

Florida Department of Health Bureau of Onsite Sewage Programs Research Review and Advisory Committee Meeting

DATE AND TIME:	October 9, 2008 at 9:30 am
PLACE:	Orlando Airport Marriott 7499 Augusta National Drive Orlando, FL 32822 (407) 859-0552

This meeting is open to the public

AGENDA: FINAL 10/8/2008 Elke Ursin

- 1. Introductions
- 2. Review Minutes of Meeting 7/30/2008
- 3. Brief Update on Specific Appropriation 1682
- 4. Evaluation Team Meeting for Invitation to Negotiate 08-024: Statewide Inventory of Onsite Sewage Treatment and Disposal Systems in Florida
- 5. Evaluation Team Meeting for Invitation to Negotiate 08-027: Evaluation of Water Quality Around the Town of Suwannee
- 6. Presentation from Dr. Daniel Smith on the Results of the Additional Monitoring Events for the Passive Nitrogen Removal Study
- 7. Brief updates on Ongoing and Future Projects
- 8. Other Business
- 9. Public Comment
- 10. Closing Comments, Next Meeting, and Adjournment

Passive Nitrogen Removal Summary and Recommendations

Daniel P. Smith Applied Environmental Technology

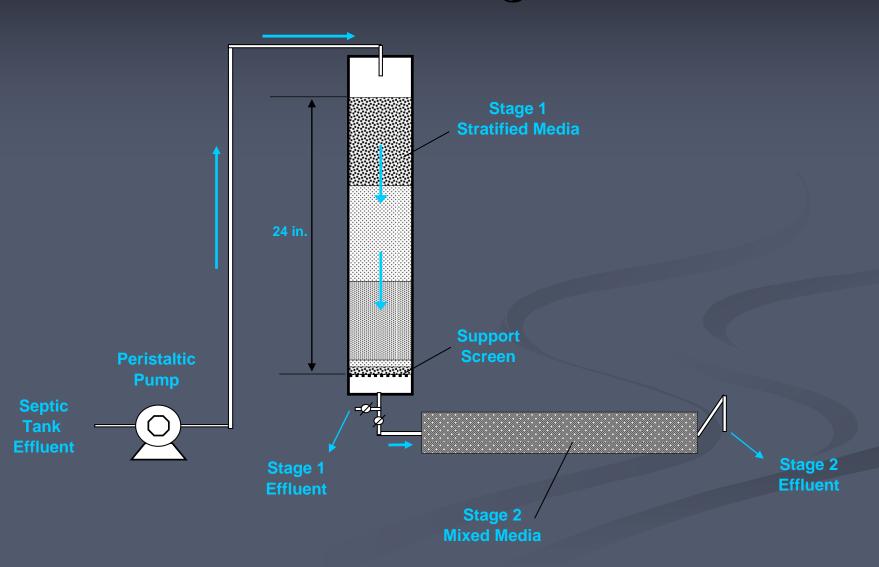
AET

"Passive" Onsite System

- One "effluent dosing" pump
- No aerators
- Media filtration
- "Reactive" media

Recommend Two-Stage Filtration

Stage 1: aerobic unsaturated fixed film media reduce BOD, organic N, ammonia Stage 2: anoxic saturated reactive media reduce nitrate, nitrite


Media Experiments

- Three parallel 2-stage systems
- 246 days of operation
- Treat actual Septic Tank Effluent
- Monitor STE, Stage 1 & Stage 2 effluents
- Performance evaluation:

6 individual filters

three 2-stage systems

Tested Configuration

Field Site

- 3 gal/ft²-day
- 30 minute dose cycle
- 246 days
- Avg. STE TN = 66
- $C-BOD_5 = 120 \text{ to } 280$

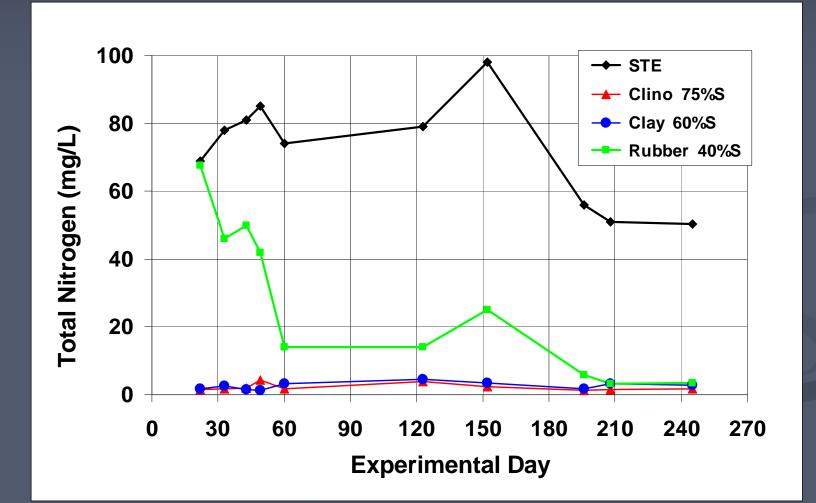
Experimental Media

Clinoptilolite

Expanded clay

Granular rubber

Expanded shale

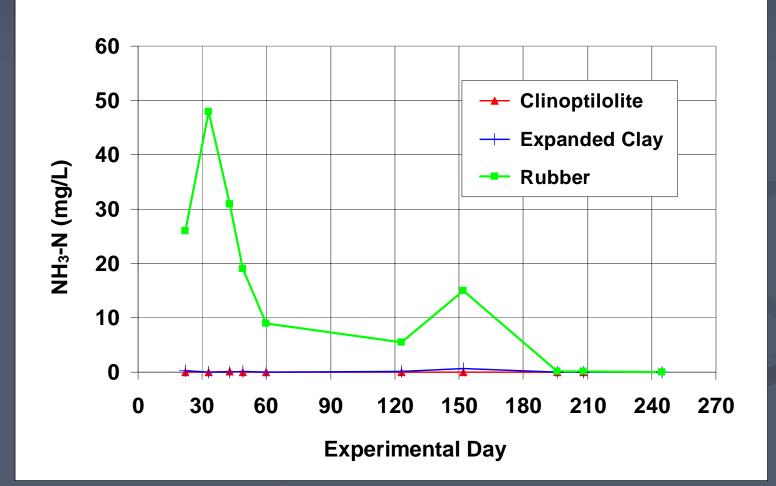


Oyster shell

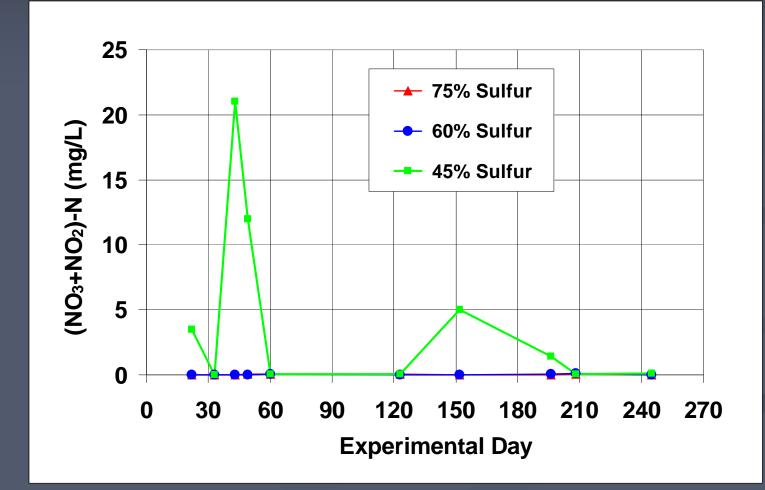
Results

- First PNRS: Day 20 to 60
- Additional: Day 123 to 245
- Nitrogen
- BOD
- DO, pH, Alkalinity
- Oxidation Reduction Potential

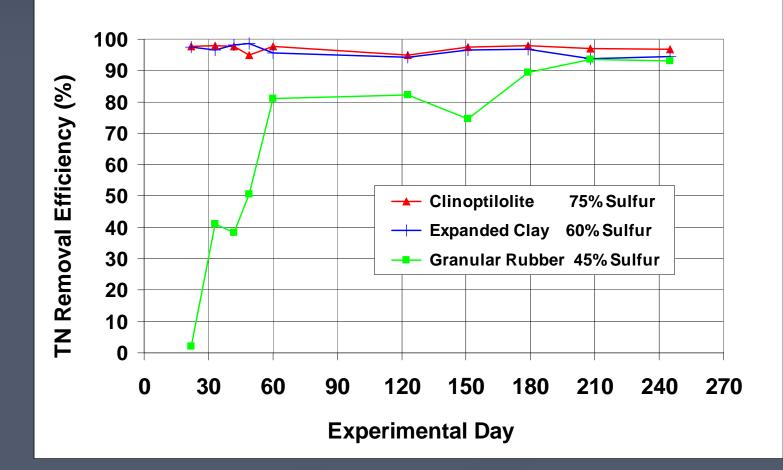
Total Nitrogen 2-Stage Effluent


Results

- First PNRS: Day 20 to 60
- Additional: Day 123 to 245
- Nitrogen
- BOD
- DO, pH, Alkalinity
- Oxidation Reduction Potential

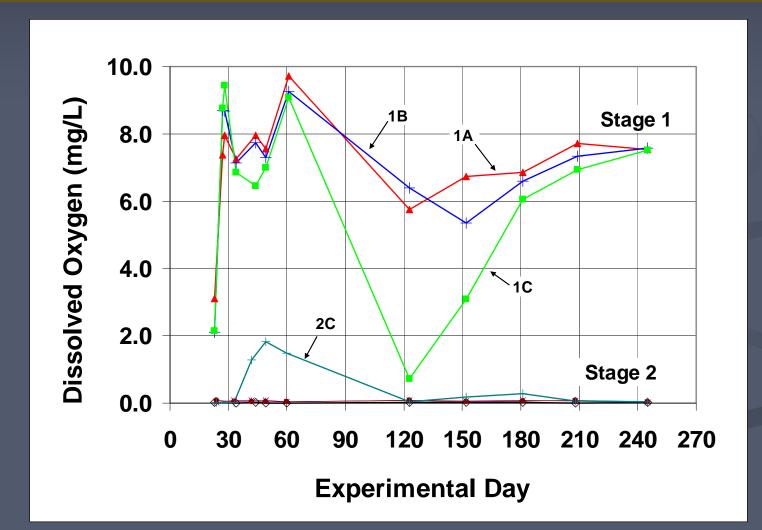

Nitrogen Reduction Efficiency (Day 123 – 245)

System	Media	Total Nitrogen Reduction (%)			ganic Nitrogen Iction (%)
		Average	Range	Average	Range
1	Clinoptilolite / 75% S	96.8	95 - 97.8	99.2	98.6 - 99.6
2	Expanded Clay / 60% S	95.1	93.7 - 96.7	97.0	96 - 97.9
3	Granular Rubber / 45% S	86.6	74.5 - 93.6	92.2	79.4 - 98.6


Stage 1 Ammonia

Stage 2 NO_x

Total N Removal Efficiency

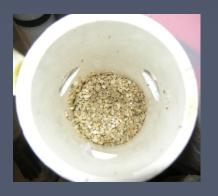

Biochemical Oxygen Demand

Date	C-BOD ₅ , mg/L			
Duto	Septic Tank Effluent	Clinoptilolite	Enpanded Clay	Granular Rubber
5/4/2008	130	< 8	< 8	< 8
6/3/2008	160	4.0	3.5	8.4
7/2/2008	120	< 2	< 2	< 2
% Removal Efficiency	-	> 94, 98, > 98	> 94, 98, > 98	> 94, 95, > 98

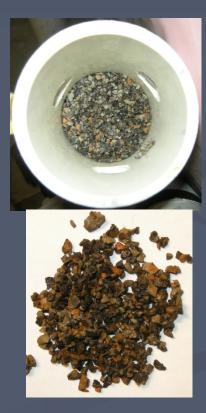
Field Parameters (Mean, n=5)

