

Florida Onsite Sewage Nitrogen Reduction Strategies Study

Task A.26
PNRS II Test Facility Data Summary Report No. 3

Progress Report

December 2010

HAZEN AND SAWYER Environmental Engineers & Scientists In association with

OTIS ENVIRONMENTAL CONSULTANTS, LLC

Florida Onsite Sewage Nitrogen Reduction Strategies Study

TASK A.26 PROGRESS REPORT

PNRS II Test Facility Data Summary Report No. 3

Prepared for:

Florida Department of Health Division of Environmental Health Bureau of Onsite Sewage Programs 4042 Bald Cypress Way Bin #A-08 Tallahassee, FL 32399-1713

FDOH Contract CORCL

December 2010

Prepared by:

In Association With:

PNRS II Test Facility Data Summary Report No. 3

1.0 Background

Task A of the Florida Onsite Sewage Nitrogen Reduction Strategies Study includes the evaluation of passive treatment systems to remove nitrogen from septic tank effluent. The Passive Nitrogen Removal Study II (PNRS II) is a follow-up to the previous experimental evaluations of passive nitrogen removal technologies conducted in Passive Nitrogen Removal Study I. The objective of the PNRS II study is to extend and expand into field pilot testing the two-stage biofiltration process that was initiated in PNRS I. A unique test facility was constructed for the purpose of this evaluation. The Task A.15 PNRS II Quality Assurance Project Plan (QAPP) documents the objectives, experimental biofiltration systems, monitoring framework, sample frequency and duration, and analytical methods to be used at the PNRS II Test Facility.

2.0 Purpose

This data summary report documents data that was collected in the PNRS II monitoring and sampling event which was conducted November 10, 2010. The corresponding sample event report was submitted as Sample Event Report No. 3, November 2010, as a deliverable under Task A.25. The monitoring event consisted of an assessment and evaluation of PNRS II operation, measurement of flowrates for all systems, measurement of field parameters, collection of biofilter influent and effluent samples, and their analyses in a NELAC certified laboratory.

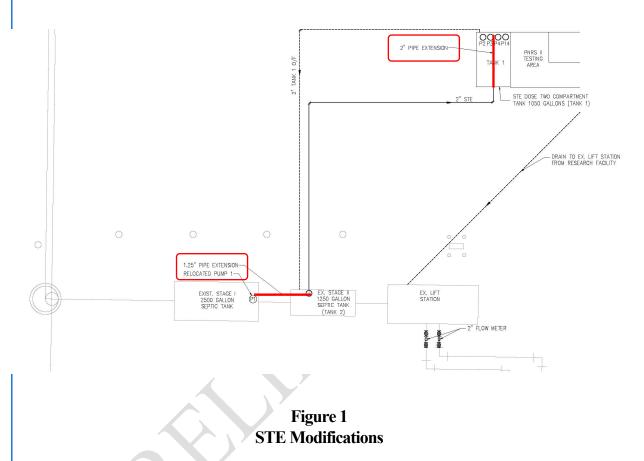
3.0 Materials and Methods

3.1 Project Site

The PNRS II Test Facility is located at the University of Florida Gulf Coast Research and Education Center (GCREC) in southeast Hillsborough County, Florida. The specially designed facility enables the simultaneous operation and performance testing of numerous biofilter treatment trains in parallel using the same wastewater source. The source of the influent wastewater is the septic tank effluent from the existing onsite wastewater system serving the GCREC. Details of the design and construction of the PNRS II test facility were presented previously in Task A.17, A.18, A.19 and A.24 documents.

3.2 Modifications of PNRS II Systems

The results of Sample Event No. 1 and 2 and careful observation of PNRS II systems were used to formulate recommendations for modifications to the test systems at the GCREC pilot facility. The modifications that were made are presented in this section. All recommendations were based on the overall goal of PNRS II: to provide functional specifications for modular biofiltration components for passive onsite nitrogen reducing treatment systems.


3.2.1 Septic Tank Effluent (STE) Quality

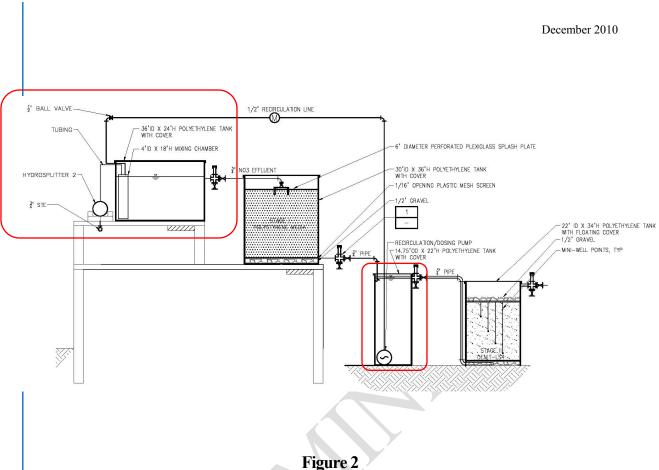
In PNRS II biofilter performance evaluation, the two highly important input factors are the composition of Septic Tank Effluent (STE) and the system flowrates. It has been verified in Sample Events 1, 2 and 3 that target flow rates have in general been successfully achieved. Composition of STE at the GCREC site is continuing to provide a challenge. Sample Event No. 1 revealed that GCREC Septic Tank Effluent exhibited low concentrations of key parameters when compared to typical residential STE. Examination of GCREC records indicated unexpectedly high wastewater flowrates. Upon further investigation, it was found that condensate from the facility air conditioning (A/C) system was draining into the wastewater collection system and diluting the GCREC wastewater. The A/C condensate from GCREC air conditioning units was rerouted in mid July and no longer discharges to the wastewater collection system. Following removal of condensate, the influent feed to the PNRS II systems (GCREC STE) was more characteristic of typical STE from single family residences. The nitrogen concentrations in the STE feed was as high or higher than typical STE. However, some STE parameters continued to show relatively low values. TSS, CBOD₅, and COD were on the lower end of the range for typical STE.

Multiple approaches were pursued to address STE quality issues. The following modifications were implemented in mid-October to address STE quality issues as depicted in Figure 1:

- a. A hydraulic modification was made to the two-chamber PNRS II dosing tank (Tank 1). Prior to the modification, STE from the GCREC tank entered the first chamber of the PNRS II dosing tank and then flowed to the second chamber that contained the PNRS II dosing pumps. To decrease the residence time of STE in the PNRS II dosing tank, a new pipe was installed to direct STE from the GCREC tank directly to the second chamber in the PNRS II dosing tank.
- b. Additionally, Pump 1, which withdraws STE from the GCREC wastewater system, was relocated from its previous withdrawal location to an upstream withdrawal tank.

These modifications were intended to provide influent STE to the PNRS II systems that more closely approximates the characteristics of STE typical of single family residences in Florida.

3.2.2 Polystyrene Biofilter (UNSAT-PS1)


In Sample Event 1, the unsaturated single pass biofilter with polystyrene media (UNSAT-PS1) exhibited limited reduction of organic nitrogen and ammonia as well as a lower effluent dissolved oxygen than the other single pass Stage 1 unsaturated biofilters. Visual observations of the media surface suggested that the STE application system resulted in a majority of dosing in the central area of the horizontal cross section of media surface. Flow monitoring confirmed that water transported rapidly through the polystyrene media following an applied STE dose, unlike the other single pass Stage 1 biofilters. This not unexpected result can be attributed to the much larger media size of polystyrene media and its limited water retention characteristics versus other Stage 1 media. The results of Sample Event 2 also showed unacceptable performance of the polystyrene biofilter as currently configured. Devices to more uniformly distribute the flow were investigated.

Upon further evaluation and analyses, however, it was concluded that the properties of polystyrene media would not be compatible with a practical single pass unsaturated bio-filter, and that polystyrene media could more be feasibly deployed in a recirculation bio-filter configuration.

The following modifications were implemented to the polystyrene biofilter system in mid-October as depicted in Figure 2:

- a. Addition of recirculation pump
- b. 1/2" piping from pump to recirculation tank with flowmeter
- c. Addition of recirculation tank
- d. Addition of pump tank

Effluent from the re-configured polystyrene biofilter will continue to be directed to the coupled Stage 2 biofilter DENIT-LS4. The outcome of these efforts will be to provide evaluation of total nitrogen reduction using a recirculating Stage 1 biofilter with polysty-rene media that is directly coupled to a Stage 2 denitrification biofilter.

UNSAT-PS1 Modifications

3.2.3 Upflow Denitrification Biofilters (DENIT-LS2, DENIT-LS3)

Two upflow denitrification biofilters with lignocellulosic media showed limited NO_x reduction in Sample Event 2. Possible explanations are inadequate flow distribution across the biofilter area, lack of adequate electron donor release from media, and inhibition due to release of chemical constituents from the media. The project team initially employed dye tests to visually determine if there is a tendency for effluent to exit the biofilter media in a concentrated form at specific locations. An example is preferential flow along the biofilter walls, which would lead to low water residence times and limited contact with media. A dye test was employed October 19th through October 25th (see Figures 3 through 13) for both DENIT-LS2 and LS3 biofilters. Fluorescent red dye (rhodamine WT) was used at a concentration of 1 mL per gallon (see Figure 3) to visually determine if there is a tendency for effluent to exit the biofilter in specific locations. At 8:00 am on October 19th, a solution of 30 mL red dye in 1 liter of distilled water was added in the sample port upstream of the two biofilters. During monitoring of the biofilters, DENIT-LS-2 exhibited short-circuiting along the walls at 3:30 pm on October 19th (see Figure 5). DE- NIT-LS3 did not exhibit short-circuiting and began showing dye in the effluent fairly uniformly at approximately 10:00 pm on October 19th.

Figure 3 Rhodamine WT Dye at 1 mL per Gallon Concentration

Figure 4 LS2 and LS3 at 8:22 am, October 19th

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY PNRS II TEST FACILITY DATA SUJMMARY REPORT NO. 3

PAGE 1-6 HAZEN AND SAWYER, P.C.

Figure 5 LS2 at 3:56 pm, October 19th

Figure 6 LS2 and LS3 at 7:26 pm, October 19th

Figure 7 LS2 and LS3 at 12:00 am, October 20th

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY PNRS II TEST FACILITY DATA SUJMMARY REPORT NO. 3

PAGE 1-7 HAZEN AND SAWYER, P.C.

o:\44237-001R004\Wpdocs\Report\Final

Figure 8 LS2 and LS3 at 7:00 am, October 20th

Figure 9 LS2 and LS3 at 12:00 pm, October 20th

Figure 10 LS2 and LS3 effluent at 12:00 pm, October 20th, relative to influent dye solution on right

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY PNRS II TEST FACILITY DATA SUJMMARY REPORT NO. 3

Figure 11 LS2 and LS3 effluent at 9:00 am, October 21st

Figure 12 LS2 and LS3 effluent at 9:27 am, October 22nd

Figure 13 LS2 and LS3 effluent at 8:39 am, October 25th

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY PNRS II TEST FACILITY DATA SUJMMARY REPORT NO. 3

PAGE 1-9 HAZEN AND SAWYER, P.C. The results indicated that flow distribution is a concern in DENIT-LS2. The following modifications were implemented as depicted in Figure 14:

- a. Replaced media within DENIT-LS2 biofilter
 - i. Media mix = 25% Lignocellulosic, 75% Expanded Clay >1.13 mm
- b. Glued expanded clay fines to sides of walls to prevent short circuiting
- c. Added perforated discharge pipe to bottom inlet along entire length of bottom of tank

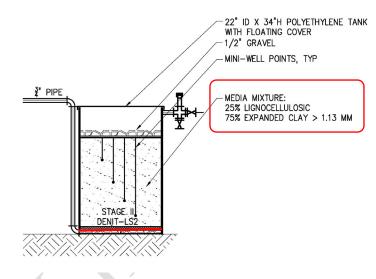
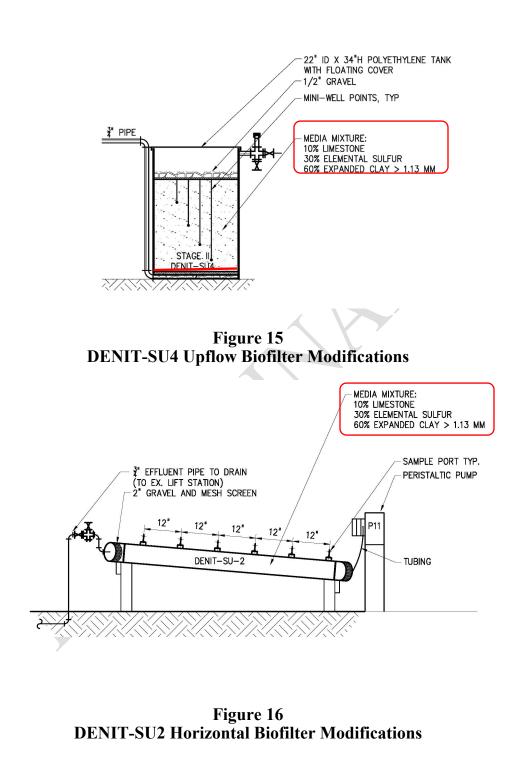


Figure 14 DENIT-LS2 Biofilter Modifications

3.2.4 Glycerol Fed Horizontal Denitrification Biofilter (DENIT-GL1)

In Sample Event 2, the effluent NO_x-N was less than 0.1 mg/L from the glycerol supplied saturated horizontal denitrification biofilter. However, the effluent COD and CBOD₅ were quite high (1,100 mg/L and 810, respectively), and other water quality parameters exhibited puzzling results. A possible explanation for the high levels of bulk organic parameters was determined to be glycerol dosing. The strategy for DENIT-GL1 was to supply glycerol in excess and to reduce the dosing level once denitrification was established. It therefore appeared likely that glycerol dosing could account for at least a portion of the elevated COD and CBOD₅ in the effluent. The project team performed a complete review of glycerol dosing including a) evaluation of stoichiometric glycerol requirement for influent oxygen, nitrate and other electron acceptors, b) dosing rates and glycerol stock solution concentrations, and c) measured glycerol stock reservoir depletion rates. Upon the review, the glycerol dosing solution concentration was lowered to 13.5 mL of 99% glyce-

rol per liter of dosing solution at the end of October. In Sample Event 3, the effluent NO_{x} -N was still less than 0.1 mg/L and COD and $CBOD_5$ were significantly lowered to 22 mg/L and 3 mg/L respectively.


3.2.5 Replace Alkalinity Supplement (DENIT-SU4, DENIT-SU2)

Sodium sesquicarbonate was supplied as alkalinity supplement in one upflow denitrification biofilter (DENIT-SU4) and one horizontal denitrification biofilter (DENIT-SU2). Sodium sesquicarbonate had exhibited a relatively rapid dissolution rate and possibly reprecipitation in preliminary testing. Sodium sesquicarbonate dissolution rates were too rapid to enable this media to be applied in passive PNRS II systems that are intended for long term deployment. Therefore, limestone will be tested as a replacement for sodium sesquicarbonate in DENIT-SU4 and DENIT-SU2. Additionally, the sulfur content in the biofilters will be reduced to 30%.

The following modifications were implemented as depicted in Figures 15 and 16:

- a. Replaced media within DENIT-SU4 upflow biofilter (see Figure 15)
 - i. Media mix: 10% limestone, 30% elemental sulfur, 60% Expanded Clay >1.13 mm
- b. Replaced media within DENIT-SU2 horizontal biofilter (see Figure 16)
 - i. Media mix: 10% limestone, 30% elemental sulfur, 60% Expanded Clay >1.13 mm

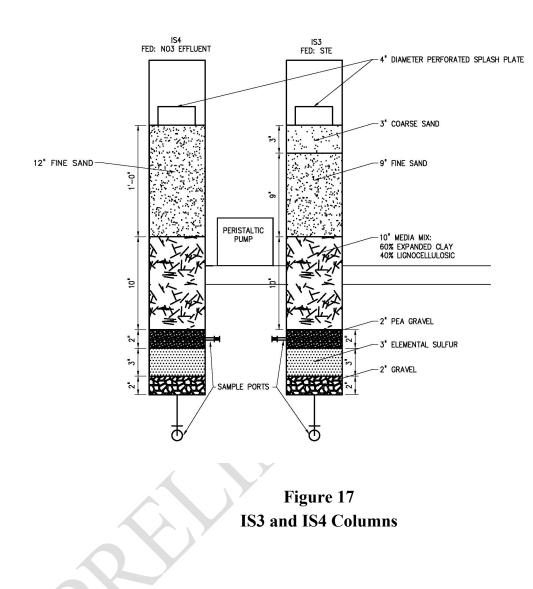
The outcome of these modifications will be evaluation of DENIT-SU4 and DENIT-SU-2 denitrification biofilters that are suitable for long term on-site deployment.

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY PNRS II TEST FACILITY DATA SUJMMARY REPORT NO. 3

3.2.6 In-Situ Simulator Effluent Sulfate Concentration (UNSAT-IS3, UNSAT-IS4)

In-Situ Simulators contain vertically stacked media layers intended to affect enhanced simultaneous nitrification and denitrification in a single pass vertical downflow system. The concept of employing a vertically stacked media configuration is to accomplish nitrification and organics oxidation in an upper unsaturated media layer, which then supplies nitrified water to one or more underlying layers containing denitrification media. The enhancement of nitrification/denitrification is due to the inclusion of electron donor (i.e. lignocellulosic material and/or elemental sulfur) in the unsaturated media in the lower layer. The In-Situ Simulators deployed a mixed media of expanded clay, lignocellulosic material and elemental sulfur in an unsaturated location would enable oxygen ingress and greater sulfur oxidation than if sulfur were maintained in a saturated condition. High effluent SO_4 levels were anticipated but the extent to which this would occur was not known.

In Sample Event 1, UNSAT-IS1 and UNSAT-IS2 both produced very low NH_3 -N, NO_x -N and organic nitrogen concentrations, but sulfate levels were high. In an attempt to decrease sulfur oxidation in the lower layer, the discharge pipe of both In-Situ Simulators was modified on July 20th to saturate the lower 12" of the media bed. The denitrification media was fully encompassed within the saturated layer. The results of Sample Event 2 showed that effluent sulfate levels decreased. The modification resulted in increase of ammonia to 20 mg/L in UNSAT-IS1 that receives STE.


The overall PNRS II objective is to incorporate PNRS II results into the design of full scale testing at homeowner sites in FOSNRS Task B, and the In-situ simulator results are critical for Task B activities. Due to the need to develop functional specifications for vertically stacked single pass biofiltration systems, two additional vertically stacked biofilter systems were constructed to evaluate alternative media designs. The revised media designs were intended to provide enhanced simultaneous nitrification/denitrification in unsaturated media while minimizing effluent sulfate levels. Two six-inch diameter biofilters were constructed and are being dosed at the same frequency (once per 4 hours) and average hydraulic loading rate (0.8 gal/ft²-day) as UNSAT-IS1 and UNSAT-IS2. UNSAT-IS3 receives STE and UNSAT-IS4 receives nitrified STE. The media configuration of UNSAT-IS3 from top to bottom is: 3 in. coarse sand, 9 in. filter sand, 10 in. mixed lignocellulosic media and expanded clay, 2 in. pea gravel, 3 in. elemental sulfur, and 2 in. gravel as underdrain. The media configuration of UNSAT-IS4 from top to bottom is: 12 in. filter sand, 12 in. mixed lignocellulosic media and expanded clay, 2 in. pea gravel, 3 in. elemental sulfur, and 2 in. gravel as underdrain. STE is applied by peristaltic pump to a drip plate at the biofilter center point. Effluent exits the underdrain from a bottom port located at centerline. STE and nitrified STE supplied to UNSAT-IS3 and UNSAT-IS4 is the

same as that supplied to UNSAT-IS1 and UNSAT-IS2. Effluent exits the underdrain from a bottom port located at centerline. The effluent line is directed in an upward direction external to the biofilter column and is used to control the saturation level within the biofilter media. The saturation levels in UNSAT-IS3 and UNSAT-IS4 is maintained within and slightly below the gravel layer that underlies the lignocellulosic/expanded clay mixture to maintain sulfur in a completely saturated condition. A shutoff valve was placed just below the effluent port to enable maintenance of effluent tubing while not draining the biofilter. The effluent line contains a sampling port for measurement of final effluent. Another sampling location in the gravel layer is located below the lignocellulosic/expanded clay media and above the sulfur media. This port passes through the column sidewall and extends radially several inches into the media. Monitoring will be conducted of system effluent as well as intermediate nitrogen species within the biofilter below the unsaturated expanded clay and lignocellulosic layer and above the saturated sulfur layer. The effectiveness of the unsaturated system with only lignocellulosic electron donor and the added effect of underlying sulfur will be delineated.

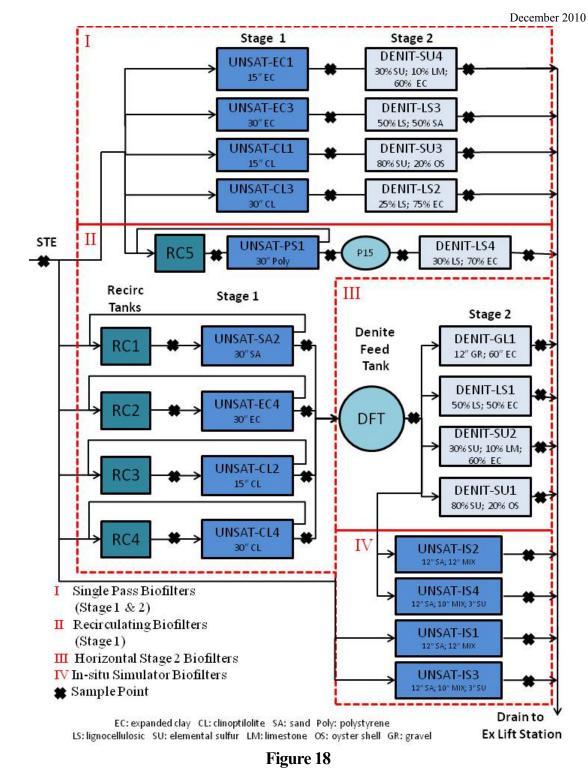
The following modifications were implemented as depicted in Figure 17:

- a. Construct 6" Diameter IS3 biofilter
 - i. Media used = coarse sand, fine sand, expanded clay, lignocellulosic, elemental sulfur, pea gravel and gravel
- b. Construct 6" Diameter IS4 biofilter
 - i. Media used = fine sand, expanded clay, lignocellulosic, elemental sulfur, pea gravel and gravel
- c. Addition of peristaltic pump

The outcome of these efforts will assist in specifying of the optimal media configuration to be employed in the In-Situ (mini-mound) systems, which will then be constructed at GCREC. In-Situ Simulator results from PNRS II are one critical path in the overall PNRS II project. Modifications to the existing In-situ simulators and deployment of additional vertically stacked systems will provide the functional specifications required in order to proceed with construction of the In-Situ mini-mounds in a timely manner.

3.3 Monitoring and Sampling Locations and Identification

A schematic of the PNRS II test facility is shown in Figure 18. Septic tank effluent (STE) from GCREC is pumped from PNRS II-STE-T1 into the PNRS II systems through four points of entry: Hydro-1, Hydro-2, UNSAT-IS1, and UNSAT-IS3. PNRS II biofilters are grouped into the four types of systems shown in Figure 18. The nomenclature and reactor/sample identification used for the PNRS II test facility sampling events are listed in Table 1. The sample designations listed in Table 1 also largely correspond to the locations at which flow volumes are measured in each monitoring event.


Modifications to test systems that were implemented before this sample event include:

- The unsaturated single pass biofilter with polystyrene media (UNSAT-PS1) was re-configured to a recirculation biofilter.
- A fifth recirculation tank (RC5) was installed upstream of UNSAT-PS1.
- A pump tank (P15) was installed downstream of UNSAT-PS1 to feed UNSAT-LS4.
- The media within upflow denitrification biofilter (DENIT-LS2) was revised to be a mixture of 25% lignocellulosic and 75% expanded clay media.
- The sodium sesquicarbonate supplied as an alkalinity supplement in one upflow denitrification biofilter (DENIT-SU4) and one horizontal denitrification biofilter (DENIT-SU2) was replaced with limestone. The media composition in both biofilters was modified to 30% elemental sulfur, 10% limestone, and 60% expanded clay.
- Two additional in-situ simulators containing vertically stacked media layers were constructed to evaluate alternative media designs. UNSAT-IS3 will receive STE and UNSAT-IS4 will receive nitrified STE. The media configuration of UNSAT-IS3 from top to bottom is: 3 in. coarse sand, 9 in. filter sand, 10 in. mixed lignocellulosic media and expanded clay, 2 in. pea gravel, 3 in. elemental sulfur, and 2 in. gravel as underdrain. The media configuration of UNSAT-IS4 from top to bottom is: 12 in. filter sand, 10 in. mixed lignocellulosic media and expanded clay, 2 in. pea gravel, 3 in. elemental sulfur, and 2 in. gravel as underdrain.
- Additional and revised sample locations are included in Table 1 and Figure 18.

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY PNRS II TEST FACILITY DATA SUJMMARY REPORT NO. 3

	Table 1 PNRS II Sample Identification	
Group (Figure 18)	Sample Location	Sample Identification
• • • •	STE PNRS II Storage Tank 1	PNRS II-STE-T1
		UNSAT-EC1
	Stars 1 Single Dees Disfilters	UNSAT-EC3
	Stage 1 Single Pass Biofilters	UNSAT-CL1
		UNSAT-CL3
l		DENIT-SU4
		DENIT-LS3
	Stage 2 Single Pass Upflow Biofilters	DENIT-SU3
		DENIT-LS2
		DENIT-LS4
		RC1
		RC2
	Recirculation Tanks	RC3
		RC4
		RC5
II		UNSAT-SA2
		UNSAT-EC4
	Stage 1 Recirculating Biofilters	UNSAT-CL2
		UNSAT-CL4
		UNSAT-PS1
	Pump 15 Tank	P15
	Denite Feed Collection Tank	DFT
		UNSAT-SU1
111	Stage 2 Horizontal Biofilters	UNSAT-SU2
	Stage 2 Holizontal Bioliters	UNSAT-LS1
		UNSAT-GL1
		UNSAT-IS1
IV	In-Situ In-Tank Simulator Single Pass Biofilter	UNSAT-IS2
IV		UNSAT-IS3
		UNSAT-IS4

o:\44237-001R004\Wpdocs\Report\Final

PNRS II Test Facility System Schematic

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY PNRS II TEST FACILITY DATA SUJMMARY REPORT NO. 3

3.4 Operational Monitoring

Start-up of the PNRS II test facility start-up occurred on May 17, 2010 and all systems have operated continually since that time. The entire facility operation is checked at least once per week and a detailed log of operational observations and activities is maintained. The programmable logic controller (PLC) which controls many of the dosing and pump controls also records pump run times and flow data from flow meters at the facility, and these data can provide useful insight on facility operations.

3.5 Water Quality Sample Collection and Analyses

Influent and effluent water quality samples from the PNRS II test systems for Sample Event 3 were collected November 10, 2010. A sample of STE was collected from the feed line connecting STE Storage Tank 1 (PNRS II-STE-T1) to Hydrosplitter 1 which supplies STE to the single pass Stage 1 biofilters (Figure 18). A manual dose event was initiated on the control panel until sufficient STE sample volume was collected in a clean sample container. Stage 1, 2, and in-situ simulator biofilter and recirculation tank effluents were each sampled by directing the entire flow from the biofilter into a large, clean sample container over a period of time sufficient to obtain the desired sample volume (approximately 3.5 liters). Sample containers were immediately placed in coolers on ice prior to subdivision of the composited sample.

The composite samples in the 3.5 liter sample containers were then subdivided into analysis-specific sample containers. The analysis-specific containers were supplied by the analytical laboratory and contained the appropriate preservatives. The analysis-specific containers were labeled, placed in coolers and transported on ice to the analytical laboratory. Each sample container was secured in packing material as appropriate to prevent damage and spills, and was recorded on chain-of-custody forms supplied by the laboratory.

Equipment blank, field blank, and field sample duplicates were taken. The equipment blank was collected using a previously cleaned STE sample collection bottle. The bottle was filled with distilled water provided by the laboratory and allowed to sit for eight minutes. The sample containers were then analyzed for the same parameters as the samples. The field blank was collected by filling sample containers with distilled water that had been transported from the laboratory into the field along with other sample containers. The field sample duplicate was collected immediately subsequent to the regular STE sample. The duplicate sample containers were filled with PNRS II T1-STE effluent.

Field parameters were measured using portable electronic probes and included temperature (Temp), dissolved oxygen (DO), oxidation-reduction potential (ORP), pH, and specific conductance. Temperature (Temp), dissolved oxygen (DO), and oxidation-reduction potential (ORP) were measured with probe tips placed in flow through samplers located directly in the outlet pipe at each sample location. Specific conductance and pH were measured using external sample collection reservoirs. The influent and effluent samples were analyzed by the laboratory for: total alkalinity, total Kjeldahl nitrogen (TKN-N), ammonia nitrogen (NH₃-N), nitrate/nitrite nitrogen (NO_X-N), carbonaceous biochemical oxygen demand (CBOD₅), total dissolved solids (TDS), total suspended solids (TSS), and chemical oxygen demand (COD). For the denitrification biofilters containing elemental sulfur media, influent and effluent sample analyses were also conducted for sulfate (SO₄) and hydrogen sulfide (H₂S). Table 2 lists the analytical parameters, analytical methods, and detection limits for these analyses.

Analytical Parameters,	Method of Analysis, and	d Detection Limits
Analytical Parameter	Method of Analysis	Laboratory Detection Limit (mg/L)
Total Alkalinity as CaCO ₃	SM 2320B	2 mg/L
Total Kjeldahl Nitrogen (TKN-N)	EPA351.2	0.05 mg/L
Ammonia Nitrogen (NH ₃ -N)	EPA350.1	0.01 mg/L
Nitrate/Nitrite Nitrogen (NO _x -N)	EPA353.2	0.01 mg/L
Carbonaceous BOD (CBOD ₅)	SM 5210B	2 mg/L
Total Dissolved Solids (TDS)	SM 2540C	10 mg/L
Total Suspended Solids (TSS)	SM 2540D	1 mg/L
Chemical Oxygen Demand (COD)	EPA 410.4	10 mg/L
Total Phosphorus (TP)	SM 4500PE	0.01 mg/L
Fecal Coliform (fecal)	SM9222D	1 ct/100mL
Sulfate (SO ₄)	EPA300.0	0.2 mg/L
Hydrogen Sulfide Unionized (H ₂ S)	SM4500S F	0.01 mg/L
Sulfide	SM4500S F	0.1 mg/L

Table 2	
Analytical Parameters, Method of Analysis, a	and Detection Limits

3.6 Flow Monitoring

Flow rates for all PNRS II systems were calibrated at initial start-up. The flow rates are then measured and recorded at each sampling event and adjusted as necessary to maintain flow rates consistent with the experimental design following the sampling event. Flow volumes are measured just after sampling and field analyses and represent the flow rates in effect during the water quality monitoring. Flow rates are then adjusted as necessary to correspond to the target flow rates in the experimental design. For this Sampling Event, influent flow volumes were measured on November 19th and December 3rd and reported in the Sampling Event No. 3 Report.

4.0 Results and Discussion

4.1 Operational Monitoring

Start up of the PNRS II test facility occurred on May 17, 2010. The test systems have been operated continuously since the May 17th start up, with the exception of power interruptions or outages that have occurred from time to time (see operation and maintenance log). The power interruptions were of relatively short duration. For the most part, the pilot biofilters automatically resumed operation when power was restored. The only exceptions were the two peristaltic pumps: Pump 5 which supplies the two In-Situ simulators and Pump 11 which supplies the four horizontal flow denitrification biofilters. The peristaltic pumps displayed an error message, required manual restarting, and their off times were somewhat longer than the other system pumps. The peristaltic pump settings were saved through the power outage, and the pumps resumed operation once the error code was acknowledged. The peristaltic pumps have since been reprogrammed to start automatically in the event of temporary discontinuance of the power supply. Appendix A provides the operation and maintenance log which includes actions taken since start-up. Appendix B provides summary tables of the PLC recorded data of daily runtimes and flows for the test facility between September 1st and November 9th (Day 107 through Day 176 since start-up) used to check general pump operation and performance.

The recycle rates to the recirculating systems are monitored and recorded in the PLC as Pumps 5, 6, 7, 8, and 15 flows. The data shows that the recycle flows are very close to the initially set 44 gpd rate for these four systems, indicating that the desired recycle ratio of approximately 3:1 is being met.

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY PNRS II TEST FACILITY DATA SUJMMARY REPORT NO. 3

4.2 Water Quality Analyses

Water quality analytical results for Sample Event No. 3 are listed in Table 3. A statistical summary of the water quality data collected to date for the PNRS II systems is presented in Table 4. The following discussion summarizes these results. The laboratory report containing the raw analytical data is included in Appendix D.

Influent Water Quality Water quality characteristics of STE collected in Sample Event 3 were closer to typical STE composition than were previous STE samples from GCREC. The modifications described in Section 3.2.1, appear to have alleviated the low measured STE strength previously witnessed. Sample Event 3 STE parameters for TSS, COD, and CBOD₅ were still somewhat low, but within the range expected for domestic STE. The measured STE total nitrogen (TN) concentration was 80 mg/L, which is at the high end of the expected range. The performance of the various biofilter systems was compared by considering the changes through treatment of nitrogen species (TKN-N, NH₃-N, and NO_X-N), as well as supporting chemistry parameters.

Group 1 Single Pass Biofilters Effluent NH_3 -N levels were at or below 3 mg/L for the four Stage 1 single pass biofilters and DO were greater than 6.8 mg/L (Table 3). Organic N ranged from 2.5 to 3.5 mg/L in these same four systems. NO_x was significantly increased in all Stage 1 biofilter effluents corresponding to the decrease in TKN.

Effluent NO_X-N was less than 0.05 mg/L in the two Stage 2 single pass denitrification biofilters with sulfur media. The three lignocellulosic biofilters (DENIT-LS2, DENIT-LS3, and DENIT-LS4) exhibited incomplete denitrification with effluent NO_x-N of 16, 20 and 9.8 mg/L, respectively. These three biofilters did not drive effluent ORP to the low levels that are found in the successfully denitrifying biofilters in this study and in the previous PNRS 1. The lignocellulosic biofilters NO_x-N reducing performance is inferior to sulfur and glycerol but should be doing more or less as well. ORP measurements indicate that the lignocellulosic systems are not driving the ORP into the reducing realms in which denitrification is fostered as depicted in Figures 19 and 20. Possible reasons are lack of reactivity of lignocellulosic material, short circuiting within the biofilters, or toxicity (release of toxic material from lignocellulosic material itself).

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY PNRS II TEST FACILITY DATA SUMMARY REPORT NO. 2

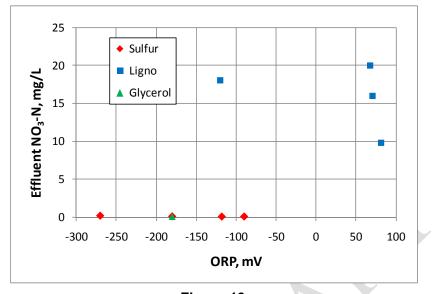


Figure 19 Denitrification Biofilters ORP versus Effluent NO_x-N

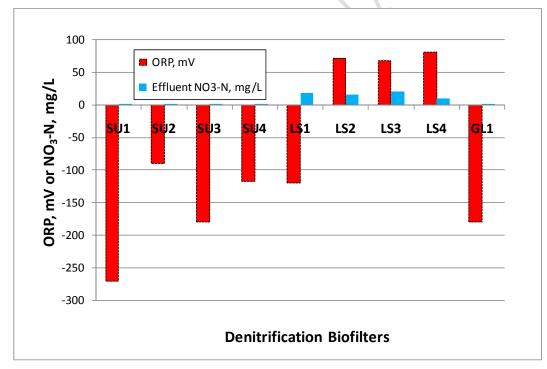


Figure 20 Denitrification Biofilters ORP versus Effluent NO_x-N

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY PNRS II TEST FACILITY DATA SUJMMARY REPORT NO. 3

The influent to the DENIT-LS4 biofilter was effluent from the recirculation pump tank for the polystyrene biofilter (UNSAT-PS1) which contained 17 mg/L NH₃-N and 21 mg/L NO_x-N. While somewhat successfully denitrifying the relatively low influent NO_x-N, DE-NIT-LS4 effluent contained 15 mg/L NH₃-N. This result again confirms that NH₃-N will be readily transported through anoxic denitrification biofilters which at the same time achieve NO_x reduction and reaffirms the importance of efficiently nitrifying prior to denitrification.

Group 2 Stage 1 Recirculating Biofilters NH_3 -N levels were at or below 0.7 mg/L for the four recirculating Stage 1 biofilters with clinoptilolite, expanded clay, and sand media, and effluent DO was 5.4 to 8.0 mg/L. Effluent NO_x -N ranged from 38 to 54 mg/L and organic N from 2.3 to 2.8 mg/L for these four recirculating Stage 1 biofilters. The nitrification performance of these biofilters was quite acceptable and TN reduction averaged 40%. The ammonia and DO concentrations in UNSAT-PS1 effluent were 21 mg/L and 7.8 mg/L, respectively, indicating incomplete nitrification. UNSAT-PS-1 also had significantly higher effluent NO_x and TKN of 70 mg/L and 28 mg/L respectively.

Group 3 Stage 2 Horizontal Biofilters Effluent NO_x -N was 0.14 mg/L and less in three of four Stage 2 horizontal biofilters. The low NO_x -N were accompanied by depressed DO and ORP of -90 to -180 mV. Thus, three of the horizontal biofilters were effective in producing a reducing environment and achieving their NO_x -N reduction goal. DENIT-SU2 exhibited the lowest effluent Total Nitrogen of all the PNRS II systems, with TN concentration less than 1 mg/L. DENIT-LS1 exhibited incomplete denitrification, with effluent NO_x -N of 18 mg/L.

Group 4 In-Situ Simulator Systems UNSAT-IS1 and UNSAT-IS2 exhibited low effluent NO_x -N of less than 0.2 mg/L. UNSAT-IS2 exhibited a TN concentration less than 1.3 mg/L. For UNSAT-IS1, the effluent NO_x -N was low but effluent NH_3 -N was 50 mg/L indicating incomplete nitrification as seen in Sample Event 2. Since Sample Event 2, three inches of coarse sand was added to the top layer of sand within the biofilter to improve nitrification. In-situ simulator effluent SO₄ concentrations were 79 and 380 mg/L, for IS1 and IS2 respectively.

The new vertically stacked 6" diameter column media biofilters (UNSAT-IS3 and UN-SAT-IS4) exhibited very low effluent volumes following Sample Event 3 flow measurements. Upon examination, leaks were witnessed from the sample petcock valves located above the bottom denitrification sulfur layer on both biofilters. The performance of these systems will be assessed after the next sampling event.

Table 3 Water Quality Analytical Results

Group Figure 1)	Sample ID	Media Composition	Sample Date/Time	Sample Type	Temp (°C)	pН	Total Alkalinity (mg/L)	DO (mg/L)	ORP (mV)	Specific Conductance (µS)	TDS (mg/L)	TSS (mg/L)	CBOD ₅ (mg/L)	COD (mg/L)	TN (mg/L N) ¹	TKN (mg/L N)	Organic N (mg/L N) ²	NH3-N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³	TP (mg/L)	Sulfide (mg/L)	H ₂ S (mg/L)	SO₄ (mg/L)	Fecal (Ct/100 ml
	STE Sample																							<u> </u>	
	PNRS II STE-Tank 1		11/10/10 13:50	G	25.1	7.2	430	2.4	-235.0	1,250	450	70	91	240	80.0	80	13.0	67	0.01	67.0		15	5.4	1 33	
	PNRS II STE-Tank 1-D		11/10/10 14:00	G	25.3	7.3	410	2.2	-230.0	1,250	470	64	100	240	85.1	85	11.0	74	0.11	74.1					
	Stage 1 Single Pass Biofilters Effluent																								
	UNSAT-EC1	15" Expanded Clay	11/10/10 16:00	G	20.6	6.9	180	7.1	108.0	1,150	770	1	2	10	66.8	4.8	3.5	1.3	62	63.3		1.0	0.01	61	
	UNSAT-EC3	30" Expanded Clay	11/10/10 15:30	G	21.5	6.8	220	6.8	105.0	1,250	850	1	2	10	85.9	4.9	2.5	2.4	81	83.4					
	UNSAT-CL1	15" Clinoptilolite	11/10/10 15:40	G	22.0	7.1	230	7.3	105.5	5 1,130	800	1	2	10	46.6	2.6	2.6	0.005	44	44.0		1.0	0.01	L 62	
	UNSAT-CL3	30" Clinoptilolite	11/10/10 15:50	G	22.0	7.4	290	7.6	100.5	5 1,280	820	2	2	29	82.7	2.7	2.7	0.005	80	80.0					
1	Stage 2 Single Pass Upflow Biofilters Effluent										1														
	DENIT-SU4	10% Limestone; 30% Sulfur; 60% Expanded Clay	11/10/10 13:40	G	21.0	7.3	210	7.8	-118.0	1,510	1,100	6	2	13	0.9	0.89	0.8	0.10	0.02	0.1		1.0	0.09	560	
	DENIT-LS3	50% Lignocellulosic; 50% Sand	11/10/10 12:30	G	20.0	6.9	220	4.7	67.5	5 1,200	840	1	2	11	24.3	4.3	3.8	0.52	20	20.5					
	DENIT-SU3	80% Sulfur; 20% Oyster Shell	11/10/10 13:30	G	21.4	7.2	260	7.7	-180.0	1,480	1,000	2	3	26	1.9	1.8	1.3	0.55	0.05	0.6		2.4	0.85	450	I
	DENIT-LS2	25% Lignocellulosic; 75% Expanded Clay	11/10/10 12:15	G	21.5	7.4	320	4.1	71.0	1,200	780	2	2	26	19.8	3.8	3.7	0.10	16	16.1			1 '		
	DENIT-LS4	30% Lignocellulosic; 70% Expanded Clay	11/10/10 12:05	G	20.0	7.3	200	3.8	81.0	900	480	2	2	20	30.8	21	6.0	15	9.8	24.8					
	Recirculation Tanks Effluent																								
	RC1		11/10/10 12:50	G	20.6	7.3	180				580		2	29	41.0	17	5.0	12	24	36.0					
	RC2		11/10/10 13:00	G	19.5	7.2	210				590		8	35	43.0	19	6.0	13	24	37.0					
	RC3		11/10/10 13:10	G	19.2	7.2	260				550		9	39	36.0	19	7.0			29.0					
	RC4		11/10/10 13:20	G	19.7	7.4	260	1.9			590	2	4	26	35.0	17	5.0		18	30.0					
	RC5		11/10/10 16:10	G	22.0	7.3	260	3.3	96.0	1,050	480	8	8	61	45.0	31	3.0	28	14	42.0					
2	Stage 1 Recirculating Biofilters Effluent						h																		
	UNSAT-CL4	30" Clinoptilolite	11/10/10 11:40	G	23.5	7.2	270				660		2	11	42.6	2.6	2.6		40	40.0				63	
	UNSAT-CL2	15" Clinoptilolite	11/10/10 11:30	G	23.1	7.0	200				630		2	24	56.3	2.3	2.3	0.005	54	54.0					
	UNSAT-EC4	30" Expanded Clay	11/10/10 11:20	G	22.2	6.9	140				660	_	2	10	52.3	2.3	2.3	0.005	50	50.0					
	UNSAT-SA2	30" Sand	11/10/10 11:10	G	22.5	6.9	120				610	13	2	22	41.5	3.5	2.8		38	38.7					
	UNSAT-PS1	30" Polystyrene	11/10/10 13:50	G	23.8	7.2	200				550	5	4	39	98.0	28	7.0	21	70	91.0					
	Pump 15 Tank (DENIT-LS4 Influent)		11/10/10 13:45	G	20.7	7.4	200	7.1	18.8	3 970	550	6	3	33	42.0	21	4.0	17	21	38.0					
	Denite Feed Tank (Tank 3)																								
	DFT		11/10/10 11:50	G	18.5	7.2	200	8.3	62.2	2 980	630	1	2	22	19.5	3.5	3.3	0.17	16	16.2		1.0	0.1	L 64	
	Stage 2 Horizontal Biofilters Effluent																								
3	DENIT-SU1	80% Sulfur; 20% Oyster Shell	11/10/10 10:15	G	28.0	6.9	230			1,250		-	18		2.0	1.9	1.1	0.76	0.14	0.9		17			
	DENIT-SU2	10% Limestone; 30% Sulfur; 60% Expanded Clay	11/10/10 10:25	G	25.5	7.0	210	-			1,000	8	2	18	0.8	0.74	0.7		0.03	0.1		1.0	0.01	490 L	
	DENIT-LS1	50% Lignocellulosic; 50% Expanded Clay	11/10/10 10:40	G	21.4	7.4	210			970	540	1	2	18	20.7	2.7	2.7	0.005	18	18.0					
	DENIT-GL1	12" Gravel; 60" Expanded Clay	11/10/10 10:55	G	21.0	6.9	390	0.8	-180.0	900	540	4	3	22	2.0	1.9	1.0	0.88	0.07	1.0					
	In-situ Simulator Biofilters Effluent				1		I		L								I					I	<u> </u>	⊢	
	UNSAT-IS1 (STE)	12" Sand; 12" Mix (45% EC, 35% Ligno, 20% Sulfur)		G	20.5	6.8	390			1,120	540		2	76	53.2	53	3.0		0.18	50.2		4.7			,
	UNSAT-IS1 (STE)	12" Sand; 12" Mix (45% EC, 35% Ligno, 20% Sulfur)		G	17.0	7.1	370		-		530		2	76	75.0	75			0.04	69.0		4.3			
	UNSAT-IS2 (NO ₃)	12" Sand; 12" Mix (45% EC, 35% Ligno, 20% Sulfur)		G	19.2	6.8	180				820	19	2	20	1.3	1.2	0.4		0.05	0.9		1.0	0.01		
4	UNSAT-IS2 (NO ₃)	12" Sand; 12" Mix (45% EC, 35% Ligno, 20% Sulfur)		G	17.1	6.5	170	0.8	-213.6		890	10	2	13	1.2	1.2	0.5		0.04	0.8		1.0	0.01	400	
	UNSAT-IS3 (STE)	12" Sand; 10" Mix (60% EC, 40% Ligno); 3" Sulfur)	11/15/10 8:30	G	18.7	6.7	280	0.4	158.	3 1,505	2,300	4	3	46	34.4	6.4	0.2	6.2	28	34.2		1.0	0.01	290	
	UNSAT-IS4 (NO3)	12" Sand; 10" Mix (60% EC, 40% Ligno); 3" Sulfur)	11/10/10 15:15	G	ΙT									ΙT	43.1	2.1	2.1	0.036	41	41.0				490	
	UNSAT-IS4 (NO ₃)	12" Sand; 10" Mix (60% EC, 40% Ligno); 3" Sulfur)	11/15/10 8:45	G	18.3	7.48	280	9.0	152.8	3 0.01		1		35	12.8	1.8	1.7	0.086	11	11.1		1		440	
	Field Blank	Reagent Water	11/10/10 15:00		24.5	6.5	200	8.0			10	1	2	10	0.1	0.07	0.1	0.000	0.01	0.02				1	
	Equipment Blank	Reagent Water - Cleaned STE Bottle #2	11/10/10 14:10		23.0	6.7	2	8.5				1	2	10	0.1	0.06	0.1		0.01	0.02		1		1	1
								0.0					_			0.00									

Notes: "Total Nitroen (TNI is a calculated value equal to the sum of TKN and NO-"Oraanic Nitroeen (ONI is a calculated value equal to the difference of TKN and NH-"Total Informanic Nitroeen (TNI) is a calculated value equal to the sum of NH- and NO. EC: expanded day, CL: dinoptiloite, PS: polystyrene, SU: elemental sulfur, IS: lignocellulosic, GL: glycerol, OS: oyster shell, NS: sodium sesquicarbonate, GR: gravel D.O. - Dissolved oxygen G- Grab sample Gray-shaded data points indicate values below method detection level (mdl), mdl value used for statistical analyses.

