environment outside a living organism or body. For example, some toxicity testing is done on cell cultures or slices of tissue grown in the laboratory, rather than on a living animal (compare with in vivo).

In vivo
Within a living organism or body. For example, some toxicity testing is done on whole animals, such as rats or mice (compare with in vitro).

Lowest-observed-adverse-effect level (LOAEL)
The lowest tested dose of a substance that has been reported to cause harmful (adverse) health effects in people or animals.

Medical monitoring
A set of medical tests and physical exams specifically designed to evaluate whether an individual’s exposure could negatively affect that person’s health.

Metabolism
The conversion or breakdown of a substance from one form to another by a living organism.

Metabolite
Any product of metabolism.

mg/kg
Milligram per kilogram.

mg/cm²
Milligram per square centimeter (of a surface).
mg/m³
Milligram per cubic meter; a measure of the concentration of a chemical in a known volume (a cubic meter) of air, soil, or water.

Migration
Moving from one location to another.

Minimal risk level (MRL)
An ATSDR estimate of daily human exposure to a hazardous substance at or below which that substance is unlikely to pose a measurable risk of harmful (adverse), noncancerous effects. MRLs are calculated for a route of exposure (inhalation or oral) over a specified time period (acute, intermediate, or chronic). MRLs should not be used as predictors of harmful (adverse) health effects (see reference dose).

Morbidity
State of being ill or diseased. Morbidity is the occurrence of a disease or condition that alters health and quality of life.

Mortality
Death. Usually the cause (a specific disease, condition, or injury) is stated.

Mutagen
A substance that causes mutations (genetic damage).

Mutation
A change (damage) to the DNA, genes, or chromosomes of living organisms.

National Priorities List for Uncontrolled Hazardous Waste Sites (National Priorities List or NPL)
EPA’s list of the most serious uncontrolled or abandoned hazardous waste sites in the United States. The NPL is updated on a regular basis.

No apparent public health hazard
A category used in ATSDR’s public health assessments for sites where human exposure to contaminated media might be occurring, might have occurred in the past, or might occur in the future, but where the exposure is not expected to cause any harmful health effects.

No-observed-adverse-effect level (NOAEL)
The highest tested dose of a substance that has been reported to have no harmful (adverse) health effects on people or animals.

No public health hazard
A category used in ATSDR’s public health assessment documents for sites where people have never and will never come into contact with harmful amounts of site-related substances.
NPL (see National Priorities List for Uncontrolled Hazardous Waste Sites)

Physiologically-based pharmacokinetic model (PBPK model)
A computer model that describes what happens to a chemical in the body. This model describes how the chemical gets into the body, where it goes in the body, how it is changed by the body, and how it leaves the body.

Pica
A craving to eat nonfood items, such as dirt, paint chips, and clay. Some children exhibit pica-related behavior.

Plume
A volume of a substance that moves from its source to places farther away from the source. Plumes can be described by the volume of air or water they occupy and the direction they move. For example, a plume can be a column of smoke from a chimney or a substance moving with groundwater.

Point of exposure
The place where someone can come into contact with a substance present in the environment (see exposure pathway).

Population
A group or number of people living within a specified area or sharing similar characteristics (such as occupation or age).

Potentially responsible party (PRP)
A company, government, or person legally responsible for cleaning up the pollution at a hazardous waste site under Superfund. There may be more than one PRP for a particular site.

ppb
Parts per billion.

ppm
Parts per million.

Prevalence
The number of existing disease cases in a defined population during a specific time period (contrast with incidence).

Prevalence survey
The measure of the current level of disease(s) or symptoms and exposures through a questionnaire that collects self-reported information from a defined population.

Prevention
Actions that reduce exposure or other risks, keep people from getting sick, or keep disease from getting worse.
Public comment period
An opportunity for the public to comment on agency findings or proposed activities contained in draft reports or documents. The public comment period is a limited time period during which comments will be accepted.

Public availability session
An informal, drop-by meeting at which community members can meet one-on-one with ATSDR staff members to discuss health and site-related concerns.

Public health action
A list of steps to protect public health.

Public health advisory
A statement made by ATSDR to EPA or a state regulatory agency that a release of hazardous substances poses an immediate threat to human health. The advisory includes recommended measures to reduce exposure and reduce the threat to human health.

Public health assessment (PHA)
An ATSDR document that examines hazardous substances, health outcomes, and community concerns at a hazardous waste site to determine whether people could be harmed from coming into contact with those substances. The PHA also lists actions that need to be taken to protect public health (compare with health consultation).

Public health hazard
A category used in ATSDR’s public health assessments for sites that pose a public health hazard because of long-term exposures (greater than 1 year) to sufficiently high levels of hazardous substances or radionuclides that could result in harmful health effects.

Public health hazard categories
Public health hazard categories are statements about whether people could be harmed by conditions present at the site in the past, present, or future. One or more hazard categories might be appropriate for each site. The five public health hazard categories are no public health hazard, no apparent public health hazard, indeterminate public health hazard, public health hazard, and urgent public health hazard.

Public health statement
The first chapter of an ATSDR toxicological profile. The public health statement is a summary written in words that are easy to understand. The public health statement explains how people might be exposed to a specific substance and describes the known health effects of that substance.

Public meeting
A public forum with community members for communication about a site.
Radioisotope
An unstable or radioactive isotope (form) of an element that can change into another element by giving off radiation.