Sample Point	Dissolved Oxygen, mg/L	рН	Alkalinity, mg/L as CaCO ₃	Alkalinity Change, mg/L as CaCO ₃
Influent (STE)	0.02	7.34	526	-
Stage 1				
1A Clinoptilolite	6.92	6.97	164	- 362
1B Expanded clay	6.65	6.31	55	- 471
1C Granular rubber	4.86	6.24	58	- 469
Stage 2				
2A 75% Sulfur	0.06	6.78	370	+ 206
2B 60% Sulfur	0.06	6.67	265	+ 210
2C 45% Sulfur	0.12	6.55	205	+ 148

Dissolved Oxygen



Materials Characterization


- Day 246: disassemble columns
- sample media from 3 points in each column
- Photo and visual observation
- Gravimetric analysis
- Electron Microbeam/ Electron Dispersive Spectrometry

Stage 1 Media @ 246 days

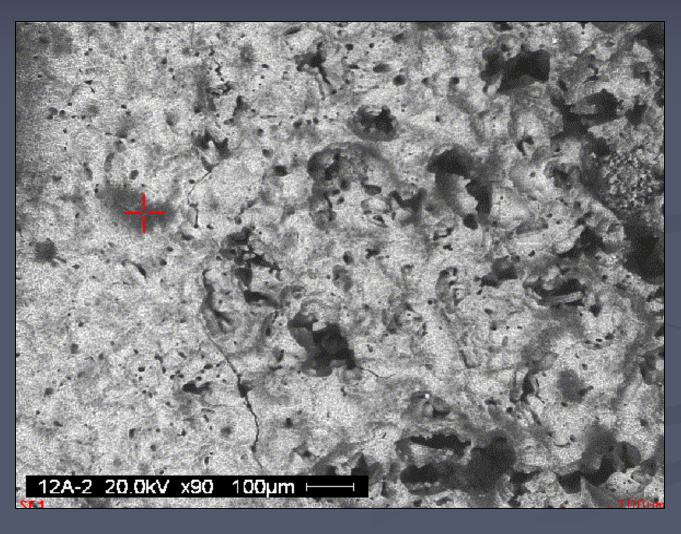
Clinoptilolite

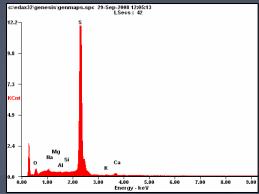
Expanded clay Granular rubber

Stage 1 Media Dried at 103C

Stage 2 Media @ 246 days

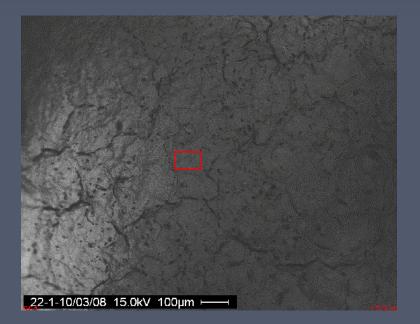
Column 2A @ 21 in.

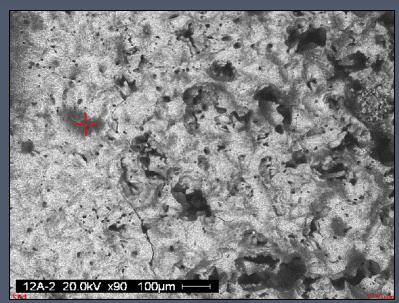

Column 2A entrance



Column 2A, 2B, 2C Dried at 103C

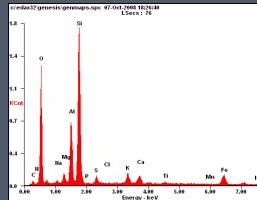
Electron Dispersive Spectrometry Sulfur particle from Column 2A, 21 in. location




Element	Wt%	At%
OK	11.52	20.55
NaK	02.49	03.09
MgK	00.32	00.38
AlK	00.20	00.21
SiK	00.42	00.43
SK	83.02	73.89
KK	00.31	00.23
CaK	01.72	01.22
Matrix	Correction	ZAF

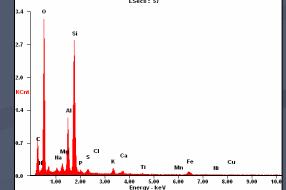
Electron Dispersive Spectrometry

Fresh Sulfur Media


Sulfur Column 2A Day 246

Electron Dispersive Spectrometry

Fresh Expanded Clay



Expanded Clay Filter top 2 inch @ Day 246

c:\edax32\genesis\genmaps.spc_07-Oct-2008 17:45:29 LSecs : 57

Thank you RRAC and FDoH

Florida Passive Nitrogen Removal Study

Additional Monitoring

Prepared for:

Florida Department of Health Division of Environmental Health Bureau of Onsite Sewage Programs 4042 Bald Cypress Way Bin #A-08 Tallahassee, FL 32399-1713

By:

Daniel P. Smith, Ph.D., PE, DEE Applied Environmental Technology Thonotosassa, FL 33592

9/29/2008

Applied Environmental Technology Florida Passive Nitrogen Removal Additional Sampling Report 9 29 2008

ACKNOWLEDGEMENTS

The author thanks Elke Ursin, Eberhard Roeder and Paul Booher, and the Research Review and Advisory Committee of the Florida Department of Health for supporting this project, and Hillsborough County, Florida for providing use of the experimental test site.

Report Preparation

Principal Investigator: Daniel P. Smith, Ph.D., PE, DEE Applied Environmental Technology

TABLE OF CONTENTS

Acknowledgementsi
List of Tables iv
List of Figures v
Executive Summary vi
Introduction 1
Approaches to Passive Nitrogen Removal 2
Experimental Column Operation 4
Materials and Methods 4
Project Site 4
Experimental Treatment Systems 4
Operation and Monitoring 7
Analytical Methods 7
Results and Discussion
Applied Hydraulic Loading
Septic Tank Effluent10
Applied BOD and Nitrogen Loading10
Performance of Two Stage Treatment Systems
Performance of Unsaturated Aerobic Filters (Stage 1)12
Performance of Anoxic Denitrification Filters (Stage 2)14
Carbonaceous Biochemical Oxygen Demand15
Statistical Tests

Applied Environmental Technology Florida Passive Nitrogen Removal Additional Sampling Report 9 29 2008

TABLE OF CONTENTS (CONTINUED)

Media Examination	
Dissambly of Columns and Subsample Collection	
Observations of Filter Media	21
Gravimetric Analysis	25
Conclusions	27
References	27

Appendix A NELAC Certified Laboratory Water Quality Data

LIST OF TABLES

Table 1	Procured Filter Media 5
Table 2	Configuration of Two Stage Filter Media 8
Table 3	Applied Hydraulic Loading Rate
Table 4	Septic Tank Effluent Quality10
Table 5	Nitrogen Species In Filter Influents and Effluents
Table 6	Two Stage Treatment System Nitrogen Removal Efficiency12
Table 7	Carbonaceous Biochemical Oxygen Demand in STE and Stage 1 Effluent 15
Table 8	Field Parameters in Influent and Filter Effluents16
Table 9	Summary of Field Parameters
Table 10	SepticTank Effluent: Statistical Comparison between Periods 1 and 219
Table 11	Effluent Nitrogen: Statistical Comparison between Periods 1 and 219
Table 12	Statistical Comparison of Two-Stage Filter Effluent Nitrogen for Period 220
Table 13	Gravimetric Analysis of Filter Media
Table 14	Derived Residence Time in Stage 1 Filters
Table 15	Organic Matter in Stage 1 Filter Media

LIST OF FIGURES

Figure 1	Experimental Filter System Schematic 6
Figure 2	Hydraulic Loading Rate Applied to Stage 1 Filters
Figure 3	Areal Nitrogen Application Rate to Stage 1 Filters
Figure 4	Total Nitrogen in Influent STE and Effluent of Two Stage Filter Systems 12
Figure 5	Effluent Ammonia from Unsaturated (Stage 1) Filters14
Figure 6	Stage 1 Ammonia Removal Efficiency)14
Figure 7	NO _x Concentrations in Stage 2 Filter Effluents
Figure 8	Total Inorganic Nitrogen Removal Efficiencies of Two Stage Filters18
Figure 9	Dissolved Oxygen in Effluent of Unsaturated Filters (Stage 1)13
Figure 10	Dissolved Oxygen in Effluent of Denitrification Filters (Stage 2)13
Figure 11	Surface of Clinoptilolite Filter (Day 246)21
Figure 12	Surface of Expanded Clay Filter (Day 246)21
Figure 13	Surface of Granular Rubber Filter (Day 246)
Figure 14	Clinoptilolite Media from Upper Layer (Day 246)22
Figure 15	Expanded Clay Media from Upper Layer (Day 246)22
Figure 16	Granular Rubber Media from Upper Layer (Day 246)
Figure 17	Clinoptilolite: New and Column 1A Upper Layer Dried at 103C (Day 246)23
Figure 18	Stage 1 Media, Upper Layer Dried at 103C (Day 246)
Figure 19	Filter 2A, 21 in. (Day 246)
Figure 20	Filter 2A, 2 in. (Day 246)
Figure 21	Stage 2 Media Dried at 103C (Day 246)

Executive Summary

Approximately 2.5 million onsite wastewater treatment systems (OWTS) are currently permitted in the State of Florida. Population growth, exurban development trends, and the high cost and sustainability of centralized infrastructure make it likely that distributed infrastructure will continue to be used for the management of a large portion of domestic sanitary water generated in Florida. The vast majority of onsite systems include a septic tank for primary treatment, followed by dispersal into the environment using soil adsorption systems. Nitrogen removal in these typical systems is limited. Nitrogen loading from onsite systems is a potential concern in Florida, depending on the sensitivity of the water environments, the number and density of onsite installations, their proximity to receiving waters, and processes in subsurface soil media.

This Florida Passive Nitrogen Removal Study (PNRS) was undertaken to investigate alternative methods to remove nitrogen in onsite systems. A primary consideration was to evaluate systems that were "passive" in nature, with limited reliance on pumping and forced aeration. A guiding principal for the PNRS was the specific definition of a "passive" nitrogen removal system as one that contains only a single liquid pump, no mechanical aerators, and that uses reactive media. The PNRS was specifically intended to perform a literature review of passive nitrogen removal technologies, perform an experimental evaluation of passive systems and candidate media, perform an economic analysis of such systems, and make recommendations regarding deployment of passive nitrogen systems.

Experimental Evaluation

The Passive Nitrogen Removal Study entailed operation of three two-stage filter systems to evaluate enhanced nitrogen removal using two-stage passive nitrogen removal systems. Experiments were performed using actual septic tank effluent at a field site in Hillsborough County, Florida. In the original study, the three systems were operated for 60 days on septic tank effluent. Two of the two-stage filter systems achieved over 97% total nitrogen removal and 98% total inorganic nitrogen removal, with average effluent ammonia nitrogen and nitrate+nitrate nitrogen concentrations of less than 0.7 mg/L and 0.5 mg/L, respectively (Smith et al., 2008). High nitrogen removal performance was achieved using clinoptilolite and expanded clay media in the unsaturated Stage 1 filter, and elemental sulfur in the anoxic denitrification filter (Stage 2).

This report presents the results of additional operation and monitoring following the original study. Operation of the three two-stage filters was extended by an additional 186 days, for a total duration exceeding eight months. Nitrogen removal performance of the clinoptilolite/ 75% sulfur and expanded clay/ 60% sulfur systems was similar for the extended operation (Days 123 to 245) to the initial 60 day period. The average removal efficiency of these systems for Days 123 through 245was greater than 95% for Total Nitrogen and greater than 97% for Total Inorganic Nitrogen. The granular rubber/40% sulfur system continued to improved prior to Day 210, after which Total Nitrogen removal was greater than 90%.

Five day carbonaceous biochemical oxygen demand was < 2 to < 8 mg/L in all three Stage 1 effluents, with removal efficiencies exceeding 94% for all filters. These results verify the ability of the Stage 1 filter designs to remove organic matter in septic tank effluent in addition to nitrogen species. The experimental evaluation verified the potential of the two-stage filter systems for both total nitrogen removal and organics removal using passive technology over an eight month period.