Yellow-shaded data points indicate the reported value is between the laboratory method detection limit and the laboratory practical quantitation limit, value used for statistical analysis.

Orange - shaded data points indicate too many colonies were present. The numberic value represents the dilution factor times the maximum reportable number of colonies.

Purple-shaded data points indicate results based upon colony counts outside the method indicated ideal range.

Blue-shaded data points indicate matrix spike was outside typical range. All other QC criteria were acceptable.

Green-shaded data points indicate that sample was re-run by Southern Analytical Laboratories, Inc. The sample was held beyond the accepted holding time

Table 4Statistical Summary of Water Quality Data

Sample ID	Media Composition	Statistical Parameter	Temp (°C)	рН	Total Alkalinity (mg/L)	DO (mg/L)	ORP (mV)	Specific Conductance (µS)	TDS (mg/L)	TSS (mg/L)	CBOD _s (mg/L)	COD (mg/L)	TN (mg/L N) ¹	TKN (mg/L N)	Organic N (mg/L N) ²	NH3-N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³	TP (mg/L)	Sulfide (mg/L)	H ₂ S (mg/L)	SO ₄ (mg/L)	Fecal (Ct/100 n
STE Sample	T		0		-	6			-		0	-	-	0			-				1		
		n MEAN	26.4	9	323.4	0.8		1029.8	381.0	34.5	67.0	236.2	55.7	57.7	8.2	47.5	0.04	43.1	7.0				
STE-Tank 1		STD. DEV.	1.4		92.2	1.2		227.2	76.0	25.4	33.6	250.2	24.8	22.0		23.0		21.7					
		MIN	24.9	6.4	210.0	0.0		649.0	240.0	12.8	22.0	210.0	25.9	25.9			0.01	20.0					
	I	MAX	28.3	7.3	430.0	2.4	-230.0	1250.0	470.0	70.0	100.0	270.0	85.1	85.0	15.0	74.0	0.11	67.0	7.4				7
Stage 1 Singl	e Pass Biofilters Effl	uent																					
		n	3	3	3	3	2	3	3	3	3	2	3	3	3 3	3	3	3	1	1	3 3	3	
UNSAT-EC1	ACII Comendad Class	MEAN STD. DEV.	25.5 4.3		140.0 36.1	7.0		940.7 284.3	596.7 219.4	1.0	2.0	11.5	44.8 22.8	3.8		0.4		41.4		0.4		52.7 7.6	
UNSAT-ECT	15" Expanded Clay	MIN	4.3	6.9	36.1	6.8		284.3	350.0	1.0	2.0	10.0	22.8	2.2		-	21.5	19.0		0.5		46.0	
		MAX	28.6	7.3	110.0	7.1		1150.0		1.0	2.0	13.0	66.8	4.8				63.3		1.0		61.0	
		n	3	3	3	3	2	3	3	3	3	2	3	3			3	3	1		0.1	01.0	
		MEAN	26.1		151.3	6.8	111.0	1031.7		1.3	2.0	13.0		3.5			47.3	48.1					
UNSAT-EC3	30" Expanded Clay	STD. DEV.	4.1		68.0	0.1		283.0		0.6			32.7	1.4			31.3	32.6					
		MIN	21.5	6.8	84.0	6.7		712.0		1.0	2.0	10.0	21.2	2.2			19.0	19.0					
		MAX	29.2	7.3	220.0	6.9	117.0	1250.0	850.0	2.0	2.0	16.0	85.9	4.9	3.3	2.4	81.0	83.4	3.9		2 2	2	
		n MEAN	26.2	3	236.7	5.4	110.9	3 1086.0	673.3	3.0	2.0	15.0	36.0	2.7	2.7	0.008	33.3	33.3	8.0	0.5	0.03	49.0	
UNSAT-CL1	15" Clinoptilolite	STD. DEV.	3.8		11.5	1.9		210.5	177.9	3.5	0.0	13.0	13.6	0.1			13.6	13.6		0.5		49.0	
		MIN	22.0	7.1	230.0	3.5		857.0	470.0	1.0	2.0	10.0	20.7	2.6			18.0	18.0		0.1		37.0	
		MAX	29.5	8.3	250.0	7.3		1271.0	800.0	7.0	2.0	20.0	46.6	2.8			44.0	44.0		1.0		62.0	
		n	3	3	3	3	2	3	3	3	3	2	3	3		-	3	3	-				
UNICAT CLO	201 611	MEAN	25.8		300.0	7.2		1214.0		1.3	2.0	24.5	48.5	3.2			45.3	45.3					
UNSAT-CL3	30" Clinoptilolite	STD. DEV. MIN	3.4 22.0	7.4	36.1 270.0	0.4		214.7 974.0	165.2 550.0	0.6	0.0	20.0	30.8 22.8	0.7			31.1 20.0	31.1 20.0					
		MAX	22.0	7.4	340.0	7.6		1388.0		2.0	2.0	20.0	82.7	4.0			80.0	80.0					
		n	20.7	2	2	2	100.5	2	2	2.0	2.0	1	2	2		2	2	2	1				
UNSAT-PS1		MEAN	27.8		220.0	2.6	60.0	804.5	345.0	3.0	4.4	48.0	43.3	34.5	8.3	26.2	8.8	35.0	5.9				
(old)	30" Polystyrene	STD. DEV.	1.1		84.9	0.1		290.6	106.1	1.4	1.9		25.4	26.2			0.8	27.2					
()		MIN	27.0	7.3	160.0	2.5		599.0		2.0	3.0	48.0	25.3	16.0				15.7					
	I	MAX	28.6	7.6	280.0	2.7	60.0	1010.0	420.0	4.0	5.7	48.0	61.2	53.0	9.6	46.0	9.3	54.2	5.9				
Stage 2 Single	e Pass Upflow Biofil	ters Effluent	2	1	2	2	1	2	2	2	2	1	2	2	2 2	2	2	2	1			2	
		11	2	2	2	2	1			2		1	-		2 Z		2	2	1	4	<u> </u> 2	2	
		MEAN	27.6		145.0	0.2	-106.6	1162.0	755.0	10	3.0	22.0	11	1.0	0.8	0.2	0.1	03	3.2	10	03	405.0	
	80% Sulfur; 20%	MEAN STD. DEV.	27.6		145.0 7.1	0.2		1162.0 329.5		1.0	3.0							0.3		1.0		405.0	
DENIT-SU4 (old)	80% Sulfur; 20% Sodium Sesqui.	MEAN STD. DEV. MIN	27.6 - 27.1	6.6	7.1	0.2		1162.0 329.5 929.0	275.8	1.0 0.0 1.0	1.3		0.4	0.4	0.2	0.1	0.1			1.2	0.4	405.0 205.1 260.0	
		STD. DEV.	- 27.1 28.1	6.6	7.1	0.1 0.1 0.2	-106.6	329.5	275.8 560.0	0.0	1.3 2.0 3.9	22.0 22.0	0.4	0.4 0.8 1.3	0.2 0.7 1.0	0.1 0.1 0.3	0.1 0.01 0.1	0.2 0.1 0.4	3.2	1.2	2 0.4 1 0.01	205.1	
DENIT-SU4 (old)	Sodium Sesqui.	STD. DEV. MIN MAX n	- 27.1 28.1 1		7.1 140.0 150.0	0.1 0.1 0.2 1	-106.6 -106.6 1	329.5 929.0 1395.0 1	275.8 560.0 950.0 1	0.0	1.3 2.0 3.9 1	22.0 22.0 1	0.4 0.8 1.4 1	0.4 0.8 1.3	0.2 0.7 1.0	0.1 0.1 0.3	0.1 0.01 0.1	0.2 0.1 0.4 1	3.2	1.2	2 0.4 0.01 3 0.6 1 1	205.1 260.0 550.0 1	
(old)	Sodium Sesqui. 10% Limestone;	STD. DEV. MIN MAX n MEAN	- 27.1 28.1		7.1 140.0	0.1 0.1 0.2	-106.6 -106.6 1	329.5 929.0	275.8 560.0 950.0 1	0.0	1.3 2.0 3.9	22.0 22.0 1	0.4 0.8 1.4 1	0.4 0.8 1.3	0.2 0.7 1.0	0.1 0.1 0.3	0.1 0.01 0.1	0.2 0.1 0.4	3.2	1.2	2 0.4 1 0.01	205.1 260.0	
	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60%	STD. DEV. MIN MAX n MEAN STD. DEV.	- 27.1 28.1 1 21		7.1 140.0 150.0 1 210	0.1 0.1 0.2 1 7.8	-106.6 -106.6 1 -118	329.5 929.0 1395.0 1 1510	275.8 560.0 950.0 1 1100	0.0	1.3 2.0 3.9 1	22.0 22.0 1 13	0.4 0.8 1.4 1 0.9	0.4 0.8 1.3 1 0.9	0.2 0.7 1.0 0.8	0.1 0.1 0.3 1 0.1	0.1 0.01 0.1 1 0.02	0.2 0.1 0.4 1 0.12	3.2	1.2	2 0.4 1 0.01 3 0.6 1 1 1 0.09	205.1 260.0 550.0 1 560	
(old) DENIT-SU4	Sodium Sesqui. 10% Limestone;	STD. DEV. MIN MAX n MEAN STD. DEV. MIN	- 27.1 28.1 1		7.1 140.0 150.0	0.1 0.1 0.2 1	-106.6 -106.6 1 -118 -118	329.5 929.0 1395.0 1 1510 1510	275.8 560.0 950.0 1 1100 1100	0.0 1.0 1.0 6 6	1.3 2.0 3.9 1	22.0 22.0 1	0.4 0.8 1.4 1 0.9 0.9	0.4 0.8 1.3 1 0.9 0.9	4 0.2 8 0.7 8 1.0 1 1 9 0.8 9 0.8	0.1 0.1 0.3 1 0.1 0.1	0.1 0.01 0.1 0.02 0.02	0.2 0.1 0.4 1 0.12 0.12	3.2	1.2	2 0.4 0.01 3 0.6 1 1	205.1 260.0 550.0 1	
(old) DENIT-SU4	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60%	STD. DEV. MIN MAX n MEAN STD. DEV.	- 27.1 28.1 1 21 21 21 21 3		7.1 140.0 150.0 1 210 210	0.1 0.1 0.2 1 7.8 7.8	-106.6 -106.6 1 -118 -118	329.5 929.0 1395.0 1 1510 1510	275.8 560.0 950.0 1 1100 1100	0.0 1.0 1.0 6 6	1.3 2.0 3.9 1 2 2	22.0 22.0 1 13 13	0.4 0.8 1.4 1 0.9 0.9	0.4 0.8 1.3 1 0.9 0.9	0.2 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.1 0.1 0.3 1 0.1 0.1	0.1 0.01 0.1 1 0.02 0.02 0.02	0.2 0.1 0.4 1 0.12 0.12	3.2	1.2	2 0.4 0.01 3 0.6 1 1 1 0.09 1 0.09	205.1 260.0 550.0 1 560 560	
(old) DENIT-SU4 (new)	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50%	STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN	- 27.1 28.1 1 21 21 21 21 3 25.3		7.1 140.0 150.0 1 210 210 210 210 213.3	0.1 0.1 1 7.8 7.8 7.8 7.8 7.8 3 2.0	-106.6 -106.6 1 -118 -118 -118 2 23.3	329.5 929.0 1395.0 1 1510 1510 1510 3 1003.0	275.8 560.0 950.0 1 1100 1100 1100 3 630.0	0.0 1.0 1.0 6 6 6 3 1.3	1.3 2.0 3.9 1 2 2 2 2 3 5.3	22.0 22.0 1 13 13 13 13 2	0.4 0.8 1.4 1 0.9 0.9 0.9 0.9 3 20.2	0.4 0.8 1.3 1 0.9 0.9 0.9 0.9 0.9 3 3.2	0.2 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.1 0.1 0.3 1 0.1 0.1 0.1 0.1 0.1 0.5	0.1 0.01 1 0.02 0.02 0.02 3 17.0	0.2 0.1 0.4 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	3.2 3.2 1 1 3.3	1.2	2 0.4 0.01 3 0.6 1 1 1 0.09 1 0.09	205.1 260.0 550.0 1 560 560	
(old) DENIT-SU4 (new)	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Lignocellulosic;	STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV.	- 27.1 28.1 1 21 21 21 3 25.3 4.6	7.3 1 7 7 7 3	7.1 140.0 150.0 1 210 210 210 210 213.3 11.5	0.1 0.1 0.2 1 7.8 7.8 7.8 7.8 3 2.0 2.4	-106.6 -106.6 1 -118 -118 -118 2 23.3	329.5 929.0 1395.0 1 1510 1510 1510 3 1003.0 270.2	275.8 560.0 950.0 1 1100 1100 1100 3 630.0 239.0	0.0 1.0 1.0 6 6 6 6 3 1.3 0.6	1.3 2.0 3.9 1 2 2 2 2 3 5.3 5.8	22.0 22.0 1 13 13 13 13 2 20.0	0.4 0.8 1.4 1 0.9 0.9 0.9 0.9 3 20.2 16.5	0.4 0.8 1.3 1 0.9 0.9 0.9 0.9 0.9 3 3.2 1.2	0.2 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.1 0.1 0.3 1 0.1 0.1 0.1 0.1 0.1 0.5 0.5	0.1 0.01 1 0.02 0.02 0.02 3 17.0 15.7	0.2 0.1 0.4 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 17.5	3.2 3.2 1 3.3	1.2	2 0.4 0.01 3 0.6 1 1 1 0.09 1 0.09	205.1 260.0 550.0 1 560 560	
(old) DENIT-SU4 (new)	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50%	STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n STD. DEV. MIN MAX n MEAN STD. DEV. MIN MEAN STD. DEV. MIN	- 27.1 28.1 1 21 21 21 3 25.3 4.6 20.0	7.3 1 7 7 7 3 6.9	7.1 140.0 150.0 1 210 210 210 3 213.3 11.5 200.0	0.1 0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 3 2.0 2.4 0.1	-106.6 -106.6 -118 -118 -118 -118 2 23.3 -21.0	329.5 929.0 1395.0 1 1510 1510 1510 3 1003.0 270.2 695.0	275.8 560.0 950.0 1100 1100 1100 3 630.0 239.0 370.0	0.0 1.0 1 6 6 6 3 1.3 0.6 1.0	1.3 2.0 3.9 1 2 2 2 2 2 3 5.3 5.8 5.8 2.0	22.0 22.0 1 13 13 13 13 2 20.0 11.0	0.4 0.8 1.4 1 0.9 0.9 0.9 3 20.2 16.5 2.0	0.4 0.8 1.3 1 0.9 0.9 0.9 0.9 3 3.2 1.2 2.0	0.2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.1 0.1 0.3 1 0.1 0.1 0.1 0.1 0.5 0.5 0.4 0.2	0.1 0.01 1 0.02 0.02 0.02 3 17.0 15.7 0.01	0.2 0.1 0.4 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.	3.2 3.2 1 3.3 3.3 3.3	1.2	2 0.4 0.01 3 0.6 1 1 1 0.09 1 0.09	205.1 260.0 550.0 1 560 560	
(old) DENIT-SU4	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Lignocellulosic;	STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV.	- 27.1 28.1 1 21 21 21 3 25.3 4.6	7.3 1 7 7 7 3	7.1 140.0 150.0 1 210 210 210 3 213.3 11.5 200.0	0.1 0.1 0.2 1 7.8 7.8 7.8 7.8 3 2.0 2.4	-106.6 -106.6 -118 -118 -118 -118 2 23.3 -21.0	329.5 929.0 1395.0 1 1510 1510 1510 3 1003.0 270.2	275.8 560.0 950.0 1100 1100 1100 3 630.0 239.0 370.0	0.0 1.0 1.0 6 6 6 6 3 1.3 0.6	1.3 2.0 3.9 1 2 2 2 2 2 2 2 2 3 3 5.3 5.8 5.8 2.0 12.0	22.0 22.0 1 13 13 13 2 20.0 20.0 11.0 29.0	0.4 0.8 1.4 1 0.9 0.9 0.9 0.9 3 20.2 16.5	0.4 0.8 1.3 1 0.9 0.9 0.9 0.9 3 3.2 1.2 2.0	0.2 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.1 0.1 0.3 1 0.1 0.1 0.1 0.1 0.5 0.5 0.4 0.4 0.2 1.0	0.1 0.01 0.1 0.02 0.02 3 3 17.0 15.7 0.01 31.0	0.2 0.1 0.4 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 17.5	3.2 3.2 1 3.3 3.3 3.3 3.3	1.2	2 0.4 0.01 3 0.6 1 1 1 0.09 1 0.09	205.1 260.0 550.0 1 560 560	
(old) DENIT-SU4 (new)	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Lignocellulosic; 50% Sand	STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n STD. DEV. MIN MAX n MEAN STD. DEV. MIN MEAN STD. DEV. MIN	- 27.1 28.1 1 21 21 21 3 25.3 4.6 20.0	7.3 1 7 7 7 3 6.9	7.1 140.0 150.0 1 210 210 210 3 213.3 11.5 200.0	0.1 0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 3 2.0 2.4 0.1	-106.6 -106.6 1 -118 -118 -118 -118 -118 -23.3 -21.0 67.5 2	329.5 929.0 1395.0 1 1 510 1 510 3 1003.0 270.2 695.0 1200.0	275.8 560.0 950.0 1 1100 1100 3 630.0 239.0 370.0 840.0 3	0.0 1.0 1 6 6 6 3 1.3 0.6 1.0	1.3 2.0 3.9 1 2 2 2 2 2 3 5.3 5.8 5.8 2.0	22.0 22.0 1 1 3 3 1 3 2 2 0.0 2 0.0 2 0 0 2 9.0 2 0 2 0 2 2 2 0 2 2 0 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 0 2	0.4 0.8 1.4 1 0.9 0.9 0.9 3 20.2 16.5 2.0 34.2	0.4 0.8 1.3 1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	0.2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.1 0.1 0.3 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	0.1 0.01 0.1 0.02 0.02 3 3 17.0 15.7 0.01 31.0 3	0.2 0.1 0.4 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	3.2 3.2 1 3.3 3.3 3.3 3.3 1	1.2	2 0.4 0.01 0.03 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.01	205.1 260.0 550.0 1 560 560	
(old) DENIT-SU4 (new) DENIT-LS3	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Lignocellulosic; 50% Sand 80% Sulfur; 20%	STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n	- 27.1 28.1 1 21 21 21 21 3 25.3 4.6 20.0 28.1 3	7.3 1 7 7 7 3 6.9	7.1 140.0 150.0 210 210 213 3 213.3 11.5 200.0 220.0 3	0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 2.0 2.4 0.1 4.7 3	-106.6 -106.6 1 -118 -118 -118 -118 -118 -23.3 -21.0 67.5 -219.8	329.5 929.0 1395.0 1 1 1 1 510 3 1003.0 270.2 695.0 1200.0 3	275.8 560.0 950.0 1 1100 1100 3 630.0 239.0 370.0 840.0 3 3936.7	0.0 1.0 1.0 6 6 6 3 3 1.3 0.6 1.0 2.0 3	1.3 2.0 3.9 1 2 2 2 2 2 3 3 5.3 3 5.8 8 2.0 12.0 3	22.0 22.0 1 1 3 3 1 3 2 2 0.0 2 0.0 2 0 0 2 9.0 2 0 2 0 2 2 2 0 2 2 0 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 0 2	0.4 0.8 1.4 1 0.9 0.9 0.9 20.2 16.5 2.0 34.2 3	0.4 0.8 1.3 1 0.9 0.9 0.9 0.9 3 3 3.2 2 1.2 2.0 4.3 3	0.2 0.2 0.7 0.7 0.10 1 0.8 0.8 0.0.8 3 2.66 1.4 0.1.11 3.8 3.3 2.66 1.4 3.8 3.3 3.3	0.1 0.1 0.3 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	0.1 0.01 1 0.02 0.02 0.02 0.02 0.02 0.02	0.2 0.1 0.12 0.12 0.12 0.12 3 3 17.5 15.3 10.0 3 1.2 3 3	3.2 3.2 1 1 3.3 3 3 3 3 3 3 1 1 6.2		2 0.4 0.01 8 0.6 1 1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.01	205.1 260.0 550.0 5600 5600 5600	
(old) DENIT-SU4 (new) DENIT-LS3	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Lignocellulosic; 50% Sand	STD. DEV. MIN MAX n MEAN STD. DEV. MIN MIN	27.1 28.1 1 21 21 21 21 25.3 4.6 20.0 28.1 3 3 25.8 2.5.8 - 21.4	7.3 1 7 7 7 3 6.9	7.1 140.0 150.0 210 210 210 210 210 220.0 220.0 220.0 220.0 3 233.3 55.1 170.0	0.1 0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	-106.6 -106.6 1 -118 -118 -118 -118 -118 -2 23.3 -21.0 67.5 2 -229.8	329.5 929.0 1395.0 1 1510 1510 1510 3 1003.0 270.2 695.0 1200.0 3 3 1464.0	275.8 560.0 950.0 1 1100 1100 3 630.0 239.0 370.0 840.0 370.0 840.0 329.2 202.6	0.0 1.0 1.0 1.0 6 6 6 6 3.3 0.6 1.0 2.0 3.3 6.3 8.44 1.0	1.3 2.0 3.9 1 2 2 2 2 2 3 3 5.3 5.8 5.8 2.0 12.0 3 6.0	22.0 22.0 1 1 3 3 1 3 2 2 0.0 2 0.0 2 0 0 2 9.0 2 0 2 0 2 2 2 0 2 2 0 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 0 2	0.4 0.8 1.4 1 0.9 0.9 3 20.2 16.5 2.0 34.2 3 2.2	0.4 0.8 1.3 1 0.9 0.9 0.9 0.9 3 3 3.2 2 1.2 2.0 4.3 3 2.2	0.2 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.4 0.2 1.0 0 3 3 0.6 0.2	0.1 0.01 1 0.02 0.02 0.02 0.02 0.02 0.02	0.2 0.1 0.4 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.	3.2 3.2 1 3.3 3.3 3.3 1 6.2		2 0.4 0.01 0.09	205.1 260.0 550.0 560 560 560 560 3 446.7	
(old) DENIT-SU4 (new) DENIT-LS3	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Lignocellulosic; 50% Sand 80% Sulfur; 20%	STD. DEV. MIN MAX n MEAN STD. DEV.		7.3 1 7 7 7 7 7 7 7 3 3 6.9 7.7 7 3 3	7.1 140.0 150.0 210 210 210 210 210 3 3 213.3 11.5 200.0 220.0 3 3 233.3 55.1 170.0	0.1 0.2 1. 7.8 7.8 3 2.0 2.4 0.1 4.7 3 2.6 4.4	-106.6 -106.6 1 -118 -118 -118 -118 -118 -23.3 -23.3 -21.0 67.5 2 -229.8 -229.8	329.5 929.0 1395.0 1 1510 1510 1510 3 1003.0 270.2 695.0 1200.0 3 3 1464.0	275.8 560.0 950.0 1100 1100 3 630.0 239.0 370.0 840.0 3 0 936.7 202.6 710.0	0.0 1.0 1.0 1.0 6 6 6 6 1.0 2.0 3 6.3 6.3 8.4	1.3 2.0 3.9 1 2 2 2 2 2 2 2 3 3 5.3 5.3 5.8 8 2.0 12.0 3 3 6.0 6.1	22.0 22.0 1 13 13 13 2 2 0.0 20.0 11.0 29.0 2 32.5	0.4 0.8 1.4 1 0.9 0.9 0.9 3 20.2 16.5 2.0 34.2 3 2 2.2 0.5	0.4 0.8 1.3 1.0 0.9 0.9 0.9 3.3 2.2 2.0 4.3 3 3.22 2.0 5.5 1.8 8 2.7	0.2 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.01 1 0.02 0.02 3 3 17.0 15.7 0.01 31.0 3 3.0 0.0 0 0.00	0.2 0.1 0.4 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.	3.2 3.2 1 1 3.3 3.3 3.3 3.3 2 1 1 6.2 6.2 6.2	1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0.4 0.01 0.01 0.09	205.1 260.0 550.0 1 560 560 560 560 3 446.7 105.0	
(old) DENIT-SU4 (new) DENIT-LS3	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay S0% Lignocellulosic; S0% Sand 80% Sulfur; 20% Oyster Shell	STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MEAN STD. DEV. MIN MAX n MAX n	27.1 28.1 21 21 21 25.3 4.66 20.0 28.1 3 25.8 25.8 - - - 21.4 22.4 28.4 28.4 28.4 2	7.3 1 7 7 7 7 3 3 6.9 7.7 3 3 6.9 6.9 7.7 3 3	7.1 140.0 150.0 210 210 210 210 210 220.0 220.0 220.0 220.0 3 3 233.3 55.1 170.0 270.0 270.0	0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	-106.6 -106.6 1 -118 -118 -118 -118 -23.3 -21.0 67.5 2 -229.8 -229.6 -180.0 1	329.5 929.0 1395.0 1 1 510 1 510 3 1003.0 270.2 695.0 1200.0 1200.0 1200.0 1200.0 1205.0 1265.0 1257.0 1655.0 2	275.8 560.0 950.0 1100 1100 3 630.0 239.0 370.0 840.0 370.0 840.0 370.0 840.0 370.0 100.0 2	0.0 1.0 1.0 1.0 6 6 3 3 1.3 0.6 1.0 2.00 3 8.4 1.0 1.0 2.0 0 3 0.2 0 3 0.2 0 0 2.0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	1.3 2.0 3.9 1 2 2 2 2 3 3 5.3 5.8 5.8 2.0 12.0 3 3 6.0 6.1 12.0 3 2.0 13.0 0 2.0 2 2 0 2.0 2 2 2 2 2 2 2 3 3 5.3 5.5 3 5.5 5.5 5.5 5.5 5.5 5.5 5	22.0 22.0 1 1 3 3 2 2 0.0 2 2 0.0 2 2 0.0 2 2 0.0 2 2 0.0 2 2 0.0 2 2 0.0 2 2 0.0 2 2 0.0 2 2 0.0 0 1 1 3 2.0 2.0 0 1 3 2.0 0 2.0 0 1 1 3 3 2 0 0 0 1 1 3 3 2 0 0 1 1 3 2 0 0 1 1 3 2 0 0 1 1 3 2 0 0 1 1 3 2 0 0 1 1 3 2 0 0 0 1 1 3 2 0 0 0 1 1 3 2 0 0 0 1 1 3 2 0 0 0 1 1 3 2 0 0 0 1 1 3 2 0 0 0 1 1 3 2 0 0 0 1 1 3 2 0 0 0 1 1 0 2 0 0 0 1 1 1 0 2 0 0 0 1 1 0 2 0 0 1 1 1 0 2 0 0 0 1 1 1 0 2 0 0 0 1 1 1 1	0.4 0.8 1.4 1 9 0.9 0.9 0.9 0.9 0.9 2.02 16:5 2.0 34:2 33 2.2 0.5 1.9 2.7 7 2.7	0.4 0.8 1.3 1.2 0.9 0.9 0.9 0.9 0.9 0.9 3.2 2.0 2.0 4.3 3.2 2.2 0.5 5.1.8 2.7 7 2	0.2 0.7.3 0.7.4 0.7.4 0.7.5 0.7.4 0.7.6 0.7.4 0.7.7 0.7.4 0.7.7 0.7.4 0.7.7 0.7.4 0.7.7 0.7.4 0.7.7 0.7.4 0.7.7 0.7.4 0.7.7 0.7.4 0.7.7 0.7.4 0.7.7 0.7.4 0.7.7 0.7.4 0.7.7 0.7.4 0.7.7 0.7.4	0.1 0.3 1 0.1 0.1 0.1 0.5 0.5 0.6 0.2 0.5 0.8 8 2 2	0.1 0.01 1 0.02 0.02 3 17.0 15.7 0.01 31.0 0 .0 0 0.0 0.01 0.01 0.1 2	0.2 0.1 0.4 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.	3.2 3.2 1 3.3 3.3 3.3 3.3 1 1 6.2 6.2 6.2 1	1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0.4 0.01 0.01 0.09	205.1 260.0 550.0 5600 5600 5600 3600 3000 3000 340.0	
(old) DENIT-SU4 (new) DENIT-LS3 DENIT-LS3 DENIT-LS2	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Sand 80% Sulfur; 20% Oyster Shell 50%	STD. DEV. MIN MAX n MEAN MIN MAX n MEAN	27.1 28.1 1 21 21 21 3 3 25.3 4.6 20.0 28.1 3 3 25.8 - 21.4 28.4 22.7.3	7.3 1 7 7 7 7 3 3 6.9 7.7 3 3 6.9 6.9 7.7 3 3	7.1 140.0 150.0 210 210 210 210 210 210 213.3 11.5 200.0 220.0 220.0 220.0 220.0 220.0 220.0 220.0 220.0 223.3 55.1	0.1 0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	-106.6 -106.6 -11 -118 -118 -118 -2 23.3 -21.0 67.5 2 -229.8 -229.8 -229.6 -180.0 1 1 -11.5	329.5 929.0 1395.0 1 1 1 510 3 3 1003.0 270.2 695.0 1200.0 1200.0 1200.0 1295.5 1257.0 1655.0 2 2 1223.0	275.8 560.0 950.0 1100 1100 3 630.0 239.0 840.0 370.0 840.0 370.0 840.0 370.0 840.0 370.0 840.0 239.0 840.0 239.0 840.0 239.0 840.0 239.0 840.0 239.0 840.0 239.0 840.0 239.0 840.0 239.0 840.0 239.0 840.0 239.0 840.0 239.0 840.0 239.0 840.0 239.0 840.0 239.0 840.0 239.0 840.0 239.0 200.00	0.0 1.0 1.0 1.0 6 6 3 1.3 0.6 1.0 2.0 3.0 6.3 8.4 1.0 16.0 2.0 3.0 5.0	1.3 2.0 3.9 1 2 2 2 3 3 5.3 5.8 5.8 2.0 12.0 3 0 6.0 6.1 2.0 13.0 2 2 3.8	22.0 22.0 1 13 13 2 20.0 11.0 29.0 20.0 232.5 32.5 26.0	0.4 0.8 1.4 1 0.9 0.9 0.9 3 20.2 16.5 2.0 3 4.2 2 0.5 1.9 2.7 2 2 17.5	0.4 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	0.2 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.4 0.111 3.8 1.6 0.6 0.6 1.2 2.2 2.2 2.0 2.0	0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.6 0.2 0.5 0.8 0.8 2 0.3	0.1 0.01 1 0.02 0.02 0.02 3 17.0 15.7 0.01 31.0 0.00 0.00 0.01 0.1 2 2 15.2	0.2 0.1 0.4 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.	3.2 3.2 1 3.3 3.3 3.3 3.3 1 6.2 6.2 6.2 6.2 1 1 5.7	1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0.4 0.01 0.01 0.09	205.1 260.0 550.0 5600 5600 5600 3600 3000 3000 340.0	
DENIT-SU4 (new) DENIT-LS3 DENIT-SU3 DENIT-LS2	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay S0% Lignocellulosic; S0% Sand 80% Sulfur; 20% Oyster Shell	STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MEAN STD. DEV. MIN MAX n MAX n	27.1 28.1 21 21 21 25.3 4.66 20.0 28.1 3 25.8 25.8 - - - 21.4 22.4 28.4 28.4 28.4 2	7.3 1 7 7 7 7 3 3 6.9 7.7 3 3 6.9 6.9 7.7 3 3	7.1 140.0 150.0 210 210 210 210 213 3 11.5 200.0 220.0 3 3 55.1 170.0 270.0 270.0 2375.0 7.1.1	0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	-106.6 -106.6 -118 -118 -118 2 2 23.3 -21.0 67.5 2 2 -229.8 -229.8 -229.6 -180.0 1 1 -11.5	329.5 929.0 1395.0 1 1 510 1 510 3 1003.0 270.2 695.0 1200.0 1200.0 1200.0 1200.0 1205.0 1265.0 1257.0 1655.0 2	275.8 560.0 950.0 11000 11000 33 630.0 239.0 370.0 840.0 370	0.0 1.0 1.0 1.0 6 6 3 3 1.3 0.6 1.0 2.00 3 8.4 1.0 1.0 2.0 0 3 0.2 0 3 0.2 0 0 2.0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	1.3 2.0 3.9 1 2 2 2 2 3 3 5.3 5.8 5.8 2.0 12.0 3 3 6.0 6.1 12.0 3 2.0 13.0 0 2.0 2 2 0 2.0 2 2 2 2 2 2 3 3 5.3 5.5 3 5.5 5.5 5.5 5.5 5.5 5.5 5	22.0 22.0 1 1 3 3 2 2 0.0 2 2 0.0 2 2 0.0 2 2 0.0 2 2 0.0 2 2 0.0 2 2 0.0 2 2 0.0 2 2 0.0 2 2 0.0 0 1 1 3 2.0 2.0 0 1 3 2.0 0 2.0 0 1 1 3 3 2 0 0 0 1 1 3 3 2 0 0 1 1 3 2 0 0 1 1 3 2 0 0 1 1 3 2 0 0 1 1 3 2 0 0 1 1 3 2 0 0 0 1 1 3 2 0 0 0 1 1 3 2 0 0 0 1 1 3 2 0 0 0 1 1 3 2 0 0 0 1 1 3 2 0 0 0 1 1 3 2 0 0 0 1 1 3 2 0 0 0 1 1 0 2 0 0 0 1 1 1 0 2 0 0 0 1 1 0 2 0 0 1 1 1 0 2 0 0 0 1 1 1 0 2 0 0 0 1 1 1 1	0.4 0.8 1.4 1 9 0.9 0.9 0.9 0.9 0.9 2.02 16:5 2.0 34:2 33 2.2 0.5 1.9 2.7 7 2.7	0.4 0.8 1.3 1 0.9 0.9 0.9 3 3 3.2 2.0 2.0 0 4.3 3 3 2.2 2.0 5.5 1.8 2.7 2 3 1.2 2.3	0.2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 2.6 1.14 1.13 3.8 3.8 3.8 3.8 1.6 0.6.8 1.2.2 2.2.2 2.2 2.2 2.2.0 1.2.2	0.1 0.3 1 0.1 0.1 0.1 0.1 0.5 0.4 0.2 1.0 0.3 0.6 0.2 0.5 0.8 0.8 0.3 0.0 0.0	0.1 0.01 1 0.02 0.02 0.02 0.02 3 17.0 15.7 0.01 31.0 3 0.00 0.00 0.00 0.001 0.1 2 15.2 15.2	0.2 0.1 0.4 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.	3.2 3.2 1 1 3.3 3.3 3.3 1 1 6.2 6.2 6.2 6.2 5.7	1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0.4 0.01 0.01 0.09	205.1 260.0 550.0 5600 5600 5600 3600 3000 3000 340.0	