Radionuclide
Any radioactive isotope (form) of any element.

RCRA (See Resource Conservation and Recovery Act (1976, 1984))

Receptor population
People who could come into contact with hazardous substances (see exposure pathway).

Reference dose (Rfd)
An EPA estimate, with uncertainty or safety factors built in, of the daily lifetime dose of a substance that is unlikely to cause harm in humans.

Registry
A systematic collection of information on persons exposed to a specific substance or having specific diseases (see exposure registry and disease registry).

Remedial Investigation
The CERCLA process of determining the type and extent of hazardous material contamination at a site.

This Act regulates management and disposal of hazardous wastes currently generated, treated, stored, disposed of, or distributed.

RFA
RCRA Facility Assessment. An assessment required by RCRA to identify potential and actual releases of hazardous chemicals.

Rfd
See reference dose.

Risk
The probability that something will cause injury or harm.

Risk reduction
Actions that can decrease the likelihood that individuals, groups, or communities will experience disease or other health conditions.

Risk communication
The exchange of information to increase understanding of health risks.
Route of exposure
The way people come into contact with a hazardous substance. Three routes of exposure are breathing (inhalation), eating or drinking (ingestion), or contact with the skin (dermal contact).

Safety factor (see uncertainty factor)

SARA (see Superfund Amendments and Reauthorization Act)

Sample
A portion or piece of a whole. A selected subset of a population or subset of whatever is being studied. For example, in a study of people the sample is a number of people chosen from a larger population (see population). An environmental sample (for example, a small amount of soil or water) might be collected to measure contamination in the environment at a specific location.

Sample size
The number of units chosen from a population or environment.

Solvent
A liquid capable of dissolving or dispersing another substance (for example, acetone or mineral spirits).

Source of contamination
The place where a hazardous substance comes from, such as a landfill, waste pond, incinerator, storage tank, or drum. A source of contamination is the first part of an exposure pathway.

Special populations
People who might be more sensitive or susceptible to exposure to hazardous substances because of factors such as age, occupation, sex, or behaviors (for example, cigarette smoking). Children, pregnant women, and older people are often considered special populations.

Stakeholder
A person, group, or community who has an interest in activities at a hazardous waste site.

Statistics
A branch of mathematics that deals with collecting, reviewing, summarizing, and interpreting data or information. Statistics are used to determine whether differences between study groups are meaningful.

Substance
A chemical.

Substance-specific applied research
A program of research designed to fill important data needs for specific hazardous substances identified in ATSDR's toxicological profiles. Filling these data needs would allow more accurate assessment of human risks from specific substances contaminating the environment.
This research might include human studies or laboratory experiments to determine health effects resulting from exposure to a given hazardous substance.

Superfund Amendments and Reauthorization Act (SARA)

In 1986, SARA amended CERCLA and expanded the health-related responsibilities of ATSDR. CERCLA and SARA direct ATSDR to look into the health effects from substance exposures at hazardous waste sites and to perform activities including health education, health studies, surveillance, health consultations, and toxicological profiles.

Surface water
Water on the surface of the earth, such as in lakes, rivers, streams, ponds, and springs (compare with groundwater).

Surveillance (see epidemiologic surveillance)

Survey
A systematic collection of information or data. A survey can be conducted to collect information from a group of people or from the environment. Surveys of a group of people can be conducted by telephone, by mail, or in person. Some surveys are done by interviewing a group of people (see prevalence survey).

Synergistic effect
A biologic response to multiple substances where one substance worsens the effect of another substance. The combined effect of the substances acting together is greater than the sum of the effects of the substances acting by themselves (see additive effect and antagonistic effect).

Teratogen
A substance that causes defects in development between conception and birth. A teratogen is a substance that causes a structural or functional birth defect.

Toxic agent
Chemical or physical (for example, radiation, heat, cold, microwaves) agents which, under certain circumstances of exposure, can cause harmful effects to living organisms.

Toxicological profile
An ATSDR document that examines, summarizes, and interprets information about a hazardous substance to determine harmful levels of exposure and associated health effects. A toxicological profile also identifies significant gaps in knowledge on the substance and describes areas where further research is needed.

Toxicology
The study of the harmful effects of substances on humans or animals.
Tumor
An abnormal mass of tissue that results from excessive cell division that is uncontrolled and progressive. Tumors perform no useful body function. Tumors can be either benign (not cancer) or malignant (cancer).

Uncertainty factor
Mathematical adjustments for reasons of safety when knowledge is incomplete. For example, factors used in the calculation of doses that are not harmful (adverse) to people. These factors are applied to the lowest-observed-adverse-effect-level (LOAEL) or the no-observed-adverse-effect-level (NOAEL) to derive a minimal risk level (MRL). Uncertainty factors are used to account for variations in people’s sensitivity, for differences between animals and humans, and for differences between a LOAEL and a NOAEL. Scientists use uncertainty factors when they have some, but not all, the information from animal or human studies to decide whether an exposure will cause harm to people (also sometimes called a safety factor).

Urgent public health hazard
A category used in ATSDR’s public health assessments for sites where short-term exposures (less than 1 year) to hazardous substances or conditions could result in harmful health effects that require rapid intervention.

Volatile organic compounds (VOCs)
Organic compounds that evaporate readily into the air. VOCs include substances such as benzene, toluene, methylene chloride, and methyl chloroform.