Media Examination

At the conclusion of the study, the two-stage filter systems were disassembled and media samples removed from the filters. The media was subjected to several tests to evaluate changes to media through the 246 day operation. Resident water retention in Stage 1 media was from 19 to 41% of mass and was lowest for larger media particle size. Estimated water detention time in Stage 1 filters was 15 to 48 hours and was highest for expanded clay and lowest for granular rubber. Visual and photographic analysis generally showed no gross accumulation of solids in media materials. The entrance regions of the Stage 2 reactors showed gelatinous accumulation on media surfaces, which is a characteristic of biofilm reactors.

Introduction

As population growth continues in Florida, so do the potential impacts of on-site wastewater treatment systems to surface and groundwater quality. Nitrogen loading from wastewater treatment systems may be a concern where numerous on-site wastewater treatment and disposal systems (OWTS) are located within sensitive environments. Conventional septic tank and soil adsorption systems rely on biological reactions in porous media (setback layer or unsaturated natural soil) to attenuate nitrogen loadings to ground or surface water. Groundwater nitrate concentrations have been shown to exceed drinking water standards by factors of three or greater at distances on the order of several meters from soil adsorption systems. A study at Big Pine Key, Florida found that the dissolved inorganic nitrogen (DIN) levels in groundwater contiguous to on-site drainfields were greater than DIN levels at a control location. Groundwater NH₃-N levels at Big Pine Key reached 2.75 millimoles per liter (38.5 mg/L), indicating a high fractional breakthrough of ammonia through the on-site treatment system. In another study, conducted on a sandy Florida aquifer system, groundwater levels of both Total Nitrogen and ammonia were elevated above background levels at a distance of 50 meters from a conventional soil adsorption drainfield. Available setback distances in Florida locations may often be quite limited, which increases the significance of achieving high nitrogen removal percentages within septic tanks, media filters and other in-tank treatment processes, as well as with in soil treatment units. A summary review of a wide variety of on-site treatment approaches showed that systems with some degree of "passive" characteristics exhibited Total Nitrogen removal efficiencies of 40 to 75% and produced effluent TN of 10 to 20 mg/L. FDOH has an interest in exploring the feasibility and practicality of using relatively passive on-site treatment systems to accomplish even higher nitrogen reductions in a cost effective manner.

The mission of the Bureau of Onsite Sewage Programs of the Florida Department of Health (FDOH) is "Protecting the public health and environment through a comprehensive onsite sewage program". FDOH established the Florida Passive Nitrogen Removal Study to identify passive treatment systems that can achieve greater nitrogen reductions than exhibited by conventional septic tank/drainfield configurations. The FDOH is specifically interested in approaches that employ filter media, or reactive filter media, and systems that which eliminate the need for aeration pumps and minimize the need for liquid pumping. The first step of the Florida Passive Nitrogen Removal Study was to identify treatment configurations, reactive and non-reactive media, performance capabilities of new and demonstrated technologies, and factors influencing performance and longevity. The following section describes the results of the literature review and the genesis of the recommended two-stage system for passive nitrogen removal. The experimental evaluation section describes the results of experiments that were performed to verify total nitrogen removal from actual septic tank effluent using passive, twostage nitrogen removal technology. The economic analysis section presents a detailed life cycle cost analysis of a passive two-stage nitrogen removal system. Finally, the recommendations section provides specific guidance for deployment of passive two-stage nitrogen removal technology for a single family residence.

Approaches to Passive Nitrogen Removal

The overall approach to passive nitrogen removal is a two stage filter system. The first stage is an unsaturated media filter for ammonification and nitrification. The second stage is a saturated anoxic filter with reactive media (denitrification). This configuration is mandated by the obligatory biochemical sequence of aerobic nitrification followed by anoxic denitrification. The use of an unsaturated media filter for the initial nitrification is necessary because of the constraint that aeration pumps can not be used in the passive system. The first media filter can be established as a downflow filter, similar to a sand filter for example, and can be connected to the second anoxic denitrification filter that operates in the upflow direction. The flow connectivity between the two filter stages would be by gravity.

The first stage filter must be designed to achieve the targeted final effluent ammonia N levels. Ammonia N may behave conservatively in the anoxic second stage filter, and any additional ammonia N removal in the anoxic filter should be viewed as incidental. The first stage filter will also provide additional processes that will remove biodegradable organics (biochemical oxygen demand) and organic N. Although some denitrification may occur in unsaturated filters that are operated on STE under certain conditions (i.e. simultaneous nitrification/denitrification), the predominant design goal of the first stage filter must be to achieve consistent low levels of ammonia N and organic N. Key factors for first stage media are timed dosing, dosing distribution across the filter surface area, ability to supply oxygen supply by maintaining aeration pore volume, ability to retain water, and adequate space within the media to assimilate suspended solids in the wastewater influent and biomass that is synthesized from degradation of influent wastewater constituents. Unsaturated filter performance is governed by the interaction between the filter media and the manner in which septic tank effluent is imposed onto the media surface. Important factors are the average applied hydraulic and organic loading rates, the timing and volume of dosings, and the distribution of wastewater over the entire surface area of the filter. Review of technologies suggests that ammonia nitrogen reductions of 95% and effluent ammonia N levels of 1 mg/L are possible to achieve. Evaluation of specific filter media, hydraulic and organic loading rates, and water quality must be conducted to define the design parameters needed to achieve low effluent ammonia and organic N concentrations. Promising candidate media include zeolites, expanded clays and shales, tire crumb, peat, coconut coir, and synthetic fiber materials. The first stage unsaturated filter should produce and effluent with low TSS and regrowth potential to minimize potential solids accumulation and channeling in the second stage filter.

The second filter must be designed to achieve the targeted final effluent total oxidized N levels, which are expected to be predominantly nitrate N. Considerations for the second stage media involve surface area per volume, propensity for accumulated suspended solids to reduce hydraulic conductivity (clogging) and lead to preferential flow, and operating factors such as the applied hydraulic and organic loading rates. The need to provide a continuous supply of electron donor for denitrification, and to supply it over extended periods of deployment, is central to the purpose of the reactive media. Review of technologies suggests that it should be possible to achieve effluent nitrate levels of 2 mg/L and less. Evaluation of specific filter media, hydraulic and nitrate loading rates, and water quality must be conducted to identify media and define the design parameters needed to achieve low effluent nitrate concentrations. Candidate media

include elemental sulfur, woodchips, and sawdust; other cost effective materials may also identified. Literature review suggests two additional considerations that must be addressed for deployment of anoxic reactive media. The first is residuals that are added to water by passage through the reactive media. Wood based materials can add biodegradable organics to water, increasing the chemical and biochemical oxygen demand. Elemental sulfur systems can increase sulfate levels and possibly sulfide. The degree to which residuals are added to the water by the reactive media filters could be reduced to by replacing a fraction of the reactive media with inert filler. However, care must be taken to insure continuous electron donor supply over the target deployment period. Thus, anoxic filter systems must be formulated with sufficient electron donor supply to support denitrification, but with as small an excess release of electron donor as is consistent with achieving the target nitrate removals.

A second factor in anoxic filter design is the long term hydraulic performance, which may be even more significant to the longevity of anoxic denitrification filters than the duration of electron donor supply. Preferential flow paths can be initiated through deposition of organic and inorganic solids within the filter media, and by methods used to distribute and withdraw flow into and through the reactive media. Preferential flow paths can lead to channelization, reduced contact with reactive media surfaces, and performance deterioration. The ability to predict a priori the propensity for channelization phenomena is limited, particularly in the anoxic filters, which host biochemically reactive systems with complex water chemistries and which experience a significant transition from a predominantly aerobic to an anoxic redox environment. Approaches to overcoming channelization involve manipulation of media, inlet and outlet arrangements, the provision of a minimum amount of headloss, baffling, the use of long aspect ratio reactors, using large systems that provide acceptable performance over time even with some degree of channelization, or using smaller filters with lower retention times that are changed out more frequently. Continuous deployments of treatment systems over time periods of months and longer are needed to fully examine these factors.

The embodiment of the two stage treatment system as an in-tank process has advantages over a modified drainfield approach. Achieving acceptably low effluent Total N removals over time periods of many years will require access to filter media for effluent monitoring, media maintenance and change out when required, and verification of desired hydraulic operation. Replacement or maintenance of denitrification media could be accomplished without disturbing the first stage media. The use of the two stage in-tank process, passively connected hydraulically, would avoid the vagaries inherent in verifying the continuing performance of subsurface flow systems. The second stage saturated filter could be deployed as a horizontal subsurface filter bed as long as it remained saturated.

Experimental Evaluation

Materials and Methods

Project Site

The experimental studies were conducted at Flatwoods Park, 18205 Bruce B. Downs Boulevard, Tampa FL 33592. The park is a day use public recreational facility operated by Hillsborough County. Wastewater is generated by two sources: a lavatory with two hand washing sinks and two flush toilets, and a continuously occupied single family home (ranger residence). The park was open for public use every day during the study period. Park visitation is highest on weekends and on weekday afternoons. Wastewater from the ranger residence and lavatory is collected in a septic tank before being pumped to a mounded onsite sewage and disposal system. The source water for the ranger residence and lavatory is municipal water supplied by the City of Tampa.

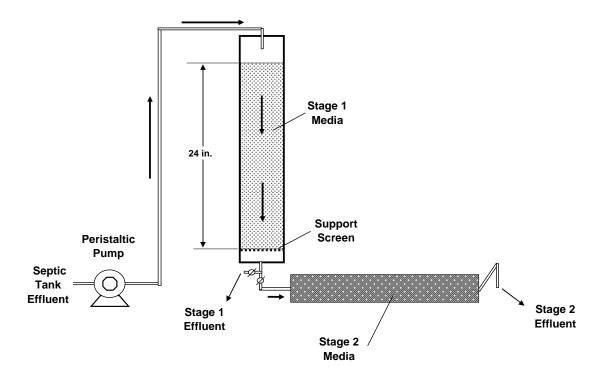
Experimental Treatment Systems

The filter media that were evaluated are listed in Table 1, along with the estimated bulk density and the range of particle sizes of the material as procured. Stage 1 media included clinoptilolite, expanded clay and tire crumb. These media provided substantial external porosity (> 45%), while clinoptilolite and expanded clay would be expected to exhibit desirable water retention characteristics. Additionally, the clinoptilolite media provides cationic ion exchange capacity (1.5 to 1.8 meq./g) which could enhance sorption and retention of ammonium ions. Tire chips are produced by the cutting up of recycled tires, and are available in particles sized of 5 mm and less that are suitable for use as filter media. Details of column design are included in the QAPP (Appendix D).

Clinoptilolite media was obtained by the supplier in three particle size gradations: 16x50, 8x16, and 4x8. The 16x50 was passed through a No. 35 mesh sieve to remove the smaller particles; materials retained on the screen were particles of 0.50 to 1.19 mm size. The 8x16 (1.19 to 2.38 mm) and 4x8 (2.38 to 4.76 mm) sizes were used as supplied. Each clinoptilolite size fraction was rinsed eight times before placement in the filter. Livlite and tire crumb media were prepared using dry sieving as follows. Media were initially sieved through a 5 mm square mesh wire screen to remove extraneous larger particles. Materials passing through the 5 mm screen were sieved through a 3 mm square mesh screen. Materials that were retained on the 3 mm screen composed the 3 to 5 mm size material that was used in the upper layer of the filter. Materials passing through the 3 mm screen were sequentially sieved through US Sieve Numbers 10, 18 and 35 (openings of 2.00, 1.00 and 0.500 mm), providing media of 1.0 to 2.0 mm size for the middle filter layer and 0.5 to 1.0 mm size for the lower filter layer. While filter media can be more completely characterized using particle size distribution analysis (PSD), effective diameter (D₁₀), and uniformity coefficient (D₆₀/D₁₀), these data were not available for the materials as procured nor obtained for the size fractions.

The Stage 2 electron donor media was elemental sulfur, which provided an autotrophic denitrification process in the anoxic filter. Crushed oyster shell was used as an alkalinity source, as sulfur-based autotrophic denitrification will consume alkalinity. Expanded shale was included

in two Stage 2 columns and provided anion exchange capacity, which would sorb nitrate under non-steady operational conditions.