(old) DENIT-SU4 (new) DENIT-LS3 DENIT-SU3 DENIT-LS2	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Lignocellulosic; 50% Sand 80% Sulfur; 20% Oyster Shell 50% Lignocellulosic;	STD. DEV. MIN MAX n MEAN STD. DEV.	27.1 28.1 21 21 21 3 3 25.3 4.6 20.0 28.1 3 3 25.8 2.5.8 2.1.4 22.4 21.4 22.4 22.7.3 0.1	7.3 1 7 7 7 7 3 3 6.9 7.7 7 3 3 6.9 7.7 7 2 2	7.1 140.0 150.0 210 210 210 210 213.3 11.5 200.0 220.0 3 3 55.1 170.0 270.0 270.0 270.0 270.0 270.0 270.0 275.0 375.0 375.0	0.1 0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	-106.6 -106.6 -118 -118 -118 -118 -118 -2 2 3.3 -21.0 67.5 2 -229.8 -229.8 -229.8 -229.6 -180.0 1 -11.5 -11.5	329.5 929.0 1395.0 1510 1510 3 1003.0 270.2 695.0 1200.0 3 1464.0 1299.5 1257.0 1655.0 1257.0 1655.0 1223.0 3 382.2	275.8 560.0 950.0 1100 1100 3 630.0 239.0 370.0 840.0 370.0 840.0 370.0 840.0 1100.0 1100.0 202.6 710.0 1100.0 2 680.0 240.4 510.0	0.0 1.0 1.0 1.0 6 6 3 3 0.6 1.0 2.0 3 6.3 8.44 1.0 16.0 2 5.0 5.7	1.3 2.0 3.9 1 2 2 2 2 2 2 2 2 2 3 3 5.3 3 5.8 2.0 12.0 3 0 6.0 6.1 2.0 3 3 6.0 6.1 2.0 2 2 5.3 3 5.3 5.3 5.8 5.8 5.8 5.9 5.9 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22.0 22.0 1 1 3 3 1 3 2 2 0.0 2 20.0 1 1.0 2 20.0 2 20.0 2 20.0 2 20.0 2 20.0 2 20.0 1 1.0 2 20.0 1 3 20.0 2 2.0 0 1 3 2.0 0 2.0 0 1 3 3 2 2.0 0 1 3 3 3 3 2 2 0 0 2 2.0 0 1 3 3 3 3 3 2 2 0 0 2 2.0 0 1 3 3 3 3 3 2 2 0 0 2 2.0 0 1 3 3 3 2 2 0 0 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2.5	0.4 0.8 1.4 1 1 0.9 0.9 0.9 3 20.2 20.2 16.5 2.0 34.2 3 3 2.2 2.0 5 1.9 9 2.7 2 2.7 2 17.5 20.7	0.4 0.8 1.3 1.3 0.9 0.9 0.9 3 3.2 2.0 0.5 1.2 2.0 0.5 1.8 8 2.7 2.3 1.2 1.2 1.4	0.2 0.7 0.7 1.0 1.1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.1 1.1 1.1 1.1 1.1 3.3 2.6 1.1.1 3.8 3.3 1.1 3.8 3.3 1.1.1 3.8 3.3 1.1.1 3.8 3.3 1.1.1 3.8 3.3 1.1.1 3.8 3.1.2 1.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 3.3.3 3.3.4 <t< td=""><td>0.1 0.3 1 0.1 0.1 0.1 0.1 0.5 0.4 0.5 0.6 0.2 0.5 0.6 0.2 0.5 0.8 8 2 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0</td><td>0.1 0.01 0.1 1 0.02 0.02 0.02 3 17.0 15.7 0.01 31.0 31.0 0.0 0.01 0.01 0.01 2 15.2 19.5 1.4</td><td>0.2 0.1 0.4 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.</td><td>3.2 3.2 1 1 3.3 3.3 3.3 3.3 1 6.2 6.2 6.2 1 1 5.7,</td><td>1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>2 0.4 0.01 0.01 0.09</td><td>205.1 260.0 550.0 5600 5600 5600 3600 3000 3000 340.0</td><td></td></t<>	0.1 0.3 1 0.1 0.1 0.1 0.1 0.5 0.4 0.5 0.6 0.2 0.5 0.6 0.2 0.5 0.8 8 2 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.1 0.01 0.1 1 0.02 0.02 0.02 3 17.0 15.7 0.01 31.0 31.0 0.0 0.01 0.01 0.01 2 15.2 19.5 1.4	0.2 0.1 0.4 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.	3.2 3.2 1 1 3.3 3.3 3.3 3.3 1 6.2 6.2 6.2 1 1 5.7,	1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0.4 0.01 0.01 0.09	205.1 260.0 550.0 5600 5600 5600 3600 3000 3000 340.0	
(old) DENIT-SU4 (new) DENIT-LS3 DENIT-SU3 DENIT-LS2	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Lignocellulosic; 50% Sand 80% Sulfur; 20% Oyster Shell 50% Lignocellulosic;	STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MAX n MAX N MAX N MAX N MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN	27.1 28.1 1 21 21 21 3 25.3 4.6 6 20.0 28.1 3 25.8 25.8 25.8 21.4 28.4 28.4 21.4 28.4 27.3 0.1 27.2 27.3 1	7.3 1 7 7 7 7 7 7 7 7 7 7 7 3 3 6.9 7.7 7 7.7 2 2 2 2 2 7.8	7.1 140.0 150.0 210 210 213.3 213.3 11.5 200.0 220.0 233 55.1 170.0 220.0 2375.0 7.1 170.0 220.0 2375.0 7.1 370.0 380.0 1	0.1 0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	-106.6 -106.6 -118 -118 -118 -118 -118 -118 -118 -223.3 -21.0 67.5 2 -229.8 -229.8 -229.6 -180.0 1 1 -11.5 -11.5 -11.5 1	329.5 929.0 1395.0 1510 1510 3 1003.0 270.2 695.0 1200.0 3 1464.0 1299.5 1257.0 1655.0 1257.0 1655.0 1223.0 3 1424.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 1223.0 3 1223.0 1223.0 1223.0 1223.0 1235.0	275.8 560.0 950.0 1100 1100 3 630.0 239.0 370.0 840.0 370.0 840.0 370.0 840.0 239.0 240.4 510.0 850.0 240.4 510.0 850.0 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.3 2.0 3.9 1 2 2 2 2 3 3 5.3 3 5.8 2.0 12.00 13.0 6.1 12.00 13.0 2 2 3.8 8 2.5 5.5 5.5 5.5 5.5 5.5	22.0 22.0 1 1 3 3 3 2 2 0.0 0 2 2 0.0 0 2 2 0.0 0 2 2 0.0 0 2 2 0.0 0 2 2 0.0 0 2 2 0.0 0 2 2 0.0 2 2 0.0 2 2.0 0 2 2.0 0 2 2.0 0 1 1 3 3 2 2 2 0 0 2 2.0 0 1 1 3 3 2 2 2 0 0 0 2 2.0 0 2 2.0 0 1 1 3 3 2 2 2 0 0 0 0 2 2 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 2 2 0 2 2 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 2 2 0 0 2 2 0 0 0 0 2 2 0 0 0 0 2 2 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 5 2 2 2 2	0.4 0.8 1.4 1 0.9 0.9 0.9 0.9 3 202 202 16.5 2.0 0 3 4.2 3 3 2.2 2 0.5 1.9 2.7 7 2.2 7.2 2.2 7.2 2.2 7.2 2.2 8 3.2,1 1.9 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 7 7 7	0.4 0.8 1.3 1 0.9 0.9 0.9 0.9 3 3.22 2.0 0.5 0.5 1.8 8 2.7 2.7 2.2 3.3 1.2 2.3 3.1 2.7 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	0.2 0.7 0.7 0.7 1.0 0.8 0.8 0.8 0.8 0.8 0.8 3.3 2.6.6 0.6.8 3.3 2.6.6 0.6.7 1.1 3.3 2.6.7 0.6.8 3.3 2.6.6 0.6.6 0.6.7 1.2 2.2.2 2.0 1.2 2.8 1.1	0.1 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.5 0.8 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.3 0.0.0 0.0 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.01 0.1 1 0.02 0.02 0.02 0.02 0.02	0.2 0.1 0.4.4 1 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12	3.2 3.2 1 1 3.3 3.3 3.3 1 6.2 6.2 6.2 6.2 2 6.2 5.7 5.7	1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0.4 0.01 0.01 0.09	205.1 260.0 550.0 5600 5600 5600 3600 3000 3000 340.0	
(old) DENIT-SU4 (new) DENIT-LS3 DENIT-SU3 DENIT-LS2 (old)	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Sand 80% Sulfur; 20% Oyster Shell 50% Lignocellulosic; 50% Expanded Clay 25%	STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MEAN STD. DEV. MIN MAX n MAX n MAX n MIN MAX n MEAN	27.1 28.1 1 21 21 21 21 21 21 25.3 4.6 20.0 28.1 3 3 25.8 21.4 21.4 22.7.3 0.1 27.2 27.3	7.3 1 7 7 7 7 7 7 7 7 7 7 7 3 3 6.9 7.7 7 7.7 2 2 2 2 2 7.8	7.1 140.0 150.0 210 210 210 210 210 3 3 213.3 11.5 200.0 220.0 3 3 55.1 170.0 270.0 270.0 273.5 375.0 375.0 375.0	0.1 0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	-106.6 -106.6 -118 -118 -118 -118 -118 -118 -118 -223.3 -21.0 67.5 2 -229.8 -229.8 -229.6 -180.0 1 1 -11.5 -11.5 -11.5 1	329.5 929.0 1395.0 1510 1510 3 1003.0 270.2 695.0 1200.0 3 1464.0 1299.5 1257.0 1655.0 1257.0 1655.0 1223.0 3 1424.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 3 1223.0 1223.0 3 1223.0 1223.0 1223.0 1223.0 1235.0	275.8 560.0 950.0 1100 1100 3 630.0 239.0 370.0 840.0 370.0 840.0 370.0 840.0 239.0 240.4 510.0 850.0 240.4 510.0 850.0 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.3 2.0 3.9 1 2 2 2 2 2 2 2 2 2 2 3 5.8 5.8 5.8 5.8 5.8 2.0 12.0 6.1 13.0 2.0 13.0 2.0 5.5 5.5	22.0 22.0 1 1 3 3 3 2 2 0.0 0 2 2 0.0 0 2 2 0.0 0 2 2 0.0 0 2 2 0.0 0 2 2 0.0 0 2 2 0.0 0 2 2 0.0 2 2 0.0 2 2.0 0 2 2.0 0 2 2.0 0 1 1 3 3 2 2 2 0 0 2 2.0 0 1 1 3 3 2 2 2 0 0 0 2 2.0 0 2 2.0 0 1 1 3 3 2 2 2 0 0 0 0 2 2 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 2 2 0 2 2 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 2 2 0 0 2 2 0 0 0 0 2 2 0 0 0 0 2 2 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 5 2 2 2 2	0.4 0.8 1.4 1 0.9 0.9 0.9 0.9 3 202 202 16.5 2.0 0 3 4.2 3 3 2.2 2 0.5 1.9 2.7 7 2.2 7.2 2.2 7.2 2.2 7.2 2.2 8 3.2,1 1.9 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 7 7 7	0.4 0.8 1.3 1 0.9 0.9 0.9 0.9 3 3.22 2.0 0.5 0.5 1.8 8 2.7 2.7 2.2 3.3 1.2 2.3 3.1 2.7 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	0.2 0.7 0.7 0.7 1.0 0.8 0.8 0.8 0.8 0.8 0.8 3.3 2.6.6 0.6.8 3.3 2.6.6 0.6.7 1.1 3.3 2.6.6 0.6.6 0.6.7 1.2 2.2 2.0 1.2 2.8 1.1	0.1 0.1 0.3 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.0 0.2 0.3 0.3 0.0 0.2 0.3 0.3 0.0 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.1 0.01 0.1 1 0.02 0.02 0.02 0.02 0.02	0.2 0.1 0.4.4 1 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12	3.2 3.2 1 1 3.3 3.3 3.3 1 6.2 6.2 6.2 6.2 2 6.2 5.7 5.7	1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0.4 0.01 0.01 0.09	205.1 260.0 550.0 5600 5600 5600 3600 3000 3000 340.0	
(old) DENIT-SU4 (new) DENIT-LS3 DENIT-LS3 DENIT-LS2 DENIT-LS2	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Sand 80% Sulfur; 20% Oyster Shell 50% Lignocellulosic; 50% Expanded Clay 25% Lignocellulosic;	STD. DEV. MIN MAX n MEAN STD. DEV. MAX n MEAN STD. DEV. MAX n MEAN STD. DEV.	27.1 28.1 1 21 21 21 3 3 25.3 4.6 20.0 28.1 3 25.8 21.4 28.4 21.4 28.4 22.7.3 0.1 27.2 27.3 1 1 27.2 27.3 1 27.2 27.3	7.3 1 7 7 7 7 7 7 7 7 7 7 7 3 3 6.9 7.7 7 7.7 2 2 2 2 2 7.8	7.1 140.0 150.0 210 210 3 3 213.3 11.5 200.0 220.0 3 3 233.3 55.1 170.0 270.0	0.1 0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	-106.6 -106.6 1 -118 -118 -118 -118 -233 -210 -279.6 -180.0 -115 -115 -115 -115 -115 -115 -115 -11	329.5 929.0 1395.0 1 1 1 1510 3 1003.0 270.2 695.0 1200.0 3 1464.0 1395.5 1257.0 1655.0 2 1223.0 1655.0 3 18.2 998.0 3 18.2 998.0 1448.0	275.8.8 560.00 11 1100 1100 1100 1100 330.0 3370.0 3370.0 3370.0 3370.0 239.0 3370.0 202.6 630.0 3370.0 202.6 680.0 202.6 680.0 1100 202.6 680.0 1100 202.6 850.0 1100 202.6 850.0 1100 202.6 850.0 1100 202.6 850.0 1100 202.6 850.0 1100 202.6 850.0 1100 202.6 100 100 100 100 100 100 100 10	0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.3 2.0 3.9 1 2 2 2 2 3 3 5.3 3 5.8 2.0 12.00 13.0 6.1 12.00 13.0 2 2 3.8 8 2.5 5.5 5.5 5.5 5.5 5.5	22.0 22.0 22.0 1 1 3 3 2 2 2 0.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 0.0 2 0.0 2 0 0 2 2 5 5 2 5 5 5 2 5 5 5 2 5 5 5 5	0.4 0.8 0.9 0.9 0.9 0.9 3 3 20.2 2.0 3 4.2 3 3 2.2 0.5 2.0 5 2.0 5 2.0 7 2.7 2 2.7 2.2 7.7 5 2.0.7 2.2 8 32.1 1 1 2.0 2.0 7 2.0 2.0 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.4 0.8 1.3 1 0.9 0.9 0.9 3 3 3.2 2.0 5 5 1.8 2.7 2 2.3 1.2 1.4 4 3.1 1.2 1.4 4 3.1 1.2 1.4 4 3.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	0.2 0.7 10.0 11 0.8 0.8 0.8 0.8 3.3 2.6 1.11 3.8 1.6 0.6.8 1.11 3.8 1.6 0.6.8 1.2 2.2 2.2 2.2 2.2.2 2.2.2 2.2.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	0.1 0.1 0.3 1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.5 0.5 0.8 0.0 0.2 0.5 0.3 0.0 0.2 0.3 0.3 0.0 0.2 0.3 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.5 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.1 0.01 0.1 1 0.02 0.02 0.02 3 3 17.0 0.1 5.7 0.01 31.0 3.0 0.0 0.01 0.1 0.1 2 19.5 1.4 29.0 0 1 16	0.2 0.1 0.4 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.	3.2 3.2 1 1 3.3 3.3 3.3 1 1 6.2 6.2 6.2 6.2 5.7 5.7 5.7	1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0.4 0.01 0.01 0.09	205.1 260.0 550.0 5600 5600 5600 3600 3000 3000 340.0	
(old) DENIT-SU4 (new) DENIT-LS3 DENIT-LS3 DENIT-LS2 DENIT-LS2	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Sand 80% Sulfur; 20% Oyster Shell 50% Lignocellulosic; 50% Expanded Clay 25%	STD. DEV. MIN MAX n MEAN STD. DEV. MIN	27.1 28.1 28.1 21 21 3 3 25.3 4.6 20.0 28.1 3 3 25.8 4.6 20.0 28.1 3 3 25.8 4.6 20.0 28.1 3 3 25.3 4.6 20.0 28.1 3 3 25.3 4.6 20.0 28.1 21 21 21 21 21 21 21 21 21 21 21 21 21	7.3 1 7 7 7 7 7 7 7 7 7 7 7 3 3 6.9 7.7 7 7.7 2 2 2 2 2 7.8	7.1 140.0 150.0 210 210 3 3 213.3 11.5 200.0 220.0 233 55.1 170.0 220.0 2335.0 2333 55.1 170.0 220.0 2335.0 7.1 1 375.0 380.0 1 320 320 320 320 320	0.1 0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	-106.6 -106.6 -106.6 -106.6 -106.6 -106.6 -106.6 -118 -118 -118 -118 -118 -115 -115 -115	329.5 929.0 1395.0 1510 1510 3 1003.0 270.2 695.0 1200.0 3 1464.0 1200.0 3 1202.0 1655.0 1257.0 3 1455.0 1257.0 3 1223.0 3 1428.0 1223.0 3 1428.0 1448.0 1448.0 1200	275.8 560.0.9 950.0.9 11 1100 11000 3 3 630.0 239.0 239.0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.3 2.0 3.99 2 2 2 3 3 5.8 2.0 12.0 12.0 6.0 6.1 2.0 3.3 8 2.0 5.5 2.0 5.5 5 2.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 8 8 2.0 5.3 3 5.8 8 2.0 6 2 9 2 3 3 5.8 8 2.0 6 2 9 2 2 3 3 5.8 8 2.0 6 2 9 2 2 2 3 3 5.8 8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5	22.0 22.0 22.0 22.0 20.0 11.0 29.0 29.0 29.0 29.0 29.0 29.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 25.0 26.0	0.4 0.8 1.4 1 0.9 0.9 0.9 3 20.2 16.5 2.0 3 2.2 0.5 1.9 2.7 2.2 1.7 2.8 3.221 1.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.4 0.8 1.3 0.9 0.9 0.9 3.2 2.0 0.5 1.8 2.7 7 2.3 1.2 2.3 1.2 2.3 1.2 2.3 1.2 2.3 1.2 2.3 1.2 2.3 1.2 2.3 1.2 2.3 1.2 2.3 1.3 2.2 2.3 1.3 2.2 2.3 1.3 2.2 2.3 1.3 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2	0.2 0.7 0.7 0.7 1.0 0.8 0.8 0.8 0.8 3.3 2.66 1.1 1.1 1.1 1.1 3.3 2.66 0.68 1.2 2.3 1.2 1.2 1.2 <	0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.5 0.4 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.1 0.01 0.1 1 0.02 0.02 0.02 3 3 17.0 15.7 0.01 31.0 0.0 0 0.01 0.01 0.01 0.01 2 15.2 19.5 2 1.5.2 1.4 29.0 1 1 6 16	0.2 0.1 0.4.4 1 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12	3.2 3.2 1 3.3 3.3 3.3 1 6.2 6.2 6.2 6.2 1 5.7 5.7	1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0.4 0.01 0.01 0.09	205.1 260.0 550.0 5600 5600 5600 3600 3000 3000 340.0	
(old) DENIT-SU4 (new) DENIT-LS3 DENIT-LS3 DENIT-LS2 OENIT-LS2	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Sand 80% Sulfur; 20% Oyster Shell 50% Lignocellulosic; 50% Expanded Clay 25% Lignocellulosic;	STD. DEV. MIN MAX n MEAN STD. DEV. MAX n MEAN STD. DEV. MAX n MEAN STD. DEV.	27.1 28.1 1 21 21 21 3 3 25.3 4.6 20.0 28.1 3 25.8 21.4 28.4 21.4 28.4 22.7.3 0.1 27.2 27.3 1 1 27.2 27.3 1 27.2 27.3	7.3 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.1 140.0 150.0 210 210 3 3 213.3 11.5 200.0 220.0 3 3 233.3 55.1 170.0 270.0	0.1 0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	-106.6 -106.6 -106.6 -106.6 -106.6 -106.6 -1108 -118 -118 -118 -118 -118 -2129.8 -229.8 -229.8 -229.8 -229.8 -115.5 -115.5 -115.5 -115.5 -115.5 -115.5 -115.6 -116.6 -118.6 -118.6 -118.6 -118.6 -118.7 -118.7 -118.7 -219.6 -115.7 -115.	329.5 929.0 1395.0 1510 1510 3 1003.0 270.2 695.0 1200.0 3 1464.0 199.5 1257.0 2 1223.0 3 3 1464.0 1655.0 2 2 1223.0 3 3 8.8.2 998.0 1428.0 1428.0 1428.0 1200	275.8 560.0.9 950.0.9 11 1100 11000 3 3 3 3 3 3 3 3 3 3 3 3 3	0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.3 2.0 3.9 1 2 2 2 2 3 3 5.3 3 5.8 2.0 12.00 13.0 6.1 12.00 13.0 2 2 3.8 8 2.5 5.5 5.5 5.5 5.5 5.5	22.0 22.0 22.0 1 1 3 3 2 2 2 0.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 9.0 2 0.0 2 0.0 2 0 0 2 2 5 5 5 2 5 5 5 2 5 5 5 5	0.4 0.8 1.4 1 0.9 0.9 0.9 3 20.2 16.5 2.0 3 2.2 0.5 1.9 2.7 2.2 1.7 2.8 3.221 1.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.44 0.88 0.99 0.99 0.99 0.99 0.99 0.99 0.99	0.2 0.7 0.10.0 1.10 0.8 0.10.1 1.1 0.8 0.8 0.8 0.8 0.8 1.1 1.2 2.2 2.2 2.2 2.2 2.2 1.2 1.2 1.2 1.2 1.2 1.2 <td>0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.5 0.4 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5</td> <td>0.1 0.01 0.1 1 0.02 0.02 3 3 17.0 15.7 0.01 31.0 3 3.0 0.0 0 0.00 0.01 0.1 2 15.2 19.5 1.4 4 29.0 1 1 16 6</td> <td>0.2 0.1 0.4.4 1 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12</td> <td>3.2 3.2 1 1 3.3 3.3 3.3 3.3 3.3 1 6.2 6.2 6.2 1 1 5.7 5.7</td> <td>1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>2 0.4 0.01 0.01 0.09</td> <td>205.1 260.0 550.0 5600 5600 5600 3600 3000 3000 340.0</td> <td></td>	0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.5 0.4 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.1 0.01 0.1 1 0.02 0.02 3 3 17.0 15.7 0.01 31.0 3 3.0 0.0 0 0.00 0.01 0.1 2 15.2 19.5 1.4 4 29.0 1 1 16 6	0.2 0.1 0.4.4 1 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12	3.2 3.2 1 1 3.3 3.3 3.3 3.3 3.3 1 6.2 6.2 6.2 1 1 5.7 5.7	1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0.4 0.01 0.01 0.09	205.1 260.0 550.0 5600 5600 5600 3600 3000 3000 340.0	
(old) DENIT-SU4 (new) DENIT-LS3 DENIT-LS3 DENIT-LS2 OENIT-LS2	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Sand 80% Sulfur; 20% Oyster Shell 50% Lignocellulosic; 50% Expanded Clay 25% Lignocellulosic;	STD. DEV. MIN MAX n MEAN STD. DEV. MIN	27.1 28.1 28.1 21 21 21 21 21 21 23 3 3 5.3 3 25.8 3 25.8 2 4.6 20.0 28.1 3 3 25.8 2.1 4 2.2 2.7 3 1 1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 3 3	7.3 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.1 140.0 150.0 210 210 3 3 213.3 11.5 200.0 220.0 233 55.1 170.0 220.0 2335.0 2333 55.1 170.0 220.0 2335.0 7.1 1 375.0 380.0 1 320 320 320 320 320	0.1 0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	-106.6 -106.6 -106.6 -11 -118 -118 -118 -118 -118 -223.3 -22.0 -229.8 -229.8 -229.8 -229.8 -229.8 -229.8 -229.6 -180.0 1 1 -11.5 -11	329.5 929.0 1395.0 1510 1510 3 1003.0 270.2 695.0 1200.0 3 1464.0 1299.5 1257.0 1257.0 1257.0 1257.0 1253.0 2 1223.0 318.2 998.0 1448.0 112000 12000 12000	275.8 560.0.04 11 1100 3 3 630.0 230.0 3 3 630.0 230.0 3 3 0.0 3 3 0.0 0 3 3 0.0 0 3 3 0.0 0 3 3 0.0 0 3 0.0 0 2 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.3 2.0 3.9 2 2 2 2 3 3 5.3 5.8 2.0 0 12.0 3 3 6.0 0 2.0 5.5 5.5 1 1 2 2 0 2.2 5.5 5.2 1 2 2 2 2 2 2 2 2 2 2 3 3 5.3 5.	2200 2200 11 13 13 2 2 2000 2900 2900 2900 2900 2900 2900	0.4 0.8 0.9 0.9 0.9 3 20.2 165 2.0 34.2 3 2.2 2 0.5 1.9 2.7 2 17.5 20.7 2 17.5 20.7 2 17.5 20.7 2 2.8 32.1 1 200 2 0.7 2 2.8 2 2.0 2 10 5 2.0 2 0 9 2.0 2 0 9 3 3 2.0 2 0 9 3 3 2.0 2 0 9 3 3 2.0 2 1.0 5 5 2.0 0 9 3 3 2.0 2 1.0 5 5 2.0 0 3 3 2.0 2 1.0 5 5 2.0 0 3 3 2.0 2 1.0 5 5 2.0 0 3 3 2.0 2 1.0 5 5 2.0 0 3 3 2.0 2 1.0 5 5 2.0 0 3 3 2.0 2 1.0 5 5 2.0 0 3 3 2.0 2 1.5 5 2.0 0 3 3 2.0 2 1.5 5 2.0 0 3 3 2.0 2 0 2 0 5 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 2.0 0 3 3 2.0 2 0.5 5 2.0 0 3 3 2.0 2 0 2 0 5 2.0 5 2 0.0 3 3 2.0 2 0 2.0 5 2 0.0 5 2.0 5 2.0 7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 0.7 2 2.0 2 2 2.0 2 2.0 2 2.0 2.0 2.0 2.0 2	0.44 0.88 0.99 0.99 0.99 0.99 0.99 0.99 0.99	0.2 0.7 10.0 110 0.8 0.8 0.8 2.6 1.11 3.3 2.6 1.11 3.8 1.14 3.8 1.6 0.6.8 1.14 3.8 1.6 0.6.8 1.2 2.2 3.3 3.3	0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.6 0.2 0.5 0.5 0.6 0.2 0.5 0.5 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.1 0.01 0.1 1 0.02 0.02 0.02 3 3 1.7.0 0.1 5.7 0.01 3.1.0 3.1.0 3.0 0.00 0.01 0.01 0.0	0.2 0.1 0.4 1 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12	3.2 3.2 1 1 3.3 3.3 3.3 3.3 1 1 6.2 6.2 6.2 6.2 5.7 5.7 5.7 5.7	1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0.4 0.01 0.01 0.09	205.1 260.0 550.0 5600 5600 5600 3600 3000 3000 340.0	
(old) DENIT-SU4 (new)	Sodium Sesqui. 10% Limestone; 30% Sulfur; 60% Expanded Clay 50% Sand 80% Sulfur; 20% Oyster Shell 50% Lignocellulosic; 50% Expanded Clay 25% Lignocellulosic; 75% Expanded Clay	STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MAX n	27.1 28.1 28.1 21 21 3 3 25.3 4.6 20.0 28.1 3 3 25.8 4.6 20.0 28.1 3 3 25.8 4.6 20.0 28.1 3 3 25.3 4.6 20.0 28.1 3 3 25.3 4.6 20.0 28.1 21 21 21 21 21 21 21 21 21 21 21 21 21	7.3 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.1 140.0 150.0 210 210 3 3 213.3 213.3 213.3 213.3 220.0 220.0 3 3 223.3 55.1 170.0 270.0	0.1 0.1 0.2 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	-106.6 -106.6 -106.6 -11 -118 -118 -118 -118 -118 -223.3 -22.0 -229.8 -229.8 -229.8 -229.8 -229.8 -229.8 -229.6 -180.0 1 1 -11.5 -11	329.5 929.0 1395.0 1 1 1 5100 3 1 1003.0 270.2 695.0 1200.0 3 3 1464.0 1295.0 1655.0 2 1227.0 1655.0 2 1223.0 318.2 998.0 1448.0 12000 12000 2 2002 3 3 3 3 3 3 3 3 3 3 3 3 3 3	275.8 560.0.04 11 1100 3 3 630.0 230.0 3 3 630.0 230.0 3 3 0.0 3 3 0.0 0 3 3 0.0 0 3 3 0.0 0 3 3 0.0 0 3 0.0 0 2 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.3 0.6 1.3 0.6 1.0 2.0 3.0 6.3 8.4 1.0 1.6 0.2 5.0 0.5 7.7 1.0 1.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	1.3 2.0 3.99 2 2 2 2 3 3 5.8 2.0 12.0 13.0 6.0 6.1 1 2.0 0 13.0 2 2.5 5.5 5 2.0 13.0 2.0 13.0 2.0 13.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	22.0 22.0 22.0 1 1 1 1 2 2 20.0 11.0 29.0 20.0	0.4 0.8 0.9 0.9 0.9 3 20.2 20 34.2 33 2.2 0.5 2.0 34.2 33 2.2 2.0 5 2.0 7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2	0.44 0.80 0.90 0.90 0.90 3.3 2.20 0.55 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.72 2.83 3.33 3.32 2.22 2.23 3.32 2.24 2.45 2	0.2 0.7 0.7 0.7 1.0 0.8 0.8 0.8 0.8 3.3 2.66 1.1 1.1 1.1 1.1 3.3 2.66 0.0.8 3.3 2.66 0.1.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.4 1.2 2.4 1.2 2.4 1.2 2.4 1.2 2.4 1.2 2.4 1.2 2.4 <td>0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.6 0.2 0.5 0.5 0.6 0.2 0.5 0.5 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0</td> <td>0.1 0.01 0.1 1 0.02 0.02 3 3 17.0 15.7 0.01 3 10.0 0 0.0 0 0.01 0.01 0.01 0.01</td> <td>0.2 0.1 0.4 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.</td> <td>3.2 3.2 1 1 3.3 3.3 3.3 1 6.2 6.2 6.2 6.2 2 1 1 5.7 5.7 5.7 5.7</td> <td>1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>2 0.4 0.01 0.01 0.09</td> <td>205.1 260.0 550.0 5600 5600 5600 3600 3000 3000 340.0</td> <td></td>	0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.6 0.2 0.5 0.5 0.6 0.2 0.5 0.5 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.1 0.01 0.1 1 0.02 0.02 3 3 17.0 15.7 0.01 3 10.0 0 0.0 0 0.01 0.01 0.01 0.01	0.2 0.1 0.4 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.	3.2 3.2 1 1 3.3 3.3 3.3 1 6.2 6.2 6.2 6.2 2 1 1 5.7 5.7 5.7 5.7	1.2 0.1 1.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 0.4 0.01 0.01 0.09	205.1 260.0 550.0 5600 5600 5600 3600 3000 3000 340.0	

