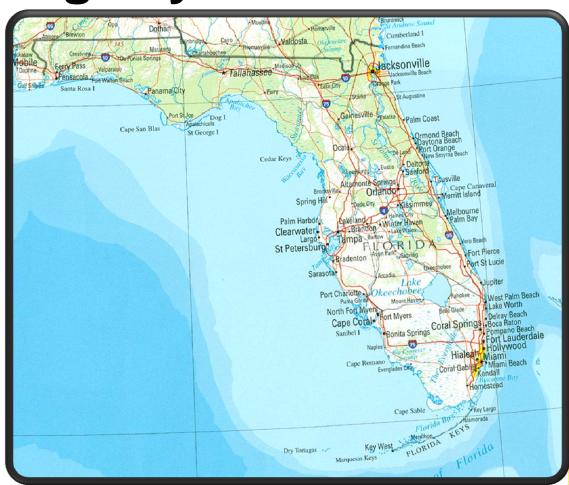
An Assessment of the Performance and Management of Advanced Onsite Systems in Florida

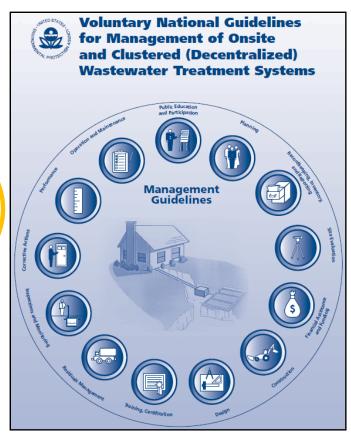

Elke Ursin

Environmental Health Program Consultant

Onsite sewage systems in Florida

There are approximately 2.6 million onsite sewage systems in Florida

Florida Department of Health


Statewide rule implemented by 67 county offices

"Advanced Systems"

- Aerobic Treatment Units (ATUs)
- Performance-based Treatment Systems (PBTS)
- Innovative Systems

Management Levels

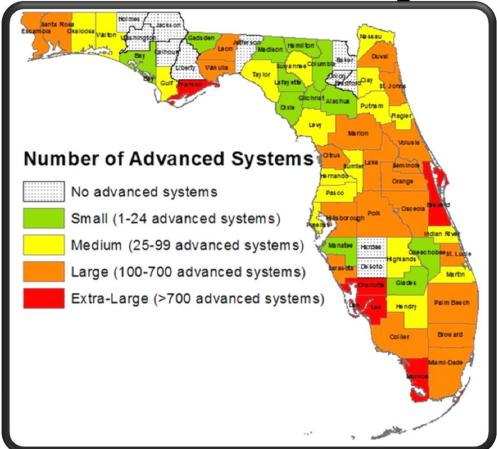
- 1. Homeowner Awareness
- 2. Maintenance Contracts
- 3. Operating Permits
- Responsible Management Entity (RME) Operation and Maintenance
- 5. RME Ownership

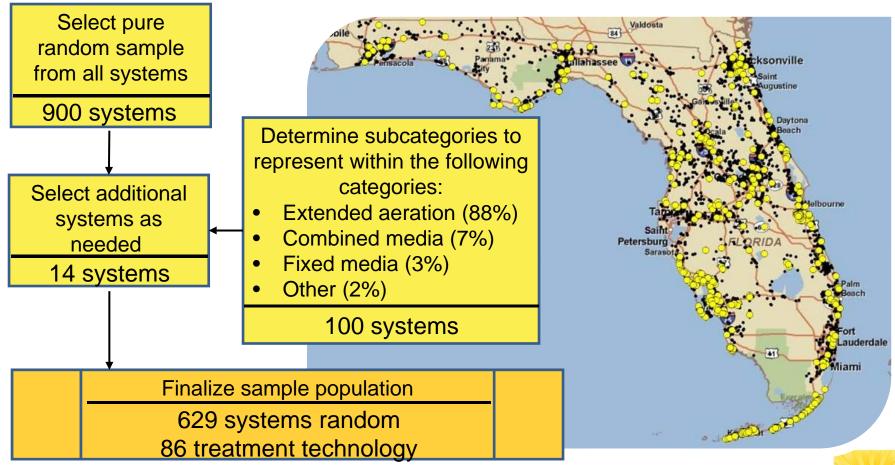
How are these systems working?

- What are the options?
- How effective are they?
- How are systems working day-to-day?
- How are these systems perceived?