A schematic of the experimental filter columns is shown in Figure 1. Three filter systems were evaluated, each consisting of an unsaturated filter followed by a saturated filter. Filters were fabricated from at 3 in. inner diameter PVC for Stage 1 (unsaturated) filters and 1.5 in. inner diameter for Stage 2 (saturated) filters. A 1/8 inch square mesh screen was used for media support and retention at the outlet media end of each column.

A single peristaltic pump (Cole Parmer) was used to dose septic tank effluent to the three Two-Stage Filter systems. Each Stage 1 filter was dosed with a separate pump head; the three pump heads were attached to the same pump. STE was supplied through a single tube connected to an intake manifold (3 in. PVC pipe) with 1/16 in. slots located in the septic tank. The STE tube branched into three separate tubes prior to the pump heads; each branch tube supplied one peristaltic pump head. The sizes of pump head and pump head tubing, and the pump speed and run time were identical for all three Two-Stage Filter systems.

The media configuration in the six columns is shown in Table 2. Total media depth in the vertical unsaturated Stage 1 columns was 24 in. The Stage 1 filters employed a stratified media configuration, with particle sizes decreasing in the downward direction, with 2 in. of larger particle sized media on the bottom for particle retention. Stratification of media based on particle size was based on the expected progression of biochemical reactions within the filter media. The processes in the upper media layer include adsorption of wastewater particulates and colloids, hydrolysis and release of soluble organics, aerobic utilization of soluble organics, and biomass synthesis. In this region, the biochemical processing of organic matter between doses must keep up with the newly applied wastewater constituents from each dose. The greatest accumulation of organic and inorganic mass will occur in the upper layer, and the use of larger particle size media will provide greater space for accumulation of solids. Stratified media should enhance to potential for long term operation while maintaining treatment efficiency.

Material	Bulk density, lb/ft ³	Particle Size Range
Zeo-Pure AMZ Clinoptilolite	55	0.3 - 4.76 mm
Livlite Expanded Clay	41	0.4 - >5 mm
Granular Rubber	25	0.3 - > 5 mm
Elemental sulfur	77	2 - 5 mm
Oyster shell	82	3 - 15 mm
ACT-MX ESF-450 Utelite	54	0.4 - 4.5 mm

Table 1	Procured	Filter	Media
---------	----------	--------	-------

Figure 1 Experimental Filter System Schematic

Three Stage 2 columns were constructed using unstratified media containing elemental sulfur, crushed oyster shell, and expanded shale (Table 2) of 24 in. total media depth. Each filter contained a 3:1 vol./vol. ratio of elemental sulfur to crushed oyster shell. The fraction of expanded shale in Stage 2 media ranged from 0 to 40%. Expanded shale contains anion exchange capacity which can bind nitrate ions, potentially enhancing removal. Higher expanded shale fractions were accompanied by lower elemental sulfur fractions, which would reduce the total surface area of elemental sulfur and possibly the overall sulfur oxidation rate. A lower sulfur oxidation rates could have the positive effect of reducing effluent sulfate levels if sulfur oxidation exceeded the amount needed for denitrification.

The Stage 1 filters were vertically oriented and Stage 2 filters oriented horizontally (Figure 1). The Stage 1 filters were supplied with septic tank effluent by a multi-head peristaltic pump with a timed dosing of once per one half hour (48 doses/day). Wastewater trickled downward through the Stage 1 media, through the support screen, and into a tube that directed Stage 1 effluent to the Stage 2 filter (Figure 1). The water elevation in the tube below the Stage 1 filter provided hydraulic head for passive movement of water through the Stage 2 filter. A valve and sample port (with another valve) was located in the tube below the Stage 1 filter. In normal filter operation, the sample port valve was closed and the valve leading to Stage 2 open, providing passive flow of Stage 1 effluent to and through the horizontal Stage 2 filter. The design of the two stage filter system minimized internal volume within the connecting piping; liquid volumes in the Stage 1 and Stage 2 filters comprised greater than 90% of the total internal volume.

Operation and Monitoring

Operation of the experimental treatment systems under the original study was commenced on 1/2/2008. The original study was completed on 3/2/2008, but operation was continued in an identical manner through 9/3/2008. The target hydraulic loading rate to the Stage 1 filters was 3 gallons of septic tank effluent per square foot of surface area per day. The additional sampling events presented in this report were conducted operation Days 123, 152, 196, 208 and 245.

Monitoring was conducted at seven monitoring points, consisting of influent septic tank effluent (STE), effluents from each Stage 1 filter, and effluents from each Stage 2 filter. Temperature, pH, and dissolved oxygen (DO) measurements were performed by inserting probes directly into the Stage 2 effluent port, into Stage 1 effluent collection reservoirs, and for STE in a 1 liter sample container immediately after collected by routing effluent from the filters directly into prepared sample containers located in an iced cooler. For STE, samples for sulfate, nitrogen, biochemical oxygen demand (BOD), and total suspended solids (TSS) were collected by directly filling prepared sample containers with pumped STE and immediately placing samples containers on ice in a cooler.

In the additional monitoring study, monitoring was generally conducted in the following sequence:

- Stage 2 effluent: temperature, pH, DO, alkalinity
- Stage 2 effluent: nitrogen sample collection
- Stage 1 effluent: nitrogen sample collection
- STE: nitrogen sample collection
- STE: BOD sample collection
- Stage 1 effluent: BOD sample collection
- STE and Stage 1 effluent: temperature, pH, DO, alkalinity

Analytical Methods

Nitrogen and C-BOD₅ analyses were performed by a NELAC certified laboratory (ELAB Inc.). Total kjeldahl nitrogen was performed by digestion and colorimetric determination (EPA 351.2). Ammonia nitrogen was performed by semi-automated colorimetry (EPA 350.1). Nitrate plus nitrite nitrogen was performed by cadmium reduction and colorimetry (EPA 353.2). Sulfate was measured by anion chromatography (EPA 300.0). Quality assurance and control procedures were followed by ELAB Inc.

Temperature, pH and dissolved oxygen (DO) were measured using a Hach 40d multimeter with Intellical glass membrane probe and luminescent Dissolved Oxygen probe. Probes were calibrated according to manufacturer's instructions using three standard solutions (4,7,10) for pH, and for DO, an air saturated water solution and a zero DO (sodium sulfide) solution. The Hach LDO probe (LDO 10103) included a temperature sensor that performed automatic temperature compensation for DO. Total alkalinity was measured by titration with 1.6N sulfuric acid to a bromocresol green-methyl red endpoint.

Stage	Filter	Column inner diameter, inch	Media depth, inch	Media placement		Media					
	1A								Cl depth (in.) 8 8 6 1 1 1	linoptilolite diameter (mm) 2.38 - 4.76 1.19 - 2.38 0.5 - 1.19 1.19 - 2.38 2.38 - 4.76	top top top
Stage 1 unsaturated aerobic	1B	3.0	24.0	Stratified	Ex depth (in.) 8 8 6 1 1	xpanded Clay diameter (mm) 3 - 5 1.0 - 2.0 0.5 - 1.0 1.0 - 2.0 3 - 5	top L bottom				
	1C				G depth (in.) 8 8 6 1 1 1	Franular Rubb diameter (mm) 3 - 5 1.0 - 2.0 0.5 - 1.0 1.0 - 2.0 3 - 5	er top bottom				
	2A					elemental sulfur oyster shell					
Stage 2 saturated anoxic	ted 2B 1.5 24.0	Nonstratified (1 - 3 mm)	20% (elemental sulfur oyster shell expanded shale							
	2C				15% (elemental sulfur oyster shell expanded shale					

 Table 2 Configuration of Two Stage Filter Media

Results and Discussion

Applied Hydraulic Loading

Applied hydraulic loadings to Stage 1 filters for the additional monitoring period (Day 123 to 246) are summarized in Table 3. Flowrates were measured by collecting and quantifying the cumulative liquid volume exiting the Stage 2 filters (i.e. the final effluent) over time periods of 15 to 40 hours and dividing volume by elapsed time. Hydraulic loading rates over the time of experimental operation are shown in Figure 4. Flowrates were fairly consistent and average hydraulic loading rates were within 10% of the target of 3 gal/ft²-day to Stage 1 filters.

System	Media	Average (gal/ft ² -day)	Standard Deviation (gal/ft ² -day)
1	Clinoptilolite / 75% Sulfur	2.82	0.21
2	Expanded clay / 60% Sulfur	2.96	0.37
3	Tire crumb / 45% Sulfur	2.83	0.33

 Table 3 Applied Hydraulic Loading Rate (n=18)

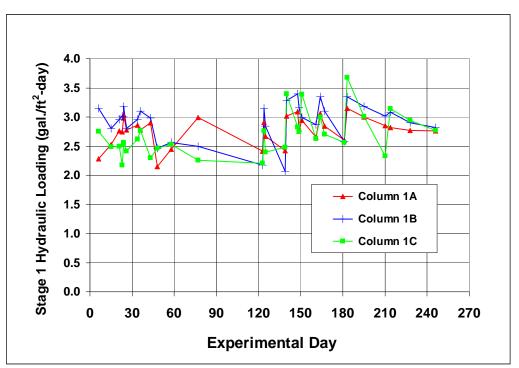
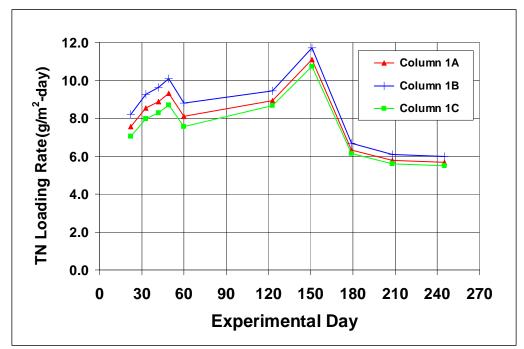


Figure 2 Hydraulic Loading Rate Applied to Stage 1 Filters

Septic Tank Effluent

Septic tank water quality parameters for the additional monitoring period (Day 123 to 246) are summarized in Table 4. The average Total Nitrogen (TN) of 66.9 mg/L was somewhat higher than typical for single family residences and may reflect the contribution of day users to the wastewater. The majority of STE nitrogen was TKN and dominated by ammonia as is characteristic of single family residence STE.

Component	Average	Standard Deviation	Range
Total Nitrogen	66.9	21.0	50 - 98
Organic Nitrogen	8.4	3.3	4 - 13
NH ₃ -N	58.4	20.5	41 - 91
NO _x -N	0.09	0.10	.02525
DO	0.022	0.004	.0103
рН	7.34	0.24	7.12 - 7.69
Alkalinity	526	37	469 - 569


Table 4 Septic Tank Effluent Quality (n=5: all values in mg/L except pH)

Applied Nitrogen Loading

Applied loading of Total Nitrogen (TN) is shown in Figure 3. The variations in loading with time reflect both the variations in hydraulic loading rate and variation in STE TN. The applied nitrogen loading varied between 6 and 12 grams per square meter of Stage 1 filter surface area per day and was lower from Day 179 to 245 because of lower STE TN.

Performance of Two Stage Treatment Systems

Nitrogen species in the influents and effluents of each filter in the two stage systems are summarized in Table 5 and removal efficiencies are summarized in Table 6. Total nitrogen concentrations of the two stage filter systems are presented in Figure 4. Average TN removal efficiency of Systems 1 and 2 were 96.8 and 95.1%, respectively, with average effluent TN of 2.2 and 3.2 mg/L. System 3 average effluent TN was significantly higher than Systems 1 and 2, reflecting the decreasing effluent TN pattern prior to Day 210 (Figure 4). Lower ammonia removal in the Stage 1 filter and nitrate removal both contributed to lower TN removal efficiencies in System 3 prior to Day 210.