Table 4 (con't)Statistical Summary of Water Quality Data

Sample ID	Media Composition	Statistical Parameter	Temp (°C)	рН	Total Alkalinity (mg/L)	DO (mg/L)	ORP (mV)	Specific Conductance (µS)	TDS (mg/L)	TSS (mg/L)	CBOD _s (mg/L)	COD (mg/L)	TN (mg/L N) ¹	TKN (mg/L N)	Organic N (mg/L N) ²	NH3-N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³	TP (mg/L)	Sulfide (mg/L)	H ₂ S (mg/L)	SO₄ (mg/L)	Fecal (Ct/100 mL
Recirculatio	n Tanks Effluent													,									
		n	3	3	3	2	2	3	3	3	3	2	3	3		3			1				
		MEAN	27.1		183.3	1.1	-35.7	882.7	486.7	3.0	3.6	25.5	40.3	16.3		10.2			5.8				
RC1		STD. DEV.	5.7		25.2			212.8	136.5	2.0	2.1		13.0	1.2		4.0							
		MIN	20.6			0.03		637.0	330.0	1.0	2.0	22.0	27.0	15.0	10000	5.7			5.8				11
		MAX	30.8	7.3	210.0	2.1	57.0	1011.0	580.0	5.0	6.0	29.0	53.0	17.0	9.3	13.0	36.0	49.0	5.8				11
		n	3	3	3	2	2	3	3	3	4.0	20.5	3	3	5.9		3	3	1				
RC2		MEAN STD. DEV.	26.7		176.7 35.1	0.9	-24.9	910.0 200.1	496.7 136.5	2.0	4.0	29.5	36.7 8.5	17.0		11.1 5.1		30.8 11.7	4.2				
1102		MIN	19.5			0.1	-108.2	679.0	340.0	1.0	2.0	24.0	27.0	15.0		5.3			4.2				9
		MAX	30.5			1.6		1031.0	590.0	3.0	8.0	35.0	43.0	19.0		15.0			4.2				9
		n	3	3	3	2	2	3	3	3	3	2	3	3	3	3	3	3	1				
		MEAN	26.2	-	206.7	1.2	73.3	976.0	500.0	4.3	4.8	50.0	36.0	15.7	6.9	8.7	20.3	29.1	6.4				
RC3		STD. DEV.	6.1		50.3			192.2	122.9	2.9	3.7		9.0	3.5		3.3							
		MIN	19.2	7.2		0.1	57.5	760.0	360.0	1.0	2.0	39.0	27.0	12.0		5.5			6.4				10
		MAX	30.2			2.3		1128.0	590.0	6.0		61.0	45.0	19.0		12.0			6.4				10
		n	3	3	3	2	2	3	3	3	3	2	3	3	3	3	3	3	1				
		MEAN	26.3		220.0	1.0	61.2	1004.3	536.7	11.7	3.2	27.5	33.3	14.7	6.0	8.6	18.7	27.3	6.7				
RC4		STD. DEV.	5.8		40.0			167.8	119.3	9.5	0.7		5.7	3.2		3.3							
		MIN	19.7	7.4		0.0	49.3	811.0	400.0	2.0	2.7	26.0	27.0	11.0		5.5		16.5	6.7				11
		MAX	30.4	7.8	260.0	1.9	73.0	1112.0	620.0	21.0	4.0	29.0	38.0	17.0	10.5	12.0	27.0	35.4	6.7				11
		n	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1					
		MEAN	22.0		260.0	3.3	96.0	1050.0	480.0	8.0	8.0	61.0	45.0	31.0	3.0	28.0	14.0	42.0					
RC5		STD. DEV.								1													
		MIN MAX	22.0		260.0 260.0	3.3	96.0 96.0	1050.0 1050.0	480.0 480.0	<u>8.0</u> 8.0	8.0 8.0	61.0 61.0	45.0 45.0	31.0 31.0		28.0							
Change 1 Davis	I Invitation Riafiltana Fé		22.0	7.5	200.0	5.5					0.0	01.0	45.0	51.0		20.0	1110	42.0					
Stage 1 Reci	culating Biofilters Ef		3	3	3	3.5	2	3	3		3	2	43.0	3		3			1				
Stage 1 Reci	culating Biofilters Ef			3	3		2 44.2	3 1024.7				2			3		3	3	1				
Stage 1 Recin	culating Biofilters Ef	fluent n MEAN STD. DEV.	3 26.8 3.0	3	3 220.0 50.0	3 7.5 0.5	2 44.2	3 1024.7 157.6	3 606.7 110.2	3 3.3 4.0	3 2.0 0.0	2	3 32.7 19.4	3 2.4 0.3	3 2.4 0.3	3 0.01 0.01	3 30.3 19.5	3 30.3 19.4					
		fluent n MEAN STD. DEV. MIN	3 26.8 3.0 23.5	6.7	3 220.0 50.0 170.0	3 7.5 0.5 7.1	2 44.2 35.5	3 1024.7 157.6 860.0	3 606.7 110.2 480.0	3 3.3 4.0 1.0	3 2.0 0.0 2.0	2 12.0 11.0	3 32.7 19.4 10.3	3 2.4 0.3 2.1	3 2.4 0.3 2.1	3 0.01 0.01 0.005	3 30.3 19.5 7.9	3 30.3 19.4 7.9	7.6				
		fluent n MEAN STD. DEV.	3 26.8 3.0	3	3 220.0 50.0 170.0	3 7.5 0.5	2 44.2 35.5	3 1024.7 157.6	3 606.7 110.2 480.0 680.0	3 3.3 4.0 1.0 8.0	3 2.0 0.0 2.0 2.0	2	3 32.7 19.4 10.3 45.1	3 2.4 0.3 2.1 2.6	3 2.4 0.3 2.1 2.6	3 0.01 0.01	3 30.3 19.5 7.9 43.0	3 30.3 19.4 7.9 43.0					
		fluent n MEAN STD. DEV. MIN MAX n	3 26.8 3.0 23.5 29.3 3	6.7	3 220.0 50.0 170.0 270.0 3	3 7.5 0.5 7.1 8.0 3	2 44.2 35.5 52.8 2	3 1024.7 157.6 860.0 1174.0 3	3 606.7 110.2 480.0 680.0 3	3 3.3 4.0 1.0 8.0 3	3 2.0 0.0 2.0 2.0 3	2 12.0 11.0 13.0 2	3 32.7 19.4 10.3 45.1 3	3 2.4 0.3 2.1 2.6 3	3 2.4 0.3 2.1 2.6 3	3 0.01 0.01 0.005 0.02 3	3 30.3 19.5 7.9 43.0 3	3 30.3 19.4 7.9 43.0 3	7.6 7.6 1				
UNSAT-CL4	30" Clinoptilolite	fluent n MEAN STD. DEV. MIN MAX n MEAN	3 26.8 3.0 23.5 29.3 3 25.7	6.7	3 220.0 50.0 170.0 270.0 3 173.3	3 7.5 0.5 7.1 8.0 3 6.2	2 44.2 35.5	3 1024.7 157.6 860.0 1174.0 3 943.7	3 606.7 110.2 480.0 680.0 3 573.3	3 3.3 4.0 1.0 8.0 3 2.0	3 2.0 0.0 2.0 2.0 3 2.0	2 12.0 11.0	3 32.7 19.4 10.3 45.1 3 39.5	3 2.4 0.3 2.1 2.6 3 2.5	3 2.4 0.3 2.1 2.6 3 2.5	3 0.01 0.01 0.005 0.02 3 0.008	3 30.3 19.5 7.9 43.0 3 37.0	3 30.3 19.4 7.9 43.0 3 37.0	7.6				
		fluent n MEAN STD. DEV. MIN MAX n MEAN STD. DEV.	3 26.8 3.0 23.5 29.3 3 25.7 2.2	6.7 7.8 3	3 220.0 50.0 170.0 270.0 3 173.3 46.2	3 7.5 0.5 7.1 8.0 3 6.2 0.7	2 44.2 35.5 52.8 2 40.2	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1	3 606.7 110.2 480.0 680.0 3 573.3 115.9	3 3.3 4.0 1.0 8.0 3 2.0 1.0	3 2.0 0.0 2.0 3 2.0 0.0	2 12.0 11.0 13.0 2 23.0	3 32.7 19.4 10.3 45.1 3 39.5 20.2	3 2.4 0.3 2.1 2.6 3 2.5 0.5	3 2.4 0.3 2.1 2.6 3 2.5 0.5	3 0.01 0.005 0.02 3 0.008 0.008	3 30.3 19.5 7.9 43.0 3 37.0 20.0	3 30.3 19.4 7.9 43.0 3 37.0 20.0	7.6 7.6 1 7.1				
UNSAT-CL4	30" Clinoptilolite	n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN	3 26.8 3.0 23.5 29.3 3 25.7 2.2 23.1	3 6.7 7.8 3 7.0	3 220.0 50.0 170.0 270.0 3 173.3 46.2 120.0	3 7.5 0.5 7.1 8.0 3 6.2 0.7 5.4	2 44.2 35.5 52.8 2 40.2 30.2	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1 781.0	3 606.7 110.2 480.0 680.0 3 573.3 115.9 440.0	3 3.3 4.0 1.0 8.0 3 2.0 1.0 1.0	3 2.0 0.0 2.0 2.0 3 2.0 0.0 0.0 2.0	2 12.0 11.0 13.0 2 23.0 22.0	3 32.7 19.4 10.3 45.1 3 39.5 20.2 17.1	3 2.4 0.3 2.1 2.6 3 2.5 0.5 2.1	3 2.4 0.3 2.1 2.6 3 2.5 0.5 2.1	3 0.01 0.005 0.02 3 0.008 0.003 0.003	3 30.3 19.5 7.9 43.0 3 37.0 20.0 15.0	3 30.3 19.4 7.9 43.0 3 37.0 20.0 15.0	7.6 7.6 1 7.1 7.1				
UNSAT-CL4	30" Clinoptilolite	fluent n MEAN STD. DEV. MIN MAX n MEAN STD. DEV.	3 26.8 3.0 23.5 29.3 3 25.7 2.2	3 6.7 7.8 3 7.0	3 220.0 50.0 170.0 270.0 3 173.3 46.2 120.0	3 7.5 0.5 7.1 8.0 3 6.2 0.7	2 44.2 35.5 52.8 2 40.2	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1	3 606.7 110.2 480.0 680.0 3 573.3 115.9	3 3.3 4.0 1.0 8.0 3 2.0 1.0	3 2.0 0.0 2.0 3 2.0 0.0 0.0 2.0 2.0	2 12.0 11.0 13.0 2 23.0	3 32.7 19.4 10.3 45.1 3 39.5 20.2	3 2.4 0.3 2.1 2.6 3 2.5 0.5 2.1 3.1	3 2.4 0.3 2.1 2.6 3 2.5 0.5 2.1	3 0.01 0.005 0.02 3 0.008 0.008	3 30.3 19.5 7.9 43.0 3 37.0 20.0	3 30.3 19.4 7.9 43.0 3 37.0 20.0 15.0	7.6 7.6 1 7.1				
UNSAT-CL4	30" Clinoptilolite	fluent n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MAX n	3 26.8 3.0 23.5 29.3 3 3 25.7 2.2 23.1 27.1 3	3 6.7 7.8 3 7.0 7.0 7.9 3	3 220.0 50.0 170.0 270.0 3 173.3 46.2 120.0 200.0 3	3 7.5 0.5 7.1 8.0 3 6.2 0.7 5.4 6.7 5.4 6.7 3	2 44.2 35.5 52.8 40.2 30.2 50.2 2	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1 781.0 1050.0 3	3 606.7 110.2 480.0 680.0 3 573.3 115.9 440.0 650.0 3	3 3.3 4.0 1.0 8.0 3 2.0 1.0 1.0 3.0 3.0 3	3 2.0 0.0 2.0 3 2.0 0.0 0.0 2.0 2.0 3	2 12.0 11.0 13.0 2 23.0 22.0 24.0 24.0 2	3 32.7 19.4 10.3 45.1 3 39.5 20.2 17.1 56.3 3	3 2.4 0.3 2.1 2.6 3 2.5 0.5 2.1 3.1 3.1 3	3 2.4 0.3 2.1 2.6 3 2.5 0.5 2.1 3.1 3.1 3	3 0.01 0.005 0.02 3 0.008 0.003 0.005 0.010 3	3 30.3 19.5 7.9 43.0 3 37.0 20.0 15.0 54.0 3	3 30.3 19.4 7.9 43.0 3 37.0 20.0 15.0 54.0 3	7.6 7.6 1 7.1 7.1 7.1 7.1 1				
UNSAT-CL4 UNSAT-CL2	30" Clinoptilolite	fluent n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MIN MAX n MEAN MIN MAX MEAN MEAN	3 26.8 3.0 23.5 29.3 3 3 25.7 2.2 23.1 27.1 27.1 3 3 26.0	3 6.7 7.8 3 7.0 7.0 7.9 3	3 220.0 50.0 270.0 3 173.3 46.2 120.0 200.0 3 143.3	3 7.5 0.5 7.1 8.0 3 6.2 0.7 5.4 6.7 5.4 6.7 3 7.1	2 44.2 35.5 52.8 40.2 30.2 50.2 2	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1 781.0 1050.0 3 880.3	3 606.7 110.2 480.0 680.0 3 573.3 115.9 440.0 650.0 3 550.0	3 3.3 4.0 1.0 8.0 3 2.0 1.0 1.0 3.0 3.0 3.0 3.0 3.0 3.3	3 2.0 0.0 2.0 3 3 2.0 0.0 0.0 2.0 2.0 3 3 2.0	2 12.0 11.0 13.0 2 23.0 22.0	3 32.7 19.4 10.3 45.1 3 39.5 20.2 17.1 56.3 3 37.4	3 2.4 0.3 2.1 2.6 3 3 2.5 0.5 2.1 3.1 3.1 3 2.4	3 2.4 0.3 2.1 2.6 3 2.5 0.5 2.1 3.1 3.1 3 2.4	3 0.01 0.005 0.02 3 0.008 0.003 0.005 0.010 3 0.011	3 30.3 19.5 7.9 43.0 3 37.0 20.0 15.0 54.0 3 35.0	3 30.3 19.4 7.9 43.0 37.0 20.0 15.0 54.0 3 35.0	7.6 7.6 1 7.1 7.1 7.1 1				
UNSAT-CL4	30" Clinoptilolite	n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n STD. DEV.	3 26.8 3.0 23.5 29.3 3 3 25.7 2.2 23.1 27.1 27.1 3 3 26.0 3.4	6.7 7.8 3 7.0 7.9 3	3 220.0 50.0 270.0 3 173.3 46.2 120.0 200.0 200.0 3 143.3 15.3	3 7.5 0.5 7.1 8.0 3 6.2 0.7 5.4 6.7 3 3 7.1 0.2	2 44.2 35.5 52.8 2 40.2 30.2 50.2 2 62.7	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1 781.0 1050.0 3 880.3 190.2	3 606.7 110.2 480.0 680.0 3 573.3 115.9 440.0 650.0 3 550.0 173.5	3 3.3 4.0 1.0 8.0 3 2.0 1.0 1.0 3.0 3.0 3.0 3.0 6	3 2.0 0.0 2.0 3 2.0 0.0 2.0 2.0 3 2.0 3 0.0 0.0	2 12.0 13.0 23.0 22.0 24.0 24.0 2 11.5	3 32.7 19.4 10.3 45.1 3 39.5 20.2 17.1 56.3 3 3 37.4 17.0	3 2.4 0.3 2.1 2.6 3 3 2.5 0.5 2.1 3.1 3.1 3.1 3 2.4 0.5	3 2.4 0.3 2.1 2.6 3 2.5 0.5 2.1 3.1 3.1 3 3 2.4 0.5	3 0.01 0.005 0.002 3 0.008 0.003 0.005 0.010 3 0.011 0.00	3 30.3 19.5 7.9 43.0 3 37.0 20.0 15.0 54.0 3 35.0 35.0 16.7	3 30.3 19.4 7.9 43.0 3 37.0 20.0 15.0 15.0 54.0 3 3 55.0 16.7	7.6 7.6 1 7.1 7.1 7.1 3.8				
UNSAT-CL4 UNSAT-CL2	30" Clinoptilolite	n MEAN STD. DEV. MIN MAX n STD. DEV. MIN MAX n MAX MAX MEAN STD. DEV. MIN MAX MIN MEAN STD. DEV. MIN	3 26.8 3.0 23.5 29.3 3 25.7 2.2 23.1 27.1 3 26.0 3.4 22.2	3 6.7 7.8 3 7.0 7.0 7.9 3 3 6.9	3 220.0 50.0 170.0 270.0 3 46.2 120.0 200.0 3 143.3 15.3 130.0	3 7.5 0.5 7.1 8.0 3 6.2 0.7 5.4 6.7 3 7.1 0.2 2 6.9	2 44.2 35.5 52.8 2 40.2 30.2 50.2 2 62.7 46.5	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1 781.0 1050.0 1050.0 3 880.3 190.2 661.0	3 606.7 110.2 480.0 680.0 3 573.3 115.9 440.0 650.0 3 550.0 173.5 350.0	3 3.33 4.00 1.00 3.00 1.00 3.00 3.00 3.00 3.00 6 1.0	3 2.0 2.0 3 2.0 0.0 2.0 2.0 3 3 2.0 0.0 2.0 0.0 2.0	2 12.0 13.0 2 3.0 22.0 24.0 2 4.0 2 2 11.5 10.0	3 32.7 19.4 10.3 45.1 3.9 5 20.2 17.1 56.3 3 37.4 17.0 18.9	3 2.4 0.3 2.1 2.6 3 2.5 0.5 2.1 3.1 3 3 2.4 0.5 1.9	3 2.4 0.3 2.1 2.6 3 2.5 0.5 2.1 3.1 3.1 3.1 3 2.4 0.5 1.9	3 0.01 0.005 0.02 3 0.008 0.003 0.005 0.010 3 0.001 0.000 0.011	3 30.3 19.5 7.9 43.0 3 37.0 20.0 15.0 54.0 3 3 55.0 16.7 17.0	3 30.3 19.4 7.9 43.0 37.00 20.0 15.0 54.0 335.0 35.0 16.7 17.0	7.6 7.6 1 7.1 7.1 7.1 1 3.8 3.8				
UNSAT-CL4 UNSAT-CL2	30" Clinoptilolite	n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n STD. DEV.	3 26.8 3.0 23.5 29.3 3 3 25.7 2.2 23.1 27.1 27.1 3 3 26.0 3.4	3 6.7 7.8 3 7.0 7.0 7.9 3 3 6.9	3 220.0 50.0 270.0 3 173.3 46.2 120.0 200.0 200.0 3 143.3 15.3	3 7.5 0.5 7.1 8.0 3 6.2 0.7 5.4 6.7 3 3 7.1 0.2	2 44.2 35.5 52.8 2 40.2 30.2 50.2 2 62.7	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1 781.0 1050.0 3 880.3 190.2	3 606.7 110.2 480.0 680.0 3 573.3 115.9 440.0 650.0 3 550.0 173.5 350.0 660.0	3 3.3 4.0 1.0 8.0 3 2.00 1.0 1.0 3.0 3.0 3 1.3 0.0 6 1.0 2.0	3 2.0 0.0 2.0 3 2.0 0.0 2.0 3 2.0 0.0 0.0 0.0 0.0 0.0 0.2.0	2 12.0 13.0 23.0 22.0 24.0 24.0 2 11.5	3 32.7 19.4 10.3 45.1 3 39.5 20.2 17.1 56.3 3 3 37.4 17.0	3 2.4 0.3 2.1 2.6 3 2.5 0.5 2.1 3.1 3 3 2.4 4 0.5 1.9 2.9	3 2.4 0.3 2.1 2.6 3 3 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	3 0.01 0.005 0.023 3 0.008 0.003 0.0005 0.0010 0.010 0.001 0.001	3 30.3 19.5 7.9 43.0 3 37.0 20.0 15.0 54.0 3 3 35.0 3 35.0 16.7 17.0 50.0	3 30.3 19.4 7.9 43.00 3 3 7.0 20.0 15.0 54.0 3 3 5.0 16.7 17.0 50.0	7.6 7.6 1 7.1 7.1 7.1 3.8				
UNSAT-CL4 UNSAT-CL2	30" Clinoptilolite	n MEAN STD. DEV. MIN MAX n STD. DEV. MIN MAX n MAX MAX MEAN STD. DEV. MIN MAX MIN MEAN STD. DEV. MIN	3 268 3.0 23.5 29.3 3 25.7 2.2 2 3.1 27.1 3 26.0 3.4 22.2 28.5 3 3	3 6.7 7.8 3 7.0 7.9 3 6.9 7.3 3 3 3	3 220.0 50.0 170.0 270.0 3 173.3 46.2 120.0 200.0 3 143.3 15.3 130.0 160.0 3 3	3 7.5 0.5 7.1 8.00 3 3 6.2 0.7 5.4 6.7 3 3 7.1 0.2 6.9 7.3 3 3 3 3	2 44.2 35.5 52.8 2 40.2 30.2 50.2 50.2 62.7 62.7 46.5 78.8 2	3 1024.7 157.6 860.0 1174.0 943.7 143.1 781.0 1050.0 3 3 880.3 190.2 661.0 1000.0 3 3	3 606.7 110.2 480.0 680.0 3 573.3 115.9 440.0 650.0 3 550.0 173.5 550.0 173.5 350.0 660.0 3	3 3.3 4.0 1.0 8.0 3.0 1.0 3.0 3.0 3.0 3.0 3.0 6.6 1.0 0 2.0 3 3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3	3 2.0 0.0 2.0 3 2.0 0.0 2.0 3 2.0 0.0 2.0 0.0 2.0 3 3 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 12.0 11.0 2 23.0 22.0 24.0 2 21.15 11.5 10.0 13.0 2 2 2 11.5 2 2 10.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 32.7 19.4 10.3 3 39.5 20.2 17.1 56.3 3 3 3.7.4 17.0 18.9 52.3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 2.4 0.3 2.1 2.6 3 2.5 2.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 9.2,9 9.2,9 9.3 3	3 2.4 0.3 2.1 2.6 3 2.5 0.5 2.1 3.1 3.1 3.1 3.1 3.2 4 0.5 1.9 2.9 3.3	3 0.01 0.005 0.02 3 0.008 0.003 0.005 0.010 3 0.01 0.001 0.001 0.001 3 3 0.01	3 30.3 19.5 7.9 43.0 37.0 20.0 15.0 54.0 35.0 35.0 16.7 17.0 50.0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 30.3 19.4 7.9 43.0 37.0 20.0 15.0 54.0 3 3 55.0 16.7 17.0 50.0 3 3 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3	7.6 7.6 1 7.1 7.1 7.1 7.1 7.1 3.8 3.8 3.8 3.8 3.8 3.8 1				
UNSAT-CL4 UNSAT-CL2	30" Clinoptilolite	fluent n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MEAN STD. DEV. MIN MAX n MAX n	3 26.8 3.0 23.5 29.3 3 25.7 2.2 23.1 27.1 3 3 26.0 3.4 22.2 28.5	3 6.7 7.8 3 7.0 7.9 3 6.9 7.3 3 3	3 220.0 50.0 170.0 270.0 3 46.2 120.0 200.0 3 143.3 15.3 130.0	3 7.5 0.5 7.1 8.0 3 6.2 0.7 5.4 6.7 3 7.1 0.2 2 6.9	2 44.2 35.5 52.8 2 40.2 30.2 50.2 50.2 62.7 62.7 46.5 78.8 2	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1 781.0 1050.0 3 880.3 880.3 190.2 661.0 1000.0	3 606.7 110.2 480.0 680.0 3 573.3 115.9 440.0 650.0 3 550.0 173.5 350.0 660.0	3 3.3 4.0 1.0 8.0 3 2.00 1.0 1.0 3.0 3.0 3 1.3 0.0 6 1.0 2.0	3 2.0 0.0 2.0 3 2.0 0.0 2.0 2.0 3 2.0 0.0 0.0 0.0 3 2.0 0.0 3 3 2.0 0.0 3 3 2.0 0.0 3 3 2.0 0.0 3 3 3 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 12.0 11.0 2 3.0 22.0 24.0 24.0 2 11.5 11.5 10.0 13.0	3 32.7 19.4 10.3 345.1 339.5 20.2 17.1 56.3 3 37.4 17.0 18.9 52.3 3 3.3 3.3 3.3 3.3	3 2.4 0.3 2.1 2.6 3 2.5 0.5 2.1 3.1 3 3 2.4 4 0.5 1.9 2.9	3 2.4 0.3 2.1 2.6 3 3 2.5 5 2.1 3.1 3.1 3.3 3 2.4 0.5 5 2.1 9 3.3 1.9 2.9 3 3 2.7 7 7	3 0.01 0.005 0.023 3 0.008 0.003 0.0005 0.0010 0.010 0.001 0.001	3 30.3 19.5 7.9 43.0 337.0 20.0 15.0 54.0 335.0 16.7 17.0 50.0 33.0.3 30.3	3 30.3 19.4 7.9 43.0 33 7.0 20.0 20.0 54.0 33 50.0 16.7 17.0 50.0 33 50.0 30.6	7.6 7.6 1 7.1 7.1 7.1 1 3.8 3.8				
UNSAT-CL4 UNSAT-CL2 UNSAT-EC4	30" Clinoptilolite 15" Clinoptilolite 30" Expanded Clay	fluent n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN MEAN MIN MAX MEAN MEAN	3 26.8 3.0 23.5 29.3 3 25.7 2.2 2 23.1 27.1 27.1 27.1 3 3 26.0 3.4 22.2 28.5 3 3 25.8	3 6.7 7.8 3 7.0 7.9 3 6.9 7.3 3 3	3 220.0 50.0 170.0 270.0 3 173.3 46.2 120.0 200.0 200.0 200.0 3 3 143.3 15.3 130.0 160.0 3 3 13.3 13.3 13.3 5.5.8	3 7.5 0.5 7.1 800 3 6.2 0.7 5.4 6.7 7.1 0.2 6.9 7.3 3 3 7.0 0.7	2 44.2 35.5 52.8 2 40.2 30.2 50.2 50.2 62.7 62.7 46.5 78.8 2	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1 781.0 1050.0 1050.0 3 880.3 190.2 661.0 1000.0 3 880.3 190.2 661.0 1000.0 3 8829.0	3 606.7 110.2 480.0 680.0 3 573.3 115.9 440.0 650.0 3 550.0 173.5 350.0 660.0 3 0 526.0	3 3.3 4.0 1.0 8.0 3.0 1.0 1.0 3.0 0 3.0 0 3.0 0 3.0 0.0 3.0 5.0	3 2.0 0.0 2.0 3 2.0 0.0 2.0 3 2.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 12.0 11.0 2 2.0 22.0 24.0 2 11.5 10.0 13.0 2 17.5	3 32.7 19.4 10.3 3 39.5 20.2 17.1 56.3 3 3 3.7.4 17.0 18.9 52.3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 2.4 0.3 2.1 2.6 3 3 2.5 0.5 2.1 3.1 3.1 3.2 4 0.5 1.9 2.9 3.3 0.0 7	3 2.4 0.3 2.1 2.5 0.5 2.1 3.1 3.1 3.3 2.5 5 0.5 2.1 3.1 3.1 3.3 3 2.4 0.5 1.9 9 2.9 2.7 0.6 6	3 0.01 0.005 0.002 3 0.008 0.003 0.0005 0.010 3 0.001 0.001 0.001 3 3 0.01 0.01	3 30.3 19.5 7.9 43.0 337.0 20.0 15.0 15.0 54.0 3 3 35.0 16.7 17.0 50.0 3 3 0.3 3 0.3 11.6	3 30.3 19.4 7.9 43.0 37.0 20.0 15.0 15.0 33.0 55.0 33.0 55.0 16.7 17.0 50.0 30.6 11.18	7.6 7.6 1 7.1 7.1 7.1 7.1 7.1 3.8 3.8 3.8 3.8 3.8 3.8 1				
UNSAT-CL4 UNSAT-CL2 UNSAT-EC4	30" Clinoptilolite 15" Clinoptilolite 30" Expanded Clay	Fluent n n MEAN STD. DEV. MIN MAX n n MEAN STD. DEV. MIN MAX n STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX MEAN STD. DEV. STD. DEV. STD. DEV.	3 26.8 3.0 23.5 29.3 3 3 25.7 2.2 23.1 27.1 3 3 26.0 3 4 22.2 28.5 3 3 26.8 3 3.0	3 6.7 7.8 3 7.0 7.9 3 3 6.9 7.3 3 3 6.0	3 220.0 50.0 170.0 270.0 3 173.3 46.2 120.0 200.0 3 143.3 15.3 130.0 160.0 3 3 113.3 5.8 110.0	3 7.5 0.5 7.1 8.0 3 6.2 0.7 5.4 6.7 5.4 6.7 5.4 6.7 5.4 6.7 5.4 7.1 1 0.2 6.9 7.3 3 3 7.0	2 44.2 35.5 52.8 2 40.2 50.2 50.2 2 62.7 46.5 78.8 2 68.4	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1 781.0 1050.0 3 880.3 190.2 661.0 1000.0 3 829.0 1052.2	3 606.7 110.2 480.0 680.0 3 573.3 115.9 440.0 650.0 3 550.0 173.5 350.0 660.0 3 3550.0 660.0 170.3	3 3.3 4.0 1.0 8.0 3 2.0 1.0 1.0 3.0 3 1.3 1.3 0.6 1.0 2.0 3 3 5.00 6.9	3 2.0 2.0 3 2.0 0.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3 2.0 2.0 3 2.0 0.0 0 0.0 0 0.0 0 0.0 0.0 0.0 0.0 0	2 12.0 11.0 2 23.0 22.0 24.0 2 21.15 11.5 10.0 13.0 2 2 2 11.5 2 10.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 32.7 19.4 10.3 39.5 20.2 17.1 56.3 3 37.4 17.0 18.9 52.3 3 33.3 3 33.3 3 3.3 3.3 2.3	3 2.4 0.3 2.1 2.6 3 2.5 0.5 2.1 3.1 3.1 3.1 3.1 2.4 0.5 1.9 2.9 3.3 0	3 2.4 0.3 2.1 2.1 2.5 0.5 2.1 3.1 3.1 3.1 3.1 3.1 3.2 4 4 0.5 1.9 2.9 3.3 2.7 0.6 6 2.2 2	3 0.01 0.005 0.02 3 0.008 0.003 0.005 0.010 3 0.01 0.01 0.01 0.01 3 3 0.3	3 30.3 19.5 7.9 43.00 15.00 54.0 3 35.0 15.0 54.0 3 30.3 30.3 30.3 30.3 11.6 6 17.0	3 30.3 19.4 7.9 43.0 37.0 20.0 15.0 15.0 33 35.0 16.7 17.0 50.0 3 3 30.6 11.8 17.0	7.6 7.6 1 7.1 7.1 1 3.8 3.8 3.8 3.8 3.8 6.3				
UNSAT-CL4 UNSAT-CL2 UNSAT-EC4	30" Clinoptilolite 15" Clinoptilolite 30" Expanded Clay	Fluent n n MEAN STD. DEV. MIN MAX n n MEAN STD. DEV. MIN MAX n STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MAX n MAX n MAX	3 26.8 3.0 23.5 29.3 3 25.7 2.2 23.1 27.1 27.1 3 26.0 3.4 22.2 28.5 3 3.0 2.5.8 3.0 2.5.7 3 2.5.8 3.0 3.0 2.5.7 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3 6.7 7.8 3 7.0 7.9 3 6.9 7.3 3 3 6.0 6.0 6.9 6.9 1	3 220.0 50.0 270.0 3 173.3 46.2 120.0 200.0 200.0 200.0 200.0 200.0 3 143.3 15.3 13.0 113.3 113.3 5.8 110.0 120.0 133.1 15.3 113.3 113.3 113.3 110.0 120.0	3 7.5 0.5 7.1 8.0 3 6.2 0.7 5.4 6.7 3 7.1 0.2 6.9 7.3 3 7.0 0.7 7.3 3 7.0 0.7 7.5 4 6.7 7.1 7.1 8.0 9.0 7.1 9.0 7.1 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	2 44.2 35.5 52.8 40.2 2 50.2 2 2 62.7 46.5 78.8 2.8 68.4 47.5 89.2 1	3 1024.7 1157.6 860.0 1174.0 943.7 143.1 781.0 1050.0 3 880.3 880.3 190.2 661.0 1000.0 1000.0 195.2 664.0 953.0 953.0 1	3 606.7 110.2 480.0 680.0 3 573.3 115.9 440.0 650.0 550.0 550.0 550.0 550.0 550.0 660.0 3 350.0 660.0 173.5 350.0 663.0 170.3 330.0 638.0 170.3	3 3.3 4.0 1.00 8.0 3.0 1.00 1.00 3.0 3.0 3.0 5.0 6.9 1.0 1.3.0 1.3.0 1.3.0 1.3.0 1.3.0 1.3.0 1.3.0 1.3.0 1.3.0 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.000 1.0.000 1.0.00000 1.0.00000000	3 2.0 0.0 2.0 2.0 0.0 2.0 2.0 3 2.0 0.0 2.0 2.0 2.0 2.0 2.0 2.0 1 1	2 12.0 13.0 23.0 24.0 24.0 24.0 24.0 24.0 13.0 13.0 13.0 17.5 17.5 13.0 22.0 1	3 32.7 19.4 10.3 345.1 33.95 20.2 17.1 156.3 3 3.7 4 17.0 18.9 52.3 3 3.3 3.3 12.3 3 19.2 4.15 11	3 2.4 0.3 2.1 2.6 3 3 2.5 2.1 3.1 3.1 3.1 3.2 4 4 0.5 3 3.0 0 0.7 2.2 3.5 3.5 1	3 2.4 0.3 2.1 2.1 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	3 0.01 0.005 0.022 3 0.008 0.003 0.005 0.010 0.010 0.01 0.001 0.01 3 3 0.03 0.0	3 30.3 19.5 7.9 43.00 20.00 15.0 54.0 3 35.0 16.7 17.0 50.0 3 3 30.3 3 11.6 17.0 3 0.3 11.6 17.0 3 11.6 17.0 11.6 17.0 11.6 17.0 11.6 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9	3 30.3 19.4 7.9 43.0 37.0 20.0 54.0 55.0 15.0 33.5 0.0 54.0 33.5 0.0 16.7 17.0 30.6 11.18 17.0 38.7 17.9 11.0 38.7 11.0 38.7 11.0	7.6 7.6 1 7.1 7.1 7.1 1 3.8 3.8 3.8 3.8 3.8 3.8 6.3 6.3 6.3 6.3				
UNSAT-CL2 UNSAT-CL2 UNSAT-EC4 UNSAT-SA2	30° Clinoptilolite 15° Clinoptilolite 30° Expanded Clay 30° Sand	n MEAN STD. DEV. MIN MAX n MIN MAX n MEAN	3 26.8 3.0 23.5 29.3 3 3 25.7 2.2 23.1 27.1 27.1 27.1 3 3 26.0 3.4 22.2 28.5 3 3 22.5.8 3.0 0 22.5	3 6.7 7.8 3 7.0 7.9 3 6.9 7.3 3 3 6.0 6.0 6.9 6.9 1	3 220.0 50.0 170.0 270.0 3 173.3 46.2 120.0 200.0 3 143.3 15.3 130.0 160.0 3 3 113.3 5.8 110.0	3 7.5 0.5 7.1 8.0 3 6.2 0.7 5.4 6.7 3 7.1 0.2 6.9 7.3 3 7.0 0.7,7 6.3	2 44.2 35.5 52.8 40.2 2 50.2 2 2 62.7 46.5 78.8 2.8 68.4 47.5 89.2 1	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1 781.0 1050.0 1050.0 3 880.3 190.2 661.0 1000.0 3 829.0 1952.2 604.0 953.0	3 606.7 110.2 480.0 680.0 3 573.3 115.9 440.0 650.0 173.5 550.0 660.0 173.5 550.0 660.0 170.3 350.0 660.0 170.3 330.0 633.0 0 170.3 330.0 633.0 170.3	3 3.3 4.0 1.00 8.0 3.0 1.00 1.00 3.0 3.0 3.0 5.0 6.9 1.0 1.3.0 1.3.0 1.3.0 1.3.0 1.3.0 1.3.0 1.3.0 1.3.0 1.3.0 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.000 1.0.000 1.0.00000 1.0.00000000	3 2.0 0.0 2.0 2.0 0.0 2.0 2.0 3 2.0 0.0 2.0 2.0 2.0 2.0 2.0 2.0 1 1	2 12.0 13.0 2 23.0 22.0 24.0 2 11.5 11.5 13.0 2 2 17.5 13.0 22.0	3 32.7 19.4 10.3 345.1 33.95 20.2 17.1 156.3 3 3.7 4 17.0 18.9 52.3 3 3.3 3.3 12.3 3 19.2 4.15 11	3 2.4 0.3 2.1 2.6 3 3 2.5 0.5 2.1 3.1 3 3 2.4 0.5 1.9 2.9 3 3 0.0 7 2.2 2 3.5	3 2.4 0.3 2.1 2.1 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	3 0.01 0.005 0.022 3 0.008 0.0005 0.010 0.01 0.001 0.01 3 0.01 3 0.01 0.01	3 30.3 19.5 7.9 43.0 20.0 20.0 15.0 54.0 3 3 5.0 0 16.7 17.0 3 3 5.0 0 11.6 7 17.0 3 3 0.3 3 0.3 2 0.0 11.5 5 0.0 11.5 5 4.0 5 4.0 5 5 4.0 5 5 4.0 5 5 4.0 5 5 4.0 5 5 5 4.0 5 5 5 7.9 5 5 7.9 5 5 7.9 5 5 7.9 5 7.9 5 7.9 5 7.9 5 7.9 5 7.9 5 7.9 5 7.0 5 7.0 5 7.0 5 7.0 5 7.0 5 7.0 5 7.0 5 7.0 5 7.0 5 7.0 5 7.0 5 7.0 5 7.0 5 5 7.0 5 5 7.0 5 5 7.0 5 5 7.0 5 5 7.0 5 5 7.0 5 5 7.0 5 5 7.0 5 5 7.0 5 5 7.0 5 5 7.0 5 5 7.0 5 5 7.0 5 7.0 5 5 7.0 5 7 5 7.0 5 7 5 7.0 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3 30.3 19.4 7.9 43.0 37.0 20.0 54.0 55.0 15.0 33.5 0.0 54.0 33.5 0.0 16.7 17.0 30.6 11.18 17.0 38.7 17.9 11.0 38.7 11.0 38.7 11.0	7.6 7.6 1 7.1 7.1 7.1 1 3.8 3.8 3.8 3.8 3.8 3.8 6.3 6.3 6.3 6.3				
UNSAT-CL2 UNSAT-CL2 UNSAT-EC4 UNSAT-SA2	30" Clinoptilolite 15" Clinoptilolite 30" Expanded Clay	Fileent n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MAX n MEAN STD. DEV.	3 26.8 3.0 23.5 29.3 3 3 25.7 2.2 2 3.1 27.1 27.1 27.1 27.1 27.1 3 3 26.0 3.4 2.2 5 3 3 2.5.8 3.0 2.25.5 2.8.2 2.8.2 2.8.2 2.8.2 2.8.2 2.8.2 2.8.2 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.5.7 2.2.7 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.5.7 3.0 2.2.5 3.0 2.5.7 2.2.7 3.0 2.5.7 3.0 2.5.7 3.0 2.5.7 2.2.7 2.2.7 2.2.7 3.0 2.5.7 2.2.7 2.7	6.7 7.8 3 7.0 7.9 7.0 7.9 3 3 6.9 7.3 3 6.9 7.3 3 6.9 7.3 1 6.9 7.3 1 6.9 7.4 6.9 7.3 1 6.9 7.4 6.9 7.8 6.9 7.8 7.8 7.8 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9	3 220.0 50.0 270.0 3 173.3 46.2 120.0 200.0 3 143.3 15.3 15.3 130.0 160.0 3 5.8 110.0 120.0 100.0 120.0 1000	3 3 7.5 0.5 7.1 8.0 3 6.2 0.7 5.4 6.7 3 7.1 0.2 6.9 9 7.3 3 7.0 0.7 7.7 1 1 7.8	2 2 44.22 35.55 52.8.8 2 2 40.2.2 50.2 2 2 62.7, 78.8 2 46.55 78.8 2 46.55 78.8 2 45.55 78.8 2 47.55 89.2 1 1 90	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1 781.0 1050.0 3 880.3 190.2 661.0 1000.0 3 889.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 665.0 195.2 665.0 195.2 665.0 195.2	3 606.7 110.2 480.0 680.0 3 573.3 115.9 440.0 650.0 3 550.0 173.5 350.0 660.0 3 3526.0 170.3 3526.0 170.3 3526.0 170.3 350.0 6638.0 1 550.0 1 550.0 1 1 550.0 1 1 550.0 1 1 550.0 1 1 550.0 1 1 550.0 1 1 550.0 1 1 550.0 1 1 550.0 1 1 550.0 1 1 550.0 1 1 550.0 1 1 550.0 1 1 550.0 1 1 5 5 2 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	3 3.3 4.00 1.0 8.0 3.0 1.0 1.0 3.0 0.6 6 1.0 2.0 3.0 5.0 6.9 1.0 1.0 1.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	3 2.0 0.0 2.0 3 2.0 0.0 2.0 2.0 3 2.0 0.0 0 2.0 2.0 3 2.0 0.0 0 2.0 1 4 4	2 11.0 13.0 2.30 2.4.0 2.4.0 2.4.0 2.4.0 2.1.5 10.0 13.0 2.1.7,5 13.0 2.2.0 1 3.9	3 32.7 19.4 10.3 45.1 39.5 20.2 17.1 15.6.3 3 37.4 17.0 18.9 9 52.3 3 33.3 12.3 19.2 19.2 11.1 98	3 2.4 0.3 2.1 2.5 0.5 2.1 3.1 3.1 3.2 4 0.5 1.9 2.9 3.3 0.7 2.2 2 3.5 1 1 2.8	3 2.4 0.3 2.1 2.1 2.5 0.5 2.1 3.1 3.1 3.1 3.2 4 0.5 0.5 2.1 3.3 2.7 7 0.6 6 2.2 3.3 3 1.7 7	3 0.01 0.005 0.002 3 0.008 0.003 0.005 0.010 3 0.01 0.01 0.01 0.01 0.03 0.03 0	3 30.3 19.5 7.9 43.0 37.0 20.0 50.0 55.0 33 35.0 16.7 17.0 50.0 3 30.3 30.3 11.6 17.0 50.0 3 30.3 11.6 70 70	3 30.3 19.4 7.9 43.0 3 37.0 54.0 54.0 3 35.0 16.7 17.0 50.0 30.6 11.8 17.0 30.3 30.6 11.8 17.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1	7.6 7.6 1 7.1 7.1 7.1 1 3.8 3.8 3.8 3.8 3.8 3.8 6.3 6.3 6.3 6.3				
UNSAT-CL2 UNSAT-CL2 UNSAT-EC4 UNSAT-SA2	30° Clinoptilolite 15° Clinoptilolite 30° Expanded Clay 30° Sand	Fluent n n MEAN STD. DEV. MIN MAX n n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n n DEV. MIN MAX n MEAN STD. DEV. MIN	3 26.8 3.0.0 23.5 29.3 3 25.7 2.2 23.1 27.1 3 3 26.0 3.4 22.2 28.5 3.0 22.5 25.8 3.0 22.5 28.2 2 1 1 24 24	3 6.7 7.8 3 7.0 7.9 3 3 6.9 7.3 3 3 6.0 6.9 1 1 7 7	3 220.0 50.0 270.0 310 270.0 3173.3 46.2 120.0 200.0 33 15.3 15.3 130.0 30 110.0 30 110.0 120.0 1 200 200 200 200 200 200 200 200 200	3 3 7.5 0.5 7.1 8.0 3.0 6.2 0.7 5.4 6.7 3.7 7.1 6.7 3.7 7.1 6.7 3.7 7.1 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	2 44.2 35.5 52.8 2 40.2 50.2 50.2 50.2 50.2 50.2 50.2 50.2 5	3 1024.7 157.6 860.0 1174.0 943.7 143.1 781.0 1050.0 3 880.3 880.3 190.2 661.0 1000.0 195.2 664.0 953.0 1 950.2 1 957.2 1024.7 1025.7 1024.7 1025.7 1005.7 1005.7 10	3 606.7 110.2 480.0 680.0 3 573.3 115.9 440.0 650.0 3 3 550.0 173.5 350.0 173.5 350.0 170.3 350.0 170.3 330.0 660.0 170.3 330.0 638.0 0 170.5 550	3 3.3 4.0 1.0 3.0 1.0 1.0 3.0 3.0 3.0 3.0 6.6 3.0 6.9 1.0 1.0 1.0 5.0 0 6.9 1.0 1.0 5.5 5 5 5 5	3 2.0 0.0 2.0 2.0 0.0 2.0 2.0 3 2.0 0.0 2.0 2.0 2.0 2.0 2.0 2.0 1 1	2 11.0 13.0 23.0 22.0 24.0 24.0 2 11.5 10.0 13.0 22.0 13.0 22.0 13.9 39	3 32.7 19.4 10.3 345.1 33.95 20.2 17.1 15.63 3 3.7.4 17.0 18.9 52.3 3 3.3 3.3 12.3 19.2 4.15 1 1 98 98	3 2.4 0.3 2.5 0.5 2.1 3.1 3 3 2.4 0.5 3.3 2.9 3.0 0.7 2.2 3.5 1 1 2.8 3.0 0 2.7 2.2 2.8 3.0 0 2.7 2.2 2.8 3.0 5 5 2.5 2.5 3.5 5 2.5 5 2.5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 2.4 0.3 2.1 2.1 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	3 0.01 0.01 0.005 0.002 3 0.003 0.000 0.010 0.010 0.01 0.01 0.0	3 30.3 19.5 7.9 43.0 20.0 15.0 15.0 33.5 0.0 33.5 0.0 33.5 0.0 30.3 311.6 17.0 30.3 30.1 11.6 17.0 70 70 70	3 30.3 19.4 7.9 43.0 37.0 20.0 15.0 54.0 33 35.0 16.7 17.0 30.6 11.18 17.0 38.7 17.9 91 91	7.6 7.6 1 7.1 7.1 7.1 1 3.8 3.8 3.8 3.8 3.8 3.8 6.3 6.3 6.3 6.3				
UNSAT-CL4 UNSAT-CL2 UNSAT-EC4	30° Clinoptilolite 15° Clinoptilolite 30° Expanded Clay 30° Sand	Fileent n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MAX n MEAN STD. DEV.	3 26.8 3.0 23.5 29.3 3 3 25.7 2.2 2 3.1 27.1 27.1 27.1 27.1 27.1 3 3 26.0 3.4 2.2 5 3 3 2.5.8 3.0 2.25.5 2.8.2 2.8.2 2.8.2 2.8.2 2.8.2 2.8.2 2.8.2 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.5.7 2.2.7 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.2.5 3.0 2.5.7 3.0 2.2.5 3.0 2.5.7 2.2.7 3.0 2.5.7 3.0 2.5.7 3.0 2.5.7 2.2.7 2.2.7 2.2.7 3.0 2.5.7 2.2.7 2.7	3 6.7 7.8 3 7.0 7.9 3 3 6.9 7.3 3 3 6.0 6.9 1 1 7 7	3 220.0 50.0 270.0 3 173.3 46.2 120.0 200.0 3 143.3 15.3 15.3 130.0 160.0 3 5.8 110.0 120.0 100.0 120.0 1000	3 3 7.5 0.5 7.1 8.0 3 3 6.2 0.7 5.4 6.7 3 7.1 0.2 6.9 9 7.3 3 7.0 0.7 7.7 1 1 7.8	2 2 44.22 35.55 52.8.8 2 2 40.2.2 50.2 2 2 62.7, 78.8 2 46.55 78.8 2 46.55 78.8 2 45.55 78.8 2 47.55 89.2 1 1 90	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1 781.0 1050.0 3 880.3 190.2 661.0 1000.0 3 889.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 664.0 195.2 665.2 195.2 105.2	3 606.7.7 1480.0 680.0.0 3 3 115.9 440.0 650.0 650.0 660.0 170.5 3 350.0 660.0 170.3 330.0 10 330.0 10 330.0 10 550 550 550 550 550 550 550	3 3.3 4.00 1.0 8.0 3.0 1.0 1.0 3.0 0.6 6 1.0 2.0 3.0 5.0 6.9 1.0 1.0 1.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	3 2.0 0.0 2.0 3 2.0 0.0 2.0 2.0 3 2.0 0.0 0 2.0 2.0 3 2.0 0.0 0 2.0 1 4 4	2 11.0 13.0 2.30 2.4.0 2.4.0 2.4.0 2.4.0 2.1.5 10.0 13.0 2.1.7,5 13.0 2.2.0 1 3.9	3 32.7 19.4 10.3 45.1 39.5 20.2 17.1 56.3 3 37.4 17.0 18.9 52.3 37.4 17.0 18.9 52.3 33.3 12.3 19.2 41.5 1 1 9.98 9.98	3 2.4 0.3 2.5 0.5 2.1 3.1 3.1 3.1 3.1 3.2 4.4 0.5 1.9 2.9 3.3 0.0,7,7 2.2 2 3.5 1.1 2.8 2.4 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	3 2.4 0.3 2.1 2.1 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	3 0.01 0.01 0.005 0.002 3 0.008 0.003 0.001 0.010 0.010 0.01 0.01 0.01	3 30.3 19.5.5 7.9 43.0 37.0 20.0 54.0 33 50.0 54.0 33 50.0 50.0 50.0 11.6 7 0 30.3 311.6 17.0 38.0 17.0 70 70 70 70	3 30.3 19.4 4 7.9 43.0 37.0 20.0 54.0 3 35.0 56.0 3 35.0 56.0 3 35.0 56.0 3 3 30.6 11.8 17.0 38.7 17.0 91 91 91	7.6 7.6 1 7.1 7.1 7.1 1 3.8 3.8 3.8 3.8 3.8 3.8 6.3 6.3 6.3 6.3				
UNSAT-CL2 UNSAT-EC4 UNSAT-SA2 UNSAT-PS1 (new recirc)	30° Clinoptilolite 15° Clinoptilolite 30° Expanded Clay 30° Sand	Fluent n MEAN STD. DEV. MIN MAX n MEAN	3 3 26.8.6 3.0.0 3.3.0 23.5 23.3 3 25.7.7 22.2 22.2 22.2 23.1 23.1 23.3 3 25.7.7 3.3 24.2 24.2 24.2 24.4 24.4 1	6.7 7.8 3 7.0 7.9 7.3 3 6.9 7.3 3 6.9 7.3 3 3 6.9 7.3 7 7 7 7 7	3 220.0 50.0 270.0 3 173.3 46.2 120.0 200.0 3 3 143.3 15.3 130.0 160.0 3 3 143.3 130.0 160.0 3 3 131.3 3 5.8 111.0 200 120.0 0 200 1 200 1 200 1 200 120.0 13.3 143.3 13.0 10.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 1000	3 3 7.5 0.5 7.1 8.0 3 6.2 0.7 5.4 6.7 3 7.1 0.2 6.9 7.3 3 7.0 0.7 7.7 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9	2 44.2 35.5 52.8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1 781.0 1050.0 3 880.3 190.2 661.0 1000.0 1000.0 1052.2 664.0 953.0 953.0 9550 9550 1	3 606.7.1 480.0 680.0 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	3 3.3 4.00 8.0 3.0 1.0 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 6.9 1.0 1.0 1.0 5.0 0 6.9 1.0 1.3 0 0 5.5 5 5 5 5 5 5 5	3 2.0 0.0 2.0 2.0 3 2.0 2.0 3 2.0 0.0 2.0 2.0 2.0 2.0 0.0 2.0 0.0 1 1 4 4 4 4 4 4 1	2 12.0 11.0 2 2.0 24.0 24.0 2.1 1.5 10.0 13.0 2.0 17.5 13.0 2.0 13.0 2.0 11 3.9 39 39 39 39	3 32.7 19.4 10.3 345.1 33.95 20.2 17.1 156.3 33.3 37.4 17.0 18.99 52.3 33.3 3.37.4 18.7 9 18.9 19.2 19.2 11.2 11.9 98 98 98 98 98 98 98	3 3 2.4.4.1 2.6 3 3 2.5: 2.5: 2.1: 3 3 3 3 3 3.0: 0.5: 3.1: 3.3: 3.0: 0.7: 3.3: 3.3:	3 2.4 0.3 2.1 2.1 2.5 0.5 2.1 3.1 3.1 3.2 4 4 0.5 2.7 1.9 2.9 2.7 7 0.6 6 2.2 2.3 3.3 1 1 7 7 7 7 7 7	3 0.01 0.001 3 3 0.003 0.003 0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.011 1 1 1	33 30.3.3.7 7.9.9 3.3.3 3.7.0 20.0.0 20.0.0 3.3 3.7.0 5.0.0 3.3 3.5.0.0 5.0.0 3.3 3.5.0.0 5.0.0 17.0.0 5.0.0 17.0.0 5.0.0 17.0.0 5.0.0 10 5.0.0 7.0.0 5.0.00 5.0.00 5.0.00 5.0.00 5.0.00 5.0.00 5.0.00 5.000 5.000 5.000 5.000 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 5.00000 5.00000 5.00000000	3 30.3 19.4 7.9 43.0 3.7 0.20.0 54.0 50.0 15.0 3.3 3.5 0.0 16.7 17.0 50.0 3.3 50.0 11.8 17.0 50.0 11.8 17.9 91 91 91 11.9 11.9 11.9 11.8 1	7.6 7.6 1 7.1 7.1 7.1 1 3.8 3.8 3.8 3.8 3.8 3.8 6.3 6.3 6.3 6.3				
UNSAT-CL2 UNSAT-CL2 UNSAT-EC4 UNSAT-SA2 UNSAT-PS1 (new recirc) Pump 15	30° Clinoptilolite 15° Clinoptilolite 30° Expanded Clay 30° Sand	Fluent n n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n MEAN STD. DEV. MIN MAX n n MEAN STD. DEV. MIN MAX n MEAN STD. DEV.	3 26.8 3.0.0 23.5 29.3 3 25.7 2.2 23.1 27.1 3 3 26.0 3.4 22.2 28.5 3.0 22.5 25.8 3.0 22.5 28.2 2 1 1 24 24	6.7 7.8 3 7.0 7.9 7.3 3 6.9 7.3 3 6.9 7.3 3 3 6.9 7.3 7 7 7 7 7	3 220.0 50.0 270.0 310 270.0 3173.3 46.2 120.0 200.0 33 15.3 15.3 130.0 30 110.0 30 110.0 120.0 1 200 200 200 200 200 200 200 200 200	3 3 7.5 0.5 7.1 8.0 3.0 6.2 0.7 5.4 6.7 3.7 7.1 6.7 3.7 7.1 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	2 44.2 35.5 52.8 2 40.2 50.2 50.2 50.2 50.2 50.2 50.2 50.2 5	3 1024.7 157.6 860.0 1174.0 943.7 143.1 781.0 1050.0 3 880.3 880.3 190.2 661.0 1000.0 195.2 664.0 953.0 1 950.2 1 957.2 1024.7 1025.7 1024.7 1025.7 1005.7 1005.7 10	3 606.7.7 1480.0 680.0.0 3 3 115.9 440.0 650.0 650.0 660.0 170.5 3 350.0 660.0 170.3 330.0 10 330.0 10 330.0 10 550 550 550 550 550 550 550	3 3.3 4.00 8.0 3.0 1.0 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 6.9 1.0 1.0 1.0 5.0 0 6.9 1.0 1.3 0 0 5.5 5 5 5 5 5 5 5	3 2.0 0.0 2.0 3 2.0 0.0 2.0 2.0 3 2.0 0.0 0 2.0 2.0 3 2.0 0.0 0 2.0 1 4 4	2 11.0 13.0 23.0 22.0 24.0 24.0 2 11.5 10.0 13.0 22.0 13.0 22.0 13.9 39	3 32.7 19.4 10.3 345.1 33.95 20.2 17.1 156.3 3 3.37.4 17.0 18.9 9 52.3 3.37.4 18.2 3 3.33.3 10.2 19.2 19.2 11 9.8 98 98 98 98 98 98 98	3 2.4 0.3 2.5 0.5 2.1 3.1 3.1 3.1 3.1 3.2 4.4 0.5 1.9 2.9 3.3 0.0,7,7 2.2 2 3.5 1.1 2.8 2.4 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	3 2.4 0.3 2.1 2.1 2.5 0.5 2.1 3.1 3.1 3.2 4 4 0.5 2.7 1.9 2.9 2.7 7 0.6 6 2.2 2.3 3.3 1 1 7 7 7 7 7 7	3 0.01 0.01 0.005 0.002 3 0.008 0.003 0.001 0.010 0.010 0.01 0.01 0.01	33 30.3.3.7 7.9.9 3.3.3 3.7.0 20.0.0 20.0.0 3.3 3.7.0 5.0.0 3.3 3.5.0.0 5.0.0 3.3 3.5.0.0 5.0.0 17.0.0 5.0.0 17.0.0 5.0.0 17.0.0 5.0.0 10 5.0.0 7.0.0 5.0.00 5.0.00 5.0.00 5.0.00 5.0.00 5.0.00 5.0.00 5.000 5.000 5.000 5.000 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 5.00000 5.00000 5.00000000	3 30.3 19.4 7.9 43.0 3.7 0.20.0 54.0 50.0 15.0 3.3 3.5 0.0 16.7 17.0 50.0 3.3 50.0 11.8 17.0 50.0 11.8 17.9 91 91 91 11.9 11.9 11.9 11.8 1	7.6 7.6 1 7.1 7.1 7.1 1 3.8 3.8 3.8 3.8 3.8 3.8 6.3 6.3 6.3 6.3				
UNSAT-CL2 UNSAT-CL2 UNSAT-EC4 UNSAT-SA2 UNSAT-PS1 (new recirc)	30° Clinoptilolite 15° Clinoptilolite 30° Expanded Clay 30° Sand	Fluent n MEAN STD. DEV. MIN MAX n MEAN	3 3 26.8.6 3.0.0 3.3.0 23.5 23.3 3 25.7.7 22.2 22.2 22.2 23.1 23.1 23.3 3 25.7.7 3.3 24.2 24.2 24.2 24.4 24.4 1	3 6.7 7.8 3 7.0 7.9 3 3 6.9 7.3 3 3 3 6.0 6.9 1 1 7 7 7 1	3 220.0 50.0 270.0 3 173.3 46.2 120.0 200.0 3 3 143.3 15.3 130.0 160.0 3 3 143.3 130.0 160.0 3 3 131.3 3 5.8 111.0 200 120.0 0 200 1 200 1 200 1 200 120.0 13.3 143.3 13.0 10.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 1000	3 3 7.5 0.5 7.1 8.0 3 6.2 0.7 5.4 6.7 3 7.1 0.2 6.9 7.3 3 7.0 0.7 7.7 1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9	2 44.2 35.5 52.8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 1024.7 157.6 860.0 1174.0 3 943.7 143.1 781.0 1050.0 3 880.3 190.2 661.0 1000.0 1000.0 1052.2 664.0 953.0 953.0 9550 9550 1	3 606.7.1 480.0 680.0 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	3 3.3 4.00 8.0 3.0 1.0 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 6.9 1.0 1.0 1.0 5.0 0 6.9 1.0 1.3 0 0 5.5 5 5 5 5 5 5 5	3 2.0 0.0 2.0 2.0 3 2.0 2.0 3 2.0 0.0 2.0 2.0 2.0 2.0 0.0 2.0 0.0 1 1 4 4 4 4 4 4 1	2 12.0 11.0 2 2.0 24.0 24.0 2.1 1.5 10.0 13.0 2.0 17.5 13.0 2.0 13.0 2.0 11 3.9 39 39 39 39	3 32.7 19.4 10.3 345.1 33.95 20.2 17.1 156.3 33.3 37.4 17.0 18.99 52.3 33.3 3.37.4 18.7 9 18.9 19.2 19.2 11.2 11.9 98 98 98 98 98 98 98	3 3 2.4.4.1 2.6 3 3 2.5: 2.5: 2.1: 3 3 3 3 3 3.0: 0.5: 3.1: 3.3: 3.0: 0.7: 3.3: 3.3:	3 2.4 0.3 2.1 2.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.2 4 4 0.5 1.9 2.9 2.9 3.3 2.7 0.6 6 2.2 2 3.3 3.1 1 7 7 7 7 7 7 7 7 1 1 4 4	3 0.01 0.001 3 3 0.003 0.003 0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.011 1 1 1	3 3 3 3 3 7 9 4 3 0 3 3 7 0 2 0 0 0 3 3 3 7 0 2 0 0 0 3 3 3 5 4 0 0 3 3 5 4 0 0 3 3 5 4 0 0 3 3 5 4 0 0 5 4 0 0 5 5 4 0 0 5 5 5 4 0 0 5 5 5 5	3 30.3 19.4 7.9 43.0 37.0 20.0 15.0 54.0 3 35.0 16.7 17.0 50.0 33.50.0 33.50.0 33.50.0 33.50.0 33.50.0 33.0 6 11.8 17.0 30.0 31.8 17.0 30.0 38.7 10.0 38.7 10.0 38.7 10.0 33.7 10.0 33.50.0 33.7	7.6 7.6 1 7.1 7.1 7.1 1 3.8 3.8 3.8 3.8 3.8 3.8 6.3 6.3 6.3 6.3				

