LIST OF DRAWINGS

<table>
<thead>
<tr>
<th>SHEET COUNT</th>
<th>SHEET NUMBER</th>
<th>SHEET TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C-1</td>
<td>COVER SHEET AND INDEX OF DRAWINGS</td>
</tr>
<tr>
<td></td>
<td>G-1</td>
<td>LEGENDS AND NOTES</td>
</tr>
<tr>
<td>1</td>
<td>C-2</td>
<td>EXISTING ONSITE WASTEWATER TREATMENT SYSTEM</td>
</tr>
<tr>
<td>2</td>
<td>C-3</td>
<td>OVERALL PROPOSED SITE PLAN</td>
</tr>
<tr>
<td>3</td>
<td>C-4</td>
<td>PROCESS FLOW DIAGRAM</td>
</tr>
<tr>
<td>4</td>
<td>C-5</td>
<td>HYDRAULIC PROFILE PNRS II</td>
</tr>
<tr>
<td>5</td>
<td>C-6</td>
<td>PNRS II DETAILS</td>
</tr>
<tr>
<td>6</td>
<td>C-7</td>
<td>EXISTING ONSITE WASTEWATER TREATMENT SYSTEM</td>
</tr>
<tr>
<td>7</td>
<td>C-8</td>
<td>TASK C NITROGEN FATE & TRANSPORT STUDY AND PNRS II IN-SITU SYSTEMS</td>
</tr>
<tr>
<td>8</td>
<td>C-9</td>
<td>WASTEWATER SOURCE COMPONENTS DETAILS</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>MONITORING PLAN</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>PNRS II STRUCTURAL SITE PLAN</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>PNRS II STRUCTURAL SITE PLAN AND DETAILS</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>PNRS II STRUCTURAL SITE PLAN AND DETAILS</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>YARD PIPING PLAN</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>ELECTRICAL SITE PLAN</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>ELECTRICAL SITE PLAN AND DETAILS</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>PANEL POWER</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>DI MODULE 1</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>DI MODULE 2</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>DI MODULE 3</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>DD MODULE 1</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>DD MODULE 2</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>PANEL ELEVATIONS</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>BILL OF MATERIALS</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>FUNCTIONAL CONTROL DESCRIPTIONS</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>FUNCTIONAL CONTROL DESCRIPTIONS</td>
</tr>
</tbody>
</table>
EXISTING ONSITE WASTEWATER TREATMENT SYSTEM

EXISTING DRAIN FIELD CALCULATION

BASED ON UNSUITABLE SUBSURFACE CONDITIONS

LOW AREA = 4,000
PUMP DISCHARGE VELOCITY = 10' P/D

EXISTING SYSTEM FLOW CALCULATION

BASED ON (PER R-8A-RMK) TABLE C

AVERAGE FLOW (GPM) = 10 GPM
BANK (DRAINAGE TYPICAL) = 1 GPM

ENDING CALED (Q + E) = 50 GPM
AVERAGE CALED = 25 GPM

EXISTING HOLE SPAC-NG DETAIL

A.G.

EXISTING SEPTIC TANK CROSS-SECTION

R.A.

EXISTING ONSITE WASTEWATER TREATMENT SYSTEM
WATER I TANK LESING AREA SOURCE

~GW MONITORING AREA...

PROPOSED... TASK

New MONITORING AREA~

FLORIDA DEPARTMENT OF HEALTH

4401 WILLOW CREEK RD, OWINGS MILLS, MD 21117

OVERALL PROPOSED SITE PLAN

FLORIDA DEPARTMENT OF HEALTH

FLORIDA Gundam, Separation and Concentration - 1

OVERALL PROPOSED SITE PLAN

C-2
PROPOSED SITE PLAN

5'-X'

5'-X'
NOTES

1. All yard piping. Water service shown shall be solvent welded pvc
 laid to existing site drainage and connected with full
 sockets. The pvc shall be 6 in. more possible & covered securely and marked
 with pipe numbers in permanent markings at 10 foot intervals.

2. Maintain slope and grade of gravity lines as indicated on the drawing.
Bill of Materials

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>PART NO.</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>END CABINETS, 72" x 24" x 24", NEW BK, STEEL</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>INNER PANEL, 60" x 30"</td>
<td>2</td>
<td></td>
<td>HOFFMAN 790</td>
</tr>
<tr>
<td>3</td>
<td>INNER PANEL, 60" x 20"</td>
<td>2</td>
<td></td>
<td>HOFFMAN 790</td>
</tr>
<tr>
<td>4</td>
<td>PANEL SCALE PANEL, 10"</td>
<td>2</td>
<td></td>
<td>HOFFMAN 790</td>
</tr>
<tr>
<td>5</td>
<td>PRINT DOOR</td>
<td>2</td>
<td></td>
<td>HOFFMAN 790</td>
</tr>
<tr>
<td>6</td>
<td>PLUG, CORD LEAD 1-15</td>
<td>2</td>
<td></td>
<td>HOFFMAN 790</td>
</tr>
<tr>
<td>7</td>
<td>PAD LOCKABLE 46P</td>
<td>2</td>
<td></td>
<td>HOFFMAN 790</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>PART NO.</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>FLUORESCENT LIGHT KIT</td>
<td>2</td>
<td></td>
<td>HOFFMAN J30-16E16</td>
</tr>
</tbody>
</table>
| 9 | RECEPTACLE DODGE AS SHOWN | 2 | | PASSAT 440-