Figure 3 Areal Nitrogen Application Rate to Stage 1 Filters

Table 5	Nitrogen	Species	In Filter	Influents an	nd Effluents
---------	----------	---------	-----------	--------------	--------------

Sample Point	Total Nitrogen	Organic N	NH ₃ -N	NO _x -N	Total Inorganic Nitrogen
Influent (STE)	66.9	8.4	58.4	0.090	58.5
Stage 1 Effluent					
1A Clinoptilolite	52.0	0.72	0.028	51.2	51.2
1B Expanded clay	63.2	0.39	0.17	62.6	62.8
1C Granular rubber	67.8	4.6	4.2	59.0	63.1
Stage 2 Effluent					
2A 75% Sulfur	2.2	1.6	0.50	0.032	0.53
2B 60% Sulfur	3.2	1.9	1.3	0.041	1.3
2C 45% Sulfur	10.4	4.3	4.8	1.3	6.1

(Days 123 to 245; Average of n=5; all values in mg/L)

System	Media	Total Nitrogen			norganic rogen
		Average	Range	Average	Range
1	Clinoptilolite / 75% Sulfur	96.8	95 - 97.8	99.2	98.6 - 99.6
2	Expanded Clay / 60% Sulfur	95.1	93.7 - 96.7	97.0	96 - 97.9
3	Granular Rubber / 45% Sulfur	86.6	74.5 - 93.6	92.2	79.4 - 98.6

Table 6 Two Stage Treatment System Nitrogen Removal Efficiency
(Days 123 to 245; Average of n=5)

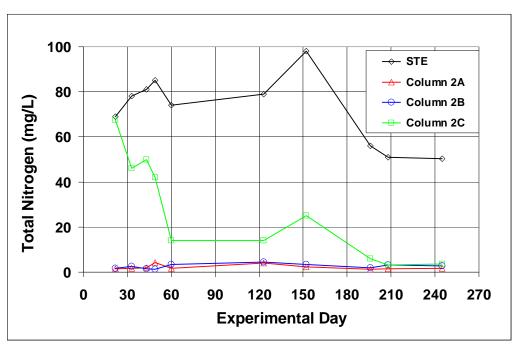


Figure 4 Total Nitrogen in Influent STE and Effluent of Two Stage Filter Systems

Performance of Unsaturated Aerobic Filters (Stage 1)

Ammonia nitrogen levels in effluent from the unsaturated Stage 1 filters are shown in Figure 5. The high ammonia nitrogen reductions observed in the clinoptilolite and expanded clay filters continued throughout the study until Day 245. In the granular rubber filter, ammonia appeared to reach a steady level after Day 210. Stage 1 ammonia removal efficiency is shown in Figure 8 using a highly exaggerated scale. The clinoptilolite (Column 1A) and expanded clay (Column 1B) filters consistently removed greater than 99% ammonia, while the ammonia removal efficiency with granular rubber media reached a similar level after Day 210.

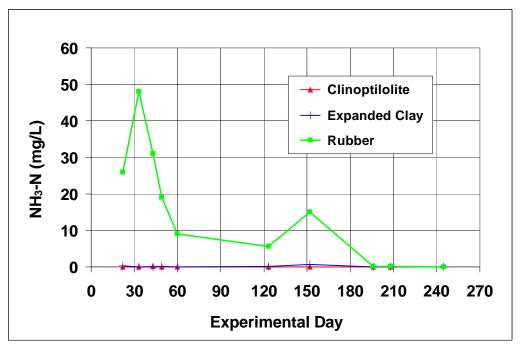


Figure 5 Effluent Ammonia from Unsaturated (Stage 1) Filters

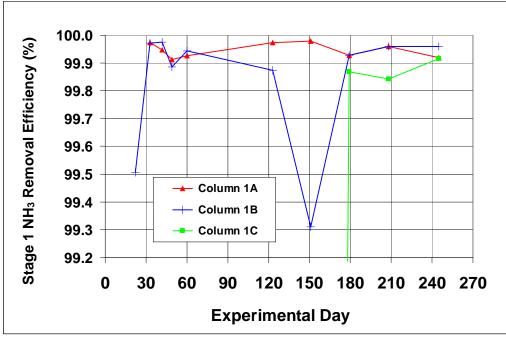


Figure 6 Stage 1 Ammonia Removal Efficiency

Performance of Anoxic Denitrification Filters (Stage 2)

The performance of the three denitrification (Stage 2) filters is illustrated in Figures 7 and 8. NO_x concentrations were quite low and TIN removal efficiencies high for System 1 (clinoptilolite / 75% sulfur) and System 2 (expanded clay/ 60% sulfur) throughout the study. System 3 (granular rubber/ 40% sulfur) showed less complete NOz removal through Day 210.



Figure 7 NO_x Concentrations in Stage 2 Filter Effluents

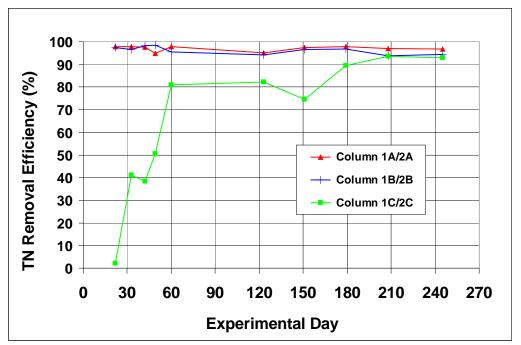


Figure 8 Total Inorganic Nitrogen Removal Efficiencies of Two Stage Filters

Carbonaceous Biochemical Oxygen Demand

The removal of five day carbonaceous biochemical oxygen demand (C-BOD₅) was evaluated in three sampling events during which C-BOD₅ was analyzed in septic tank and effluents of the Stage 1 filters. The results are shown in Table 7. STE C-BOD₅ ranged from 120 to 160 mg/L and ranged from < 2 to < 8 for all three columns. The less than designations in the reported results reflect the different dilutions that were applied on the different sampling events days. C-BOD₅ removal efficiency ranged from > 94 to > 98% for all three Stage 1 columns. Based on ammonia removal performance of the Stage 1 filters that was found in the initial 60 day study, a high removal of for C-BOD₅ was presumed but not demonstrated. The results shown in Table 7 verified the expectation that C-BOD₅ removal efficiency would be high.

Date				
Dute	Septic Tank Effluent		Enpanded Clay	Granular Rubber
5/4/2008	130	< 8	< 8	< 8
6/3/2008	160	4.0	3.5	8.4
7/2/2008	120	< 2	< 2	< 2
% Removal Efficiency	-	> 94, 98, > 98	> 94, 98, > 98	> 94, 95, > 98

 Table 7 Carbonaceous Biochemical Oxygen Demand in STE and Stage 1 Effluent

Field monitoring parameters are listed in Table 8 and summarized in Table 9. Each of the three Stage 1 media was effective in increasing dissolved oxygen (DO) from virtually zero in STE to (Figure 9). While wastewater DO was increased significantly by passage through the unsaturated Stage 1 filters, it was significantly reduced by passage through Stage 2 media (Figure 10). The change in pH in Stage 1 filters appears to be associated with the process of biochemical nitrification, which consumes 4.57 mg/l alkalinity as CaCO₃ per gram ammonia nitrogen nitrified.

Table 8	Field Para	meters in	Influent a	nd Filter	Enluents
May 4/5 2	008	Temp C	DO mg/L	рН	Alkalinity
Influent		31.2	0.02	7.69	469
Stage 1	System 1	30.5	5.75	5.75	300
	System 2	30.1	6.39	6.72	63
	System 3	30.5	0.73	6.00	69
Stage 2	System 1	21.6	0.08	6.72	369
	System 2	21.6	0.08	6.68	300
	System 3	22.2	0.05	6.68	313
June 2 20	08	Temp C	DO mg/L	рН	Alkalinity
Influent		25.4	0.03	7.12	569
Stage 1	System 1	31.8	6.73	7.05	178
_	System 2	32.1	5.35	5.69	38
	System 3	33.6	3.08	5.43	25
Stage 2	System 1	22.4	0.06	6.70	394
_	System 2	22.6	0.04	6.45	244
	System 3	23.3	0.18	6.30	219
July 1 200)8	Temp C	DO mg/L	pН	Alkalinity
Influent		31.9	0.03	7.13	519
Stage 1	System 1	29.9	6.76	7.21	113
_	System 2	30.7	6.60	5.51	44
	System 3	29.9	6.06	5.83	44
Stage 2	System 1	23.4	0.08	6.76	363
	System 2	23.4	0.06	6.70	250
	System 3	23.9	0.28	6.39	144
July 28/29	2008	Temp C	DO mg/L	рН	Alkalinity
Influent		33.8	0.01	7.44	544
Stage 1	System 1	27.9	7.71	7.18	6
	System 2	27.9	7.33	7.33	6
	System 3	27.9	6.93	6.93	6
Stage 2	System 1	33.1	0.07	6.84	369
	System 2	33.6	0.08	6.71	238
	System 3	32.9	0.07	6.62	144
September	3 2008	Temp C	DO mg/L	pН	Alkalinity
Influent		32.3	0.02	7.33	531
Stage 1	System 1	28.2	7.54	7.21	113
	System 2	27.7	7.57	6.88	81
	System 3	27.5	7.52	6.64	75
Stage 2	System 1	24.4	0.03	6.89	369
1	Curata na O	04 E	0.04	6.82	238
	System 2 System 3	24.5	0.04	6.82	200

 Table 8 Field Parameters in Influent and Filter Effluents

Table 9 Summary of Field Parameters(Days 123 to 245: Average of n=5)

Sample Point	Dissolved Oxygen, pH mg/L		Alkalinity, mg/L as CaCO ₃	Alkalinity Change, mg/L as CaCO ₃
Influent (STE)	0.02	7.34	526	-
Stage 1				
1A Clinoptilolite	6.92	6.97	164	- 362
1B Expanded clay	6.65	6.31	55	- 471
1C Granular rubber	4.86	6.24	58	- 469
Stage 2				
2A 75% Sulfur	0.06	6.78	370	+ 206
2B 60% Sulfur	0.06	6.67	265	+ 210
2C 45% Sulfur	0.12	6.55	205	+ 148

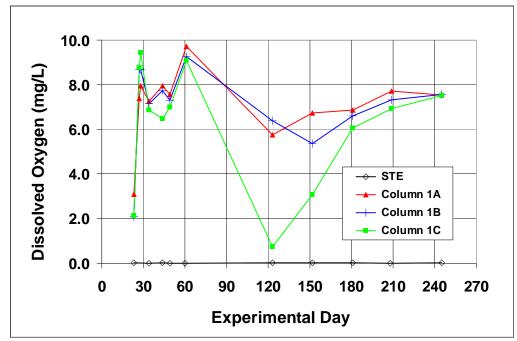


Figure 9 Dissolved Oxygen in Effluent of Unsaturated Filters (Stage 1)

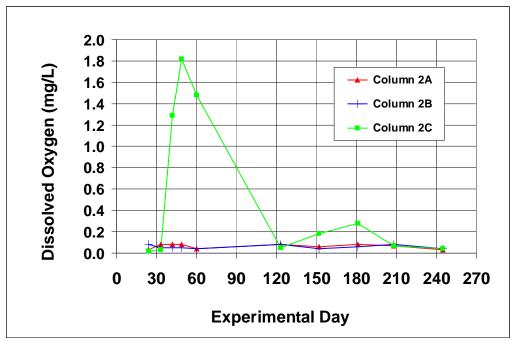


Figure 10 Dissolved Oxygen in Effluent of Denitrification Filters (Stage 2)

Statistical Tests

Statistical tests were performed to compare STE composition and two-stage filter performance for the additional monitoring events (Period 1, Day 133 to 245) with the original PNRS study (Period 2, Day 20 to 60). Additional statistical tests were performed to compare the performance of the three filter systems to each other during Period 2. The central focus was on BOD and nitrogen levels in STE and nitrogen levels in filter effluents.

A comparison of STE composition between Period 1 (Day 22 to 62) and Period 2 (Days 123 to 245) is presented in Table 10. The two data sets for C-BOD₅ and for TN were both compared using the unpaired t-test, since all were normally distributed with equal variance. Although mean STE C-BOD₅ in Period 2 was 1/3 lower than in Period 1, the difference was not significant statistically, reflecting the limited number of analyses in each data set. Mean STE TN in Period 2 was 14% lower than in Period 1, but was also not statistically significant.