Table 4 (con't) Statistical Summary of Water Quality Data

Sample ID	Media Composition	Statistical Parameter	Temp (°C)	рН	Total Alkalinity (mg/L)	DO (mg/L)	ORP (mV)	Specific Conductance (µS)	TDS (mg/L)	TSS (mg/L)	CBOD₅ (mg/L)	COD (mg/L)	TN (mg/L N) ¹ (I	TKN ng/LN)	Organic N (mg/L N) ²	NH3-N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³	TP (mg/L)	Sulfide (mg/L)	H2S (mg/L)	SO₄ (mg/L)	Fecal (Ct/100 m
Denite Feed	Tank (Tank 3)				•	-													•				•
		n	3	3	3	3	2	3	3	3	3	2	3	3	3	3	3	3	1	3	3	3	
		MEAN	24.5		163.3	7.7	43.9	914.7	560.0	1.0	2.0	20.0	27.8	3.2		0.1	24.7		6.5		0.0	54.0	
DFT		STD. DEV.	5.2 18.5		35.1	0.5	25.5	149.1	148.0	0.0	0.0	40.0	13.0 19.5	0.4			13.3		6.5	0.5	0.1	9.2 46.0	
		MIN MAX	28.1		130.0	7.3		744.0	390.0			18.0	42.8	2.8		0.01	16.0 40.0		6.5	0.1	0.01	46.0	
Stage 2 Horiz	ontal Biofilters Efflu		20.1	0.1	200.0	0.5	02.2	1020.0	000.0	1.0	2.0	22.0	12.0	5.5		0.2	10.0	10.0	0.5	1.0	0.1	01.0	
		n	3	3	3	3	2	3	3	3	3	2	3	3	3	3	3	3	1	3	3	3	
	000/ 001500 200/	MEAN	26.9		223.3	0.7	-293.6	1305.0	853.3	1.0	22.7	56.5	2.4	2.3	0.8	1.6	0.1	1.6	5.0	23.7	10.7	343.3	j.
DENIT-SU1	80% Sulfur; 20% Oyster Shell	STD. DEV.	1.6		20.8	0.8		148.4	174.7	0.0	4.2		0.4	0.4		0.8	0.1			6.1	1.4	110.2	
	oyster shen	MIN	25.1	6.9		0.1		1192.0	660.0	1.0	18.0	50.0	2.0	1.9			0.01		5.0	17.0	9.2	230.0	
		MAX	28.0	7.2	240.0	1.6	-270.0	1473.0	1000.0	1.0	26.0	63.0	2.7	2.7	1.1	2.4	0.1	2.4	5.0	29.0	12.0	450.0	
		n MEAN	26.4	2	235.0	0.9	-279.0	1400.0	810.0	1.5	12.5	50.0	4.1	1.5	1.0	0.5	2.6	3.1	4.8	7.1	3.4	305.0	<u> </u>
DENIT-SU2	80% Sulfur; 20%	STD. DEV.	20.4		35.4	0.5	-275.0	2.8	169.7	0.7	12.3	30.0	3.2	0.4			3.7		4.0	9.8	4.7	233.3	
(old)	Sodium Sesqui.	MIN	24.8	7.0		0.5	-279.0	1398.0		1.0	4.9	50.0	1.8	1.2			0.025		4.8		0.0	140.0	
		MAX	27.9	9.1	. 260.0	1.2	-279.0	1402.0	930.0	2.0	20.0	50.0	6.4	1.8	1.2	0.9	5.2	5.2	4.8	14.0	6.7	470.0	
		n	1	1	. 1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	
DENIT-SU2	10% Limestone; 30% Sulfur; 60%	MEAN STD. DEV.	26		210	0.2	-90	1350	1000	8	2	18	1	1	1	0.03	0.03	0.06		1	0.01	490	<u> </u>
new)	Expanded Clay	MIN	26	7	210	0.2	-90	1350	1000	8	2.0	18	1	1	1	0.03	0.03	0.06		1	0.01	490	
	Expanded elay	MAX	26	7	210	0.2				8	2.0	18	1	1	1	0.03	0.03			1	0.01	490	
		n	3	3	3	3	2	3	3	3	3	2	3	3	3	3	3	3	1				
	50%	MEAN	24.6		236.7	0.6	-159.9	890.0	480.0	1.0	20.6	31.0	8.0	2.0	1.5	0.5	6.0	6.5	0.5				
DENIT-LS1	Lignocellulosic; 50% Expanded Clay	STD. DEV.	3.0		23.1	0.5		131.7	95.4	0.0	30.6		11.0	0.6			10.4						
		MIN	21.4			0.2		738.0		1.0	2.0	18.0	1.5	1.5		0.005	0.01		0.5				
		MAX	27.3	7.7	250.0	1.1	-120.0	970.0	540.0	1.0	56.0	44.0	20.7	2.7	2.7	0.8	18.0	18.0	0.5				
		n MEAN	24.7	3	423.3	3	-177.5	3 1126.7	3 706.7	35.0	3 284.0	400.0	24.9	23.3	13.0	3 10.3	4	11.9	2.9				
DENIT-GL1	12" Gravel; 60"	STD. DEV.	3.4		423.3	0.8		487.3	434.7		455.9	400.0	35.8	37.0			2.3		2.9				
	Expanded Clay	MIN	21.0		220.0	0.0		794.0	380.0	1.0	3.0	22.0	2.0	1.9		0.9	0.0		2.9				8
		MAX	27.8	8.0	660.0	1.5	-174.9	1686.0	1200.0	100.0	810.0	1100.0	66.1	66.0	37.0	29.0	4.7	29.1	2.9				8
In citu Cimul	ator Biofilters Efflue	n †																					
n-sita sinia		n	5	5	5	5	4	5	5	5	5	3	5	5	5	5	5	5	2	5	5	5	
	12" Sand; 12" Mix	MEAN	24.7	-	282.0	0.9	-57.0	1430.2	844.0	27.2	6.6	69.7	31.8	31.7	2.1	29.6	0.1	29.7	1.5	2.1	1.2	364.4	
JNSAT-IS1 STE)	(45% EC, 35%	STD. DEV.	-		104.5	1.0	203.7	564.7	439.4	48.1	4.7		31.3	31.3	2.5	29.0	0.1	29.0	0.4	2.2	1.1	423.3	
311)	Ligno, 20% Sulfur)	MIN	17.0	6.4	130.0	0.1	-246.2	1120.0	530.0	2.0	2.0	57.0	0.4	0.4			0.022		1.2		0.01	79.0	í.
		MAX	29.7	7.1	390.0	2.0	221.6	2438.0	1600.0	113.0	13.0	76.0	75.0	75.0		69.0	0.2		1.7	4.7	2.8	1100.0	
	4211 Courd 4211 Mar	n	5	2	5	5	4	5	5	5	5	3	5	5		5	5		2	5	5	5	
UNSAT-IS2	12" Sand; 12" Mix (45% EC, 35%	MEAN STD. DEV.	24.4		172.0 43.2	0.5	-182.4 39.3	1633.8 1147.5	1272.0 970.4	57.8 43.3	5.4 5.0	27.7	1.1	1.0			0.03		4.3	0.6	0.1	680.0 627.7	
NO ₃)	Ligno, 20% Sulfur)	MIN	17.1	6.1	100.0	0.1	-213.6	365.0	700.0	10.0	2.0	13.0	0.4	0.6		0.1	0.02	0.1	1.5	0.1	0.01	350.0	
	5 ., ,	MAX	30.0		210.0	0.8		3506.0	3000.0	108.0	13.0	50.0	1.5	1.5		0.8	0.05		7.0	1.0	0.6	1800.0	
		n	1	1	. 1	1	1	1	1	1	1	1	1	1	. 1	1	1	1		1	1	1	
JNSAT-IS3	12" Sand; 10" Mix	MEAN	19		280	0.4	158	1505	2300	4	3	46	34	6	0	6	28	34		1	0.01	290	
STE)	(60% EC, 40%	STD. DEV.	19	_	200		450	4505	2200		2	46	34			-	20	34		1	0.01	200	
	Ligno); 3" Sulfur)	MIN MAX	19		280	0.4	158 158	1505 1505	2300 2300	4	3	46	34	6	0	6	28 28			1	0.01	290 290	
		n	15	, 1	200	0.4	150	1505	2300			40	2	2	2	2	20	2			0.01	2,0	
JNSAT-IS4	12" Sand; 10" Mix	MEAN	18		280	9	153	0.01				35	28	2	2	0.06	26	26				465	j.
	(60% EC, 40%	STD. DEV.											21				21					35	
NO ₂)	Ligno); 3" Sulfur)	MIN	18	7	280	9	153	0.01				35	13	2	2	0.04	11					440	
NO3)		MAX	18	7	280	9	153	0.01				35	43	2	2	0.09	41	41				490	1
NO3) lotes:	en (TN) is a calculate		sum of T	N and NO																			
lotes: Total Nitrog		ed value equal to the			and NH ₂																		
otes: Fotal Nitrog Drganic Nitr	ogen (ON) is a calcu	ed value equal to the lated value equal to f a calculated value eq	the differe	ence of TKN a																			

Gray-shaded data points indicate values below method detection level (mdl), mdl value used for statistical analyses.

Yellow-shaded data points indicate the reported value is between the laboratory method detection limit and the laboratory practical quantitation limit, value used for statistical analysis.

Orange - shaded data points indic

Blue-shaded data points indicate the number is greater than reported value.

Purple-shaded data points indicate results based on colony counts outside the method indicated ideal range.

4.3 Flow Monitoring

Influent and effluent flows were measured, recorded, and adjusted as necessary to maintain flow rates consistent with the experimental design following the sampling event. Flow measurements and adjustments are made following collection of liquid samples and field parameter analyses.

A flow test was conducted November 19, 2010. These flow measurements are considered to represent those in effect leading up to and during the Sample Event 3. The measured volumes and relative errors between measured and target flow rates are presented in Appendix C, Table 1. For the Group 1 systems, measured STE inputs to four of the five Stage 1 biofilters were within the 15% operational target that is considered acceptable for PNRS II flow rates. The measured influent volume of UNSAT-PS1 was -36.2% of the target volume. Measured effluent volumes for Stage 1 single pass biofilters (Stage 2 influent) were within 13% of the target volume for four of the five systems (Appendix C, Table 1). The DENIT-LS4 measured influent volume was substantially less than the target volume. The low measured flow to the DENIT-LS4 (RE = -27.1%) is associated with the low influent volume of the directly connected UNSAT-PS1 biofilter.

For the Group 2 systems, all measured STE volumes to the Stage 1 recirculation tanks were within 9% of target volumes. All recycle flow volumes as recorded by the PLC were within 6% of target volumes based on the experimental design recycle ratio of 3.0. The calculated recycle ratios (i.e. recycle flow volume divided by the STE flow volume) for four of the five recirculation systems were within 5% of the target recycle ratio of 3.0. Although the recycle rate to the UNSAT-PS1 was close to target, the recycle ratio was high due to the low influent STE flow that was previously discussed.

For Group 3 systems, the measured influent volumes to the Stage 2 horizontal denitrification biofilters were all within 5% of target.

For Group 4 biofilters, the measured influent volumes were within 10% of target volumes for three of the four in-situ simulators. The measured influent volume of UNSAT-IS 1 was -26.9% of the target volume. The system tubing was replaced and recalibrated December 3rd; the influent volume to UNSAT-IS1 and UNSAT-IS2 was then measured to be within 8% of target.

After evaluating the influent flow test results, a few maintenance items were conducted:

- Peristaltic Pump 10 pump tubing was calibrated November 19th
- Peristaltic Pump 5 pump and system tubing was replaced and calibrated December 3rd

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY PNRS II TEST FACILITY DATA SUMMARY REPORT NO. 3

- Pump 4 (which feeds Hydrosplitter 1) runtime was modified December 8th from 31 seconds to 44 seconds
- Hydrosplitter 1 petcock valves were adjusted December 8th to provide equal distribution of flow to each of the five Stage 1 biofilters with input volumes as close to the target volume as possible

The flows were rechecked after modifications to the systems were made and are provided in Appendix C, Table 2. The UNSAT-PS1 measured influent volume is closer to the target as measured on December 8th which will continue to be monitored. After replacing and calibrating the Pump 5 pump and system tubing on December 3rd, the influent doses to UNSAT-IS1 and UNSAT-IS2 were closer to the target volume. After calibrating the Pump 10 pump tubing on November 19th, the influent doses to UNSAT-IS3 and UNSAT-IS4 were equal to the target volume.

5.0 PNRS II Sample Event No. 3: Summary and Recommendations

5.1 Summary

The results of the third sampling event serve to confirm that the experimental systems are functioning as intended and provide the basis upon which to make system adjustments and modifications. The Sample Event No. 3 results indicate that:

- Delivered flowrates to all biofilters continued to be generally within 15% of target;
- Septic tank effluent (STE) quality supplied to PNRS II systems is reasonably characteristic of typical household STE quality due to system modifications;
- Nine out of ten Stage 1 unsaturated biofilters produced effluent NH₃-N of 2.4 mg/L or less;
- Five out of nine Stage 2 saturated biofilters produced effluent NO_x-N of 0.14 mg/L or less;

These results provide continuing support of the nitrogen reduction potential of the PNRS II biofiltration systems. Where expected or desired PNRS II outcomes are not being achieved, they appear to be due to tractable issues can be addressed, as discussed in the following sections.

5.2 Recommendations

Careful observation of PNRS II systems and the results of Sample Events No. 1 to 3 were used to formulate recommendations for adjustments and modifications to the test systems and the GCREC pilot facility. The issues to be addressed, recommended modifications and their rationale, and expected outcomes are presented below. Recommendations are made for each of the PNRS II performance issues that have been identified. It is believed that each issue can be resolved by implementing the recommendations. All recommendations are based on the overriding PNRS II goal of providing functional specifications for modular biofiltration components for passive onsite nitrogen reducing treatment systems. The project team will continuously evaluate all PNRS II results including those that particularly result from implementation of the recommendations and make further adaptations as needed.

5.2.1 Polystyrene Biofilter (UNSAT-PS1) Recycle Rate

In Sample Event 3, the unsaturated single pass biofilter with polystyrene media (UNSAT-PS1) exhibited better nitrogen performance as a recirculating system as compared to the single pass configuration during Sample Event 1 and 2. Visual observations of the media surface during the single pass system configuration suggested that the STE application system resulted in somewhat better distribution than previously due to the higher application rates with recycle. However, there is still room for improvement in this regard.

Therefore, it is recommended to increase the recycle rate due to the characteristics of the polystyrene media and the polystyrene based treatment process which appears to function better with high recycle rates. The results of Sample Event 3 indicate that the polystyrene media performance is greatly improved as a recycle versus single pass system, however significant effluent NH₃-N remained, so its potential utility in enhanced nitrogen reduction systems depends on further improving ammonia removal. Therefore it is recommended that the Pump 15 runtime is increased so that the recycle ratio is increased to 6:1 from the current 3:1 ratio.

5.2.2 Additional Monitoring UNSAT-IS3 and UNSAT-IS4

Visual observation of both UNSAT-IS3 and UNSAT-IS4 indicated that the sampling valve in the gravel layer located below the lignocellulosic/expanded clay media and above the sulfur media was leaking immediately prior to Sample Event 3. The IS3 and IS4 results indicate that the system may have been compromised by the leak. Additionally, Sample Event 3 was conducted only three weeks after start-up of these columns, and biological activity may not have been fully mature at the time of sampling. It is recommended that an intermediate monitoring of IS3 and IS4 nitrogen species to delineate inorganic N performance is conducted as this is a critical path for in-situ mound construction.

5.2.3 Profiling of Denitrification Biofilters

As discussed within Section 4.2, the denitrification biofilters (Stage 2) effluent water quality provided puzzling results. It is recommended to gain additional insight into the operation of the denitrification biofilters by taking profile samples for NO_x-N, DO, ORP, COD and for the biofilters containing sulfur media, SO₄ and H₂S as well.

5.2.4 Lignocellulosic Denitrification Biofilters (DENIT-LS1, DENIT-LS2, DENIT-LS3, and DENIT-LS4)

The three upflow and one horizontal denitrification biofilters with lignocellulosic media showed limited NO_x reduction in Sample Event 3. As previously discussed in Section 4.2, ORP measurements indicate that the lignocellulosic systems are not driving the ORP into the reducing realms in which denitrification is fostered. Possible reasons are lack of reactivity of lignocellulosic material, short circuiting as witnessed in the dye test, or toxicity (release of toxic material from lignocellulosic material itself). A few possible options are recommended to be considered. To evaluate alternative lignocellulosic media material, small diameter columns can be constructed incorporating an alternative lignocellulosic media. In addition, the lignocellulosic biofilter effluent can be tested for toxicity screening using Microtox to evaluate the condition of the currently used lignocellulosic media.

5.2.5 Continue to Monitor Quality of STE Supplied to PNRS II Systems

The characteristics of GCREC septic tank effluent in Sample Event 3 were more typical of Florida single family residences than in previous sample events. It seems likely that this was at least partially due to the system modifications that were implemented after Sample Event 2 but prior to Sample Event 3. Continued diligence will be maintained to insure that the PNRS II systems are supplied STE of acceptable characteristics.

Appendix A: Operation & Maintenance Log

Table A.1Operation and Maintenance Log

	Operation and Maintenance Log
Date	Description
5/17/2010	Start-up
5/20/2010	Pump 1 not in Auto, LL float alarm, refilled Tank 1 to HIGH float
5/24/2010	Glycerol batch #1 prepared (125 mL glycerol; 1875 mL DI water), feed rate ~ 8 mL/dose
5/26/2010	LL float alarm, refilled Tank 1 to HIGH float
6/1/2010	Replaced glycerol tubing
6/4/2010	LL float alarm, refilled Tank 1 to HIGH float, determined that LOW float is faulty
	Revised floats so that old Low Float is now High float
	Revised program installed so that only LOW Float turns on/off Pump 1
6/8/2010	Glycerol batch #2 prepared (125 mL glycerol; 1875 mL DI water), feed rate ~ 8 mL/dose
6/18/2010	Pump 1 screen cleaned with hose
6/21/2010	Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps
	Pump 8 was on "OFF", turned back to "AUTO"
6/22/2010	Pump 5 had turned off, turned back on at 9:32 am
6/28/2010	Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps
	Replaced glycerol tubing, kink in top, added elbow
	Russ replaced existing GCREC mound Pump 2 ~ 11:00 am
7/2/2010	Pump 1 screen cleaned with hose
7/8/2010	Glycerol tubing had released to bottom of container, replaced with polyethylene tubing
	Tank 1 LOW Float alarm, revised magnet distance to shorten Pump 1 runtime
	Pump 1 screen cleaned with hose
7/12/2010	Pump 5 Error Code 18, cleared alarm and restarted pump
7/14/2010	UPS beeping, problem with receptacle, temporary fix with extension cord
7/15/2010	Electrician fixed receptacle
7/16/2010	Per Dr. Stanley all condensate flow diverted from septic system
	Russ fixed existing GCREC Mound Pump 2 which had not been running
	Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps
	Glycerol batch #3 prepared (125 mL glycerol; 1875 mL DI water), feed rate ~ 8 mL/dose
	Capillary mat added to PS-1
7/19/2010	IS 1 changed discharge (rotated 180°) now 15 inches of saturation from bottom of tank

PAGE A-1 HAZEN AND SAWYER, P.C.

Date	Description
7/20/2010	IS 2 changed discharge (rotated 180°) now 15 inches of saturation from bottom of tank
7/26/2010	Removed PS1 capillary mat from inside mesh bag, replaced with new mat on top of bag
	Glycerol batch #4 (70 mL glycerol; 1930 mL DI water), feed rate ~ 10 mL/dose
8/3/2010	Glycerol batch #5 (70 mL glycerol; 1930 mL DI water), feed rate ~ 10 mL/dose
8/4/2010	Cleaned crosses in Stage 1 Recirculating Biofilters
	Added tees to outlet of RC1 and RC4 tanks to alleviate blockage build-up
	Replaced Hydrosplitter 1 & 2 tubing
	Replaced Stage 2 horizontal tubing from Pump 11
	Cleaned Stage 2 horizontal sample ports
	Lowered Pump 1 Low Float 2 wraps to decrease volume in tank(decrease residence time)
8/10/2010	Glycerol batch #6 (70 mL glycerol; 1930 mL DI water), feed rate $^{\sim}$ 10 mL/dose
	Raised Pump 1 Low Float 1 wrap because float down was below the hole
8/12/2010	Revised tubing connection at top of In-Situ simulator tanks to elbow
8/17/2010	Glycerol batch #7 (70 mL glycerol; 1930 mL DI water), feed rate ~ 10 mL/dose
	Added tees to outlet in RC2 and RC3 tanks as well
	Revised RC tanks discharge piping to flexible hose
8/19/2010	Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps
8/23/2010	Possible leak detected at Recirc Tank #2 for P7
8/27/2010	Glycerol batch #8 (70 mL glycerol; 1930 mL DI water), feed rate ~ 10 mL/dose
9/1/2010	Replaced elbow for Recirc Tank #2 (STE tubing) to fix leak
9/7/2010	Glycerol batch #9 (70 mL glycerol; 1930 DI water), feed rate ~ 10 mL/dose
	Removed PS1 capillary mat
9/9/2010	Replaced Pump 5 pump tubing
9/10/2010	Cut the LS4 inlet pipe and used a drain snake to unclog both elbows
9/13/2010	Glycerol batch #10 (70 mL glycerol; 1980 DI water), feed rate ~ 10 mL/dose
9/17/2010	Modified Pump 7 runtime to 15 seconds per dose
9/21/2010	Reconnected the glycerol tubing between bottle and pump head which had separated
	Added sample ports to recirculation pump tank discharge lines for flow measurement
0/20/2010	capability
9/28/2010	Glycerol batch #11 (70 mL glycerol; 1930 DI water), feed rate ~ 10 mL/dose
	New clear glycerol bottle with graduated sides, replaced tubing
10/5/2010	Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps
10/6/2010	Glycerol batch #12 (30 mL glycerol; 1970 DI water), feed rate ~ 10 mL/dose
10/7/2010	Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps
10/8/2010	Modified Pump 1 discharge pipe to extend through Tank 1 hole in baffle wall

Date	Description
10/11/2010	DENIT-GL-1 nitrified STE influent tubing had disconnected, reattached
	Calibrated IS1 and IS2 tubing
	Calibrated Stage 2 horizontal tubing
10/14/2010	Glycerol batch #13 (30 mL glycerol; 1970 DI water), feed rate ~ 10 mL/dose
	Built new in-situ columns IS3 and IS4
10/15/2010	Unclogged PS1 discharge pipe
	Cleaned Pump 1 intake screen
	Lowered Pump 1 Low Float 1 wrap to decrease volume in tank(to decrease residence
	time)
10/18/2010	Completed IS3 and IS4 piping, started dosing @ 9:30 am
	Added 3" coarse sand to UNSAT-IS1 for complete nitrification
10/19/2010	Started dye test DENIT-LS2 and DENIT-LS3
	Lowered Pump 1 Low Float 1 wrap to decrease volume in tank(to decrease residence
10/20/2010	time)
10/20/2010	Calibrated IS3 and IS4 tubing
10/22/2010	Glycerol batch #14 (15 mL glycerol; 985 DI water), feed rate ~ 10 mL/dose
10/22/2010	Moved Pump 1 to effluent baffle tee of existing GCREC Tank 1
10/25/2010	Converted UNSAT-PS1 to recirculating biofilter
10/25/2010	Glycerol batch #15 (15 mL glycerol; 985 DI water), feed rate ~ 10 mL/dose
	DENIT-SU4 media ~5.5" below initial level
	Removed DENIT-SU4, DENIT-SU2 and DENIT-LS2 media
	Cleaned tanks
	Replaced DENIT-SU2 media (30% sulfur, 10% limestone, 60% expanded clay mixture)
	Replaced DENIT-SU4 media (30% sulfur, 10% limestone, 60% expanded clay mixture)
10/27/2010	Replaced DENIT-LS2 media (25% lignocellulosic, 75% expanded clay mixture)
	Glycerol batch #16 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
11/1/2010	Glycerol batch #17 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
11/5/2010	Glycerol batch #18 (13.5 mL glycerol; 986.5 DI water), feed rate ~ 10 mL/dose
11/11/2010	Glycerol batch #19 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
11/18/2010	Glued UNSAT-IS3 and UNSAT-IS4 discharge piping to stop potential leaks
	Glycerol batch #20 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
44/24/2010	Calibrated UNSAT-IS3 and IS4 tubing
11/24/2010	Glycerol batch #21 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
11/29/2010	Glycerol batch #21 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
10/1/00/-	Threaded and glued UNSAT-IS3 and UNSAT-IS4 petcock valves
12/1/2010	Tank 1 low-low float alarm activated, high float had activated in Tank 1 preventing
	Pump 1 to run. Cleared both alarms

FLORIDA DEPARTMENT OF HEALTH PNRS II TEST FACILITY DATA SUMMARY REPORT NO. 3

December 2010

Appendix A

Date Description

12/3/2010 Cleared plug in DENIT-LS4 influent piping Replaced Hydrosplitter 1 & 2 tubing Replaced Pump 11 pump and system tubing Replaced Pump 5 pump and system tubing

Figure A.1 Capillary Mat Installed above Polystyrene Media

o:\44237-001\\Wpdocs\Report\Draft

December 2010

Figure A.2 Revised In-situ Simulators Discharge Piping

Figure A.3 RC1 Outlet Tee

FLORIDA DEPARTMENT OF HEALTH PNRS II TEST FACILITY DATA SUMMARY REPORT NO. 3 PAGE A-5 HAZEN AND SAWYER, P.C.

Figure A.4 UNSAT-CL4 before Cleaning

Figure A.5 UNSAT-CL4 after Cleaning

Figure A.6 Outlet Tee in Recirculation Tank

FLORIDA DEPARTMENT OF HEALTH PNRS II TEST FACILITY DATA SUMMARY REPORT NO. 3 PAGE A-6 HAZEN AND SAWYER, P.C.

December 2010

Figure A.7 Unclogging UNSAT-LS4 Influent Pipe

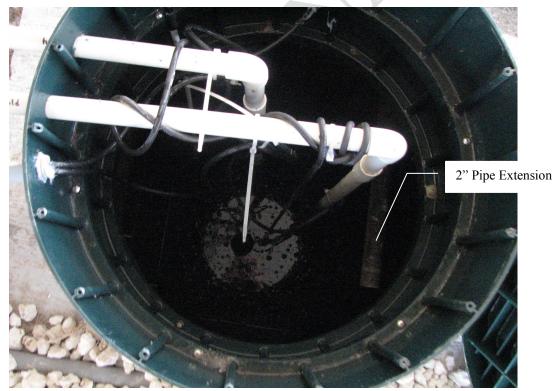


Figure A.8 2" Pipe Extension into PNRS II Tank 1 Pump Chamber

FLORIDA DEPARTMENT OF HEALTH PNRS II TEST FACILITY DATA SUMMARY REPORT NO. 3 PAGE A-7 HAZEN AND SAWYER, P.C.

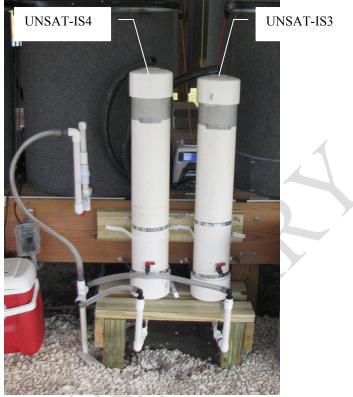


Figure A.9 UNSAT-IS3 and UNSAT-IS4 Columns

o:\44237-001\\Wpdocs\Report\Draft

PAGE A-8 HAZEN AND SAWYER, P.C.

Appendix B: PLC Data Tables

	Summary		Record	ed Daily	y Flows					
(9/1/10 – 11/9/10)										
	Average Recorded Flow (gpd)	Std. Dev.	MIN (gpd)	MAX (gpd)	Target Flow (gpd)	Relative Error ¹ (%)				
Pump 4 to Hydro 1	70	2.52	65	76	73.7	-4.8%				
Pump 14 to Hydro 2	62	1.38	59	68	58.9	4.6%				
Pump 6 to Recirc. System 1	44	0.97	43	51	44.2	0.2%				
Pump 7 to Recirc. System 2	45	1.65	43	52	44.2	2.5%				
Pump 8 to Recirc. System 3	44	0.46	43	45	44.2	-0.4%				
Pump 9 to Recirc. System 4	44	0.64	42	45	44.2	-0.5%				
Pump 15 to Recirc. System 5	42	0.60	41	43	44.2	-5.4%				

¹Relative Error = (Recorded Flow – Target Flow)/ Target Flow *100

Table B.2Summary of PLC Recorded Daily Runtimes(9/1/10 – 11/9/10)

				10)		
	Average Recorded Daily Runtime (minutes/day)	Std. Dev.	MIN (minutes)	MAX (minutes)	Target Daily Runtime (minutes)	Relative Error ¹ (%)
Pump 4 to Hydro 1	12.8	0.4	12.0	13.0	12.4	3.0%
Pump 14 to Hydro 2	10.8	0.4	10.0	11.0	10.4	3.7%
Pump 6 to Recirc. System 1	6.4	0.5	6.0	7.0	6.0	6.4%
Pump 7 to Recirc. System 2	6.5	0.5	6.0	7.0	6.0	8.1%
Pump 8 to Recirc. System 3	6.4	0.5	6.0	7.0	6.0	6.4%
Pump 9 to Recirc. System 4	6.4	0.5	6.0	7.0	6.0	6.4%
Pump 15 to Recirc. System 5	6.4	0.5	6.0	7.0	6.0	6.5%

¹Relative Error = (Recorded Runtime – Target Runtime)/ Target Runtime *100

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY PNRS II TEST FACILITY DATA SUMMARY REPORT NO. 3

PAGE B-1 HAZEN AND SAWYER, P.C.

Appendix C: Flow Test Results

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY PNRS II TEST FACILITY DATA SUMMARY REPORT NO. 3

PAGE C-1 HAZEN AND SAWYER, P.C.

			Target Input	:	Measur	ed Input	Measure	d Output	Recycl	e Ratio
Group (Figure 1)	Biofilter/Flow	Target Input Volume	Dose/day	Target Input Volume	Measured Input Volume	Relative Error (%)	Measured Output Volume	Relative Error (%)	Calculated Recycle Ratio (RR)	Relative Erro (%)
		(mL/day)	(Dose/day)	(mL/dose)	(mL/dose)	(Measured Input -Target Input) / Target Input * 100	(mL/dose)	(Measured Output -Target Input) / Target Input * 100	Volume Recycle / Volume STE	Measured RR Target RR / Measured RR 100
	Stage 1 Single Pass Biofilters									
	(Hydrosplitter 1)				9/10/2010 Dose		9/1/10			
	Date				@ 10:00 am		12:53 - 1:53 pm			
	UNSAT-PS1				2,175	-6.2%	3,575	54.2%		
	UNSAT-CL3				2,295	-1.0%	2,405	3.7%	à	
	UNSAT-CL1 UNSAT-EC3	55,656	24	2,319	2,330 2,245	-3.2%	2,303	-0.7%		
	UNSAT-EC3 UNSAT-EC1				2,245	-3.2%	2,368 2,405	3.7%		
	Mean				2,330	-1.9%	2,403	12.6%		
1					2,273	-1.5%	2,011	12.0/6	-	
	Stage 2 Single Pass Upflow Biofilters									
	Date						9/1/10 8:42 - 9:42 am			
	DENIT-LS4						1,779	-23.3%		
	DENIT-LS2						3,437	48.2%		
	DENIT-SU3	55,656	24	2,319			2,857	23.2%		
	DENIT-LS3						2,770	19.4%		
	DENIT-SU4						2,407	3.8%		
	Mean						2,650	14.3%		
	Stage 1 Recirculating Biofilters (Hydrosplitter 2)									
	Date				(9/10/10) dose @ 10:30 am					
	RC1 : UNSAT-SA2				2,300	-0.8%				
	RC2 : UNSAT-EC4	55,656	24	2,319	2,520	8.7%				
	RC3 : UNSAT-CL2	33,030	24	2,315	2,410	3.9%				
	RC4 : UNSAT-CL4				2,380	2.6%				
	Mean				2,403	3.6%				
	Stage 1 Recirculating Biofilters (Recycle)				PLC Recorded (9/10/2010)					
2	RC1 : UNSAT-SA2				6,939	-0.3%			3.02	0.6%
	RC2 : UNSAT-EC4	166,968	24	6,957	7,570	8.8%			3.00	0.1%
	RC3 : UNSAT-CL2 RC4 : UNSAT-CL4				6,939 6,939	-0.3%			2.88	-4.2% -2.9%
	Mean				7,097	2.0%			2.95	-2.5%
	Stage 1 Recirculating Biofilters (Hydrosplitter 2 + Recycle)				1,001	2.070	9/1/2010 10:10 - 11:10 am		2.55	1070
	RC1 : UNSAT-SA2						9,290	0.2%		
	RC2 : UNSAT-EC4	222,624	24	9,276			10,170	9.6%		
	RC3 : UNSAT-CL2			., .			9,325	0.5%		
	RC4 : UNSAT-CL4						9,184	-1.0%		-
	Mean Horizontal Denitrification Biofilters						9,492	2.3%		
	Date				9/10/10 dose @ 12:06 pm		9/1/2010 12:58 - 1:58 pm			
2	DENIT-SU1				298	-3.5%	239	-22.6%		
3	DENIT-SU2				296	-4.1%	275	-10.9%		
	DENIT-GL1	7,409	24	308.7	295	-4.4%	272	-11.9%		
	DENIT-LS1				282	-8.6%	248	-19.7%		
	Mean				293	-5.2%	259	-16.3%		
	In-Situ Simulators									
4	Date				9/1/2010 manual dose		9/1/10 8:49 - 12:49 pm			
	UNSAT-IS1 (STE)	14,814	6	2,469	2,551	3.3%	1,823	-26.2%		
	UNSAT-IS2 (Nitrified STE)				2,288	-7.3%	2,360	-4.4%		

Table C.1 Flow Test Results (before flow recalibration)

Notes: Yellow-shaded cells are measured values; grey-shaded cells are calculated values

FLORIDA DEPARTMENT OF HEALTH PNRS II TEST FACILITY DATA SUMMARY REPORT NO. 3

o:\44237-001\\Wpdocs\Report\Draft

		estr	esuits	(anter	now re	camprat	lion)	
			Target Input	:	Measur	ed Input	Recycl	e Ratio
Group (Figure 1)	Biofilter/Flow	Target Input Volume	Dose/day	Target Input Volume	Measured Input Volume	Relative Error (%)	Calculated Recycle Ratio (RR)	Relative Error (%)
		(mL/day)	(Dose/day)	(mL/dose)	(mL/dose)	(Measured Input -Target Input) / Target Input * 100	Volume Recycle / Volume STE	Measured RR - Target RR / Measured RR * 100
	Stage 1 Single Pass Biofilters (Hydrosplitter 1)							
	Date				(12/8/10) manual dose @ 8:45 am			
	UNSAT-PS1				2,320	0.0%		
	UNSAT-CL3				2,395	3.3%		
	UNSAT-CL1	55,656	24	2,319	2,340	0.9%		
	UNSAT-EC3 UNSAT-EC1				2,300 2,340	-0.8%		
1	Mean				2,340	0.9%		
-	Stage 2 Single Pass Upflow Biofilters				2,555	0.570		
	Stage 2 Single Pass opnow Biointers				11/10/2010 8:00			
	Date				11/19/2010 8:00- 9:00 am			
	DENIT-LS4				1,690			
	DENIT-LS2				2,090			
	DENIT-SU3	55,656	24	2,319	2,425			
	DENIT-LS3				2,025			
	DENIT-SU4				2,120			
	Mean Stage 1 Recirculating Biofilters							
	(Hydrosplitter 2)				(11/19/10) dose		1	
	Date				@ 9:30 am			
	RC1 : UNSAT-SA2				2,105	-9.2%		
	RC2 : UNSAT-EC4	55,656	24	2,319	2,270	-2.1%		
	RC3 : UNSAT-CL2 RC4 : UNSAT-CL4				2,345 2,220	-4.3%		
	Mean				2,235	-3.6%		
	Stage 1 Recirculating Biofilters (Recycle)				Flowmeter 11/19/10 8:30			
	RC1 : UNSAT-SA2				6,586	-5.3%	3.13	4.1%
2	RC2 : UNSAT-EC4				7,116	2.3%	3.13	4.3%
	RC3 : UNSAT-CL2	166,968	24	6,957	7,002	0.7%	2.99	-0.5%
	RC4 : UNSAT-CL4				6,586	-5.3%	2.97	-1.1%
	RC5 : UNSAT-PS1 Mean				6,662	-4.2%	2.98 3.05	-0.7% 1.8%
	Stage 1 Recirculating Biofilters (Hydrosplitter + Recycle)				6,822	-1.5%	5.05	1.8%
	RC1 : UNSAT-SA2				8,691			
	RC2 : UNSAT-EC4				9,386			
	RC3 : UNSAT-CL2	222,624	24	9,276	9,347			
	RC4 : UNSAT-CL4				8,806			
	RC5 : UNSAT-PS1				8,982			
	Mean Horizontal Denitrification Biofilters				9,042			
	Date	<u> </u>			11/19/10 dose @			
2	DENIT-SU1	-			8:25 am 302	-2.2%		
3	DENIT-SU2			202 -	295	-4.4%		
	DENIT-GL1	7,409	24	308.7	295	-4.4%		
	DENIT-LS1				300	-2.8%		
	Mean				298	-3.5%	ļ	
	In-Situ Simulators				12/3/2010			
	Date				12/3/2010 manual dose			
4	UNSAT-IS1 (STE) UNSAT-IS2 (Nitrified STE)	14,814	6	2,469	2,600 2,660	5.3% 7.7%		
	Date				11/19/2010 manual dose			
	LINGAT IC2 (CTC)			1	99	0.0%		
	UNSAT-IS3 (STE)	594	6	99				

Table C.2 Flow Test Results (after flow recalibration)

Appendix D: Laboratory Report

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY PNRS II TEST FACILITY DATA SUMMARY REPORT NO. 3

PAGE D-1 HAZEN AND SAWYER, P.C.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 7, 2011 Work Order: 1001627 Revised Report

Laboratory Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		PNRS II STE-TI						
Matrix		Wastewater						
SAL Sample Number		1001627-01						
Date/Time Collected		11/10/10 13:50						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	7.2	DEP FT1100	0.1	0.1		11/10/10 13:50	TDD
Water Temperature	°C	25.1	DEP FT1400	0.1	0.1		11/10/10 13:50	TDD
Specific conductance	umhos/cm	1,250	DEP FT1200	0.1	0.1		11/10/10 13:50	TDD
Dissolved Oxygen	mg/L	2.4	DEP FT1500	0.1	0.1		11/10/10 13:50	TDD
Inorganics	ma/l	E /	SM AFFORT	0.04	0.01		11/12/10 16:00	KT0
Hydrogen Sulfide (Unionized)	mg/L	5.4	SM 4550SF	0.04	0.01		11/12/10 16:00	KTC
Ammonia as N	mg/L	67	EPA 350.1 SM 5210B	0.010	0.005	11/10/10 10:00	11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	91 240	EPA 410.4	2 25	2 10	11/12/10 10:00	11/17/10 13:07	KTC ARM
Chemical Oxygen Demand Sulfate	mg/L	240 33	EPA 300.0	25 0.60	0.20	11/15/10 09:53	11/16/10 08:45 11/15/10 23:40	MEJ
Sulfide	mg/L	15	SM 4500SF	4.0	1.0	11/15/10 09.55	11/12/10 16:00	KTC
Total Alkalinity	mg/L mg/L	430	SM 430031 SM 2320B	4.0 8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	450	SM 2520D	0.0 10	2.0 10	11/15/10 11:00	11/16/10 12:30	MJV
Total Kjeldahl Nitrogen	mg/L	80	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	70 Q	SM 2540D	1	1	12/15/10 15:30	12/16/10 14:58	MJV
Nitrate+Nitrite (as N)	mg/L	0.01 I	EPA 353.2	0.04	0.01	12,10,10,10,000	11/17/10 15:50	SMB
Sample Description		RC1						
Matrix		Wastewater						
SAL Sample Number		1001627-02 11/10/10 12:00-11/10/	40 40-50					
Date/Time Collected Collected by		Thomas Drunasky	10 12:50					
Date/Time Received		11/10/10 17:50						
		11/10/10 17.50						
Field Parameters								
рН	SU	7.3	DEP FT1100	0.1	0.1		11/10/10 12:50	TDD
Water Temperature	°C	20.6	DEP FT1400	0.1	0.1		11/10/10 12:50	TDD
Specific conductance	umhos/cm	1,000	DEP FT1200	0.1	0.1		11/10/10 12:50	TDD
Dissolved Oxygen	mg/L	2.1	DEP FT1500	0.1	0.1		11/10/10 12:50	TDD
Inorganics		10		0.040	0.005		444740 47.04	
Ammonia as N	mg/L	12	EPA 350.1	0.010	0.005	11/10/10 10:00	11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/12/10 10:00	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	29	EPA 410.4	25	10		11/16/10 08:45	ARM
Total Alkalinity	mg/L	180	SM 2320B	8.0	2.0	11/15/10 11:00	11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	580	SM 2540C EPA 351.2	10	10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	17	SM 2540D	0.20	0.05 1	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids Nitrate+Nitrite (as N)	mg/L	3 24	EPA 353.2	1 0.04	1 0.01	11/17/10 14:17	11/17/10 14:19 11/17/10 15:50	MJV SMB
	mg/L	۲4	LI / 000.2	0.04	0.01		11/17/10 15:50	SIVID

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Sone Caro

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

January 7, 2011 Work Order: 1001627 Revised Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		RC2						
Matrix		Wastewater						
SAL Sample Number		1001627-03						
Date/Time Collected		11/10/10 13:00						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
pН	SU	7.2	DEP FT1100	0.1	0.1		11/10/10 13:00	TDD
Water Temperature	°C	19.5	DEP FT1400	0.1	0.1		11/10/10 13:00	TDD
Specific conductance	umhos/cm	1,020	DEP FT1200	0.1	0.1		11/10/10 13:00	TDD
Dissolved Oxygen	mg/L	1.6	DEP FT1500	0.1	0.1		11/10/10 13:00	TDD
Inorganics								
Ammonia as N	mg/L	13	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	8	SM 5210B	2	2	11/12/10 10:00	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	35	EPA 410.4	25	10		11/16/10 08:45	ARM
Total Alkalinity	mg/L	210	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	590	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	19	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	2	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	24 J5	EPA 353.2	0.04	0.01		11/17/10 15:50	SMB
Sample Description		RC3						
Matrix		Wastewater						
SAL Sample Number		1001627-04						
Date/Time Collected		11/10/10 13:10						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
pH	SU	7.2	DEP FT1100	0.1	0.1		11/10/10 13:10	TDD
Water Temperature	°C	19.2	DEP FT1400	0.1	0.1		11/10/10 13:10	TDD
Specific conductance	umhos/cm	1,040	DEP FT1200	0.1	0.1		11/10/10 13:10	TDD
Dissolved Oxygen	mg/L	2.3	DEP FT1500	0.1	0.1		11/10/10 13:10	TDD
Inorganics								
Ammonia as N	mg/L	12	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	9	SM 5210B	2	2	11/12/10 10:00	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	39	EPA 410.4	25	10		11/16/10 08:45	ARM
Total Alkalinity	mg/L	260	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	550	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	19	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	6	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	17	EPA 353.2	0.04	0.01		11/17/10 15:50	SMB

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 7, 2011 Work Order: 1001627 Revised Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		RC4						
Matrix		Wastewater						
SAL Sample Number		1001627-05						
Date/Time Collected		11/10/10 13:20						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	7.4	DEP FT1100	0.1	0.1		11/10/10 13:20	TDD
Water Temperature	°C	19.7	DEP FT1400	0.1	0.1		11/10/10 13:20	TDD
Specific conductance	umhos/cm	1,090	DEP FT1200	0.1	0.1		11/10/10 13:20	TDD
Dissolved Oxygen	mg/L	1.9	DEP FT1500	0.1	0.1		11/10/10 13:20	TDD
Inorganics								
Ammonia as N	mg/L	12	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	4	SM 5210B	2	2	11/12/10 10:00	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	26	EPA 410.4	25	10		11/16/10 08:45	ARM
Total Alkalinity	mg/L	260	SM 2320B	8.0	2.0		11/16/10 12:30	ктс
Total Dissolved Solids	mg/L	590	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	17	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	2	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	18	EPA 353.2	0.04	0.01		11/17/10 15:50	SMB
Comple Description		RC5						
Sample Description								
Matrix SAL Sample Number		Wastewater 1001627-06						
Date/Time Collected		11/10/10 16:10						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
		11/10/10 17.50						
Field Parameters								
рН	SU	7.3	DEP FT1100	0.1	0.1		11/10/10 16:10	TDD
Water Temperature	°C	22.0	DEP FT1400	0.1	0.1		11/10/10 16:10	TDD
Specific conductance	umhos/cm	1,050	DEP FT1200	0.1	0.1		11/10/10 16:10	TDD
Dissolved Oxygen	mg/L	3.3	DEP FT1500	0.1	0.1		11/10/10 16:10	TDD
Inorganics								
Ammonia as N	mg/L	28	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	8	SM 5210B	2	2	11/12/10 11:05	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	61	EPA 410.4	25	10		11/16/10 08:45	ARM
Total Alkalinity	mg/L	260	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	480	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	31	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	8	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	14	EPA 353.2	0.04	0.01		11/17/10 15:50	SMB