Bill of Materials (Cont)

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>PART NO.</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PANEL NAMEPLATE, SEE SCHEDULE TO INSERT</td>
<td>2</td>
<td></td>
<td>TAG CUSTOM</td>
</tr>
<tr>
<td>2</td>
<td>SIMPLE RECEPTACLE W/FACE PLATE</td>
<td>2</td>
<td></td>
<td>HOFFMAN 1745-61</td>
</tr>
<tr>
<td>3</td>
<td>120VDC POWER SUPPLY W/FACE PLATE</td>
<td>2</td>
<td></td>
<td>IDEC SH28-05</td>
</tr>
<tr>
<td>4</td>
<td>240VDC POWER SUPPLY W/FACE PLATE</td>
<td>2</td>
<td></td>
<td>IDEC SH28-05</td>
</tr>
<tr>
<td>5</td>
<td>3-POLE SELECTOR SWITCHES ON DAD FRONT</td>
<td>2</td>
<td></td>
<td>IDEC SH28-05</td>
</tr>
</tbody>
</table>

Panel Tag Schedule

<table>
<thead>
<tr>
<th>PANEL #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PANEL NAMEPLATE</td>
</tr>
<tr>
<td>2</td>
<td>SIMPLE RECEPTACLE</td>
</tr>
<tr>
<td>3</td>
<td>120VDC POWER SUPPLY</td>
</tr>
<tr>
<td>4</td>
<td>240VDC POWER SUPPLY</td>
</tr>
<tr>
<td>5</td>
<td>3-POLE SELECTOR SWITCHES</td>
</tr>
</tbody>
</table>

Panel Nameplate

<table>
<thead>
<tr>
<th>PANEL #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PANEL NAMEPLATE</td>
</tr>
<tr>
<td>2</td>
<td>SIMPLE RECEPTACLE</td>
</tr>
<tr>
<td>3</td>
<td>120VDC POWER SUPPLY</td>
</tr>
<tr>
<td>4</td>
<td>240VDC POWER SUPPLY</td>
</tr>
<tr>
<td>5</td>
<td>3-POLE SELECTOR SWITCHES</td>
</tr>
</tbody>
</table>

Note: The above text is a representation of the data in the image, focusing on the extractable information. The text is designed to be read naturally and does not include the visual elements such as diagrams and images that are present in the original document.
1.01 THE REQUIREMENT

1.12 PUMP 14 - STE STORAGE TANK 1 TO HYDROSPLITTER SYSTEM 1

A. Control Description: Pump shall start at a set number of times a day up to 24 times and run for a set amount of time. The number of start times and the cycle duration time setpoint shall be adjustable from the operator interface. When the start times are entered, the pump shall start on LOW level in STE STORAGE TANK 1 and remain off until LOW level in STE STORAGE TANK 1 is reached. The pump shall start with flush cycle (see VALVE 1 control).

1.01 PUMP 14 - STE STORAGE TANK 1 TO HYDROSPLITTER SYSTEM 1

B. Data Storage: Record start times and daily pump runtimes. Calculate totalized daily volume pumped based on pump flow rate entered by operator (calculated from pump maximum capacity, frequency, and stroke length set at pump). One pulse equates one gallon.

1.18 TIME OF DAY RESERVOIR 4

1.12 PUMP 14 - STE STORAGE TANK 1 TO HYDROSPLITTER SYSTEM 2

A. Control Description: Pump shall start at a set number of times a day up to 24 times and run for a set amount of time. The number of start times and the cycle duration time setpoint shall be adjustable from the operator interface. The pump shall start on LOW level in STE STORAGE TANK 1 and remain off until LOW level in STE STORAGE TANK 1 is reached.

B. Data Storage: Record start times and daily pump runtimes. Calculate totalized daily volume pumped based on pump flow rate entered by operator (calculated from pump maximum capacity, frequency, and stroke length set at pump). One pulse equates one gallon.

1.13 PUMP 14 - STE STORAGE TANK 1 TO HYDROSPLITTER SYSTEM 2

A. Control Description: Pump shall start at a set number of times a day up to 24 times and run for a set amount of time. The number of start times and the cycle duration time setpoint shall be adjustable from the operator interface. The pump shall start on LOW level in STE STORAGE TANK 1 and remain off until LOW level in STE STORAGE TANK 1 is reached.

B. Data Storage: Record start times and daily pump runtimes. Calculate totalized daily volume pumped based on pump flow rate entered by operator (calculated from pump maximum capacity, frequency, and stroke length set at pump). One pulse equates one gallon.

1.14 PUMP 14 - STE STORAGE TANK 1 TO HYDROSPLITTER SYSTEM 2

A. Control Description: Pump shall start at a set number of times a day up to 24 times and run for a set amount of time. The number of start times and the cycle duration time setpoint shall be adjustable from the operator interface. The pump shall start on LOW level in STE STORAGE TANK 1 and remain off until LOW level in STE STORAGE TANK 1 is reached.

B. Data Storage: Record start times and daily pump runtimes. Calculate totalized daily volume pumped based on pump flow rate entered by operator (calculated from pump maximum capacity, frequency, and stroke length set at pump). One pulse equates one gallon.