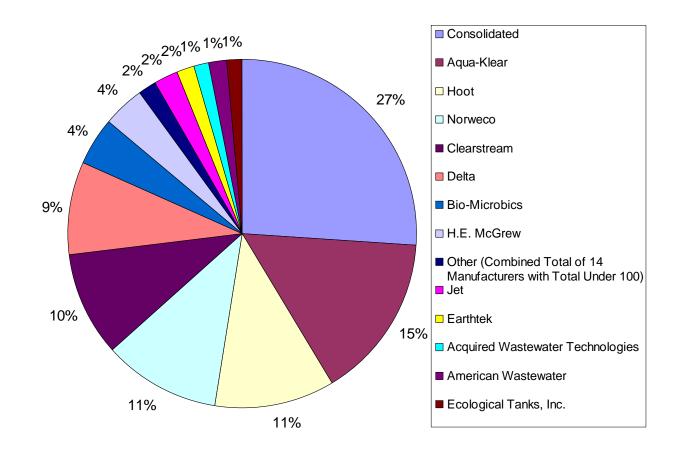
EPA Nonpoint Source Pollution program funding - Section 319(h)

- 1. Inventory system number, types, and locations
- 2. Assess operational status of systems
- Quantify reduced loading of contaminants from systems
- 4. Survey perceptions of user groups
- 5. Determine consistent assessment of systems
- 6. Identify best management practices

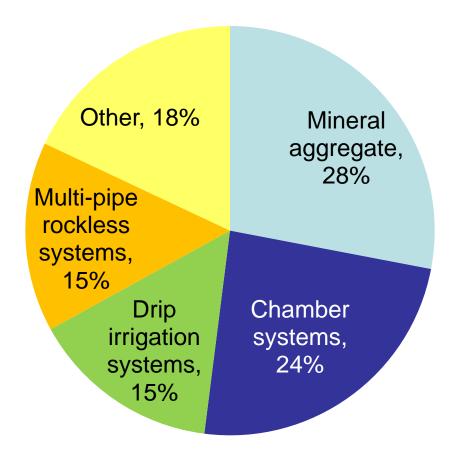



1. Inventory system number, types, and locations

Where are the advanced systems?


There are approximately 12,000 advanced systems in Florida

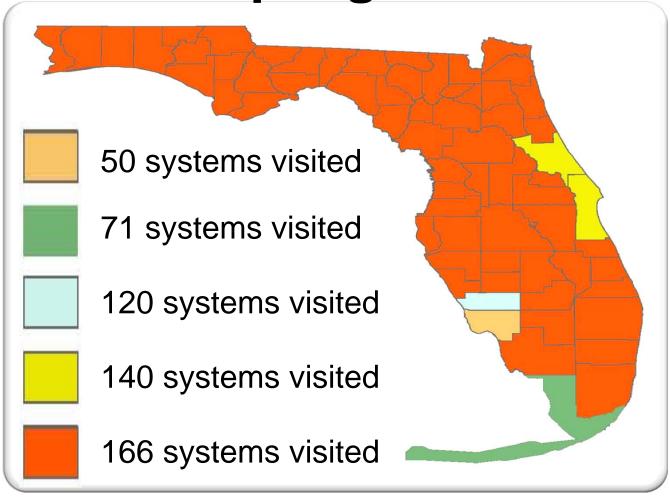
Review advanced system files



Treatment technology manufacturers

Construction information

- Most for new homes
- 300 gallons per day (gpd) flow / 500 gpd treatment capacity
- 65% have drainfield sidewalls extending above natural grade


2. Assess operational status of systems

Sampling protocol

Three groups of measurements:

- 1. Initial system assessment
- 2. System operation evaluation
- 3. Sample analysis

Sampling team

Initial system evaluation

- Power is on
- No sewage on the ground
- Aeration occurring
- Alarms are off
- Changes to site conditions

Vacancy and system operation

(all randomly selected visited systems)

Occupancy Status	Switched off	Power indicator off	Aeration off
Vacant (n=89)	54%	54%	59%
Non-Vacant (n=445)	6%	17%	14%

Issues for non-vacant systems

n=454 non-vacant systems based on permit review # of non-operational systems = 127 (28%)

Reason for non- operational status	Number	Percent of total non-operational systems
Power switched off	54	43%
Power indicator off	79	62%
Aeration not working	73	57%
Sanitary nuisance	20	16%
Alarm issue	19	15%

Quantify reduced loading of contaminants from systems

Sampling

Sampling results

Median	cBOD ₅ (mg/L)	TSS (mg/L)	TN (mg/L)	TP (mg/L)
Influent (n=42)	95	66	45	7.9
Effluent (n=301)	5.5	19	30	7.5
% Removal	94%	72%	33%	6%