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 7, 2011 Work Order: 1001627 Revised Report

Laboratory Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		P15-T						
Matrix		Wastewater						
SAL Sample Number		1001627-07						
Date/Time Collected		11/10/10 13:45						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
pH	SU	7.4	DEP FT1100	0.1	0.1		11/10/10 13:45	TDD
Water Temperature	°C	20.7	DEP FT1400	0.1	0.1		11/10/10 13:45	TDD
Specific conductance	umhos/cm	970	DEP FT1200	0.1	0.1		11/10/10 13:45	TDD
Dissolved Oxygen	mg/L	7.1	DEP FT1500	0.1	0.1		11/10/10 13:45	TDD
Inorganics								
Ammonia as N	mg/L	17	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	3	SM 5210B	2	2	11/12/10 10:00	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	33	EPA 410.4	25	10		11/16/10 08:45	ARM
Total Alkalinity	mg/L	200	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	550	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	21	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	6	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	21	EPA 353.2	0.04	0.01		11/17/10 15:50	SMB
Sample Description		UNSAT-IS1						
Matrix		Wastewater						
SAL Sample Number		1001627-08						
Date/Time Collected		11/10/10 10:00						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	6.8	DEP FT1100	0.1	0.1		11/10/10 10:00	TDD
Water Temperature	°C	20.5	DEP FT1400	0.1	0.1		11/10/10 10:00	TDD
Specific conductance	umhos/cm	1,120	DEP FT1200	0.1	0.1		11/10/10 10:00	TDD
Dissolved Oxygen	mg/L	1.9	DEP FT1500	0.1	0.1		11/10/10 10:00	TDD
Inorganics	-							
Hydrogen Sulfide (Unionized)	mg/L	2.8	SM 4550SF	0.04	0.01		11/12/10 16:00	KTC
Ammonia as N	mg/L	50 J5	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/11/10 15:00	11/16/10 12:10	KTC
Chemical Oxygen Demand	mg/L	76	EPA 410.4	_ 25	10		11/16/10 08:45	ARM
Sulfate	mg/L	79	EPA 300.0	0.60	0.20	11/15/10 09:53	11/15/10 23:40	MEJ
Sulfide	mg/L	4.7	SM 4500SF	4.0	1.0	,,	11/12/10 16:00	KTC
Total Alkalinity	mg/L	390	SM 2320B	4.0 8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	540	SM 2540C	10	2.0 10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	540	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	6	SM 2540D	0.20	0.05	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	•	0.18	EPA 353.2	0.04	ا 0.01	11/17/10 14.17	11/17/10 14:19	SMB
	mg/L	0.10	LI / 000.2	0.04	0.01		111110 15.50	

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 7, 2011 Work Order: 1001627 Revised Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		UNSAT-IS2						
Matrix		Wastewater						
SAL Sample Number		1001627-09						
Date/Time Collected		11/10/10 09:45						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
pН	SU	6.8	DEP FT1100	0.1	0.1		11/10/10 09:45	TDE
Water Temperature	°C	19.2	DEP FT1400	0.1	0.1		11/10/10 09:45	TDD
Specific conductance	umhos/cm	1,300	DEP FT1200	0.1	0.1		11/10/10 09:45	TDD
Dissolved Oxygen	mg/L	0.8	DEP FT1500	0.1	0.1		11/10/10 09:45	TDD
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01		11/12/10 16:00	KTC
Ammonia as N	mg/L	0.80	EPA 350.1	0.010	0.005		11/17/10 17:04	SME
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/11/10 15:00	11/16/10 12:10	KTC
Chemical Oxygen Demand	mg/L	20	EPA 410.4	25	10		11/16/10 08:45	ARM
Sulfate	mg/L	380	EPA 300.0	0.60	0.20	11/15/10 09:53	11/15/10 23:40	ME
Sulfide	mg/L	1.0 U	SM 4500SF	4.0	1.0		11/12/10 16:00	KTC
Total Alkalinity	mg/L	180	SM 2320B	8.0	2.0		11/16/10 12:30	ктс
Total Dissolved Solids	mg/L	820	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:00	MJ∖
Total Kjeldahl Nitrogen	mg/L	1.2	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SME
Total Suspended Solids	mg/L	19	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJ∖
Nitrate+Nitrite (as N)	mg/L	0.05	EPA 353.2	0.04	0.01		11/17/10 15:50	SME
Sample Description		UNSAT-IS4						
Matrix		Wastewater						
SAL Sample Number		1001627-11						
Date/Time Collected		11/10/10 15:15						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Inorganics								
Ammonia as N	mg/L	0.036	EPA 350.1	0.010	0.005		11/17/10 17:04	SME
Sulfate	mg/L	490	EPA 300.0	0.60	0.20	11/15/10 09:53	11/15/10 23:40	ME
Total Kjeldahl Nitrogen	mg/L	2.1	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SME
Nitrate+Nitrite (as N)	mg/L	41	EPA 353.2	0.04	0.01		11/18/10 14:49	SME
Sample Description		UNSAT-EC1						
Matrix		Wastewater						
SAL Sample Number		1001627-12						
Date/Time Collected		11/10/10 16:00						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 7, 2011 Work Order: 1001627 Revised Report

Laboratory Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		UNSAT-EC1						
Matrix		Wastewater						
SAL Sample Number		1001627-12						
Date/Time Collected		11/10/10 16:00						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
рН	SU	6.9	DEP FT1100	0.1	0.1		11/10/10 16:00	TDD
Water Temperature	°C	20.6	DEP FT1400	0.1	0.1		11/10/10 16:00	TDD
Specific conductance	umhos/cm	1,150	DEP FT1200	0.1	0.1		11/10/10 16:00	TDD
Dissolved Oxygen	mg/L	7.1	DEP FT1500	0.1	0.1		11/10/10 16:00	TDD
Inorganics			014 455005		0.04			1/70
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01		11/12/10 16:00	KTC
Ammonia as N	mg/L	1.3	EPA 350.1	0.010	0.005	444040 44 05	11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/12/10 11:05	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10		11/16/10 08:45	ARM
Sulfate	mg/L	61	EPA 300.0	0.60	0.20	11/16/10 11:22	11/16/10 16:02	MEJ
Sulfide	mg/L	1.0 U	SM 4500SF	4.0	1.0		11/12/10 16:00	KTC
Total Alkalinity	mg/L	180	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	770	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	4.8	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	1 U	SM 2540D EPA 353.2	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	62 Q	EFA 355.2	0.04	0.01		01/06/11 15:32	SMB
Sample Description		UNSAT-SA2						
Matrix		Wastewater						
SAL Sample Number		1001627-13						
Date/Time Collected Collected by		11/10/10 11:10 Thomas Drunasky						
Date/Time Received		Thomas Drunasky 11/10/10 17:50						
		11/10/10 17:50						
Field Parameters								
pH	SU	6.9	DEP FT1100	0.1	0.1		11/10/10 11:10	TDD
Water Temperature	°C	22.5	DEP FT1400	0.1	0.1		11/10/10 11:10	TDD
Specific conductance	umhos/cm	930	DEP FT1200	0.1	0.1		11/10/10 11:10	TDD
Dissolved Oxygen	mg/L	7.7	DEP FT1500	0.1	0.1		11/10/10 11:10	TDD
Inorganics		a - 4						
Ammonia as N	mg/L	0.74	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/11/10 15:00	11/16/10 12:10	KTC
Chemical Oxygen Demand	mg/L	22	EPA 410.4	25	10		11/16/10 08:45	ARM
Total Alkalinity	mg/L	120	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	610	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	3.5	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	13	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	38	EPA 353.2	0.04	0.01		11/18/10 14:49	SMB

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Sone Caro

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

January 7, 2011 Work Order: 1001627 Revised Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		UNSAT-EC3						
Matrix		Wastewater						
SAL Sample Number		1001627-14						
Date/Time Collected		11/10/10 15:30						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	6.8	DEP FT1100	0.1	0.1		11/10/10 15:30	TDD
Water Temperature	°C	21.5	DEP FT1400	0.1	0.1		11/10/10 15:30	TDD
Specific conductance	umhos/cm	1,250	DEP FT1200	0.1	0.1		11/10/10 15:30	TDD
Dissolved Oxygen	mg/L	6.8	DEP FT1500	0.1	0.1		11/10/10 15:30	TDD
Inorganics								
Ammonia as N	mg/L	2.4	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/12/10 11:05	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10		11/16/10 08:45	ARM
Total Alkalinity	mg/L	220	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	850	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	4.9	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	81	EPA 353.2	0.04	0.01		11/18/10 14:49	SMB
Sample Description		UNSAT-EC4						
Matrix		Wastewater						
SAL Sample Number		1001627-15						
Date/Time Collected		11/10/10 11:20						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters	0.1	0.0		0.4				TDD
pH	SU	6.9	DEP FT1100	0.1	0.1		11/10/10 11:20	TDD
Water Temperature	°C	22.2	DEP FT1400	0.1	0.1		11/10/10 11:20	TDD
Specific conductance	umhos/cm	980	DEP FT1200	0.1	0.1		11/10/10 11:20	TDD
Dissolved Oxygen	mg/L	7.3	DEP FT1500	0.1	0.1		11/10/10 11:20	TDD
Inorganics								
Ammonia as N	mg/L	0.005 U	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/11/10 15:00	11/16/10 12:10	KTC
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10		11/16/10 08:45	ARM
Total Alkalinity	mg/L	140	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	660	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	2.3	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	2	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	50	EPA 353.2	0.04	0.01		11/18/10 14:49	SMB

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 7, 2011 Work Order: 1001627 Revised Report

Laboratory Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		UNSAT-CL1						
Matrix		Wastewater						
SAL Sample Number		1001627-16						
Date/Time Collected		11/10/10 15:40						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	7.1	DEP FT1100	0.1	0.1		11/10/10 15:40	TDD
Water Temperature	°C	22.0	DEP FT1400	0.1	0.1		11/10/10 15:40	TDD
Specific conductance	umhos/cm	1,130	DEP FT1200	0.1	0.1		11/10/10 15:40	TDD
Dissolved Oxygen	mg/L	7.3	DEP FT1500	0.1	0.1		11/10/10 15:40	TDD
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01		11/12/10 16:00	KTC
Ammonia as N	mg/L	0.005 U	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/12/10 11:05	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10		11/16/10 08:45	ARM
Sulfate	mg/L	62	EPA 300.0	0.60	0.20	11/16/10 11:22	11/16/10 16:02	MEJ
Sulfide	mg/L	1.0 U	SM 4500SF	4.0	1.0		11/12/10 16:00	KTC
Total Alkalinity	mg/L	230	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	800	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	2.6	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	44	EPA 353.2	0.04	0.01		11/18/10 14:49	SMB
Sample Description		UNSAT-CL2						
Matrix		Wastewater						
SAL Sample Number		1001627-17						
Date/Time Collected		11/10/10 11:30						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	7.0	DEP FT1100	0.1	0.1		11/10/10 11:30	TDD
Water Temperature	°C	23.1	DEP FT1400	0.1	0.1		11/10/10 11:30	TDD
Specific conductance	umhos/cm	1,000	DEP FT1200	0.1	0.1		11/10/10 11:30	TDD
Dissolved Oxygen	mg/L	5.4	DEP FT1500	0.1	0.1		11/10/10 11:30	TDD
Inorganics								
Ammonia as N	mg/L	0.005 U	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/11/10 15:00	11/16/10 12:10	KTC
Chemical Oxygen Demand	mg/L	24 I	EPA 410.4	25	10		11/16/10 08:45	ARM
Total Alkalinity	mg/L	200	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	630	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	2.3	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	2	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	54	EPA 353.2	0.04	0.01		11/18/10 14:49	SMB

FDOH Laboratory No.E84129 NELAP Accredited

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 7, 2011 Work Order: 1001627 Revised Report

Laboratory Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		UNSAT-CL3						
Matrix		Wastewater						
SAL Sample Number		1001627-18						
Date/Time Collected		11/10/10 15:50						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	7.4	DEP FT1100	0.1	0.1		11/10/10 15:50	TDD
Water Temperature	°C	22.0	DEP FT1400	0.1	0.1		11/10/10 15:50	TDD
Specific conductance	umhos/cm	1,280	DEP FT1200	0.1	0.1		11/10/10 15:50	TDD
Dissolved Oxygen	mg/L	7.6	DEP FT1500	0.1	0.1		11/10/10 15:50	TDD
Inorganics	-							
Ammonia as N	mg/L	0.005 U	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/12/10 11:05	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	29	EPA 410.4	25	10		11/16/10 08:45	ARM
Total Alkalinity	mg/L	290	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	820	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	2.7	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	2	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	80	EPA 353.2	0.04	0.01		11/18/10 14:49	SMB
Sample Description Matrix		UNSAT-CL4 Wastewater						
SAL Sample Number		1001627-19						
Date/Time Collected		11/10/10 11:40						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
pH	SU	7.2	DEP FT1100	0.1	0.1		11/10/10 11:40	TDD
Water Temperature	°C	23.5	DEP FT1400	0.1	0.1		11/10/10 11:40	TDD
Specific conductance	umhos/cm	1,040	DEP FT1200	0.1	0.1		11/10/10 11:40	TDD
Dissolved Oxygen	mg/L	8.0	DEP FT1500	0.1	0.1		11/10/10 11:40	TDD
Inorganics								
Ammonia as N	mg/L	0.005 U	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/11/10 15:00	11/16/10 12:10	KTC
Chemical Oxygen Demand	mg/L	11	EPA 410.4	25	10		11/16/10 08:45	ARM
Sulfate	mg/L	63	EPA 300.0	0.60	0.20	11/16/10 11:22	11/16/10 16:02	MEJ
Total Alkalinity	mg/L	270	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	660	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:00	MJV
Total Kjeldahl Nitrogen	mg/L	2.6	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
	mg/L	1 U	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Total Suspended Solids	mg/∟	10	CINI LO TOD		1	11/1//10 14.1/	11/1/10 14.19	1010 0

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 7, 2011 Work Order: 1001627 Revised Report

Laboratory Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		UNSAT-PS1						
Matrix		Wastewater						
SAL Sample Number		1001627-20						
Date/Time Collected		11/10/10 13:50						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	7.2	DEP FT1100	0.1	0.1		11/10/10 13:50	TDD
Water Temperature	°C	23.8	DEP FT1400	0.1	0.1		11/10/10 13:50	TDD
Specific conductance	umhos/cm	950	DEP FT1200	0.1	0.1		11/10/10 13:50	TDD
Dissolved Oxygen	mg/L	7.8	DEP FT1500	0.1	0.1		11/10/10 13:50	TDD
<u>Inorganics</u> Ammonia as N	mg/L	21	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	4	SM 5210B	2	2	11/12/10 10:00	11/17/10 13:07	KTC
		39	EPA 410.4	25	2 10	11/12/10 10:00	11/17/10 07:30	ARM
Chemical Oxygen Demand Total Alkalinity	mg/L	200	SM 2320B	25 8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	550	SM 2520B	8.0 10	2.0 10	11/15/10 11:00	11/16/10 12:30	MJV
	mg/L	28	EPA 351.2		0.05	11/19/10 07:30		SMB
Total Kjeldahl Nitrogen	mg/L	20 5	SM 2540D	0.20			11/19/10 15:47	MJV
Total Suspended Solids Nitrate+Nitrite (as N)	mg/L mg/L		EPA 353.2	1 0.04	1 0.01	11/17/10 14:17	11/17/10 14:19 11/18/10 14:49	SMB
					0.01			0
Sample Description		DENIT-SU1						
Matrix		Wastewater						
SAL Sample Number		1001627-21						
Date/Time Collected Collected by		11/10/10 10:15						
Date/Time Received		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
pH	SU	6.9	DEP FT1100	0.1	0.1		11/10/10 10:15	TDD
Water Temperature	°C	28.0	DEP FT1400	0.1	0.1		11/10/10 10:15	TDD
Specific conductance	umhos/cm	1,250	DEP FT1200	0.1	0.1		11/10/10 10:15	TDD
Dissolved Oxygen	mg/L	1.6	DEP FT1500	0.1	0.1		11/10/10 10:15	TDD
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	9.2	SM 4550SF	0.04	0.01		11/12/10 16:00	KTC
Ammonia as N	mg/L	0.76	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	18	SM 5210B	2	2	11/11/10 15:00	11/16/10 12:10	KTC
Chemical Oxygen Demand	mg/L	50	EPA 410.4	25	10		11/17/10 07:30	ARM
Sulfate	mg/L	350	EPA 300.0	0.60	0.20	11/16/10 11:22	11/16/10 16:02	MEJ
Sulfide	mg/L	17	SM 4500SF	4.0	1.0		11/12/10 16:00	KTC
Total Alkalinity	mg/L	230	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	900	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:30	MJV
Total Kjeldahl Nitrogen	mg/L	1.9	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 7, 2011 Work Order: 1001627 Revised Report

Laboratory Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		DENIT-SU2						
Matrix		Wastewater						
SAL Sample Number		1001627-22						
Date/Time Collected		11/10/10 10:25						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	7.0	DEP FT1100	0.1	0.1		11/10/10 10:25	TDD
Water Temperature	°C	25.5	DEP FT1400	0.1	0.1		11/10/10 10:25	TDD
Specific conductance	umhos/cm	1,350	DEP FT1200	0.1	0.1		11/10/10 10:25	TDD
Dissolved Oxygen	mg/L	0.2	DEP FT1500	0.1	0.1		11/10/10 10:25	TDD
Inorganics	ma/l	0.01 U	SM 4550SF	0.04	0.01		11/12/10 16:00	ктс
Hydrogen Sulfide (Unionized) Ammonia as N	mg/L	0.01 0	EPA 350.1	0.04			11/17/10 17:04	SME
	mg/L		SM 5210B	0.010	0.005	11/11/10 15:00		-
Carbonaceous BOD	mg/L	2 U 18 I	EPA 410.4	2 25	2 10	11/11/10 15:00	11/16/10 12:10	KTC
Chemical Oxygen Demand Sulfate	mg/L	490	EPA 300.0	25 0.60	0.20	11/16/10 11:22	11/17/10 07:30 11/16/10 16:02	ARN MEJ
Sulfide	mg/L	490 1.0 U	SM 4500SF		0.20 1.0	11/10/10 11.22		KTC
	mg/L	210	SM 43003F	4.0 8.0	2.0		11/12/10 16:00 11/16/10 12:30	KTC
Total Alkalinity	mg/L		SM 2540C			44/45/40 44:00		
Total Dissolved Solids	mg/L	1,000	EPA 351.2	10	10	11/15/10 11:00	11/16/10 14:30	MJ∖
Total Kjeldahl Nitrogen	mg/L	0.74		0.20	0.05	11/19/10 07:30	11/19/10 15:47	SME
Total Suspended Solids	mg/L	8	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJ∖
Nitrate+Nitrite (as N)	mg/L	0.03	EPA 353.2	0.04	0.01		11/18/10 14:49	SME
Sample Description		DENIT-SU3						
Matrix		Wastewater						
SAL Sample Number		1001627-23						
Date/Time Collected		11/10/10 13:30						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	7.2	DEP FT1100	0.1	0.1		11/10/10 13:30	TDD
Water Temperature	°C	21.4	DEP FT1400	0.1	0.1		11/10/10 13:30	TDD
Specific conductance	umhos/cm	1,480	DEP FT1200	0.1	0.1		11/10/10 13:30	TDD
Dissolved Oxygen	mg/L	7.7	DEP FT1500	0.1	0.1		11/10/10 13:30	TDD
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.85	SM 4550SF	0.04	0.01		11/12/10 16:00	KTC
Ammonia as N	mg/L	0.55	EPA 350.1	0.010	0.005		11/17/10 17:04	SME
Carbonaceous BOD	mg/L	3	SM 5210B	2	2	11/12/10 10:00	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	26	EPA 410.4	25	10		11/17/10 07:30	AR№
Sulfate	mg/L	450	EPA 300.0	0.60	0.20	11/16/10 11:22	11/16/10 16:02	ME
Sulfide	mg/L	2.4 I	SM 4500SF	4.0	1.0		11/12/10 16:00	KTC
	····· //	200	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Alkalinity	mg/L	260	3WI 2320B	0.0	2.0		11/10/10 12.30	NIC.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 7, 2011 Work Order: 1001627 Revised Report

Laboratory Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		DENIT-SU3						
Matrix		Wastewater						
SAL Sample Number		1001627-23						
Date/Time Collected		11/10/10 13:30						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Total Kjeldahl Nitrogen	mg/L	1.8	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	2	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	0.05	EPA 353.2	0.04	0.01		11/18/10 14:49	SMB
Sample Description		DENIT-SU4						
Matrix		Wastewater						
SAL Sample Number		1001627-24						
Date/Time Collected		11/10/10 13:40						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	7.3	DEP FT1100	0.1	0.1		11/10/10 13:40	TDD
Water Temperature	°C	21.0	DEP FT1400	0.1	0.1		11/10/10 13:40	TDD
Specific conductance	umhos/cm	1,510	DEP FT1200	0.1	0.1		11/10/10 13:40	TDD
Dissolved Oxygen	mg/L	7.8	DEP FT1500	0.1	0.1		11/10/10 13:40	TDD
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.09	SM 4550SF	0.04	0.01		11/12/10 16:00	KTC
Ammonia as N	mg/L	0.10	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/12/10 10:00	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	13 I	EPA 410.4	25	10		11/17/10 07:30	ARM
Sulfate	mg/L	560	EPA 300.0	0.60	0.20	11/16/10 11:22	11/16/10 16:02	MEJ
Sulfide	mg/L	1.0 U	SM 4500SF	4.0	1.0		11/12/10 16:00	KTC
Total Alkalinity	mg/L	210	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	1,100	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:30	MJV
Total Kjeldahl Nitrogen	mg/L	0.89	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	6	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	0.02 1	EPA 353.2	0.04	0.01		11/18/10 14:49	SMB
Sample Description		DENIT-LS1						
Matrix		Wastewater						
SAL Sample Number		1001627-25						
Date/Time Collected		11/10/10 10:40						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	7.4	DEP FT1100	0.1	0.1		11/10/10 10:40	TDD
Water Temperature	°C	21.4	DEP FT1400	0.1	0.1		11/10/10 10:40	TDD

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

January 7, 2011 Work Order: 1001627 Revised Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		DENIT-LS1						
Matrix		Wastewater						
SAL Sample Number		1001627-25						
Date/Time Collected		11/10/10 10:40						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Specific conductance	umhos/cm	970	DEP FT1200	0.1	0.1		11/10/10 10:40	TDD
Dissolved Oxygen	mg/L	1.1	DEP FT1500	0.1	0.1		11/10/10 10:40	TDD
Inorganics								
Ammonia as N	mg/L	0.005 U	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/11/10 15:00	11/16/10 12:10	KTC
Chemical Oxygen Demand	mg/L	18 I	EPA 410.4	25	10		11/17/10 07:30	ARM
Total Alkalinity	mg/L	210	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	540	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:30	MJV
Total Kjeldahl Nitrogen	mg/L	2.7	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	18 Q	EPA 353.2	0.04	0.01		12/20/10 13:40	SMB
Sample Description		DENIT-LS2						
Matrix		Wastewater						
SAL Sample Number		1001627-26						
Date/Time Collected		11/10/10 12:15						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	7.4	DEP FT1100	0.1	0.1		11/10/10 12:15	TDD
Water Temperature	°C	21.5	DEP FT1400	0.1	0.1		11/10/10 12:15	TDD
Specific conductance	umhos/cm	1,200	DEP FT1200	0.1	0.1		11/10/10 12:15	TDD
Dissolved Oxygen	mg/L	4.1	DEP FT1500	0.1	0.1		11/10/10 12:15	TDD
Inorganics								
Ammonia as N	mg/L	0.10	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/12/10 10:00	11/17/10 13:07	ктс
Chemical Oxygen Demand	mg/L	26	EPA 410.4	25	10		11/17/10 07:30	ARM
Total Alkalinity	mg/L	320	SM 2320B	8.0	2.0		11/16/10 12:30	ктс
Total Dissolved Solids	mg/L	780	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:30	MJV
Total Kjeldahl Nitrogen	mg/L	3.8	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	2	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	16 Q	EPA 353.2	0.04	0.01		12/20/10 13:40	SMB

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Sone Caro

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

January 7, 2011 Work Order: 1001627 Revised Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		DENIT-LS3						
Matrix		Wastewater						
SAL Sample Number		1001627-27						
Date/Time Collected		11/10/10 12:30						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	6.9	DEP FT1100	0.1	0.1		11/10/10 12:30	TDD
Water Temperature	°C	20.0	DEP FT1400	0.1	0.1		11/10/10 12:30	TDD
Specific conductance	umhos/cm	1,200	DEP FT1200	0.1	0.1		11/10/10 12:30	TDD
Dissolved Oxygen	mg/L	4.7	DEP FT1500	0.1	0.1		11/10/10 12:30	TDD
Inorganics								
Ammonia as N	mg/L	0.52	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/12/10 10:00	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	11 I	EPA 410.4	25	10		11/17/10 07:30	ARM
Total Alkalinity	mg/L	220	SM 2320B	8.0	2.0		11/16/10 12:30	ктс
Total Dissolved Solids	mg/L	840	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:30	MJV
Total Kjeldahl Nitrogen	mg/L	4.3	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	20 Q	EPA 353.2	0.04	0.01		12/20/10 13:40	SMB
Sample Description		DENIT-LS4						
Matrix		Wastewater						
SAL Sample Number		1001627-28						
Date/Time Collected		11/10/10 12:05						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
		11/10/10 17.50						
Field Parameters								
рН	SU	7.3	DEP FT1100	0.1	0.1		11/10/10 12:05	TDD
Water Temperature	°C	20.0	DEP FT1400	0.1	0.1		11/10/10 12:05	TDD
Specific conductance	umhos/cm	900	DEP FT1200	0.1	0.1		11/10/10 12:05	TDD
Dissolved Oxygen	mg/L	3.8	DEP FT1500	0.1	0.1		11/10/10 12:05	TDD
Inorganics								
Ammonia as N	mg/L	15	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/11/10 15:00	11/16/10 12:10	KTC
Chemical Oxygen Demand	mg/L	20 1	EPA 410.4	25	10		11/17/10 07:30	ARM
Total Alkalinity	mg/L	200	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	480	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:30	MJV
Total Kjeldahl Nitrogen	mg/L	21	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	2	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	9.8 Q	EPA 353.2	0.04	0.01		12/20/10 13:40	SMB

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 7, 2011 Work Order: 1001627 Revised Report

Laboratory Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		DENIT-GL1						
Matrix		Wastewater						
SAL Sample Number		1001627-29						
Date/Time Collected		11/10/10 10:55						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
pН	SU	6.9	DEP FT1100	0.1	0.1		11/10/10 10:55	TDD
Water Temperature	°C	21.0	DEP FT1400	0.1	0.1		11/10/10 10:55	TDD
Specific conductance	umhos/cm	900	DEP FT1200	0.1	0.1		11/10/10 10:55	TDD
Dissolved Oxygen	mg/L	0.8	DEP FT1500	0.1	0.1		11/10/10 10:55	TDD
<u>Inorganics</u> Ammonia as N	~~//	0.88	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
	mg/L	0.00	SM 5210B	0.010 2	0.005 2	11/11/10 15:00	11/17/10 17:04 11/16/10 12:10	KTC
Carbonaceous BOD	mg/L	22	EPA 410.4	2 25	2 10	11/11/10 15.00		ARM
Chemical Oxygen Demand	mg/L		SM 2320B				11/17/10 07:30	
Total Alkalinity	mg/L	390	SM 2540C	8.0	2.0	44/45/40 44.00	11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	540		10	10	11/15/10 11:00	11/16/10 14:30	MJV
Total Kjeldahl Nitrogen	mg/L	1.9	EPA 351.2	0.20	0.05	11/19/10 07:30	11/19/10 15:47	SMB
Total Suspended Solids	mg/L	4	SM 2540D	1	1	11/17/10 14:17	11/17/10 14:19	MJV
Nitrate+Nitrite (as N)	mg/L	0.07	EPA 353.2	0.04	0.01		11/18/10 14:49	SMB
Sample Description		DFT						
Matrix		Wastewater						
SAL Sample Number		1001627-30						
Date/Time Collected		11/10/10 11:50						
Collected by		Thomas Drunasky						
Date/Time Received		·····,						
		11/10/10 17:50						
Field Parameters		-						
<u>Field Parameters</u> pH	SU	-	DEP FT1100	0.1	0.1		11/10/10 11:50	TDD
	SU °C	11/10/10 17:50	DEP FT1100 DEP FT1400	0.1 0.1	0.1 0.1		11/10/10 11:50 11/10/10 11:50	TDD TDD
рН		11/10/10 17:50						
pH Water Temperature	°C	11/10/10 17:50 7.2 18.5	DEP FT1400	0.1	0.1		11/10/10 11:50	TDD
pH Water Temperature Specific conductance	°C umhos/cm	11/10/10 17:50 7.2 18.5 980	DEP FT1400 DEP FT1200	0.1 0.1	0.1 0.1		11/10/10 11:50 11/10/10 11:50	TDD TDD
pH Water Temperature Specific conductance Dissolved Oxygen	°C umhos/cm	11/10/10 17:50 7.2 18.5 980	DEP FT1400 DEP FT1200	0.1 0.1	0.1 0.1		11/10/10 11:50 11/10/10 11:50	TDD TDD
pH Water Temperature Specific conductance Dissolved Oxygen Inorganics	°C umhos/cm mg/L	7.2 18.5 980 8.3	DEP FT1400 DEP FT1200 DEP FT1500	0.1 0.1 0.1	0.1 0.1 0.1		11/10/10 11:50 11/10/10 11:50 11/10/10 11:50	TDD TDD TDD
pH Water Temperature Specific conductance Dissolved Oxygen <u>Inorganics</u> Hydrogen Sulfide (Unionized)	°C umhos/cm mg/L mg/L	7.2 18.5 980 8.3 0.10	DEP FT1400 DEP FT1200 DEP FT1500 SM 4550SF	0.1 0.1 0.1	0.1 0.1 0.1 0.01	11/11/10 15:00	11/10/10 11:50 11/10/10 11:50 11/10/10 11:50 11/12/10 16:00	TDD TDD TDD KTC
pH Water Temperature Specific conductance Dissolved Oxygen Inorganics Hydrogen Sulfide (Unionized) Ammonia as N	°C umhos/cm mg/L mg/L mg/L	11/10/10 17:50 7.2 18.5 980 8.3 0.10 0.17	DEP FT1400 DEP FT1200 DEP FT1500 SM 4550SF EPA 350.1	0.1 0.1 0.1 0.04 0.010	0.1 0.1 0.1 0.01 0.005	11/11/10 15:00	11/10/10 11:50 11/10/10 11:50 11/10/10 11:50 11/12/10 16:00 11/17/10 17:04	TDD TDD TDD KTC SMB
pH Water Temperature Specific conductance Dissolved Oxygen Inorganics Hydrogen Sulfide (Unionized) Ammonia as N Carbonaceous BOD	°C umhos/cm mg/L mg/L mg/L mg/L	11/10/10 17:50 7.2 18.5 980 8.3 0.10 0.17 2 U	DEP FT1400 DEP FT1200 DEP FT1500 SM 4550SF EPA 350.1 SM 5210B	0.1 0.1 0.1 0.04 0.010 2	0.1 0.1 0.1 0.01 0.005 2	11/11/10 15:00 11/16/10 11:22	11/10/10 11:50 11/10/10 11:50 11/10/10 11:50 11/12/10 16:00 11/17/10 17:04 11/16/10 12:10	TDD TDD TDD KTC SMB KTC
pH Water Temperature Specific conductance Dissolved Oxygen Inorganics Hydrogen Sulfide (Unionized) Ammonia as N Carbonaceous BOD Chemical Oxygen Demand	°C umhos/cm mg/L mg/L mg/L mg/L mg/L	11/10/10 17:50 7.2 18.5 980 8.3 0.10 0.17 2 U 22 I	DEP FT1400 DEP FT1200 DEP FT1500 SM 4550SF EPA 350.1 SM 5210B EPA 410.4	0.1 0.1 0.04 0.010 2 25	0.1 0.1 0.01 0.005 2 10		11/10/10 11:50 11/10/10 11:50 11/10/10 11:50 11/12/10 16:00 11/17/10 17:04 11/16/10 12:10 11/17/10 07:30	TDD TDD TDD KTC SMB KTC ARM
pH Water Temperature Specific conductance Dissolved Oxygen Inorganics Hydrogen Sulfide (Unionized) Ammonia as N Carbonaceous BOD Chemical Oxygen Demand Sulfate	°C umhos/cm mg/L mg/L mg/L mg/L mg/L mg/L	11/10/10 17:50 7.2 18.5 980 8.3 0.10 0.17 2 U 22 I 64	DEP FT1400 DEP FT1200 DEP FT1500 SM 4550SF EPA 350.1 SM 5210B EPA 410.4 EPA 300.0	0.1 0.1 0.04 0.010 2 25 0.60	0.1 0.1 0.01 0.005 2 10 0.20		11/10/10 11:50 11/10/10 11:50 11/10/10 11:50 11/12/10 16:00 11/17/10 17:04 11/16/10 12:10 11/17/10 07:30 11/16/10 16:02	TDD TDD TDD KTC SMB KTC ARM MEJ
pH Water Temperature Specific conductance Dissolved Oxygen Inorganics Hydrogen Sulfide (Unionized) Ammonia as N Carbonaceous BOD Chemical Oxygen Demand Sulfate Sulfide	°C umhos/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L	11/10/10 17:50 7.2 18.5 980 8.3 0.10 0.17 2 U 22 I 64 1.0 U 200	DEP FT1400 DEP FT1200 DEP FT1500 SM 4550SF EPA 350.1 SM 5210B EPA 410.4 EPA 300.0 SM 4500SF	0.1 0.1 0.04 0.010 2 25 0.60 4.0 8.0	0.1 0.1 0.1 0.01 0.005 2 10 0.20 1.0 2.0		11/10/10 11:50 11/10/10 11:50 11/10/10 11:50 11/12/10 16:00 11/17/10 17:04 11/16/10 12:10 11/17/10 07:30 11/16/10 16:02 11/12/10 16:00	TDD TDD TDD KTC SMB KTC ARM MEJ KTC KTC
pH Water Temperature Specific conductance Dissolved Oxygen Inorganics Hydrogen Sulfide (Unionized) Ammonia as N Carbonaceous BOD Chemical Oxygen Demand Sulfate Sulfide Total Alkalinity Total Dissolved Solids	°C umhos/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/	11/10/10 17:50 7.2 18.5 980 8.3 0.10 0.17 2 U 22 I 64 1.0 U 200 630	DEP FT1400 DEP FT1200 DEP FT1500 SM 4550SF EPA 350.1 SM 5210B EPA 410.4 EPA 300.0 SM 4500SF SM 2320B	0.1 0.1 0.04 0.010 2 25 0.60 4.0 8.0 10	0.1 0.1 0.1 0.01 0.005 2 10 0.20 1.0	11/16/10 11:22	11/10/10 11:50 11/10/10 11:50 11/10/10 11:50 11/12/10 16:00 11/17/10 17:04 11/16/10 12:10 11/17/10 07:30 11/16/10 16:02 11/12/10 16:00 11/16/10 12:30	TDD TDD TDD KTC SMB KTC ARM MEJ KTC KTC MJV
pH Water Temperature Specific conductance Dissolved Oxygen Inorganics Hydrogen Sulfide (Unionized) Ammonia as N Carbonaceous BOD Chemical Oxygen Demand Sulfate Sulfide Total Alkalinity	°C umhos/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L	11/10/10 17:50 7.2 18.5 980 8.3 0.10 0.17 2 U 22 I 64 1.0 U 200	DEP FT1400 DEP FT1200 DEP FT1500 SM 4550SF EPA 350.1 SM 5210B EPA 410.4 EPA 300.0 SM 4500SF SM 2320B SM 2540C	0.1 0.1 0.04 0.010 2 25 0.60 4.0 8.0	0.1 0.1 0.1 0.01 0.005 2 10 0.20 1.0 2.0 10	11/16/10 11:22 11/15/10 11:00	11/10/10 11:50 11/10/10 11:50 11/10/10 11:50 11/12/10 16:00 11/17/10 17:04 11/16/10 12:10 11/17/10 07:30 11/16/10 16:02 11/12/10 16:00 11/16/10 12:30 11/16/10 14:30	TDD TDD TDD KTC SMB KTC ARM MEJ KTC KTC

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 7, 2011 Work Order: 1001627 Revised Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		T1-D						
Matrix		Wastewater						
SAL Sample Number		1001627-31						
Date/Time Collected		11/10/10 14:00						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
рН	SU	7.3	DEP FT1100	0.1	0.1		11/10/10 14:00	TDD
Water Temperature	°C	25.3	DEP FT1400	0.1	0.1		11/10/10 14:00	TDD
Specific conductance	umhos/cm	1,250	DEP FT1200	0.1	0.1		11/10/10 14:00	TDD
Dissolved Oxygen	mg/L	2.2	DEP FT1500	0.1	0.1		11/10/10 14:00	TDD
Inorganics								
Ammonia as N	mg/L	74	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	100	SM 5210B	2	2	11/12/10 11:00	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	240	EPA 410.4	25	10		11/17/10 07:30	ARM
Total Alkalinity	mg/L	410	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	470	SM 2540C	10	10	11/15/10 11:00	11/16/10 14:30	MJV
Total Kjeldahl Nitrogen	mg/L	85 Q	EPA 351.2	0.20	0.05	11/19/10 07:30	12/27/10 10:00	SMB
Total Suspended Solids	mg/L	64 Q	SM 2540D	1	1	12/15/10 15:30	12/16/10 14:58	MJV
Nitrate+Nitrite (as N)	mg/L	0.11	EPA 353.2	0.04	0.01		11/18/10 14:49	SMB
Sample Description		FB						
Matrix		Wastewater						
SAL Sample Number		1001627-32						
Date/Time Collected		11/10/10 15:00						
Collected by		Thomas Drunasky						
Date/Time Received		11/10/10 17:50						
Field Parameters								
pH	SU	6.5	DEP FT1100	0.1	0.1		11/10/10 15:00	TDD
Water Temperature	°C	24.5	DEP FT1400	0.1	0.1		11/10/10 15:00	TDD
Specific conductance	umhos/cm	25	DEP FT1200	0.1	0.1		11/10/10 15:00	TDD
Dissolved Oxygen	mg/L	8.0	DEP FT1500	0.1	0.1		11/10/10 15:00	TDD
Inorganics	0							
Ammonia as N	mg/L	0.005 U	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/12/10 11:00	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10		11/17/10 07:30	ARM
Total Alkalinity	mg/L	2.0 U	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	10 U	SM 2540C	10	10	11/16/10 16:15	11/17/10 15:30	MJV
	mg/L	0.07 I	EPA 351.2	0.20	0.05	11/24/10 11:22	11/29/10 16:50	SMD
Total Kjeldahl Nitrogen Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	11/17/10 14:27	11/17/10 14:32	MJV

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Sone C

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

January 7, 2011 Work Order: 1001627 Revised Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description Matrix SAL Sample Number		EB Wastewater 1001627-33						
Date/Time Collected Collected by Date/Time Received		11/10/10 14:10 Thomas Drunasky 11/10/10 17:50						
Field Parameters								
рН	SU	6.7	DEP FT1100	0.1	0.1		11/10/10 14:10	TDD
Water Temperature	°C	23.0	DEP FT1400	0.1	0.1		11/10/10 14:10	TDD
Specific conductance	umhos/cm	28	DEP FT1200	0.1	0.1		11/10/10 14:10	TDD
Dissolved Oxygen	mg/L	8.5	DEP FT1500	0.1	0.1		11/10/10 14:10	TDD
Inorganics								
Ammonia as N	mg/L	0.005 U	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/12/10 11:00	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10		11/17/10 07:30	ARM
Total Alkalinity	mg/L	2.0 U	SM 2320B	8.0	2.0		11/16/10 12:30	KTC
Total Dissolved Solids	mg/L	10 U	SM 2540C	10	10	11/16/10 16:15	11/17/10 15:30	MJV
Total Kjeldahl Nitrogen	mg/L	0.06 I	EPA 351.2	0.20	0.05	11/24/10 11:22	11/29/10 16:50	SMD
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	11/17/10 14:27	11/17/10 14:32	MJV
Nitrate+Nitrite (as N)	mg/L	0.01 U	EPA 353.2	0.04	0.01		11/18/10 14:49	SMB

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 7, 2011

Revised Report

Work Order: 1001627

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BK01140 - BOD										
Blank (BK01140-BLK1)					Prepared:	11/11/10 Ar	nalyzed: 11	/16/10		
Carbonaceous BOD	2 U	2	2	mg/L						
Blank (BK01140-BLK2)					Prepared:	11/11/10 Ar	nalyzed: 11	/16/10		
Carbonaceous BOD	2 U	2	2	mg/L						
LCS (BK01140-BS1)					Prepared:	11/11/10 Ar	nalyzed: 11	/16/10		
Carbonaceous BOD	179	2	2	mg/L	200		90	85-115		
LCS (BK01140-BS2)					Prepared:	11/11/10 Ar	nalyzed: 11	/16/10		
Carbonaceous BOD	179	2	2	mg/L	200		90	85-115		
LCS Dup (BK01140-BSD1)					Prepared:	11/11/10 Ar	nalyzed: 11	/16/10		
Carbonaceous BOD	179	2	2	mg/L	200		90	85-115	0	10
LCS Dup (BK01140-BSD2)					Prepared:	11/11/10 Ar	nalyzed: 11	/16/10		
Carbonaceous BOD	179	2	2	mg/L	200		90	85-115	0	10
Batch BK01205 - BOD										
Blank (BK01205-BLK1)					Prepared:	11/12/10 Ar	nalyzed: 11	/17/10		
Carbonaceous BOD	2 U	2	2	mg/L						
Blank (BK01205-BLK2)					Prepared:	11/12/10 Ar	nalyzed: 11	/17/10		
Carbonaceous BOD	2 U	2	2	mg/L						
LCS (BK01205-BS1)					Prepared:	11/12/10 Ar	nalyzed: 11	/17/10		
Carbonaceous BOD	190	2	2	mg/L	200		95	85-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 7, 2011

Revised Report

Work Order: 1001627

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BK01205 - BOD										
LCS (BK01205-BS2)					Prepared:	11/12/10 Ai	nalyzed: 11	/17/10		
Carbonaceous BOD	190	2	2	mg/L	200		95	85-115		
LCS Dup (BK01205-BSD1)					Prepared:	11/12/10 Ar	nalyzed: 11	/17/10		
Carbonaceous BOD	191	2	2	mg/L	200		96	85-115	0.5	10
LCS Dup (BK01205-BSD2)					Prepared:	11/12/10 Ar	nalyzed: 11	/17/10		
Carbonaceous BOD	191	2	2	mg/L	200		96	85-115	0.5	10
Batch BK01304 - Sulfide pre	р									
Blank (BK01304-BLK1)					Prepared 8	& Analyzed:	11/12/10			
Sulfide	1.0 U	4.0	1.0	mg/L						
LCS (BK01304-BS1)					Prepared &	& Analyzed:	11/12/10			
Sulfide	5.11	4.0	1.0	mg/L	5.0		102	85-115		
Batch BK01514 - Ion Chroma	atography 300.0 I	Prep								
Blank (BK01514-BLK1)					Prepared 8	& Analyzed:	11/15/10			
Sulfate	0.20 U	0.60	0.20	mg/L						
LCS (BK01514-BS1)					Prepared &	& Analyzed:	11/15/10			
Sulfate	9.04	0.60	0.20	mg/L	9.0		100	85-115		
LCS Dup (BK01514-BSD1)					Prepared &	& Analyzed:	11/15/10			
Sulfate	9.03	0.60	0.20	mg/L	9.0		100	85-115	0.1	10