A comparison of effluent nitrogen concentrations between Period 1 and Period 2 is shown in Table 11. For each comparison, the unpaired t-test was performed when the statistical criteria for normal distribution and equal variance were met by both data sets; otherwise, the Mann Whitney rank sum test was employed. For Systems 1 and 2, the final effluent (Stage 2) TN in Period 2 was not significantly different than in Period 1, effluent TN was significantly lower for System 3. This was due to the improvement in performance in System 3 prior to Day 210. For Systems 1 and 2, both Stage 1 effluent ammonia and Stage 2 effluent NO_x in Period 2 were not significantly different than in Period 1. Ammonia removal in Stage 1 and NO_x removal in Stage 2 are central operative features of Passive Nitrogen Removal Systems, and these results indicate that these key features continued to function successfully through eight months of operation.

Significant differences obtained for System 3 for TN, TIN, and ammonia, reflecting the performance improvement up to Day 210. Stage 2 TIN in Period 2 was higher for both Systems 1 and 2, and statistically significant for System 1 even though Period 2 TIN in system 1 was lower than for System 2. The reason for this is an increase in ammonia nitrogen through the Stage 2 columns, which is greater in Period 2 than in Period 1. A possible contributing factor is an increase in microbial biomass and endogenous respiration in the Stage 2 filters, which could lead to the release of ammonia.

A comparison of effluent nitrogen concentrations of the three two-stage filter systems during Period 2 (Days 123 to 245) is shown in Table 12. The Kruskall-Wallis rank sum test was employed for comparison of the effluent nitrogen data sets. Statistically significant differences were found among the three systems for Total Nitrogen and NO_x , and were subsequently determined to be due to the higher levels in System 3.

Analyte	Average	e (mg/L)	Stastically Significant Difference	
	Period 1 Period 2		Yes / No	
C-BOD₅	203	137	No (T)	
Total Nitrogen	77.4	66.9	No (T)	

Table 10. Septic Tank Effluent: Statistical Comparison between Periods 1 and 2

Period 1: Day 22 - 62

Period 2: Day 123 - 245

T: Unpaired t-test (a=0.05)

Table 11 Effluent Nitrogen: Statistical Comparison between Periods 1 and	Table 11	Effluent Nitrogen:	Statistical C	Comparison between	Periods 1 and 2
--	----------	---------------------------	---------------	---------------------------	-----------------

	System 1 Clinoptilolite 60% Sulfur			System 2 Expanded Clay 75% Sulfur			System 3 Granular Rubber 45% Sulfur		
Effluent	Average	N (mg/L)	Stastically	Average	N (mg/L)	Stastically	Average	N (mg/L)	Stastically Significant Difference
Source/ Analyte	Period 1	Period 2	Significant Difference	Period 1	Period 2	Stastically Significant Difference	Period 1	Period 2	
Stage 2 TN	2.2	2.2	No (M)	2.1	3.2	No (T)	43.9	10.4	Yes (T)
Stage 2 TIN	0.14	0.53	Yes (T)	0.63	1.29	No (M)	42.1	6.1	Yes (M)
Stage 1 NH ₃ -N	0.047	0.028	No (T)	0.082	0.172	No (W)	26.6	4.2	Yes (T)
Stage 2 NO _x -N	0.027	0.032	No (M)	0.021	0.041	No (M)	7.3	1.3	No (T)

Period 1: Day 22 - 62

Period 2: Day 123 - 245

T: Unpaired t-test (a=0.05)

M: Mann Whitney rank sum test (P=0.05)

Analysis	Clinoptilolite 60% Sulfur	Expanded Clay 75% Sulfur	Granular Rubber 45% Sulfur	Stastically Significant Difference
Total Nitrogen	2.2	2.2 3.2 10.4		Yes (K)
Total Inorganic Nitrogen	- 0.53		6.1	No (K)
Stage 1 NH ₃ -N	0.028	0.172	4.2	No (K)
Stage 2 NO _x -N	0.032	0.041	1.3	Yes (K)

Table 12 Statistical Comparison of Two-Stage Filter Effluent Nitrogen for Period 2

K: Kruskal-Wallis One Way Analysis of Variance on Ranks

Media Examination

Dissambly of Columns and Subsample Collection

Filter columns were removed from the column field assembly and transported to the laboratory. The filters and media were maintained as intact units, with Stage 1 filter columns in vertical position and Stage 2 columns in horizontal position and saturated with water. Stage 1 media was removed by inverting each column and dispensing media onto a clean polyethylene sheet while moving the column along a straight line. The procedure resulted in a line of media approximately two feet long, in which the media was deposited in positions corresponding to depths in the filter columns. Stage 1 filter subsamples were collected at locations corresponding to depths of approximately 2, 12 and 19 in. depth from each column. For each column, after the three subsamples were collected, a portion was placed into pre-tared aluminum pans for gravimetric analysis and the remainder was set aside for visual observation and photographic recording. The Stage 1 sampling procedure was completed approximately 2 hours after the STE flow to the columns was terminated.

The Stage 2 media samples were then collected. End covers were removed and the columns placed in a vertical position to drain pore water. Media samples were then collected at three locations, in order of 3, 12 and 19 in. from the entrance to the media zone. Media samples were collected by cutting open the column at the target sample location and collecting approximately 2 in. of media in prepared beakers. Media subsamples were removed for gravimetric analysis, and the balance set aside for visual observation and photographic recording. The Stage 1 sampling procedure was completed approximately 3.5 hours after the STE flow to the columns was terminated.

Observations of Filter Media

The media was visually observed and photographic images were taken. Stage 1 media surfaces at the termination of the study are shown in Figures 11 to 18. Gross solids accumulation at the

media surface was not observable, suggesting that oxidative biochemical processes were able to assimlate influent organic materials over the 246 day period of operation. Samples of media removed from the upper layer 2 inch of each Stage 1 Stage 1 filter are shown in Figures 14 to 16. These media contained water and accumulated solids, and the general shape and appearance of new media was preserved. The visual difference between new clinoptilolite and clinoptilolite from the upper two in. of Stage 1 Column 1A dried at 103C, is shown in Figure 17. Deployment for 246 days has darkened the surface. Organic matter accumulation on the surface an expected feature of biofilm reactors, and organic matter would not be removed from the media surface by drying at 103C. In Figure 18 are shown Stage 1 media samples from the upper 2 in. of the filter column after drying at 103C. All media shown details of geometry and illustrate no gross solids accumulation.

Figure 11 Surface of Clinoptilolite Filter (Day 246).

Figure 12 Surface of Expanded Clay Filter (Day 246).

Figure 13 Surface of Granular Rubber Filter (Day 246).

Figure 14 Clinoptilolite Media from Upper Layer (Day 246).

Figure 15 Expanded Clay Media from Upper Layer (Day 246).

Figure 16 Granular Rubber Media from Upper Layer (Day 246).

Figure 17 Clinoptilolite: New and Column 1A Upper Layer Dried at 103C (Day 246) (Left: new)

Figure 18 Stage 1 Media, Upper Layer Dried at 103C (Day 246). Left to right: clinoptilolite, expanded clay, granular rubber.

Stage 2 media surfaces at the termination of the study are shown in Figures 19 to 21. The cutaway section of column 2A at 21 in. from the entrance is shown in Figure 19. There is no observable meterial accumulation on the media or within the column. The white material in Figure 19 is shavings that resulted from cutting open the pipe. Sulfur media in Figure 19 appeared similar new sulfur as was originally placed into the column at startup. This observation was true for Stage 2 media from all three filters from the sampling point in middle and towards the downstream end. In Figure 20 is shown Column 2A media from entrance region, with media nearer the entrance to the right in the figure. This was media as it appeared before drying. Inspection of the media reveals what appears to be a gelatenous coating of media near the entrance, which is less pronounced farther from the entrance (i.e. to left in photo). The "slime layer" is characteristic of biofilm reactors and was also observed in the other Stage 2 columns. The gelatenous layer material near the entrance suggests that the entance region of the Stage 2 columns is the site of active microbial processes. Photographs of of Stage 2 media after drying at 103C are shown in Figure 21. Media after drying show no obvious observable differences with position in the filters. Note that the darker appearance in media from filters 2B and 2C is due to increasing percentages of expanded shale. The mass of sulfur needed to denitrify the total NO_x supplied to each Stage 2 column over 246 days of operation was estimated using stoichiometric analysis. The resulting fractional consumptions of sulfur for Systems 1, 2 and 3 were 1.8, 3.5 and 3.5, respectively, corresponding to a longevity of 19 to 39 years.

Figure 19 Filter 2A, 21 in. (Day 246).



Figure 20 Filter 2A, 2 in. (Day 246).

Figure 21 Stage 2 Media Dried at 103C (Day 246). Left to right, Column 2A, 2B, 2C. Top to bottom in direction of column entrance to exit.

Gravimetric Analysis

Gravimetric analyses were conducted to provide measurements of water in the filter media (Table 13). Stage 1 media samples from 2, 12 and 19 in. locations corresponded to large, medium and small media particle sizes (Table 2). In the Stage 2 columns, the samples from 3, 12 and 19 in. locations represented media near the inlet, midpoint, and downstream section of the filter column. Water content for Stage 1 media are expressed as percent of the total mass of media sample (solids + water); the % water content decends on the dry bulk density of the media. On this basis, the water content similar for clinoptilolite and granular rubber, and higher for expanded clay. For all three media, water fraction was lowest for the large particle size media located at the top of the filter. For Stage 2 media, water content was lowest for the column with the greatest sulfur content. The 60 and 45% sulfur filters contained expanded shale, which may have contributed to higher water contents though its lower bulk density and higher water retention.

The water content data were used along with dry bulk density of media and filter empty bed volume to estimates the mass of resident water within each of the Stage 1 filters (Table 14). The expanded clay media had the highest calculated water mass and the granular rubber the lowest. The average retention time of water within the Stage 1 columns, calculated using 3 gal/ft²-day areal loading, was lowest for granular rubber (15.3 hr) and highest for expanded clay (48 hr.). These results provide some consistency with the concept, elucidated in the PNRS literature review, that superior performance can be provided by unsaturated media filters that empoly high water retention media. A calculation of water layer thickness on the media surface was made by assuming uniform film thickness and idealized spherical particle geometry. Results provided water layer thicknesses of 37 to 350 μ m. This theoretical result is limited and does not account for water contained within internal pores in the media and held between particles by capillary forces,

Biofiltration is conducted by microbial biofilms that colonize media surfaces. To estimate organic matter content, the Stage 1 media samples used for water analyses were subject to further analysis by combustion at 500 to 600C. It was not possible to determine organic matter in granular rubber and Stage 2 filter media because of the lower vaporization temperature of media components. Organic matter as a fraction of the dry mass was 0.3 to 2.3% (Table 15). Organic matter includes actively metabolizing biomass, products of endogenous decay, microbial exudates such as polysaccharides and other constituents forming a "slime layer", as well as particulate and colloidal organic materials from the STE that are retained on the filter media through straining, sedimentation, and Brownian diffusion. Theoretical calculations suggest that the accrued biomass would form a thickness of 10 to 150 μ m if present as a uniform film on idealized spherical particles.

Filter	Media	Distance from Entrance (in.)	% Solids	% Water
		2	80.8	19.2
	clinoptilolite	12	75.5	24.5
	-	19	76.7	23.3
	evnended	2	64.5	35.5
Stage 1	expanded clay	12	61.1	38.9
	Clay	19	59.1	40.9
	granular rubber	2	80.7	19.3
		12	75.9	24.1
	TUDDET	19	69.4	30.6
		3	90.4	9.6
	75% S	12	91.9	8.1
		19	89.2	10.8
		3	78.4	21.6
Stage 2	60% S	12	86.7	13.3
		19	87.7	12.3
		3	83.4	16.6
	45% S	12	83.1	16.9
		19	84.2	15.8

 Table 13 Gravimetric Analysis of Filter Media

Table 14 Derived Residence Time in Stage 1 Filters

Stage 1 Media	Mass Resident Water (gram)	Water Retention Time (hour)
clinoptilolite	30.3	30.3
expanded clay	48.7	48.7
granular rubber	15.3	15.3

 Table 15 Organic Matter in Stage 1 Filter Media

Stage 1 Media	Distance from Media Entrance (in.)	Organic mass/ dry mass (gram/gram)
	2	0.018
clinoptilolite	12	0.023
	19	0.020
	2	0.016
expanded clay	12	0.003

Conclusions

Three two-stage passive media filters were operated through eight months to treat septic tank effluent. The systems used no aerators, a single wastewater pump, and otherwise operated in passive mode. The following conclusions are based on five monitoring events conducted over 122 days from Day 123 to day 245.