Effluent standards

Permitting Level	cBOD₅ mg/L	TSS mg/L	TN mg/L	TP mg/L	Fecal cfu/100 mL
Baseline	120-240	65-176	36-45	6-10	NA
ATU	<u><</u> 25	<u><</u> 30	NA	NA	NA
Secondary	≤ 20	<u><</u> 20	NA	NA	≤ 200
Advanced Secondary	<u><</u> 10	<u><</u> 10	<u><</u> 20	<u><</u> 10	<u><</u> 200
Advanced Wastewater	<u><</u> 5	<u><</u> 5	<u><</u> 3	<u><</u> 1	Below Detection

Treatment standard exceedances

System Type	cBOD ₅	TSS	TN	TP	Fecal
PBTS (random)	37% (n=30)	50% (n=30)	70% (n=23)	28% (n=18)	50% (n=4)
PBTS (other)	36% (n=22)	50% (n=22)	93% (n=14)	42% (n=12)	88% (n=8)
ATU (random)	22% (n=267)	36% (n=275)	NA	NA	NA
ATU (other)	14% (n=7)	25% (n=8)	NA	NA	NA

Comparison of results aerating and non-aerating systems

Parameter	Influent	Aerating n=237		Non-Aerating n=42	
	n=42	Result	% Removal	Result	% Removal
cBOD ₅ (mg/L)	95	4.6	95%	38	60%
TSS (mg/L)	66	18	73%	23	65%
TN (mg/L)	45	29	36%	47	-4%
TKN (mg/L)	45	4.9	89%	42	8%
TP (mg/L)	7.9	7.3	7%	8.7	-10%

Field screening of samples

- Option to perform in situ sample screening
- Saves expense of sample analysis
- Results were favorable for:
 - Apparent color & turbidity (cBOD₅ & TSS)
 - Nitrate (nitrate+nitrite)
 - Ammonia (TKN)

Variability of performance

- Repeat visits to sites
- Influent and effluent results stay within a factor of two
- Variations in loading influence both influent and effluent
- Variability does not affect treatment effectiveness estimates

Project Objectives

4. Survey perceptions of user groups

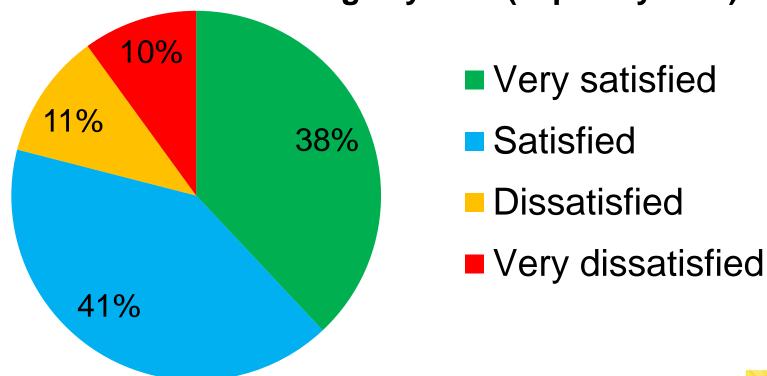
Survey of stakeholders

- Homeowners
 - 3,800 surveys sent
 - 660 completed surveys (17%)
 - Most from full-time residents with the system
 - Most systems served less than 4 people
- Maintenance entities, installers, engineers, manufacturers
- Florida Department of Health at County Offices

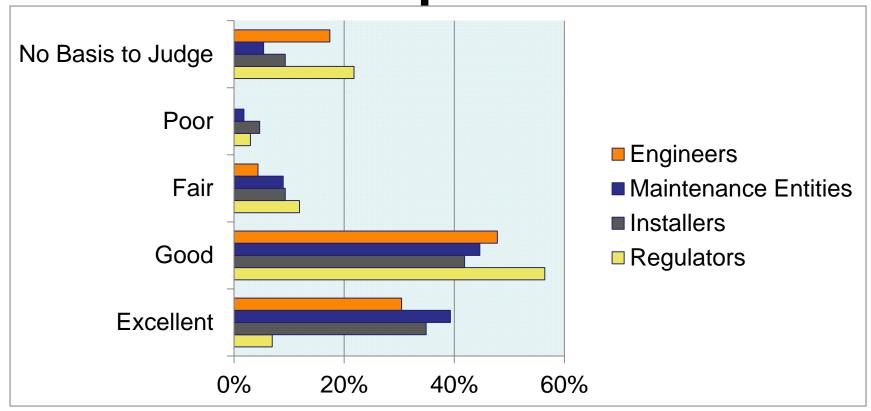
Homeowner reported problems

Several problems 11%
1-2 problems

34%


No problems 55% Most were mechanical:

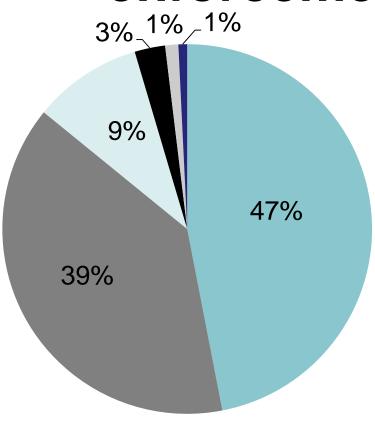
- Pump failures
- Electrical problems
- Faulty alarms
- Bad motors



Homeowner satisfaction

How would you describe your overall satisfaction with your advanced onsite sewage system (septic system)?