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 7, 2011

Revised Report

Work Order: 1001627

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

					Spike	Source		%REC		RPD		
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit		
Batch BK01611 - Ion Chromatog	graphy 300.0	Prep										
Blank (BK01611-BLK1)					Prepared & Analyzed: 11/16/10							
Sulfate	0.20 U	0.60	0.20	mg/L								
LCS (BK01611-BS1)					Prepared &	& Analyzed:	11/16/10					
Sulfate	8.81	0.60	0.20	mg/L	9.0		98	85-115				
LCS Dup (BK01611-BSD1)					Prepared &	& Analyzed:	11/16/10					
Sulfate	8.73	0.60	0.20	mg/L	9.0		97	85-115	0.9	10		
Batch BK01621 - COD prep												
Blank (BK01621-BLK1)					Prepared &	& Analyzed:	11/16/10					
Chemical Oxygen Demand	10 U	25	10	mg/L								
LCS (BK01621-BS1)					Prepared &	& Analyzed:	11/16/10					
Chemical Oxygen Demand	50	25	10	mg/L	50		100	90-110				
Matrix Spike (BK01621-MS1)		Source: 1	001627-02		Prepared &	& Analyzed:	11/16/10 98 85-115 11/16/10 97 85-115 0.9 11/16/10 11/16/10 11/16/10 90 85-115 11/16/10 90 85-115 11/16/10 90 85-115 11/16/10 90 85-115					
Chemical Oxygen Demand	74	25	10	mg/L	50	29	90	85-115				
Matrix Spike Dup (BK01621-MSD1)		Source: 1	001627-02		Prepared & Analyzed: 11/16/10							
Chemical Oxygen Demand	74	25	10	mg/L	50	29	90	85-115	0	32		
Batch BK01627 - alkalinity												
Blank (BK01627-BLK1)					Prepared 8	& Analyzed:	11/16/10					
Total Alkalinity	2.0 U	8.0	2.0	mg/L								

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 7, 2011

Revised Report

Work Order: 1001627

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result	FQL	MDL	Units	Levei	Result	/0RLC	LIIIIIIS	NF D	LIIIII
Batch BK01627 - alkalinity										
Blank (BK01627-BLK2)					Prepared &	Analyzed:	11/16/10			
Total Alkalinity	2.0 U	8.0	2.0	mg/L						
LCS (BK01627-BS1)					Prepared &	Analyzed:	11/16/10			
Total Alkalinity	120	8.0	2.0	mg/L	120		95	90-110		20
LCS (BK01627-BS2)					Prepared &	Analyzed:	11/16/10			
Total Alkalinity	120	8.0	2.0	mg/L	120		95	90-110		20
Matrix Spike (BK01627-MS2)		Source: 1	001627-18		Prepared &	Analyzed:	11/16/10			
Total Alkalinity	410	8.0	2.0	mg/L	120	290	95	80-120		26
Matrix Spike Dup (BK01627-MSD2)		Source: 1	001627-18		Prepared &	Analyzed:				
Total Alkalinity	410	8.0	2.0	mg/L	120	290	95	80-120	0	26
Batch BK01735 - COD prep										
Blank (BK01735-BLK1)					Prepared &	Analyzed:	11/17/10			
Chemical Oxygen Demand	10 U	25	10	mg/L						
LCS (BK01735-BS1)					Prepared &	Analyzed:	11/17/10			
Chemical Oxygen Demand	52	25	10	mg/L	50		104	90-110		
Matrix Spike (BK01735-MS1)		Source: 1	001627-20		Prepared &	Analyzed:	11/17/10			
Chemical Oxygen Demand	85	25	10	mg/L	50	39	92	85-115		
Matrix Spike Dup (BK01735-MSD1)		Source: 1	001627-20		Prepared &	Analyzed:	11/17/10			
Chemical Oxygen Demand	87	25	10	mg/L	50	39	96	85-115	2	32

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 7, 2011

Revised Report

Work Order: 1001627

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

	_				Spike	Source		%REC		RPD	
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch BK01739 - TSS prep											
Blank (BK01739-BLK1)					Prepared &	& Analyzed:	11/17/10				
Total Suspended Solids	1 U	1	1	mg/L							
LCS (BK01739-BS1)					Prepared &	Analyzed:	11/17/10				
Total Suspended Solids	50.0	1	1	mg/L	50		100	85-115			
LCS Dup (BK01739-BSD1)					Prepared &	Analyzed:	11/17/10				
Total Suspended Solids	45.0	1	1	mg/L	50		90	85-115	11	30	
Duplicate (BK01739-DUP1)		Source: 1	001627-20		Prepared & Analyzed: 11/17/10						
Total Suspended Solids	5.00	1	1	mg/L		5.00			0	30	
Batch BK01740 - TSS prep											
Blank (BK01740-BLK1)					Prepared &	Analyzed:	11/17/10				
Total Suspended Solids	1 U	1	1	mg/L							
LCS (BK01740-BS1)					Prepared &	Analyzed:	11/17/10				
Total Suspended Solids	52.5	1	1	mg/L	50		105	85-115			
LCS Dup (BK01740-BSD1)					Prepared & Analyzed: 11/17/10						
Total Suspended Solids	45.5	1	1	mg/L	50		91	85-115	14	30	
Batch BK01803 - Ammonia b	y SEAL										
Blank (BK01803-BLK1)					Prepared 8	Analyzed:	11/17/10				
Ammonia as N	0.005 U	0.010	0.005	mg/L							

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 7, 2011

Revised Report

Work Order: 1001627

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BK01803 - Ammonia by	SEAL									
Blank (BK01803-BLK2)					Prepared 8	Analyzed:	11/17/10			
Ammonia as N	0.005 U	0.010	0.005	mg/L						
Blank (BK01803-BLK3)					Prepared 8	Analyzed:	11/17/10			
Ammonia as N	0.005 U	0.010	0.005	mg/L						
Blank (BK01803-BLK4)					Prepared 8	Analyzed:	11/17/10			
Ammonia as N	0.005 U	0.010	0.005	mg/L						
LCS (BK01803-BS1)					Prepared 8	Analyzed:	11/17/10			
Ammonia as N	0.49	0.010	0.005	mg/L	0.50		98	90-110		
LCS (BK01803-BS2)					Prepared 8	Analyzed:	11/17/10			
Ammonia as N	0.52	0.010	0.005	mg/L	0.50		104	90-110		
LCS (BK01803-BS3)					Prepared 8	Analyzed:	11/17/10			
Ammonia as N	0.52	0.010	0.005	mg/L	0.50		105	90-110		
LCS (BK01803-BS4)					Prepared & Analyzed: 11/17/10					
Ammonia as N	0.53	0.010	0.005	mg/L	0.50		106	90-110		
Matrix Spike (BK01803-MS2)		Source: 1	001627-08		Prepared 8	Analyzed:	11/17/10			
Ammonia as N	72 J5	0.010	0.005	mg/L	50	50	44	90-110		
Matrix Spike Dup (BK01803-MSD2	2)	Source: 1	001627-08		Prepared 8					
Ammonia as N	75 J5	0.010	0.005	mg/L	50	50	50	90-110	4	10
Batch BK01804 - Nitrate 353.2	by seal									
Blank (BK01804-BLK1)			Prepared & Analyzed: 11/17/10							
Nitrate+Nitrite (as N)	0.01 U	0.04	0.01	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 7, 2011

Revised Report

Work Order: 1001627

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BK01804 - Nitrate 353.2	by seal									
Blank (BK01804-BLK2)					Prepared &	Analyzed:	11/17/10			
Nitrate+Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
LCS (BK01804-BS1)					Prepared &	Analyzed:	11/17/10			
Nitrate+Nitrite (as N)	0.749	0.04	0.01	mg/L	0.80		94	90-110		
LCS (BK01804-BS2)					Prepared &	Analyzed:	11/17/10			
Nitrate+Nitrite (as N)	0.912	0.04	0.01	mg/L	1.0		91	90-110		
Matrix Spike (BK01804-MS2)		Source: 1	001627-03		Prepared &					
Nitrate+Nitrite (as N)	61.1 J5	0.04	0.01	mg/L	50	23.8	75	77-119		
Matrix Spike Dup (BK01804-MSD2	2)	Source: 1	001627-03		Prepared & Analyzed: 11/17/10					
Nitrate+Nitrite (as N)	58.0 J5	0.04	0.01	mg/L	50	23.8	68	77-119	5	20
Batch BK01811 - TDS Prep										
Blank (BK01811-BLK1)					Prepared:	11/15/10 Ai	nalyzed: 11	/16/10		
Total Dissolved Solids	10 U	10	10	mg/L						
LCS (BK01811-BS1)					Prepared:	11/15/10 Ar	nalyzed: 11	/16/10		
Total Dissolved Solids	982	10	10	mg/L	1000		98	90-110		
Duplicate (BK01811-DUP1)		Source: 1	001627-08		Prepared:	11/15/10 Ar	nalyzed: 11	/16/10		
Total Dissolved Solids	534	10	10	mg/L		538			0.7	24
Batch BK01814 - TDS Prep										
Blank (BK01814-BLK1)					Prepared:	11/15/10 Ai	nalyzed: 11	/16/10		
Total Dissolved Solids	10 U	10	10	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 7, 2011

Revised Report

Work Order: 1001627

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch BK01814 - TDS Prep											
LCS (BK01814-BS1)	Prepared: 11/15/10 Analyzed: 11/16/10										
Total Dissolved Solids	974	10	10	mg/L	1000		97	90-110			
Duplicate (BK01814-DUP1)		Source: 1	001627-25		Prepared:	11/15/10 Ar	nalyzed: 11	/16/10			
Total Dissolved Solids	552	10	10	mg/L		540			2	24	
Batch BK01836 - TDS Prep											
Blank (BK01836-BLK1)					Prepared &	& Analyzed:	11/18/10				
Total Dissolved Solids	10 U	10	10	mg/L							
LCS (BK01836-BS1)					Prepared &	& Analyzed:	11/18/10				
Total Dissolved Solids	968	10	10	mg/L	1000		97	90-110			
Batch BK01919 - Nitrate 353	.2 by seal										
Blank (BK01919-BLK1)					Prepared & Analyzed: 11/18/10						
Nitrate+Nitrite (as N)	0.01 U	0.04	0.01	mg/L							
Blank (BK01919-BLK2)					Prepared 8	& Analyzed:	11/18/10				
Nitrate+Nitrite (as N)	0.0100 l	0.04	0.01	mg/L							
LCS (BK01919-BS1)					Prepared &	& Analyzed:	11/18/10				
Nitrate+Nitrite (as N)	0.929	0.04	0.01	mg/L	1.0		93	90-110			
LCS (BK01919-BS2)					Prepared &	& Analyzed:	11/18/10				
Nitrate+Nitrite (as N)	0.953	0.04	0.01	mg/L	1.0		95	90-110			

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 7, 2011

Revised Report

Work Order: 1001627

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Inorganics - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BK02002 - Digestion for T	KN by EPA	351.2								
Blank (BK02002-BLK1)					Prepared 8	Analyzed:	11/19/10			
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
Blank (BK02002-BLK2)					Prepared 8	Analyzed:	11/19/10			
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
LCS (BK02002-BS1)					Prepared 8	Analyzed:	11/19/10			
Total Kjeldahl Nitrogen	2.28	0.20	0.05	mg/L	2.5		91	90-110		
LCS (BK02002-BS2)					Prepared 8	Analyzed:	11/19/10			
Total Kjeldahl Nitrogen	2.52	0.20	0.05	mg/L	2.5		101	90-110		
Matrix Spike (BK02002-MS2)		Source: 1	001627-09		Prepared 8	Analyzed:	11/19/10			
Total Kjeldahl Nitrogen	3.63	0.20	0.05	mg/L	2.5	1.24	95	80-120		
Matrix Spike Dup (BK02002-MSD2)		Source: 1	001627-09		Prepared 8	Analyzed:	11/19/10			
Total Kieldehl Nitregen									•	00
Total Kjeldahl Nitrogen	3.72	0.20	0.05	mg/L	2.5	1.24	99	80-120	3	20
Batch BK02410 - Digestion for T			0.05	mg/L	2.5	1.24	99	80-120	3	20
, 0			0.05	mg/L		1.24 11/24/10 Ar			3	20
Batch BK02410 - Digestion for T			0.05	mg/L mg/L					3	20
Batch BK02410 - Digestion for T Blank (BK02410-BLK1)	KN by EPA	351.2			Prepared:		nalyzed: 11	/29/10	3	20
Batch BK02410 - Digestion for T Blank (BK02410-BLK1) Total Kjeldahl Nitrogen	KN by EPA	351.2			Prepared:	11/24/10 Ar	nalyzed: 11	/29/10	3	20
Batch BK02410 - Digestion for T Blank (BK02410-BLK1) Total Kjeldahl Nitrogen Blank (BK02410-BLK2)	KN by EPA :	351.2 0.20	0.05	mg/L	Prepared: 7	11/24/10 Ar	nalyzed: 11, nalyzed: 11,	/29/10	3	20

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 7, 2011

Revised Report

Work Order: 1001627

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Inorganics - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BK02410 - Digestion for	r TKN by EPA 3	51.2								
LCS (BK02410-BS2)					Prepared:	11/24/10 Ar	nalyzed: 11	/29/10		
Total Kjeldahl Nitrogen	2.70	0.20	0.05	mg/L	2.5		108	90-110		
Batch BL01630 - TSS prep										
Blank (BL01630-BLK1)					Prepared:	12/15/10 Ar	nalyzed: 12	/16/10		
Total Suspended Solids	1 U	1	1	mg/L						
LCS (BL01630-BS1)					Prepared &	Analyzed:	12/16/10			
Total Suspended Solids	48.5	1	1	mg/L	50		97	85-115		
Batch BL02015 - Nitrate 353.2	by seal									
Blank (BL02015-BLK1)					Prepared &	Analyzed:	12/20/10			
Nitrate+Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Blank (BL02015-BLK2)					Prepared &	Analyzed:	12/20/10			
Nitrate+Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
LCS (BL02015-BS1)					Prepared &	Analyzed:	12/20/10			
Nitrate+Nitrite (as N)	0.784	0.04	0.01	mg/L				90-110		
LCS (BL02015-BS2)					Prepared &	Analyzed:	12/20/10			
Nitrate+Nitrite (as N)	0.784	0.04	0.01	mg/L				90-110		
Batch BL02401 - Digestion for	TKN by EPA 3	51.2								
Blank (BL02401-BLK1)					Prepared:	12/23/10 Ar	nalyzed: 12	/24/10		
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 7, 2011

Revised Report

Work Order: 1001627

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Inorganics - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BL02401 - Digestion	for TKN by EPA 3	51.2								
Blank (BL02401-BLK2)					Prepared:	12/23/10 Ar	nalyzed: 12	/24/10		
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
LCS (BL02401-BS1)					Prepared:	12/23/10 Ar	nalyzed: 12	/24/10		
Total Kjeldahl Nitrogen	2.52	0.20	0.05	mg/L	2.5		101	90-110		
LCS (BL02401-BS2)					Prepared:	12/23/10 Ar	nalyzed: 12	/24/10		
Total Kjeldahl Nitrogen	2.51	0.20	0.05	mg/L	2.5		101	90-110		
Batch BL02713 - Nitrate 35	3.2 by seal									
Blank (BL02713-BLK1)					Prepared 8	Analyzed:	12/28/10			
Nitrate+Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
LCS (BL02713-BS1)					Prepared &	& Analyzed:	12/28/10			
Nitrate+Nitrite (as N)	0.814	0.04	0.01	mg/L	0.80		102	90-110		

AND THE IN ACCORDANCE

January 7, 2011

Revised Report

Work Order: 1001627

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

* Qualifiers, Notes and Definitions

Results followed by a "U" indicate that the sample was analyzed but the compound was not detected. Results followed by "I" indicate that the reported value is between the laboratory method detection limts and the laboratory practical quantitation limit.

A statement of estimated uncertainty of test results is available upon request.

For methods marked with **, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Test results in this report meet all the requirements of the NELAC standards. Any applicable qualifiers are shown below. Questions regarding this report should be directed to Client Services at 813-855-1844.

Q Sample held beyond the accepted holding time.

J5 Matrix spike of this sample was outside typical range. All other QC criteria were acceptable.

Results with a "Q" qualifier were originally analyzed within holding time. They were re-run out of holding time to verify or correct original results.

ð
Custo
oť
Chain

SAL Project No. 1001627

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Client Name	Hazan	Hazan and Sawver							Contact / Phone: Josephin Edeba	hone: deback-Hir	Contact / Phone: Josephin Edeback-Hirst 813-630-4498	-4498		
Project Name / Location									edeback@	hazanands	jedeback@hazanandsawyer.com			
	PNRSI	I Wastewate	PMRS II Wastewater System Analyses	lyses										
Samplers: (Signature)		(PARA	METER / 0	PARAMETER / CONTAINER DESCRIPTION	R DESCRI	PTION			
Matrix Codes: DW-Drinking Water WW-Wastewater SW-Surface/Water SL-Sludge SO-Soil GW-Groundwater SA-Saline Water O-Other R-Reagent Water	astewater le SO-Soil ater O-Other					,287 ,00		ate/NaOH Ifide ce	X0 X0 X0	meter)				
SAL Use Only Sample Description No.	otion	Date	∋miT	xittsM	Composite Grab	1LP, Cool Alkalinity, CB TDS	204) 11 b Cool	teoA nZ ,911 Hydrogen Su No Headspa	TKA NH30 TKA NH30 S2001 B H5	ORP (Client	Hq blsif	qməT blai7	bno D bl əiŦ	OG bl∌i∃
PNRS II STE-1		10/10	1350	MM	×	-) -	-	1			_		
			1250	MM	×	1			-					
03 RC2			1300	ŴŴ	×									
04 RC3			1310	WM	×	-			-			_		
			1320	MM	×	٢			-					
06 RC5			1610	MM	×	1			-	_				
			5451	MM	×	1			-					
08 UNSAT-IS1			1000	WM	×	-		-	-					
09 UNSAT-IS2			5760	ŴŴ	×	-	-	-	-					
			1	MM	×	+	4	t	f					
			1515	MM	×	ł	Θ) t	E					
12 UNSAT-EC1		3	1600	MM	×	+		۲) -					
Containers Prepared/ Relinquisted:	Date/Time: 1130	Received		(Date/Time:	a 2 p 1 1	Seal intact?	6.		N N	Instructions / Remarks	is / Remar i	Ś	
	01-80-11	(cm	1/10/		11 /0 91	:	Samples ii	Samples intact upon arrival?		× N NA	_ = t	(+5-5)	NoX W	
Relinguener	Date/Time: 150	Kecewed:			uate/ Ime.		Received	Received on ice? Temp		Y N NA	24	s becord	SC, O NHAO	
Relinquished:	Date/Time:	Received:			Date/Time:		Proper pre Rec'd w ith	Proper preservatives indicated? Rec'd w ithin holding time?		X N NA X N NA		1	TKNO	Ì
Relinquished:	Date/Time:	Received:			Date/Time:		Volatiles r	Volatiles rec'd w /out headspace	eadspace Υ	N N	⊈ © ('	w (<-15)	100000	
Relinquished:	Date/Time:	Received:			Date/Time:					Y N NA		1001627	627	
Chain of Custody vis Rev Date 11/19/01										Cha	Chain of Custody	dy		

<u>IN</u> C
RIES,
IOTAF
ABOF
агути
NA N
NRAN
BOUT

SAL Project No. 1001627

SOUTHERN ANALYTICAL Lu 110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677	AR, FL 34677	BORATC 813-855-1844	n	FALES, INC. fax 813-855-2218						SAL P	SAL Project No.		
Client Name	Hazan	Hazan and Sawver						Contact / Phone: Josephin Edebae	Contact / Phone: Josephin Edeback-Hirst 813-630-4498	rst 813-63(0-4498		
Project Name / Location		(Wolford	DNDPT With the Contract Contract					jedeback(iedeback@hazanandsawyer.com	sawyer.con			
Samplers: (Signature)		I Maylewale		cacki									
10m						d -	PARAMETER / CONTAINER DESCRIPTION			PIION			T
Matrix Codés: DW-Drinking Water WW-Wastewater SW-SurfaceWater SL-Sludge SO-Soil GW-Groundwater SA-Saline Water O-Other R-Reagent Water	ewater SO-Soil r O-Other						əbill	\$0s	meter)				
SAL Use Only Sample Ne. Sample Description	c	Date	9mi⊺	xinteM	Composite Grab 1LP, Cool	SO4 TDS TDS SO4	ובף, Zn Ace Hydrogen <i>Su</i> No Headspa	750ml P, H2 250ml P, H2	леіlЭ) ЯЯО	Hq blei7	qməT blai1	bno D bl əiF	Field DO
UNSAT-SA2	Y,	1.010-	0/11	MM	×			-					
			1530	ŴŴ	×			-					
15 UNSAT-EC4			1120	ŴŴ	×			-					
16 UNSAT-CL1			1540	ŴŴ	×	-		-			-		
17 UNSAT-CL2			0511	WM	X 1			-					_
18 UNSAT-CL3			1550	MM	×			-					
19 UNSAT-CL4			1140	ŴŴ	×			-					
20 UNSAT-PS1			1350	Ŵ	×								
21 DENIT-SU1			1015	ŴŴ	×		-	+					
22 DENIT-SU2			1025	Ŵ	×								
23 DENIT-SU3			1330	MM	×		-						
DENIT-SU4		$\overline{}$	0761	ŴŴ	×		-	-					
	Date/Time: //\$0	Received:	Ú		Date/Time: 1	143_{0} Seal intact? Seal intact?	Seal intact? Samples intact upon arrival?	arrival?	X N NA X N NA N NA	Instructior	Instructions / Remarks	S	
		Received:			Date/Time:	Recei	Received on ice? Temp.	due	Y N NA				
Relinduished:	Date/Time:	Received:			Date/Time:	Prope Rec'd	Proper preservatives indicated? Rec'd w ithin holding time?	s indicated? time?	Y N NVA Y N NVA				
Relinquished: Dat	Date/Time:	Received:			Date/Time:	Volati	Volatiles rec'd w/out headspace Proper containers used?	headspace	Y N N'A				
Relinquished:	Date/Time:	Received:			Date/Time:	<u> </u> 			Y N N/A		1001627	$t \chi_{o}$	
Chain of Custody xls Rev Date 11/19/01									Cha	Chain of Custody	dy]

SAL Project No. 1001627

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 B13-855-1844 fax B13-855-2218

Client Name									ntaot / Dhor					
	Haza	Hazan and Sawyer						<u>ş</u>	Josephin Edeback-Hirst 813-630-4498	back-Hirst	t 813-630-	-4498		
Project Name / Location	ANKI	PMRS II Wastewater System Analyses	er System An	alyses				jej	<u>iedeback@hazanandsawyer.com</u>	zanandsa	wyer.com			
Samplers: (Signature)	en		(PARAMI	PARAMETER / CONTAINER DESCRIPTION	UTAINER D	ESCRIP-	LION			
Matrix Codes: DW-Drinking Water WW-Wastewater SW-SurfaceWater SL-Sludge SO-Soil GW-Groundwater SA-Saline Water O-Other R-Reagent Water Sampe Only Sampe No.	Matrix Codes: a Water WW-Wastewater Nater SL-Sludge SO-Soil Reagent Water Reagent Water Sample Description	Date	əmi⊺	Matrix	Composite Grab 1LP, Cool	Alkalinity, CBOD, TSS, TDS	ILP, Zn Acetate/NaOH	520∭ b' H52O⊄ µo µesqebsce Aqıoğeu Znilide	гки' инз' и•х' со <u>р</u>	אף (Client meter)	Hq bləi ⁼	qməT bləi ⁻	bno⊃ blei∓	Field DO
25 DENIT-LS1		1/10/10	1040	MM) ×			4 4))	4	 1	I I	
26 DENIT-LS2		-	1245	ŴŴ	×				-					
27 DENIT-LS3			1230	MM	×	-		_	-					
28 DENIT-LS4			5021	MM	×	-								
29 DENIT-GL1			1055	MM	×				-					
30 DFT			1150	WW	×	+			-					
31 T1-D			1400	ww	×		 		-					
32 FB			1500	WW	×				-					
33 EB		>	0141	WM	×	. -								
Containare Prenarod/	i i		-4											
	11-1, 8 -1)	Baeetved:	\sum_{i}	(Date/Time:	د¢، د¢،	Seal intact? Samoles intact upon arrival?	t upon arriva	Z Z → →	N/A N/A	structions	Instructions / Remarks	S	
Relinquished:		Received:	<u>></u>		Date/Time:		Received on ice? Temp	ce? Temp	· >					
Relinquished:	Date/Time:	Received:			Date/Time:		Proper preservatives indicated? Rec'd w ithin holding time?	vatives indica olding time?	ated? Y N Y N	A/N A/N				
Relinquished:	Date/Time:	Received:			Date/Time:		Volatiles rec'd w /out headspace	w /out heads	≻					
Relinquished:	Date/Time:	Received:			Date/Time:	т 	Proper containers used?	iers used?	z ≻	N/A	/	100	001627	
Chain of Custody.xls Rev.Date 11/19/01														

Chain of Custody

			W/	ASTEWA	TER SA	MPLING	LOG			
Client Name:				Location:	PNRS	IT STE	-71	Contact: Phone:		
Date of Sample:	11/1	0/14		SAL Project #	1	nn11.	2I	Project Name:		
SAL Audit Performed:	YN	Auditor Name: Signature:				Client Repre		(YN	Rep. Name: Signature:	
					MPLE	ΠΑΤΑ		L		L
Sampled By:	,8AL	Client	Compos	itor Belongs To:	SAL		N/A	СОМР В	ottle Belongs To	SAL Client N/A
Compositor ID:	/				Bottle ID		<u>, , .</u>	I		
Intake Tubing Type:	PP F	PE NP TL	IT SI	int	akeTubing Lot			F	ump Tubing Lot	
	L		COMPOS		A	Composit	e ID Num	nber:		L
START	Date:			Time:			Comp	ositor Set-up By		
STOP	Date:			Time:		·	Composi	tor Picked-up By		
Co	omposite Type:	Time	Flow Co	ntinuous	Collect	Sample Every:		Minutes	Gallons	
Calibrated S	ample Volume:			mLs				·		
Programmed Numb	per of Samples:			Actual N	lumber of Sam	ples Collected:				
Final Composito	r Temperature:			°C	Ice Pres	ent in Composi	tor at Pick-up	2	Yes	No
			GRAE	3 SAMPLE	DATA	Grab I	D Numbe	er: , 0		
Date Collected:	111	ole.		Time Collected	135	U		Collected By	100	
				FIEL	D PARA	METERS				
PARAMET	ER	READ	DING	UN	ITS	F			INS	
pH		7-	2	s	U				s	AL-SAM-63-¢ 🤔
Temperati		25	·./	•	c				s	AL-SAM-63-CCCC
Temperature Verifi Secondary S			35-0		ThV				S,	AL-SAM-006-CCC
Specific Condu	uctance	1,2	56	μmhos/cm					l	AL-SAM-63- 03
Dissolved O	xygen	2.	46	mı	g/L			SAL-SAM-55		AL-SAM-55-CULLAN
	у			N	r.y.				S	AL-SAM-005-
Residual Ch						ļ	<u> </u>		S.	AL-SAM-000-
Preservation Ch Field?		Y	N	(Checked By	:				
List any Preservat in Field										
Commen	ts:		7,	\frown	,	•		1	1	
Sampler(e) Siz		_en	~		\	Date		1/10	110	
Sampler(s) Sig						Date				
R	eviewed By:					Date:				

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09

CRP

*

				ASTEWA			200		·····	
Client Name:				Location:	RC /			Contact: Phone:		
Date of Sample:	101	10/01		SAL Project #		00162	27	Project Name:		
		Auditor Name:		_ _	·				Rep. Name:	
SAL Audit Performed:	YN	Signature:				Client Repre Site		CY N	Signature:	
				SA	AMPLE	DATA		I		
Sampled By:	SAL	Client	Compo	ositor Belongs To:	T		N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:					Bottle ID			L		
Intake Tubing Type:	PP F	ENPTL	T SI	Int	takeTubing Lot	1		F	Pump Tubing Lot:	
·			COMPO	SITE DAT	A	Composit	e ID Nun	nber:		
START	Date:			Time	:		Com	positor Set-up By		
STOP	Date:			Time	:		Composi	itor Picked-up By		
Cor	mposite Type:	Tìme	Flow C	Continuous	Collect	Sample Every:		Minutes	Gallons	
Calibrated Sa				mLs	L			- L		
Programmed Number				Actual N	Number of Sam	ples Collected:			<u></u>	
Final Compositor		<u> </u>		 ℃	·	ent in Composi	tor at Pick-up	3	Yes	No
			GRA	B SAMPLE		Grab I	D Numbe	er: , 0 /	2	
Date Collected:	11/10	100		Time Collected				Collected By		
			l	FIEI	LD PARA					
PARAMET	ER	REAL	DING	UN	IITS	F	PERMITLI	міт	INS	TRUMENT ID
рН		7.	3	s	SU				S	AL-SAM-63-63
Temperatu	ire		0.6	0	°C				s	AL-SAM-63- CCC
Temperature Verific		57.		0	°C				S/	AL-SAM-006-CLI
Specific Condu		1,00	υ	μmho	os/cm		aa.		s	AL-SAM-63
Dissolved Ox	ygen	2.1	· · · · · · · · · · · · · · · · · · ·	m	g/L				s	AL-SAM-55-CCCC
Turbidity	4	~		N	์ 1 ีป	1	~		S	AL-SAM-005-
Residual Chl	orine		-			<u> </u>		~	S,	AL-SAM-006-
Preservation Che Field?	ecked in	Y	N		Checked By	:			I	
List any Preservati in Field:				- I						
Comment	s:		2.)					
Complet(a) Cit	noture	10	m			Date		11 leal	10	
Sampler(s) Sig	nature:	i			- x	Date				
Re	eviewed By:					Date				

WASTEWATER SAMPLING LOG

ORP

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09

			W.	ASIEWA	IER SA	MPLING				
Client Name:		1		Location:	RC	2		Contact: Phone:		
Date of Sample:	1:1	10/00		SAL Project #		<u></u>	17	Project Name:		
		Auditor Name:				016	<u>{ 7</u>		Rep. Name:	
SAL Audit Performed:	Y N			<u> </u>		Client Repre Sit		Q.N		
		Signature:		<u> </u>	AMPLE			1	Signature:	
Sampled By:	SAL	Client	Compos	sitor Belongs To:	T	Client	N/A	COMPR	ottle Belongs To:	SAL Client N/A
	JAL				L				otte belongs ro.	
Compositor ID:					Bottle ID			·		
Intake Tubing Type:		PENPTLT			takeTubing Lot:			L	Pump Tubing Lot:	
			СОМРО		A 	Composit			1	
START	Date:		`	Time:	: 		Com	positor Set-up By		
STOP	Date:			Time	:		Compos	itor Picked-up By		
Cor	mposite Type:	Time	Flow Co	ontinuous	Collect	Sample Every:		Minutes	Gallons	
Calibrated Sa	mple Volume:			mLs						
Programmed Numbe	er of Samples:			Actual N	Number of Sam	ples Collected				
Final Compositor	Temperature:			°C	Ice Pres	ent in Compos	itor at Pick-up	19	Yes	No
			GRA	B SAMPLE	DATA	Grab I	D Numbe	er: ,0	3	
Date Collected:	11/1.	: 10		Time Collected	1 13.			Collected By	Tim	
				FIEI	LD PARA	METERS				
PARAMETE	ER	REAL	DING	UN	IITS	F	PERMIT LI	MIT	INS	
pН		7.	2	s	SU				S	AL-SAM-63- 03
Temperatu	re	19.	5	0	°C				8	AL-SAM-63- Carpo
Temperature Verific Secondary Sc		58.		قہ	env				S/	H-SAM-006- Ceces
Specific Condu			20	1-	os/cm					AL-SAM-63- 3
Dissolved Ox	ygen	1.6		m	g/L				S	AL-SAM-55- Coup
Turbidity	,	/·		N	TU			·		AL-SAM-005-
Residual Chl	orine					<u> </u>			S/	AL-SAM-006-
Preservation Che		Y	N		Checked By	<u> </u>			<u> </u>	
Field?			<u> </u>				<u>, </u>			
List any Preservati	ves Added									
in Field:										
				<u>.</u>	<u> </u>		<u> </u>			
• • •										
Comment	S :			$\overline{)}$						
			<u> </u>				1			
Sampler(s) Sig	nature:		m	1-	}	Date	1	110/1	,	
		ļ	<u></u> u		· · · · · · · · ·	Date	<u> </u>			
Re	eviewed By	:				Date	:			

WASTEWATED SAMPLING LOG

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09

OSP

			WASIEWA	IER OP					
Client Name:		i (Location:	RC	3		Contact: Phone:		
Date of Sample:	Jili	10/10	SAL Project #	10	- 1 1 0	17	Project Name:		
SAL Audit Performed:	YW	Auditor Name: Signature:				esentative on te?	Q' N	Rep. Name: Signature:	
			SA	MPLE		<u> </u>	<u> </u>		
Sampled By:	SAL	Client Corr	positor Belongs To:			N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:				Bottle ID			<u> </u>	l	
Intake Tubing Type:	PP F	PE NP TL TT SI	Int	akeTubing Lot			F	Pump Tubing Lot:	
		COMF		4	Composit	te ID Num	nber:	ł	
START	Date:		Time:	1		Comp	positor Set-up By		
STOP	Date:		Time:			Composi	tor Picked-up By		
Cor	nposite Type:	Time Flow	Continuous	Collect	Sample Every:		Minutes	Gallons	
Calibrated Sa	mple Volume:		mLs			L	±	<u> </u>	
Programmed Numbe	er of Samples:		Actual N	lumber of Sam	ples Collected:				
Final Compositor	Temperature:		°C	Ice Pres	ent in Composi	itor at Pick-up	3	Yes	No
	· · · · · · · · · · · · · · · · · · ·	GR	AB SAMPLE	DATA	Grab I	D Numbe	er: , 04	4	
Date Collected:	t1/1	0/10	Time Collected:	13	ن /		Collected By	Fic	7
			FIEL	D PARA	METERS			· · · · · · · · · · · · · · · · · · ·	
PARAMETE	ER	READING	UN	ITS	F	PERMITLI	иIT 	INS	TRUMENT ID
pH		7.2	s	U					AL-SAM-63- ⊂.⊇
Temperatu		19.2	°(c					AL-SAM-63-C に E,
Temperature Verific		57.5	یژ	Sml				SA	L-SAM-006- CCCCA
Specific Condu	ctance	1,040	µmhc	s/cm				· · · · · · · · · · · · · · · · · · ·	AL-SAM-63-63
Dissolved Ox	ygen	2.30	mç	g/L				S/	AL-SAM-55- Collian
			FM	fU				SA	L-SAM-005-
Residual Chic		L		****			· · ·	SA	L-SAM-006-
Preservation Che Field?	ecked in	Y N	C	hecked By					
List any Preservativ in Field:	ves Added								
Commente	S:	\frown	\sim				1 9	<u> </u>	
Sampler(s) Sig	nature:	Im	/		Date	11	176/4	· · · · ·	
Sampler(s) Sigi				7	Date				
Re	viewed By:				Date:				

WASTEWATER SAMPLING LOG

CRG

			**							
Client Name:		4 (Location:	RCL]		Contact: Phone:		
Date of Sample:	17	tiste.		SAL Project #		2016	77	Project Name:		
	Č –	Auditor Name:			<i>(</i>				Rep. Name:	
SAL Audit Performed:	Y (N)	Signature:					esentative on te?	(Y)N	Signature:	
				SA					olghatore.	
Sampled By:	SAL	Client	Compos	sitor Belongs To:		Client	N/A	СОМР В	ottle Belongs To:	SAL Client N/A
Compositor ID:		/			Bottle ID			l		
Intake Tubing Type:	PP F	PE NP TL	TT SI	Inta	akeTubing Lot:			P	ump Tubing Lot:	
<u>_</u> l	· · · · · · · · ·	· · · · ·	COMPO			Comnosi	te ID Num			
START	Date:			Time:				ositor Set-up By:		
STOP	Date:			Time:			· · · · · ·	or Picked-up By:		
	mposite Type:	Time	Flow Co	ntinuous	Collect	Sample Every:	Composit			
	mple Volume:			mLs		Sample Every.		Minutes (Gallons	
Programmed Number										
Final Compositor			<u> </u>		umber of Samp					
				°C			tor at Pick-up?		Yes	No
		1		3 SAMPLE			D Numbei		5	
Date Collected:	11/1	0/10		Time Collected:	132 D PARAN			Collected By:	Try	
PARAMETE	ĒR	READ	ING				ERMIT LIM	и т Т		
pH				SI						
Temperatu	re	19	7	°C						L-SAM-63-
Temperature Verific	ation with).3 T			······				L-SAM-63-
Secondary So Specific Conduc					TMU					L-SAM-006-
Dissolved Oxy		1,03	7 C 7	μmhos		· · · · · ·				L-SAM-63-
		<u> </u>		mg			<u>,</u>			L-SAM-55-
		G		JIT.	J				SA	L-SAM-005-
Residual Chic Preservation Che									SA	- SA M-006-
Field?		Y	N	CI	necked By:					
List any Preservativ in Field:	ves Added									
Comments										
Sampler(s) Sign	ature	low		6		Date	111	10/10		
				1		Date				
Rev	/iewed By:					Date:				

WASTEWATER SAMPLING LOG

(17) p

				ASTEVVA	TER SP		JLUG			
Client Name:		,		Location:	R C	5		Contact:		
Date of Sample:	11	11011.		SAL Project #	70	5016	27	Phone: Project Name:	<u> </u>	
SAL Audit Performed:	YN	Auditor Name:			L K		esentative on	-	Rep. Name:	
	0	Signature:					te?	€¶.N	Signature:	
		~		SA	AMPLE	DATA		·		I
Sampled By:	SAL	Client	Compos	sitor Belongs To:	SAL	Client	N/A	СОМР Во	ottle Belongs To:	SAL Client N/A
Compositor ID:	\subseteq				Bottle ID					
Intake Tubing Type:	PP I	PE NP TL T	T SI	Inta	akeTubing Lot:			P	ump Tubing Lot:	
			СОМРО	SITE DAT	<u>ــــــــــــــــــــــــــــــــــــ</u>	Composit	e ID Num	ber:		
START	Date:			Time:			Comp	ositor Set-up By:	• • • • • • • • • • • • • • • • • • • •	
STOP	Date:			Time:			Composit	or Picked-up By:	<u> </u>	
Co	mposite Type:	Time	Flow Co	ntinuous	Collect !	Sample Every:		Minutes C	Gallons	
Calibrated Sa	mple Volume:			mLs						
Programmed Number	er of Samples:			Actual N	umber of Samp	les Collected:				
Final Compositor	Temperature:			°C	Ice Prese	ent in Composi	tor at Pick-up?		Yes	No
	- ć	;	GRAE	SAMPLE	DATA	Grab I	D Number	r: , 0	6	
Date Collected:	<u>n]</u> (.	ele,		Time Collected:	461	0		Collected By:	TM	
				FIEL	D PARAN	METERS		I		
PARAMETE	ER	READ	ING	UNI	TS	F	ERMIT LIM	ПТ	INS	TRUMENT ID
рН		<u> </u>	3	รเ	J				SA	AL-SAM-63-
Temperatu		22.0		°C	;				SA	L-SAM-63-
Tem perature Verific Secondary So	ation with	<u>96</u> .	υ	°C	;				SA	L-SAM-006-
Specific Conduc	ctance	1,0*		μmhos	s/cm				SA	AL-SAM-63-
Dissolved Oxy	/gen	3.30	2	mg/	′L				SA	L-SAM-55-
Turbidity				NT	H				SA	L-SAM=005-
Residual Chlo									SA	L-ŠAM-006-
Preservation Che Field?	cked in	Y	N	Cł	necked By:					
List any Preservativ in Field:	es Added									
Comments	:		\sum	7				/		
Sampler(s) Sign	ature:	- low				Date	11/1	1/12		
						Date	(
Rev	viewed By:					Date:				

WASTEWATER SAMPLING LOC

CRO

				W	ASTEWA	TER SA	MPLING	G LOG			
	Client Name:	,			Location:	PIS	- 7	v	Contact: Phone:	··········	
	Date of Sample:		$\frac{1}{1010}$		SAL Project #	17	00/62	17	Project Name:	· ·	
			Auditor Name:		۱ <u> </u>			<u>~ /</u>		Rep. Name:	
	SAL Audit Performed:	Y N	Signature:		<u> </u>		Client Repre Sit		Y'N	Signature:	
				L	S	AMPLE	DATA		<u> </u>		
	Sampled By:	/SAL	Client /	Compos	sitor Belongs To:			N/A	COMP B	ottle Belongs To:	SAL Client N/A
	Compositor ID:		\nearrow	I	[Bottle ID			L		
	Intake Tubing Type:	PP F	PE NP TL	TT SI	Int	akeTubing Lot			Р	ump Tubing Lot:	
			<u></u>	COMPO		4	Composit	e ID Num	1 iber:		<u> </u>
	START	Date:			Time	r			ositor Set-up By:		
	STOP	Date:			Time			Composi	tor Picked-up By:		
	Cc	mposite Type:	Time	Flow Co	ntinuous	Collect	Sample Every:		Minutes	Gallons	
	Calibrated Sa	ample Volume:			mLs	<u> </u>			I	<u> </u>	
	Programmed Numb	er of Samples			Actual N	Jumber of Sam	ples Collected:				
	Final Composito	r Temperature			°C	ice Pres	ent in Composi	tor at Pick-up'	2	Yes	No
				GRAE	3 SAMPLE		Grab I	D Numbe	r: , 0-	7	
	Date Collected:	1	alr.	<u> </u>	Time Collected		4,		Collected By:	1	
			51 0	L	FIEL	D PARAI					
	PARAMET	ER	REA	DING	UN	ITS	F	PERMITLIN	ИТ	INS	TRUMENT ID
	pН		7.4	/	s	U				SA	AL-SAM-63-23
	Temperatu	ure	20	.7	0	с				_S/	H-SAM-63- Ceres
UP .	Temperature Verifi Secondary S	cation with ource	18.	3	0	с				SA	L-SAM-006-CCC
	Specific Condu		9-7		μmho	os/cm				SA	AL-SAM-63- 03
	Dissolved Ox	kygen	7.	1	m	g/L					AL-SAM-55- Curl
	Turbidity	7			-N-	FU				SA	L-SAM-005-
	Residual Chi							-		SA	L₂SAM=006-
	Preservation Ch Field?	iecked in	Y	N		Checked By:				I	
	List any Preservat in Field				- -		L				
	Commen	ts:		2.		\geq			/ 1		
	Sampler(s) Sig	nature:	Li	m	_/~	$\dot{\frown}$	Date	11	110/1	<u>ه</u>	
			ļ				Date		ř		
	R	eviewed By	:				Date:				