- Average hydraulic loading rates of septic tank effluent applied to Stage 1 filters with clinoptilolite, expanded clay, and tire crumb media were 2.82, 2.96 and 2.83 gallons per square foot per day, respectively.
- Total nitrogen in septic tank effluent averaged 66.9 mg/L with a standard deviation of 6.2 mg/L.
- Total Nitrogen (TN) removal efficiencies for Two Stage Systems averaged 96.8, 95.1 and 86.6%, respectively, for clinoptilolite, expanded clay and tire crumb media.
- Effluent Total Nitrogen (TN) concentrations for Two Stage Systems averaged 2.2, 3.2, and 10.4 mg/L, respectively, for clinoptilolite, expanded clay and tire crumb media.
- Total Inorganic Nitrogen (TIN) removal efficiencies for Two Stage Systems averaged 99.2, 99.0, and 92.2 %, respectively, for clinoptilolite, expanded clay and tire crumb media.
- Effluent Total Inorganic Nitrogen (TIN) concentrations for Two Stage Systems averaged 0.53, 1.3 and 6.1 mg/L, respectively, for clinoptilolite, expanded clay and tire crumb media.
- Effluent ammonia nitrogen (NH₃-N) concentrations for Stage 1 filters averaged 0.028, 0.17 and 4.2 mg/L, respectively, for clinoptilolite, expanded clay and tire crumb media.
- Average septic tank effluent carbonaceous five day biochemical oxygen demand was 137 mg/L.
- C-BOD₅ removal efficiencies for Stage 1 filters were greater than 94% for clinoptilolite, expanded clay and granular rubber media.
- Effluent C-BOD₅ concentrations in Stage 1 filters were less than 8 mg/L for clinoptilolite, expanded clay and granular rubber media.
- Average dissolved oxygen in unsaturated (Stage 1) effluents were 6.92, 6.65 and 4.86 mg/L, respectively, for clinoptilolite, expanded clay and tire crumb media.
- Average dissolved oxygen in anoxic filter effluents (Stage 2) were 0.06, 0.06 and 0.12 mg/L, respectively, for sulfur media percentages of 75, 60, and 45%.
- For systems 1,2 and 3, the average decline in total alkalinity as CaCO₃ in aerobic filters (Stage 1) was 362 to 471 mg/L, while alkalinity increase in anoxic filters (Stage 2) was 148 to 210 mg/L.
- Media from Stage 1 and 2 columns exhibited a generally similar appearance to new filter media after 246 days of operation.

References

Smith, D. et al. (2008) Florida Passive Nitrogen Removal Study Final Report. Submitted to the Research Review and Advisory Committee, June 26, 2008.

APPENDIX A

NELAC CERTIFIED LABORATORY WATER QUALITY DATA

Sample Event 1

Sample Point	Influent	Syst	em 1	Syste	em 2	Syst	em 3
Sample Point	Innuent	Stage 1 Effluent	Stage 2 Effluent	Stage 1 Effluent	Stage 2 Effluent	Stage 1 Effluent	Stage 2 Effluent
TKN	79	1.9	3.9	0.05	4.5	9.5	14
NH ₃ -N	66	0.02	0.75	0.10	2.3	5.5	7.1
(NO ₃ +NO ₂)-N	0.04	28	0.044	73.00	0.025	60	0.079
C-BOD ₅	130	<8	-	<8	-	<8	-

Sample Event 2

Comple Deint	la fluir a t	Syst	em 1	Syste	em 2	Syst	em 3
Sample Point	Influent	Stage 1 Effluent	Stage 2 Effluent	Stage 1 Effluent	Stage 2 Effluent	Stage 1 Effluent	Stage 2 Effluent
TKN	98	0.046	2.4	0.05	3.4	26.0	20
NH ₃ -N	91	0.020	0.61	0.68	1.1	15.0	14
(NO ₃ +NO ₂)-N	0.025	79	0.025	91	0.025	90	5
C-BOD ₅	160	4	-	3.50	-	8.4	-

Sample Event 3A

Sample Point Influent	System 1		Syste	em 2	System 3		
Sample Foint	inndent	Stage 1 Effluent	Stage 2 Effluent	Stage 1 Effluent	Stage 2 Effluent	Stage 1 Effluent	Stage 2 Effluent
C-BOD ₅	120	< 2	-	<2	-	<2	-

Sample Event 3B

Comple Daint	Sample Point Influent	Syst	em 1	Syste	em 2	Syst	em 3
Sample Point	Innuent	Stage 1 Effluent	Stage 2 Effluent	Stage 1 Effluent	Stage 2 Effluent	Stage 1 Effluent	Stage 2 Effluent
TKN	56	0.120	1.2	0.450	1.8	3.0	4.5
NH ₃ -N	47	0.040	0.33	0.04	0.64	0.07	1.7
(NO ₃ +NO ₂)-N	0.025	54	0.025	56	0.03	52	1.4

Sample Event 4

Sample Point Influent	Syst	em 1	Syste	em 2	Syst	em 3	
Sample Point	Innuent	Stage 1 Effluent	Stage 2 Effluent	Stage 1 Effluent	Stage 2 Effluent	Stage 1 Effluent	Stage 2 Effluent
TKN	51	0.87	1.5	1.30	3.1	3.3	3.2
NH ₃ -N	47	0.02	0.15	0.02	1.1	0.075	0.56
(NO ₃ +NO ₂)-N	0.025	55	0.041	52	0.10	53	0.062

Sample Event 5

Sample Point	Influent	System 1		System 2		System 3	
		Stage 1 Effluent	Stage 2 Effluent	Stage 1 Effluent	Stage 2 Effluent	Stage 1 Effluent	Stage 2 Effluent
TKN	50	0.82	1.6	0.96	2.8	2.1	3.4
NH ₃ -N	41	0.04	0.67	0.02	1.1	0.04	0.40
(NO ₃ +NO ₂)-N	0.25	40	0.025	41	0.025	40	0.13

Research Review and Advisory Committee for the Bureau of Onsite Sewage Programs

Approved Minutes of the Meeting held at the Orlando Airport Marriott, Orlando, FL October 9, 2008 Approved by RRAC 11/6/2008

In attendance:

- **Committee Membership and Alternates**: Sam Averett (alternate, Septic Tank Industry); Paul Davis (member, DOH-Environmental Health); John Dryden (alternate, State University System); Anthony Gaudio (member, Septic Tank Industry); Marc Hawes (alternate, Home Building Industry); Mike McInarnay (alternate, Septic Tank Industry)Bill Melton (member, Consumer); Jim Peters (alternate, Professional Engineer); Patti Sanzone (alternate, Environmental Interest Group); John Schert (member, State University System); Clay Tappan (member, Professional Engineer); and Pam Tucker (member, Real Estate Profession)
- Not represented: Restaurant Industry
- Visitors: Damann Anderson (Hazen & Sawyer); Quentin (Bob) Beitel (Markham Woods Association); John Higgins (Markham Woods Association); Russ Melling (Lake County Environmental Health); Don Orr (ADS); Daniel Smith (Applied Environmental Technology); Walter Wood (Lake County)
- Department of Health (DOH), Bureau of Onsite Sewage Programs: Paul Booher; Bart Harriss; Kara Loewe; Eberhard Roeder; and Elke Ursin
- 1. Introductions: Eight out of nine groups were present, representing a quorum. The meeting was called to order at 9:45 am. Chairman Carter was unable to attend the meeting. There was a motion by Bill Melton, seconded by Pam Tucker, to temporarily appoint Anthony Gaudio as chair of the RRAC for this meeting. Some of the changes to the RRAC composition were outlined: Mike McInarnay replaces Ellen Vause as the Septic Tank Industry alternate, John Glenn has left the RRAC as the Environmental Interest Group member, currently in the process of appointing John Dryden as the State University System alternate, and the decision has not yet been made on the Local Government Representative member and alternate appointments.
- **2. Review of Previous Meeting Minutes**: Motion by Pam Tucker, seconded by Clay Tappan: The minutes were approved as submitted.

3. Update on Specific Appropriation 1682:

Specific Appropriation 1682 was signed by the governor which appropriated \$1,000,000 to DOH to contract for a study to research nitrogen reduction strategies. The departments Technical Review and Advisory Panel (TRAP) voted to approve the study scope on August 27, 2008. The Invitation to Negotiate was advertised on September 26, 2008, the proposals are due on October 29, 2008, and the Evaluation Team Meeting to review and rank the proposals will be on November 6, 2008.

Another task in this appropriation is to develop a report identifying a range of costs for an inspection program. This report has been drafted and will be made available to the RRAC as soon as possible.

John Higgins with the Markham Woods Association expressed his concern that the ITN does not address the key issue of finding out whether existing systems pollute the Wekiva River. His association does believe that the systems do contribute nitrogen, but they are not convinced that the nitrogen makes its way to the groundwater and the river. His understanding is that the purpose of these million-dollars was to answer this question. They will continue to oppose rules for upgrades on existing systems until this question is answered and would hope that the RRAC representatives would insist that this question is addressed.

4. Evaluation Team Meeting: Statewide Inventory of Onsite Sewage Systems in Florida The Invitation to Negotiate was advertised on September 8, 2008 and proposals were due on October 1, 2008.

A total of six (6) proposals were received for this project. RRAC functions as the evaluation team for DOH. Names were randomly drawn, and the evaluation team discussed strengths/weaknesses, clarification questions, and potential negotiation points. The proposals were scored and ranked, the ranks were averaged, and the following proposals are listed in order of rank (top ranked listed first):

- a. EarthSTEPS and GlobalMind
- b. Ayres Associates, Inc.
- c. CDS Holding Inc. / Carmody
- d. eOnsite LLC
- e. Public Health Foundation Enterprises, Inc.
- f. Florida Environmental and Land Services, Inc.

A motion was made by Pam Tucker and seconded by Bill Melton to move forward with proceeding to oral presentations and negotiations with the top three proposals (EarthSTEPS/GlobalMind, Ayres Associates, and CDS Holding) and that DOH shall act as the final decision making authority. There was no discussion. All were in favor with none opposed.

5. Brief updates on other projects

- a. Ongoing projects
 - Passive Nitrogen Removal Assessment Draft report has been submitted on the results of the additional monitoring done on the lab scale experiment. Dr. Smith presented results. Comments / questions on the report due no later than October 16th.
 - Optical Wastewater Tracers Study (old Remote Sensing of Optical Brighteners Study) – Sampling and analysis is currently being done.
 - Manatee Springs, Performance of Onsite Systems Phase II Karst Study Currently working on the designs for the nutrient reducing systems. New agreement with FSU in place to perform sampling.
 - Monroe County Performance Based Treatment System Performance Assessment – Currently developing criteria for the next phase of sampling. Phase III proposal submitted for RRAC review. Comments / questions due October 16th.
 - 319 Project on Performance and Management of Advanced Onsite Systems – Grant has been executed. Request for quotes has been sent out and proposals have been received to develop an inventory of advanced onsite

systems throughout the state. Currently we are developing negotiation points and determining how this task will move forward.

- b. Projects coming up
 - Restoration of the University of South Florida (USF) Lysimeter Station Memorandum of Agreement was sent to USF on June 17th and DOH is waiting for a response back.
 - Phase II of the Florida Passive Nitrogen Removal Project Once scope of Nitrogen Removal project is finalized the determination on whether this task will be accomplished under Specific Appropriation 1682 will be made.
 - Wekiva Onsite Sewage Treatment and Disposal System (OSTDS) Seasonal Variability Assessment - This project is listed as a task in the Nitrogen Reducing Technologies ITN.
 - Alternative Drainfield Product Assessment Project has been postponed until the next budget cycle.
 - Long-term deformation of tanks of different materials This project is currently in the scoping stages.
 - Booklet Summarizing DOH Onsite Sewage Research Brief discussion on the possibility for this project, and it was decided to postpone this project until some of the other projects are started.

6. Evaluation Team Meeting: Sampling of Water Quality Around the Town of Suwannee, Florida and comparison to Historic Data

The Invitation to Negotiate was advertised on September 9, 2008 and proposals were due on October 1, 2008.

