

The Florida Onsite Sewage Nitrogen Reduction Strategies (FOSNRS) Project

FOSNRS 1: The Florida Onsite Sewage Nitrogen Reduction Strategies (FOSNRS) Study, Project Overview

April 7, 2014

Elke Ursin, PMP Environmental Health Program Consultant

Division of Disease Control and Health Protection

Overview

- Florida onsite wastewater systems
- Assessment of system performance
- Current research:
 - Nitrogen removal technologies
 - Fate and transport

Onsite sewage systems in Florida

There are approximately 2.6 million onsite sewage systems in Florida

Florida Department of Health

Statewide rule implemented by 67 county offices

Nitrogen from onsite systems depends on:

- System usage
- Treatment level
- Groundwater
- Soil type

"Advanced Systems"

- Aerobic Treatment Units (ATUs)
- Performance-based Treatment Systems (PBTS)

Regulatory requirements for advanced systems

How are these systems working?

- What are the options?
- How effective are they?
- How are systems working day-to-day?
- How are these systems perceived?

Where are Florida's advanced systems?

There are approximately 12,000 advanced systems in Florida

Sampling protocol

Three groups of measurements:

- 1. Initial system assessment
- 2. System operation evaluation
- 3. Sample analysis

Sampling

Sampling results

Median	cBOD ₅ (mg/L)	TSS (mg/L)	TN (mg/L)	TP (mg/L)
Influent (n=42)	95	66	45	7.9
Effluent (n=301)	5.5	19	30	7.5
% Removal	94%	72%	33%	6%

Comparison of results aerating and non-aerating systems

Parameter	Influent n=42	Aerating n=237		Non-Aerating n=42	
		Result	% Removal	Result	% Removal
cBOD5 (mg/L)	95	4.6	95%	38	60%
TSS (mg/L)	66	18	73%	23	65%
TN (mg/L)	45	29	36%	47	-4%
TKN (mg/L)	45	4.9	89%	42	8%
TP (mg/L)	7.9	7.3	7%	8.7	-10%

Current paperwork + Regular inspections = Satisfactory system operation

Sample results meet standards

Florida Onsite Sewage Nitrogen Reduction Strategies Study

Study cost-effective ways to reduce nitrogen from onsite wastewater treatment systems

Project Timeline

2008
Study
authorized by
Florida
Legislature

2009-2015
Project executed,
funding
appropriations

ongoing

2015-2016 Anticipated contract completion

FDOH Research Review & Advisory Committee

HAZEN AND SAWYER Environmental Engineers & Scientists

Josefin Hirst
Harmon Harden
Sean Schmidt
Tasks A, B, C and D

Daniel Smith Tasks A and B

John McCray Kathryn Lowe Robert Siegrist Mengistu Geza Cliff Tonsberg Simon Farrell Tasks C and D Otis Environmental Consultants, LLC

Richard Otis Tasks A and B

Gurpal Toor Yun-ya Yang Mriganka De Task C

Mechling Engineering & Consulting, Inc.

LABORATORIES, INC.

Study goals

- Develop passive strategies for nitrogen reduction
- Complement use of conventional systems
- Develop cost-effective and ecologically protective nitrogen reduction strategies
- Evaluate nitrogen transport

Evaluate technologies

Determine what nitrogen reduction strategies to study

Bench-scale testing to develop design

criteria

Install Full-Scale Systems at Actual Home Sites

Evaluate nitrogen reduction in Florida soils and groundwater

Model Nitrogen Removal

- Shows treatment in soil and groundwater
- Use for assessment, planning, and siting
- Simple to use

Neitsch et al., 2002

Calibrate to site specific data

What's next?

Summary

- Florida onsite wastewater systems
- Assessment of system performance
- Current research:
 - Nitrogen removal technologies
 - Fate and transport

Elke Ursin, PMP

Florida Department of Health
Division of Disease Control & Health Protection
Bureau of Environmental Health

Email: Elke.Ursin@flhealth.gov

Phone: 850-245-4444 Ext. 2708