Overall perception of treatment performance



5. Determine consistent assessment of systems

Permitting violations requiring enforcement (n=262)

- Expired Maintenance
- AgreementExpired Operating
 - **Permit**
- System Not Working
- Properly

 Failure to Conduct
- Inspections
 Sampling Not
 - Performed
- Other

Current paperwork + Regular inspections

Satisfactory system operation

Sample results meet standards

Monitoring protocol

- Up-to-date paperwork
- Field evaluation to check:
 - Power/on

- No alarms on
- Aeration on bubbles and mixing
- No sewage on the ground
- Good as-built drawing: show sample location
- Easy access to treatment units
- Clear and consistent sampling requirements
- Regular inspections

Project Objectives

6. Identify best management practices

What is a "best" management practice?

- 1. Complete, accurate, and current documentation
- 2. System operating conditions
- 3. System sampling results
- 4. User group recommendations

Major categories of BMPs

- 1. Recordkeeping practices
- 2. System maintenance practices
- 3. Enforcement practices
- 4. Fiscal practices
- 5. Communication practices

Recordkeeping practices

- 1. Central data location
- 2. Complete and accurate system file
- 3. Recording sample/performance information
- 4. Synchronization between data sources
- 5. Online billing system

System maintenance practices

- 1. Increased homeowner awareness/education
- 2. Statewide standardized form with maintenance and inspection requirements
- 3. Quality maintenance inspections performed routinely
- 4. Access to system interior and monitoring locations

System maintenance practices (continued)

- 5. Access to appropriate equipment for inspections
- 6. Sufficient access to resources
- 7. Clear monitoring/sampling requirements
- 8. Notification of system malfunctions
- 9. Consistency between regulator and maintenance entity
- 10. Keep track of vacant properties

Enforcement practices

- 1. Effective, standardized, and consistently applied enforcement procedure
- 2. Document systems in property records
- 3. Consistent pre-notification for payments
- 4. Standard timeframe for non-compliance letters
- 5. Build relationships between regulators and local government
- 6. Simplify the current rule

Fiscal practices

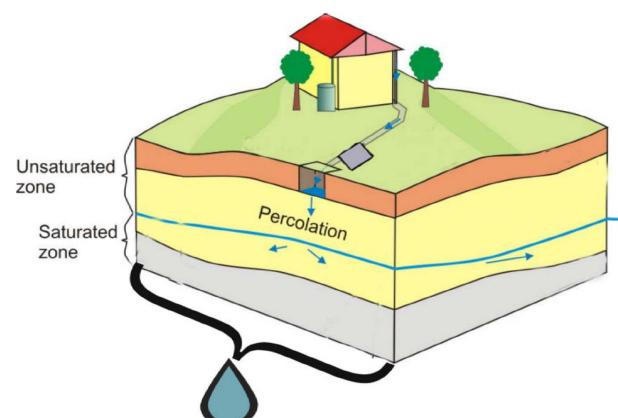
- 1. Ensure adequate staffing
- 2. Reduce cost of systems
- 3. Adjust payment schedules
 - installment billing
 - automatic payments

Communication practices

- 1. Training and education for all user groups
- 2. Open communications between user groups

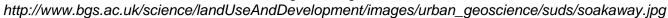
Recommendations

- 1. Continue analyzing data
- 2. Implement database and website enhancements
- 3. Develop statewide standardized form
- 4. Evaluate low cost and effective nutrient reduction technologies


Recommendations (continued)

- Develop a homeowner awareness and education campaign
- 6. Select a pilot county to implement the best management practices
- 7. Standardize enforcement procedures
- 8. Conduct workshops to discuss BMPs

What's next?


Florida Department of Health Research Review and **Advisory Committee**

Florida Onsite Sewage Nitrogen Reduction Strategies Study

Study costeffective ways to reduce nitrogen from onsite wastewater treatment systems

Original image source:

Thank you! Elke Ursin 850-245-4444 x 2708 elke.ursin@flhealth.gov

http://www.floridahealth.gov/healthy-environments/onsite-sewage/research

Division of Disease Control & Health Protection