A total of eight (8) proposals were received for this project. RRAC functions as the evaluation team for DOH. Names were randomly drawn, and the evaluation team discussed strengths/weaknesses, clarification questions, and potential negotiation points. The proposals were scored and ranked, the ranks were averaged, and the following proposals are listed in order of rank (top ranked listed first):

- Environmental Consulting & Technology, Inc.
- Mechling Engineering & Consulting, Inc.
- Florida State University Department of Oceanography
- MACTEC
- Environmental Quality, Inc.
- Florida Environmental & Land Services, Inc.
- Biological research Associates LLC
- Environmental Services, Inc.

A motion was made by Bill Melton and seconded by Clay Tappan to move forward with proceeding to oral presentations and negotiations with the top three proposals (Environmental Consulting and Technology, Mechling Engineering, and Florida State University Department of Oceanography) and that DOH shall act as the final decision making authority. There was no discussion. All were in favor with none opposed.

7. Other Business – None.

- 8. Public Comment Public comment was closed during the Evaluation Team meetings for the two ITN's. When public comment was open they were allowed to comment throughout.
- **9.** Next Meeting The next meeting will be November 6, 2008. The focus of the next meeting will be to conduct the Evaluation Team meeting for the proposals received for the Nitrogen Reduction Study ITN.

The meeting adjourned at 3:52 p.m.

Department of Health Bureau of Onsite Sewage Programs Research Review and Advisory Committee

Thursday October 9, 2008 9:30 am - 3 pm

Agenda:

- 1. Introductions
- 2. Review Minutes 7/30/08 Meeting
- 3. Update on Specific Appropriation 1682
- 4. Evaluation Team Meeting for Inventory Study
- 5. Evaluation Team Meeting for Suwannee Study
- 6. Presentation from Dr. Smith on Additional Monitoring Events for the Passive Nitrogen Study
- 7. Updates on Ongoing and Future Projects
- 8. Other business
- 9. Public comment
- 10. Closing Comments, Next Meeting, and Adjournment

Introductions & Housekeeping

- Changes to the RRAC:
 - Mike McInarnay is replacing Ellen Vause and joins Sam Averett as the Septic Tank Industry alternate
 - John Glenn leaves the RRAC as the Environmental Interest Group member
 - In process of appointing John Dryden as the State University System alternate
 - The decision has not yet been made on Local Government Representative member and alternate appointments

Review Minutes of Meeting 07/30/2008

• See draft minutes and transcript

Update on Specific Appropriation 1682

- Nitrogen study:
 - ■TRAP approved study on 8/27/08

■Advertised on 9/26/08

■Proposals due 10/29/08

■Evaluation Team Meeting 11/6/08

 Report identifying range of costs for inspection program has been drafted and routed. Report will be made available to RRAC as soon as possible.

Evaluation Team Meeting

Statewide Inventory of Onsite Sewage Treatment and Disposal Systems in Florida

Ground Rules and Process

- Attendees are observers only. NO communications/discussions from the public allowed during this evaluation
- RRAC functions as evaluation team for DOH
- Submit signed and completed:
 - Evaluation/Negotiation Team Acknowledgment Form
 - Conflict of Interest Questionnaire
 - Proposal Evaluation Criteria Worksheet
- Process
 - Discuss scores, strengths/weakness, clarification questions, and potential negotiation questions
 - Evaluation scoring and proposal ranking
 - RRAC recommendation whether or not to invite to negotiate

Evaluation Results

Next Step

DOH begins negotiations with top-ranked respondent(s)

Evaluation Team Meeting

Evaluation of Water Quality Around the Town of Suwannee Florida and Comparison to Historic Data

Ground Rules and Process

- Attendees are observers only. NO communications/discussions from the public allowed during this evaluation
- RRAC functions as evaluation team for DOH
- Submit signed and completed:
 - Evaluation/Negotiation Team Acknowledgment Form
 - Conflict of Interest Questionnaire
 - Proposal Evaluation Criteria Worksheet
- Process
 - Discuss scores, strengths/weakness, clarification questions, and potential negotiation questions
 - Evaluation scoring and proposal ranking
 - RRAC recommendation whether or not to invite to negotiate

Evaluation Results

Next Step

DOH begins negotiations with top-ranked respondent(s)

Ongoing projects

Passive Nitrogen Removal Project

- Received draft report on results of additional monitoring done on the lab scale experiment
- Dr. Smith to present on results
- Comments/questions to be submitted in next week (no later than October 16th)

Optical Wastewater Tracers Study (old Remote Sensing of Optical Brighteners Study)

Purpose: Test the feasibility of detecting wastewater inputs to Florida surface waters using optical characteristics such as optical brighteners from laundry detergents as tracers

Progress:

• Sampling and analysis currently being done

Manatee Springs, Performance of Onsite Systems Phase II Karst Study

Purpose: Test the difference in water quality after nutrient reducing systems are installed in a Karst area

Progress:

- Working on designs for nutrient reducing systems
- New agreement with FSU to perform sampling has been executed

Monroe County PBTS Assessment: Next Phase of Sampling in the Keys

Purpose: Evaluate effectiveness of Performance Based Treatment Systems in the Keys

Progress:

Developing criteria for next phase:
 Discussion on one summary of Phase III

319 Project on Performance and Management of Advanced Onsite Systems

- Purpose: Assess water quality protection by advanced onsite sewage treatment and disposal systems
- Progress:
- Grant has been executed
- Request for quotes has been sent out and two proposals received. In the process of developing negotiation points and determining how this task will move forward.

Upcoming projects

Restoration of the University of South Florida (USF) Lysimeter Station

Purpose: Restore station to functional state to be available for testing of future projects

Progress:

• Memorandum of Agreement sent to USF on June 17th, waiting for response back

Phase II of the Florida Passive Nitrogen Removal Project

Purpose: Build on the results of the Phase I study to go from a lab scale project to a prototype scale project

Progress:

 Project is currently on hold until proposals come in for the ITN for Nitrogen Reducing Technologies project

Wekiva Onsite Sewage Treatment and Disposal System (OSTDS) Seasonal Variability Assessment

Purpose: Investigate if there is a seasonal variability of nitrogen concentrations from OSTDS in the Wekiva Study Area of Central Florida

Progress:

• This project is listed as a task in the Nitrogen Reducing Technologies ITN

Alternative Drainfield Product Assessment

Purpose: Compare the functioning of alternative drainfield materials to standard aggregate

Progress:

Project has been postponed until the next budget cycle

Long-term deformation of tanks of different materials

Purpose: Compare the functioning of alternative drainfield materials to standard aggregate

Progress:

• In scoping stages. Project temporarily on hold until immediate ITN's are closed.

New project idea: Booklet Summarizing DOH Onsite Sewage Research

- Purpose: to provide the public an easy to read booklet summarizing the research DOH has done on onsite sewage over the years
- See this as two phases:

■ Literature review and text writing

■ Graphic design

- Cost to be less than \$25,000, and probably less than \$10,000
- Would this be something RRAC would like DOH to pursue further?

Other Business

Public Comment

Closing Comments, Next Meeting, and Adjournment

Important dates:

Next RRAC issues:

•Select provider for Nitrogen Study

Next RRAC meeting:

November 6, 2008

Renaissance Orlando Resort at Sea World

6677 Sea Harbor Drive

Orlando FL 32821

Florida Department of Health (FDOH)

Research Review and Advisory Committee (RRAC) Meeting Summary

Meeting on October 9, 2008, Orlando Airport Marriott, Orlando, FL

- **RRAC Members/Alternates Present**: Sam Averett, Paul Davis, John Dryden, Anthony Gaudio, Marc Hawes, Mike McInarnay, Bill Melton, Jim Peters, Patti Sanzone, John Schert, Clay Tappan, Pam Tucker. Eight out of nine groups were present, representing a quorum.
- Review of Previous Meeting Minutes: The minutes were approved as submitted.
- Onsite Sewage Nitrogen Reduction Strategies: TRAP approved the study on 8/27/08. The Invitation to Negotiate (ITN) was advertised on 10/26/2008. Proposals are due 10/29/2008 and the Evaluation Team will meet on 11/6/2008 to rank the proposals.
- Evaluation Team Meeting for Statewide Inventory of Onsite Sewage Systems: A total of six (6) proposals were received for this project. RRAC functions as the evaluation team for DOH. Names were randomly drawn, and the evaluation team discussed strengths/weaknesses, clarification questions, and potential negotiation points. The proposals were scored and ranked, the ranks were averaged, and the following proposals are listed in order of rank (top ranked listed first):
 - EarthSTEPS and GlobalMind
 - Ayres Associates, Inc.
 - CDS Holding Inc. / Carmody
 - o eOnsite LLC
 - Public Health Foundation Enterprises, Inc.
 - Florida Environmental and Land Services, Inc.

A motion was made by Pam Tucker and seconded by Bill Melton to move forward with proceeding to oral presentations and negotiations with the top three proposals (EarthSTEPS/GlobalMind, Ayres Associates, and CDS Holding) and that DOH shall act as the final decision making authority. There was no discussion. All were in favor with none opposed.

- Evaluation Team Meeting for Sampling of Water Quality Around the Town of Suwannee, Florida and comparison to Historic Data: A total of eight (8) proposals were received for this project. RRAC functions as the evaluation team for DOH. Names were randomly drawn, and the evaluation team discussed strengths/weaknesses, clarification questions, and potential negotiation points. The proposals were scored and ranked, the ranks were averaged, and the following proposals are listed in order of rank (top ranked listed first):
 - Environmental Consulting & Technology, Inc.
 - Mechling Engineering & Consulting, Inc.
 - Florida State University Department of Oceanography
 - MACTEC
 - Environmental Quality, Inc.
 - Florida Environmental & Land Services, Inc.
 - Biological research Associates LLC
 - Environmental Services, Inc.

A motion was made by Bill Melton and seconded by Clay Tappan to move forward with proceeding to oral presentations and negotiations with the top three proposals

(Environmental Consulting and Technology, Mechling Engineering, and Florida State University Department of Oceanography) and that DOH shall act as the final decision making authority. There was no discussion. All were in favor with none opposed.

• Brief updates on other projects

- Ongoing projects
 - Passive Nitrogen Removal Assessment Draft report has been submitted on the results of the additional monitoring done on the lab scale experiment. Dr. Smith presented results. Comments / questions on the report due no later than October 16th.
 - Optical Wastewater Tracers Study (old Remote Sensing of Optical Brighteners Study) –Sampling and analysis is currently being done.
 - Manatee Springs, Performance of Onsite Systems Phase II Karst Study – Currently working on the designs for the nutrient reducing systems. New agreement with FSU in place to perform sampling.
 - Monroe County Performance Based Treatment System Performance Assessment – Currently developing criteria for the next phase of sampling. Phase III proposal submitted for RRAC review. Comments / questions due October 16th.
 - 319 Project on Performance and Management of Advanced Onsite Systems – Grant has been executed. Request for quotes has been sent out and proposals have been received. Currently developing negotiation points and determining how this task will move forward.
 - •
- Projects coming up
 - Restoration of the University of South Florida (USF) Lysimeter Station – Memorandum of Agreement was sent to USF on June 17th and DOH is waiting for a response back.
 - Phase II of the Florida Passive Nitrogen Removal Project Once scope of Nitrogen Removal project is finalized the determination on whether this task will be accomplished under Specific Appropriation 1682 will be made.
 - Wekiva Onsite Sewage Treatment and Disposal System (OSTDS) Seasonal Variability Assessment – This project is listed as a task in the Nitrogen Reducing Technologies ITN.
 - Alternative Drainfield Product Assessment Project has been postponed until the next budget cycle.
 - Long-term deformation of tanks of different materials This project is currently in the scoping stages.
 - Booklet Summarizing DOH Onsite Sewage Research Brief discussion on the possibility for this project, and it was decided to postpone this project until some of the other projects are started.
- Other Business None.
- **Public Comment** Public comment was closed during the Evaluation Team meetings for the two ITN's. When public comment was open they were allowed to comment throughout.
- **Next Meeting**: The next meeting will be November 6, 2008. The focus of the next meeting will be to conduct the Evaluation Team meeting for the proposals received for the Nitrogen Reduction Study ITN.