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09

_				W	ASTEWA	TER SA	MPLING	G LOG				
	Client Name:				Location:	UNS	AT-I	51	Contact: Phone:			
	Date of Sample:	111	16/00		SAL Project #		1001	627	Project Name:			
	CAL Audit Derformed		Auditor Name:			/	Client Repre	sentative on	0	Rep. Name:		
	SAL Audit Performed:	Y (N	Signature:				Sit		(ĈN	Signature:		
				<u> </u>	SA	AMPLE	DATA					
	Sampled By:	SAL	Client	Compo	sitor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To:	SAL Client N/A	
	Compositor ID:					Bottle ID						
	Intake Tubing Type:	PP F	PE NP TL	TT SI	Int	akeTubing Lot:			F	ump Tubing Lot:		
				COMPO	SITE DAT	4	Composit	e ID Num	iber:			
	START	Date:			Time:			Comp	ositor Set-up By:			
	STOP	Date:			Time:			Composi	tor Picked-up By:			
	Co	mposite Type:	Time	Flow Co	ontinuous	Collect	Sample Every:		Minutes	Gallons		
	Calibrated Sa	imple Volume:			mLs							
	Programmed Numbe	er of Samples:			Actual N	lumber of Sam	ples Collected:		T			
	Final Compositor	Final Compositor Temperature					ent in Composi	· · · ·		Yes	No	
		/_		GRAI	B SAMPLE			D Numbe	r: ,0	8		
	Date Collected:	Date Collected: 11/10/12				100			Collected By:	Ta		
	PARAMET	FR	REAL			D PARAM		PERMITLIN		INS	TRUMENT ID	
	pH			\sim	s	· · · · · · · · · · · · · · · · · · ·					AL-SAM-63- 63	
	Temperatu	ire	20	5	°(AL-SAM-63-	
ORP	Temperature Verific	cation with	-16	1.0							L-SAM-006- C C	94
0,,,	Specific Condu		10	20	μmhc						AL-SAM-63- 63	* /
	Dissolved Ox	ygen	1.5		mg			<u> </u>	· · · · ·		AL-SAM-55- CCC	
	Jurbidity	,			FK,	J			······································		L-SAM-005-	
	Residual Chlo	orine			-			<u> </u>		SA	L-SAM-006-	
	Preservation Che Field?	ecked in	Y	N	C	hecked By:						
	List any Preservation in Field:				J							
	Comments:)			1			
					In		Date		110/13			
	Po	viewed By:				<u>. </u>	Date					
		менец ву.	L				Date:					

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

			W/	ASTEWA	TER SA	MPLING	LOG				
Client Name:				Location:	UNS	A7-15	52	Contact: Phone:			
Date of Sample:	11	10/10		SAL Project #		0016		Project Name:			
		Auditor Name:		L	·	Client Repre		1	Rep. Name:		
SAL Audit Performed:	Y/N	Signature:		· · · · · · · · · · · · · · · · · · ·		Sit		YN	Signature:	······································	
		~		SA	AMPLE	DATA		L			
Sampled By:	SAL	Client	Compos	itor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To:	SAL Client N	I/A
Compositor ID:					Bottle ID			• -		· · · · · · · · · · · · · · · · · · ·	
Intake Tubing Type	PP F	ENPTL	T SI	Int	akeTubing Lot			P	ump Tubing Lot:		
			COMPO	SITE DAT	Ą	Composit	e ID Num	nber:			
START	Date:			Time:			Comp	oositor Set-up By:			
STOP	Date:			Time:			Composi	tor Picked-up By:			_
Co	mposite Type:	Time	Flow Co	ntinuous	Collect	Sample Every:		Minutes	Gallons		
Calibrated Sa	ample Volume:			mLs	L			<u>,</u>			
Programmed Numb	er of Samples:			Actual N	lumber of Sam	ples Collected					
Final Compositor	r Temperature:			°C	Ice Pres	ent in Composi	tor at Pick-up	\$ 	Yes	No	
		1	GRAE	SAMPLE	DATA	Grab I	D Numbe	er: ,0	9	·	
Date Collected:	11/1.	11.		Time Collected	09.	15		Collected By:	Tim		
				FIEL	D PARA	METERS					
PARAMET	ER	READ	DING	UN	ITS	F	PERMIT LIN	TIN	INS	TRUMENT ID	
рН		6.9	8	s	U				S	AL-SAM-63-03	
Temperatu	ıre	19.9	2	0	C				S	AL-SAM-63-	Cire
Femperature Verifi Secondary Secondary S		-17	30.0		e MV				SA	L-SAM-006- <	- CIEN
Specific Condu		1,30	νO	μmhc	is/cm				S	دن AL-SAM-63-	
Dissolved Ox	ygen	0.8	v	mı	g/L				S	AL-SAM-55-	Cure
Turbidity	ī	-		_N	τυ				_SA	L-SAM-005-	
Residuat Chl	orine	-							SA	L-SAM-006-	
Preservation Ch Field?	ecked in	Y	N	0	Checked By	:			L		
List any Preservati in Field:						•					
Comment	ts:		7/	7		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.			
Sampler(s) Sig	inature:	lor				Date Date	31	10/1,			
Re	eviewed By:					Date:					

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09

ORP

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

					IER SA				
Client Name:)			Location:	UNSA	7153	3	Contact: Phone:	
Date of Sample:	11/10	100		SAL Project #	10	0162	7	Project Name:	
	× @	Auditor Name:				Client Repre		101	Rep. Name:
SAL Audit Performed:	Y N'	Signature:				Sit		YN	Signature:
				SA	AMPLE	DATA			I
Sampled By:	SAL	Client	Compos	itor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To: SAL Client N/A
Compositor ID:					Bottle ID				
Intake Tubing Type:	PP P	ENP TL 1	T SI	Int	akeTubing Lot			P	ump Tubing Lot:
			COMPO	SITE DAT	4	Composit	e ID Num	iber:	
START	Date:			Time:			Comp	ositor Set-up By:	
STOP	Date:			Time:			Composi	or Picked-up By:	
Co	mposite Type:	Time	Flow Co	ntinuous	Collect	Sample Every:		Minutes	Gallons
Calibrated Sa	ample Volume:			mLs					
Programmed Numb	er of Samples:			Actual N	lumber of Sam	ples Collected:			
Final Compositor	Temperature:			°C	Ice Pres	ent in Composi	itor at Pick-up?	2	Yes No
	(GRAE	SAMPLE	DATA	Grab I	D Numbe	r: , /	0
Date Collected:	11/1	0/10		Time Collected	+32	25		Collected By:	Tin
				FIEL	D PARA	METERS			
PARAMET	ER	READ	DING	UN	ITS	F	PERMIT LIN	/IT	INSTRUMENT ID
рН				s	U				SAL-SAM-63-
Temperatu				0(С				SAL-SAM-63-
Temperature Verifi Secondary S				01	с				SAL-SAM-006-
Specific Condu	ictance			μmho	os/cm				SAL-SAM-63-
Dissolved Ox	ygen			mç	g/L				SAL-SAM-55-
Turbidity	1			N	ſU				SAL-SAM-005-
Residual Chl									SAL-SAM-006-
Preservation Ch Field?	ecked in	Y	N	C	Checked By:				
List any Preservati in Field:									
Comment	s:		Lon Z	Vol.	në -	X. S	DAM PO	: e _	
Sampler(s) Sig	nature:	h	. /	5		Date		allul l	v
						Date			
Re	viewed By:					Date:			

WASTEWATER SAMPLING LOG

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

				ASIEWA						
Client Name:		,		Location:	UNSA	T-15	<u>ц</u>	Contact: Phone:		
Date of Sample:	17	10/10		SAL Project #	10		17	Project Name:		······································
		Auditor Name:			<i>i</i>	Client Repre	sentative on	<i>C</i> .	Rep. Name:	
SAL Audit Performed:	YŃ	Signature:				Sit		C'N	Signature:	
		\geq		SA	MPLE	DATA		L		
Sampled By:	SAL	Client	Composi	itor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:	\subseteq				Bottle ID			• <u>•</u> ••••••••••••••••••••••••••••••••••		
Intake Tubing Type:	PP P	E NP TL TT	SI	Int	akeTubing Lot			F	ump Tubing Lot:	
		(COMPOS	SITE DAT	4	Composit	e ID Num	nber:		
START	Date:			Time:			Comp	ositor Set-up By:		
STOP	Date:			Time:			Composi	tor Picked-up By:		
Co	mposite Type:	Time	Flow Co	ntinuous	Collect	Sample Every:		Minutes	Gallons	
Calibrated Sa	ample Volume:			mLs					<u>, , , , , , , , , , , , , , , , , , , </u>	
Programmed Numb	er of Samples:			Actual N	lumber of Sam	ples Collected:				
Final Compositor	r Temperature:			°C	Ice Pres	ent in Composi	itor at Pick-up	3	Yes	No
	1		GRAE	SAMPLE	DATA	Grab I	D Numbe	er: ,/		
Date Collected:	11/1	ors		Time Collected	15	15		Collected By	Th	
				FIEL	D PARA	METERS			· · · · · · · · · · · · · · · · · · ·	······
PARAMET	ER	READ	NG	UN	ITS	F			INS	
pH				s	U				S/	AL-SAM-63-
Temperatu				0	c				S	AL-SAM-63-
Temperature Verifi Secondary S				o	с				SA	L-SAM-006-
Specific Condu	uctance			μmhc	os/cm				S	AL-SAM-63-
Dissolved Ox	kygen		_	mg	g/L				S	AL-SAM-55-
Turbidity	ý			N	τU				SA	L-SAM-005-
Residual Ch									SA	L-SAM-006-
Preservation Ch Field?	ecked in	Y	N	(Checked By	:				
List any Preservati in Field					,					
Commen	ts:		-1	-on	Vour	në -	Xo	READ	by G S	
Complete(a) C		/	om	· · · ·	1	Date		11/101	1.	
Sampler(s) Sig	jnature:			/	<u> </u>	Date				
R	eviewed By:			<u> </u>		Date				

WASTEWATER SAMPLING LOG

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09

			**	ASIEWA						·	
ſ	Client Name:		/	Location:	UNSA	T-EC	/	Contact: Phone:			
ŀ	Date of Sample:		10/10	SAL Project #		0162	7	Project Name:			
F		/	Auditor Name:			Client Repres			Rep. Name:		
1	SAL Audit Performed:	Y (N F	Signature:			Site		Ŭ.M.	Signature:		
ŀ	I			SA	MPLE	DATA					
ľ	Sampled By:	(SAL)	Client Compo	ositor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To:	SAL Client N/A	
f	Compositor ID:			1	Bottle ID						
Ì	Intake Tubing Type:	PP PE	E NP TL TT SI	Inta	akeTubing Lot			P	ump Tubing Lot:		
ł			COMPC	SITE DATA	<u> </u>	Composit	e ID Nun	nber:			
ŀ	START	Date:		Time:			Comp	positor Set-up By			
ŀ	STOP	Date:		Time:			Composi	itor Picked-up By	_		
	Co	omposite Type:	Time Flow C	Continuous	Collect	Sample Every:		Minutes	Gallons	•	
	Calibrated Sa	ample Volume:		mLs	L						
	Programmed Numb	er of Samples:		Actual N	lumber of Sam	ples Collected:					
	Final Composito	r Temperature:		°C	Ice Pres	ent in Composi	itor at Pick-up	13	Yes	No	
		 /	GRA	B SAMPLE	DATA	Grab I	D Numbe	er: ,/`,	2		
	Date Collected	11/4	110	Time Collected	16	00		Collected By	· Tr	7	
		<u> </u>	<u> </u>	FIEL	D PARA					,	
	PARAMET	TER	READING	UN	ITS	6		MIT			
	рН		6.9	s	U				\$\$	SAL-SAM-63-	
	Temperat		20.6	0	с				<u>؛</u>	SAL-SAM-63-	
RP	Temperature Verif		108.0		с				s	AL-SAM-006-	
X 1	Specific Cond		1,150	μmh	µmhos/cm				SAL-SAM-63-		
	Dissolved O	xygen	7.10	m	g/L				;	SAL-SAM-55-	
	Turbidil	ty		~N	τυ		•••		5	AL-SAM-005-	
	Residual Cr								5	AL-SAM-006-	
	Preservation C Field?		Y N		Checked By	r:					
	List any Preserva in Field	tives Added									
	Comme	nts:	\square	7			<u></u>	/	j		
	Sampler(s) S	ignature:	lind		/	Date Date	1	1/101	/ c ,		
	Reviewed I		a			Date	e:				

WASTEWATER SAMPLING LOG

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09

1

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

				ASTEWA						
Client Name:				Location:	UNSat	t-SAS	2	Contact: Phone:		
Date of Sample:	11/0			SAL Project #		016	27	Project Name:		
SAL Audit Performed:	Y Ń	Auditor Name:		······		Client Repre		Y N	Rep. Name:	
	C	Signature:				Sit	e?	C	Signature:	
·				S/	MPLE	DATA				
Sampled By:	SAL	Client	Compos	sitor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:	\square				Bottle ID					
Intake Tubing Type	PP P	E NP TL	IT SI	Int	akeTubing Lot:			F	Pump Tubing Lot:	
			СОМРО	SITE DAT	4	Composit	e ID Num	nber:		
START	Date:			Time:			Comp	ositor Set-up By:		
STOP	Date:			Time:			Composi	tor Picked-up By:		
Co	omposite Type:	Time	Flow Co	ontinuous	Collect	Sample Every:		Minutes	Gallons	
Calibrated Sa	ample Volume:			mLs						
Programmed Numb	er of Samples:			Actual N	lumber of Sam	ples Collected:				
Final Composito	r Temperature:			°C	Ice Pres	ent in Composi	tor at Pick-up	3	Yes	No
			GRA	B SAMPLE	DATA	Grab I	D Numbe	er: , /\	3	
Date Collected:	Intro	:100		Time Collected	- t().	0		Collected By	Th	
				FIEL	D PARA	METERS				
PARAMET	ER	REAL	DING	UN	ITS	F	PERMIT LI	TIN	INS	
pH		6.	2	S	U				s	AL-SAM-63- @ 3
Temperati	1	22	.5	0	c				.8	AL-SAM-63- Current
Temperature Verifi Secondary S		47	7.5		c _m V				S	AL-SAM-006- Carter
Specific Condu	uctance	93	C)	μmhc	os/cm				s	SAL-SAM-63- СЗ
Dissolved Ox	xygen	7.*	70	mı	g/L				£	AL-SAM-55- CURR
Turbidity	y	-			гU			-	S	AL-SAM-005-
Residual-Ch	lorine								S.	AL-SAM-006-
Preservation Ch Field?		Y	N	(Checked By:				•	
List any Preservat in Field										
Commen	ts:									
Sampler(s) Sig	nature:					Date				·····
Sampler(s) Sig						Date				
R	eviewed By:					Date				

WASTEWATER SAMPLING LOG

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09

			VASIEVVA						
Client Name:			Location:	UNSA	7-ECS	3	Contact: Phone:		
Date of Sample:	,	, le.	SAL Project #	1	0016	,27	Project Name:		
SAL Audit Performed:	YŃ	Auditor Name:			Client Repre Sit	sentative on	YN	Rep, Name: Signature:	
			S	AMPLE					
Sampled By:	SAL	Client Comp	positor Belongs To:	1		N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:	0			Bottle ID					
Intake Tubing Type:	PP F	PE NP TL TT SI	Ini	takeTubing Lot			P	ump Tubing Lot:	
		COMP	OSITE DAT	Α	Composit	e ID Num	iber:		
START	Date:		Time			Comp	ositor Set-up By:		
STOP	Date:		Time			Composit	or Picked-up By:		
Co	mposite Type:	Time Flow	Continuous	Collect	Sample Every:		Minutes	Gallons	
Calibrated Sa	ample Volume:		mLs						
Programmed Numb	er of Samples:		Actual N	Number of Sam	ples Collected:				
Final Compositor	r Temperature:		°C	Ice Pres	ent in Composi	tor at Pick-up?	2	Yes	No
		GR	AB SAMPLE	DATA	Grab I	D Numbe	r: ,/*	7	
Date Collected:	11/0	der l	Time Collected	15	30		Collected By:	Th	· · · · · · · · · · · · · · · · · · ·
			FIEL	D PARA	METERS				
PARAMET	ER	READING	UN	ITS	F			INS	
рН		6.8	s	U				S	AL-SAM-63-
Temperatu		21.5	0	c				S,	AL-SAM-63-
Temperature Verifi		105.0	0	s- ul				SA	AL-SAM-006-
Specific Condu	ictance	1,250	μπλα	os/cm				S	AL-SAM-63-
Dissolved Ox	kygen	6,80	m	g/L				S	AL-SAM-55-
Turbidity	/		N	TU		••••		SE	L-SAM-005-
Residual Chi		<u> </u>	-					SA	AL-SAM-006-
Preservation Ch Field?	ecked in	Y N	(Checked By					
List any Preservati in Field:									
Comment	ts:	$\overline{}$						<u>í</u>	
Sampler(s) Sig	inature:	- Au		7	Date	1	1/11	/	
				/	Date				
Re	eviewed By:				Date				·······

WASTEWATER SAMPLING LOG

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09

OPP

				ASIEWA	IEK SF		J LUG			
Client Name:		1 +		Location:	UNS	47-E	24	Contact: Phone:		
Date of Sample:	11	110/11		SAL Project #		10016	,7I	Project Name:		
SAL Audit Performed:	Y N	Auditor Name:			(Client Repre	esentative on te?	 / ¥/ N	Rep. Name:	
		Signature:							Signature:	
					MPLE			i		
Sampled By:		Client	Compo	sitor Belongs To:			N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:					Bottle ID					
Intake Tubing Type:	PP	PE NP TL			akeTubing Lot				Pump Tubing Lot:	
			COMPO		4	Composi	te ID Num	ber:		
START	Date:	_		Time:			Comp	ositor Set-up By:		
STOP	Date:	·······		Time:			Composit	or Picked-up By:		
Co	mposite Type:	Time	Flow Co	ontinuous	Collect	Sample Every:		Minutes	Gallons	
Calibrated Sa	mple Volume:			mLs				· · · · · · · · · · · · · · · · · · ·		
Programmed Numbe	er of Samples:			Actual N	umber of Sam	ples Collected:				
Final Compositor	Temperature:			°C	Ice Pres	ent in Composi	tor at Pick-up?		Yes	No
	,		GRA	B SAMPLE	DATA	Grab I	D Numbe	r: 15		
Date Collected:	11/c	0/10		Time Collected:	1120	0		Collected By:	Tim	
				FIEL	D PARA					
PARAMETE	ĒR	READ	ING	UNI	TS	F	PERMIT LIN	1IT	INS	RUMENT ID
pН		6.	5	รเ	J				SA	L-SAM-63-2-3
Temperatu		22.	2	°C	;			· · · · · · · · · · · · · · · · · · ·	SA	L-SAM-63-C ((Ca.
Temperature Verific Secondary So		46.	5	ير	FMU				SA	L-SAM-006- C. C.
Specific Conduc		28	ð	μmhos						L-SAM-63- 63
Dissolved Oxy	ygen	7.3		mg	AL->					L-SAM-55- C
Turbidity					U U				-	L-SAM-005-
Residual Chic	orine									L-SAM-006-
Preservation Che Field?	cked in	Y	N	CI	necked By:					
List any Preservativ in Field:	ves Added			I						
Comments	::									
Sampler(s) Sign	ature:					Date				
						Date				
Rev	/iewed By:					Date:				

WASTEWATER SAMPLING LOC

ORP

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09

			-	•••	AULINA	I LI OA							
	Client Name:		1 1		Location:	USAT-	CLI		Contact: Phone:				
	Date of Sample:	liti	10/1.		SAL Project #	11	016	27	Project Name:				
	SAL Audit Performed:	V N	Auditor Name:				Client Repres	sentative on		Rep. Name:			
	SAL Addit Performed.	YN	Signature:				Site		YN	Signature:			
					SA	MPLE	DATA		L,,,,,,	L			
	Sampled By:	SAL	Client	Compos	itor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To	SAL Client N/A		
	Compositor ID:					Bottle ID							
	Intake Tubing Type:	PP F	PE NP TL	TT SI	Inta	akeTubing Lot			F	Pump Tubing Lot			
				COMPO	SITE DATA	N	Composite	e ID Num	ber:				
	START	Date:			Time:			Compo	ositor Set-up By:				
	STOP	Date:			Time:			Composite	or Picked-up By:	1			
	Co	mposite Type:	Time	Flow Co	ntinuous	Collect \$	Sample Every:		Minutes	Gallons			
	Calibrated Sa	imple Volume:			mLs						······································		
	Programmed Numb	er of Samples:			Actual N	umber of Samp	les Collected:						
	Final Compositor	Temperature			ະ	Ice Prese	nt in Composit		Yes No				
		1	1	GRAE	SAMPLE	DATA	Grab II) Number	r: ,/	6			
	Date Collected:	Date Collected: 1/10/10				150	70		Collected By:	Th	7		
						D PARAN	IETERS						
	PARAMET	PARAMETER READING				TS	P	ERMIT LIM	ПТ	INS	TRUMENT ID		
	рН		\frown	/	รเ	J				S	AL-SAM-63-		
- 0	Temperatu	and the second sec	22	2 - 0 -	°C	;				S	AL-SAM-63-		
CIP	Temperature Verific Secondary Sc	cation with ource	10	<u>5,5</u>	ي ا	"nC				SA	L-SAM-006-		
	Specific Condu	ctance	1,	130	μmho					S	AL-SAM-63-		
	Dissolved Ox	ygen	7	-30	mg	/L				S	AL-SAM-55-		
	-Turbidity				,NT	σ		-		sį	L-SAM-005-		
	Residual Chie			-	-					S/	L-SAM-006-		
	Preservation Che Field?	ecked in	Y	N	C	necked By:			<u>,</u>				
	List any Preservativ in Field:	ves Added											
	Comments	s:		7	2				_1				
	Sampler(s) Sigr	nature:	_ Cm		~)	Date	4	T_{2}	9			
		Sampler(s) Signature:				,	Date						
	Re	Reviewed By:					Date:						

WASTEWATER SAMPLING LOG

				ASILWA						
Client Name:	1	1		Location:	UNSA	TCL	2	Contact: Phone:		
Date of Sample:	111	10/ru		SAL Project #	10	016	17	Project Name:	·····	
		Auditor Name:		<u> </u>		Client Renge	esentative on	1.	Rep. Name:	
SAL Audit Performed:	YN	Signature:				Sit		(Y)N	Signature:	
				SA	MPLE	DATA		I	L	
Sampled By:	SAL	Client	Compo	ositor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:	\subset				Bottle ID			L		
Intake Tubing Type:	PP	PE NP TL 1	T SI	Inti	akeTubing Lot:			P	ump Tubing Lot:	
			COMPC		A /	Composit	e ID Num	ber:		
START	Date			Time:			Comp	ositor Set-up By:		
STOP	Date			Time:			Composit	or Picked-up By:		
Co	mposite Type	Time	Flow C	ontinuous	Collect	Sample Every:		Minutes (Gallons	
Calibrated Sa	mple Volume	· · · · · · · · · · · · · · · · · · ·		mLs						
Programmed Number	er of Samples:			Actual N	umber of Sam	ples Collected:				
Final Compositor	Temperature			°C		ent in Composi			Yes	No
		i	GRA	B SAMPLE	DATA	Grab II	D Numbe	r 17		
Date Collected:	$-\frac{1}{1}$			Time Collected:		30		Collected By:	Ta	
<u> </u>	<u> </u>	010		FIEL	D PARA				- lag	
PARAMETE	ER	READ	ING	UNI	тs	P	PERMIT LIN	IIT	INS	
pН		7.0)	SI	J				S	AL-SAM-63- 03
Temperatu	re	23	1	°(>				S/	NL-SAM-63- Cc (/2
Temperature Verific Secondary So		50	. 2	يد	Thu					E-SAM=006- Cecer
Specific Conduc		1,0	20	μmho	·					L-SAM-63- °3
Dissolved Oxy	/gen	58.4	l.	mg	/L					L-SAM-55- Cour
Turbidity	. <u> </u>	TIP	-	NT	₩~	· · · · · · · · · · · · · · · · · · ·				L-SAM-005-
Residual Chic	orine				/					L-SAM-006-
Preservation Che Field?	cked in	Y	N	c	hecked By:	·				
List any Preservativ in Field:	es Added					L				
Comments	:		7	\bigcirc				1	1	
Sampler(s) Sign	isture:	62	~	1~		Date		ellel	()	
Sumpler(s) Sign					1	Date				
Rev	viewed By:					Date:				

WASTEWATER SAMPLING LOG

URP

				ASIEWA	IER SA		LOG			
Client Name:		1		Location:	UNSAT	1 - CL	3	Contact: Phone:		
Date of Sample:	111	coles.		SAL Project #		00/6	77	Project Name:		
SAL Audit Performed:	YŃ	Auditor Name:					esentative on	Y N	Rep. Name:	
		Signature:					te?	C	Signature:	
				S/	MPLE [DATA				
Sampled By:	/ SAL	Client	Compos	itor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:	\subseteq				Bottle ID					
Intake Tubing Type:	PP	PE NP TL T	SI	Inta	akeTubing Lot:			F	ump Tubing Lot:	
	-		COMPOS	SITE DATA	4	Composit	e ID Num	ber:		
START	Date:			Time:			Comp	ositor Set-up By:		
STOP	Date:			Time:			Composit	or Picked-up By:		
Co	mposite Type:	Time	Flow Co	ntinuous	Collect	Sample Every:		Minutes (Gallons	
Calibrated Sa	imple Volume:			mLs						- <u> </u>
Programmed Number	er of Samples:			Actual N	umber of Samp	oles Collected:				
Final Compositor	Temperature:			°C	Ice Prese	ent in Composi	tor at Pick-up?		Yes	No
	(GRAB	SAMPLE	DATA	Grab I	D Numbe	r: 1/2	3	
Date Collected:	1110	Jr.		Time Collected:	15	らい		Collected By:		7
				FIEL	D PARAN	IETERS				
PARAMETE	ER	READI	NG	UNI	тѕ	F	PERMIT LIN	IIT	INS	TRUMENT ID
рН		7.4		SU	J				S/	AL-SAM-63-
Temperature Temperature Verific		22.	.0	°C	;				S/	AL-SAM-63-
Secondary So		100	.5	ିଂ	The				SA	L-SAM-006-
Specific Conduc	ctance	1,29	3 U	μmho	s/cm				S	AL-SAM-63-
Dissolved Oxy	ygen	7.6	Ú,	mg	/L				S	AL-SAM-55-
Turbidity				NT	U		-		SA	L-SAM-005-
Residual Chic				-					SA	L- SAM-00 6-
Preservation Che Field?	ecked in	Y	N	c	hecked By:					
List any Preservativ in Field:	ves Added									
Comments	s: 		$\Big)$	$\overline{\mathcal{T}}$				_/1		
Sampler(s) Sign	nature:		~	\square		Date	11	Kik	3 2	
						Date				
Rev	viewed By:					Date:				

WASTEWATED SAMPLING LOC

ORP

	Client Name:	,	,		Location:	UNS	ATC	14	Contact Phone		
	Date of Sample:	11	10/10		SAL Project #		016	27	Project Name:	· · · · · · · · · · · · · · · · · · ·	
Ì			Auditor Name:							Rep. Name:	
	SAL Audit Performed:	Y (N) .	Signature:					esentative on ite?	(Y N	Signature:	
			· · · · · · · · · · · · · · · · · · ·		SA	MPLE	DATA	<u> </u>			
	Sampled By:	SAL	lient	Compo	ositor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To:	SAL Client N/A
	Compositor ID:					Bottle ID					
	Intake Tubing Type:	PP	PE NP TL	TT SI	Inte	akeTubing Lot:			F	Pump Tubing Lot:	
			· · · ·	СОМРО		\ \	Composi	te ID Num	ber:		
	START	Date:			Time:			Compo	ositor Set-up By		
	STOP	Date:			Time:			Composite	or Picked-up By		
ſ	Co	mposite Type:	Time	Flow C	ontinuous	Collect	Sample Every		Minutes	Gallons	
Į	Calibrated Sa	imple Volume:			mLs				<u> </u>		
Ī	Programmed Numbe	er of Samples:			Actual Nu	umber of Sam	oles Collected				
ľ	Final Compositor	Temperature:			°C	Ice Prese	ent in Compos	itor at Pick-up?		Yes	No
ľ		(,		GRA	B SAMPLE	DATA	Grab I	D Number		7	
ľ	Date Collected:	lilipto	ΰ		Time Collected:	1140			Collected By:		
Ľ					FIEL			<u> </u>		Tim	
	PARAMETE	ĒR	READ	ING	UNI	rs	I	PERMITLIM	IT	INST	RUMENT ID
	pН		2	2	SL	,				SA	L-SAM-63- 4 3
L	Temperatur		23	.5	°C					SA	L-SAM-63-Cector
Ľ	Temperature Verific		52.	8	<u>-•e</u>	mV					-SAM-006- Co com
	Specific Conduc		1,00	10	μmhos						L-SAM-63- €3
	Dissolved Oxy	/gen	8.0)	mg/	L		•			L-SAM-55- Cc : (1.14
	Turbidity	~	·		NT4	J					-SAM-005-
ſ	Residual Chlo		-		-	-					-SAM-006-
Γ	Preservation Che Field?	cked in	Y	N	Ch	ecked By:					
	List any Preservativ in Field:	es Added			•	·					
	Comments	:			\bigcirc				1	,	
l	Sampler(s) Signa	ature:			1		Date	. 17	1101	С з	
L		_				1	Date				
L	Rev	iewed By:					Date:				

WASTEWATER SAMPLING LOG

CRE

.

			V	VASTEWA	TER SA	MPLIN	G LOG			
Client Name:				Location:	UNSF	17-P	SI	Contact Phone		
Date of Sample:		10/1		SAL Project #		0016		Project Name:		
SAL Audit Performed:		Auditor Name	:		L [esentative on		Rep. Name:	
SAL Addit Performed:	YN	Signature:					ite?	CYN	Signature:	
		<u> </u>		SA		DATA	· · · · · · · · · · · · · · · · · · ·	L	L	···· ··· ··· ···
Sampled By:	SAL	Client	Comp	ositor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:					Bottle ID			•		
Intake Tubing Type:	PP I	PE NP TL	TT SI	Inta	akeTubing Lot:			F	Pump Tubing Lot:	
			COMPO	SITE DATA	4	Composi	ite ID Nun	nber:	I	
START	Date			Time:			Comp	ositor Set-up By	:	
STOP	Date			Time:			Composit	or Picked-up By		
Co	mposite Type:	Time	Flow C	Continuous	Collect	Sample Every:		Minutes	Gallons	
Calibrated Sa	ample Volume:			mLs				· ·		
Programmed Numb	er of Samples:			Actual N	umber of Samp	oles Collected:				
Final Compositor	Temperature:			°C	Ice Prese	nt in Composi	tor at Pick-up?		Yes	No
			GRA	B SAMPLE	DATA	Grab I	D Numbe	er:	20	
Date Collected:	11/1	0/10		Time Collected:	135	J		Collected By:		
				FIEL	D PARAM	IETERS	·		<u> </u>	
PARAMET	ER	REA	DING	UNI	TS	F	PERMIT LIN	ЛТ	INST	RUMENT ID
pН		7.4	2	SI	J					L-SAM-63-63
Temperatu		23	8	°(`				SA	L-SAM-63- ((E -
Temperature Verifi		9c	1. U	يدر	5 nV				SA	L-SAM-006CCC
Specific Condu	ictance	95	T0	μmho					SA	L-SAM-63-4 3
Dissolved Ox	ygen	7.8	0	mg	/L				SA	L-SAM-55-Ccc
Turbidity				NT	U_					-SAM-005-
Residual Chl		·					$\langle \rangle$		SA	
Preservation Ch Field?	ecked in	Y	N	C	hecked By:				A	
List any Preservati in Field:										
Comment	s:		7	$ \land $						
Sampler(s) Sig	nature:		m	12	γ	Date		11/101	1,0	
				/		Date			· # *	
Re	viewed By:					Date:				

			W	ASTEWA	TER SA	MPLINC	LOG		<u></u>	
Client Name:				Location:	DENI	T-SU	2	Contact: Phone:		·····
Date of Sample:	,,],	0/1-		SAL Project #		016	27	Project Name:		
SAL Audit Performed:	. <i>K</i> i	Auditor Name:		L			esentative on		Rep. Name:	
SAL Abuit Ferionneu.	Y /N	Signature:				Sit		ΩN	Signature:	
***				SA	MPLE	ΟΑΤΑ		· · · · · · · · · · · · · · · · · · ·		
Sampled By:	SAL	Client	Compos	sitor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:	\subseteq				Bottle ID					
Intake Tubing Type:	PP F	PE NP TL 1	⊤ SI	Int	akeTubing Lot:			P	ump Tubing Lot:	
			СОМРО	SITE DATA	4	Composit	e ID Num	ber:		
START	Date:			Time:			Compo	ositor Set-up By:		
STOP	Date:			Time:			Composite	or Picked-up By:		
Cor	mposite Type:	Time	Flow Co	ontinuous	Collect	Sample Every:		Minutes (Gallons	
Calibrated Sa	mple Volume:			mLs						
Programmed Numbe	er of Samples:			Actual N	umber of Sam	ples Collected:				
Final Compositor	Temperature:			°C	Ice Prese	ent in Composi	tor at Pick-up?		Yes	No
	/	-1	GRA	3 SAMPLE	DATA	Grab I	D Number	<u> ,2 </u>		
Date Collected:	11/10	1.		Time Collected:	1013	5		Collected By:	Tm	
				1	D PARAN					
PARAMETE	R	READ		UNI	TS	F		IIT	INS	TRUMENT ID
рН		6.		SI						AL-SAM-63- 67
Temperatur Temperature Verific		28.0		°(AL-SAM-63- Cccer-
Secondary So	urce	-270		~	FNU					L-SAM-006
Specific Conduc		1,2		μmho	s/cm					AL-SAM-63- ∞3
Dissolved Oxy		1.60	2	mg	/L				SA	H-SAM-55- Cace
- Turbidi ty				NT	θ				.	L-SAM-005-
Residual Chlo Preservation Che					<u> </u>		-		SA	L-SAM-006-
Field?		Y	N	с	hecked By:					
List any Preservativ in Field:	es Added									
Comments	::									
Sampler(e) Si	inturo:					Date				
Sampler(s) Sign	ature:					Date				
Rev	/iewed By:					Date:				

ORP

						MPLIN				
Client Name:				Location:	DEA	117-5	:02	Contact:		
Date of Sample:	1,11	0/12		SAL Project #	,	5016		Phone: Project Name:		
SAL Audit Performed:	Y (N)	Auditor Name:		I		Client Repre	esentative on te?	(Y)N	Rep. Name:	
		Signature:							Signature:	
				S/	AMPLE	DATA				
Sampled By:	SAL	Client	Compos	sitor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:					Bottle ID					
Intake Tubing Type:	PP F	PE NP TL -	TT SI	Int	akeTubing Lot:			P	ump Tubing Lot:	
			COMPO	SITE DAT	۹	Composit	te ID Num	ber:		
START	Date:			Time:			Сотр	ositor Set-up By:		
STOP	Date:			Time:			Composit	or Picked-up By:		
Con	nposite Type:	Time	Flow Co	ontinuous	Collect	Sample Every:		Minutes (Gallons	
Calibrated Sar	mple Volume:			mLs						
Programmed Numbe	r of Samples:			Actual N	umber of Sam	ples Collected	-	······································		
Final Compositor	Temperature:			°C	Ice Prese	ent in Composi	tor at Pick-up?		Yes	No
	1	· · ·	GRA	3 SAMPLE	DATA	Grab I	D Numbe	1,27		
Date Collected:	11/1	5/15		Time Collected:	102	1		Collected By:	Ta	
				FIEL						
PARAMETE	R	READ	NG	UNI	тs	F	PERMIT LIN	ΙΙΤ	INST	TRUMENT ID
рН		7.0	0	SI	J				SA	AL-SAM-63- 2-3
Temperatur		25	.5	°(>				SA	AL-SAM-63- CCCC
Temperature Verific Secondary So		-90	2.0		FMU					L-SAM-006- CLC
Specific Conduc	tance	1,35	0	μmho					SA	AL-SAM-63- 03
Dissolved Oxy	gen	0.5		mg	/L					AL-SAM-55- Call
Turbidity				NT	U					L-SAM-005-
Residual Chlo	rine								SA	L-SAM-006-
Preservation Chee Field?	cked in	Y	N	c	hecked By:	· · · · · · · · · · · · · · · · · · ·		I		
List any Preservativ in Field:	es Added			4			. <u></u>			
Comments:				7						
Somel/-> 0'		low	/ /~	7		Date				
Sampler(s) Signa	ature:	<u>, v ·</u>				Date				
Rev	iewed By:			··		Date:				·

FS-Industrial WW Monitoring Log.xls

ORP

Bottle ID Bottle ID Intake Tubing Type PP PE NP TL TT SI IntakeTubing Lot Pump Tubing Lot COMPOSITE DATA Composite ID Number: START Date Time Composite ID Number: STOP Date Time Flow Continuous Collect Sample Every Minutes Gallons Composite Type: Time Flow Continuous Collect Sample Every Minutes Gallons Composite Type: Time Flow Collect Sample Every Minutes Gallons Composite Type: Time Flow Collected Jet Sample Scolected Final Compositor Temperature Collected Time Collected Fieled PARAMETERS Date Collected J1 // / / / / / / / / / / / / / / / / /				V	ASIEWA	VIER SA		GLUG				
Date of Sample 1////// Sal. Protect # //////// Protect Name Sul Austi Partomet v Austite Harree Control Representative on Sample V N Sumpled By Austite Harree Compositer Belongs To SAL Cleart V N Simpled By Austite Harree Compositer Belongs To SAL Cleart NA COMP Balle Belongs To SAL Cleart Simpled By Austite Harree Compositer Borrys To SAL Cleart NA COMP Balle Belongs To SAL Cleart Compositer ID Builts ID Builts ID Entrant Pump Tubilg Lat Compositer Top Date Time Compositer ID Number: STAPT Date Time Compositer ID Number: STAPT Date Time Compositer ID Number: Consciser Type Time Flow Compositer Austice of Samples Consciser Type Time Flow Compositer Austice of Samples Colload Programmet Number of Samples Actual Number of Samples Colload Minutes Calload Programmet Number of Samples Actual Number of Samples Colload Minutes Calload Programmet Number of Samples Actual Number of Samples Colload Minutes Calload Programmet Number of Samples Actual Number	Client Name:	/	1		Location:	DEA	JIT-<	503				
SAL Audit Performed V (r) Suprature Client Representative on Suprature V (r) Suprature Sampled by AL Gient Compositor ID Sampled by Sale Called and Suprature Sampled by Sale Called and Suprature Sampled by Sale Called and Suprature Sale Ca	Date of Sample:	17/	r <u>o (</u> 1.		SAL Project #			027				
Start Start Site Site Sampled Sy Au Gine Composite Burgs To SAL Clerk NA COMP Botte Burgs To SAL Clerk NA Composite ID Refer to Refer to Refer to Pump Tubing Lop Interview Tubing Type PP PP PR Time Composite ID Number: START Date Time Composite ID Number: STOP Date Time Composite ID Number: Composite Type Time Flow Contractions Collect Surgite Every Minutes Calabraid Sampa Voume mLs Recent to Composite of Sample Every Minutes Satore Databraid Sampa Voume mLs Recent to Composite of Sample Every Minutes Minutes Final Compositor Tengenaum for Present in Compositor at Pol-Lop Yes No GRAB SAMPLE DATA Grab ID Number: Calabraid Sampa Voume Time Field D PARAMETER READING UNITS PERMIT LIMIT INSTRUMENT ID pH 77 Su Sati-SAMA63-C2 Sati-SAMA63-C2 Temperature Z.1.4.4 fc Sati-SAMA63-C2 Septific Conductance 1/.4.5.C Sati-SAMA63-C2 Se	SAL Audit Performed:	Y /N	Auditor Name:				Client Repr	resentative on	6	Rep. Name:		
Samuel By SAL Gant Compositor Befores To SAL Client NA COMP Buttle Befores To SAL Client NA Inake Tubing Type PP PP PR TIT SI InakeTubing Log Pump Tubing Log START Date Time Compositor Befores To Compositor Setup By Start START Date Time Compositor Setup By Monites Gantowstr Setup By STOP Date Time Compositor Setup By Monites Gantowstr Setup By Compositor Type Time Compositor Setup By Monites Gantowstr Setup By Compositor Type Time File Compositor Setup By Monites Gantowstr Setup By Compositor Tope Time File Compositor Setup By Monites Gantowstr Setup By Contropation Tope Time File Compositor Setup By Monites Gantowstr Setup By Contropation Tope Time File Contropation Tope Monites Gantowstr Setup By Date I // / / / / Time Contropation Tope Yes No GRAB SAMPLE DATA Grab ID Number: 23 Time Contropation Tope Date I / / / / / / / / / / / / /		- C/	Signature:						CYN	Signature:		
Composition ID Examination Composition ID Examination Intraster Tubling Type PP PE NP TT START Date Time Composition ID Pump Tubling Log START Date Time Composition ID Pump Tubling Log STOP Date Time Composition ID Pump Tubling Log Composition Tamperature Time Composition ID Number of Semples Collected Control Composition Tamperature Time Control Collected Semples Collected Programmed Number of Semples Actual Number of Semples Collected Yes Programmed Number of Semples Actual Number of Semples Collected Yes Programmed Number of Semples Collected Semple Exercitic Yes Date Contexted Semple Yes No Flet D PARAMETERS PARAMETER READING UNITS PERMIT LIMIT PH 7 2 SU SAL-SAM-63C-C Stational Source 7.1 % % SAL-SAM-63C-C Stational Source 7.1 % % SAL-SAM-63C-C Stational Source 7.1 % % SAL-SAM-63C-C Stational Source 7.1 % SAL-SAM-63C-C			1		S/	AMPLE	DATA		· · · · · · · · · · · · · · · · · · ·	L I.		
Instact Tusing Type PP PE NP T T Instact Juding Log Pump Tubing Log COMPOSITE DATA Composite ID Number: START Date Time Composite ID Number: STOP Date Time Composite Vexture By Composite Type Time Composite Sample Scale UB Samples Composite Type Time For Continuous Collect Sample Scale UB Samples Composite Type Time For Continuous Collect Sample Scale UB Sample Scale UB Samples Ves No Gailbrated Sample Volume Int.s Programmed Number of Samples Actual Number of Samples Collected Field Composite at Poly-up Ves No Grabe SamPle DATA Grab ID Number: .2.3 Date Collected I/ 1///. Time Collected If Time Field ParAmetters ParAMETER READING UNITS PERMIT LIMIT INSTRUMENT ID Date Collected If 1///. Sat-SaM+63.C C <td cols<="" td=""><td>Sampled By:</td><td>SAL</td><td>Glient</td><td>Compos</td><td>sitor Belongs To:</td><td>SAL</td><td>. Client</td><td>N/A</td><td>COMP B</td><td>ottle Belongs To:</td><td>SAL Client N/A</td></td>	<td>Sampled By:</td> <td>SAL</td> <td>Glient</td> <td>Compos</td> <td>sitor Belongs To:</td> <td>SAL</td> <td>. Client</td> <td>N/A</td> <td>COMP B</td> <td>ottle Belongs To:</td> <td>SAL Client N/A</td>	Sampled By:	SAL	Glient	Compos	sitor Belongs To:	SAL	. Client	N/A	COMP B	ottle Belongs To:	SAL Client N/A
COMPOSITE DATA Composite ID Number: START Date Time Composite ID Number: STOP Date Time Compositor Setup By Concestor Floaded pBy Concestor Floaded pBy Concestor Floaded pBy Concestor Floaded pBy Concestor Floaded pBy Concestor Floaded pBy Image: Concestor Floaded pBy Programmed Number of Samples Concestor Floaded pBy Image: Concestor Floaded pBy Data Collected 11 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /	Compositor ID:		/			Bottle ID			·			
START Date Time Compositor Serve DBy STOP Date Time Compositor Serve DBy Connecele Type Time Flow Controlling Connecele Type Time Flow Controlling Calibrated Sample Volume InLis Minutes Calibrate Programmed Number of Samples Actual Number of Samples Calibrated Minutes Final Compositor Temperature *C ice Present in Compositor at Pickup? Yes No. GRAB SAMPLE DATA Grab ID Number: 23 Date Celected 11 /1 /1 /1 /1 Time Collected #C###################################	Intake Tubing Type:	PP	PE NP TL	TT SI	int	akeTubing Lot			F	ump Tubing Lot:		
STOP Date Time Compositor Pickad up By Compositor Type Time Flow Controls Collect Sample Every Minutes Calibrated Sample Volume mt.4 Programmed Number of Samples Actual Number of Samples Collected Final Compositor Temperature c Ice Present in Compositor at Pickup Yes No GRAB SAMPLE DATA Grab ID Number: Z3 Date Collected 11 // / / / / Time Collected #dual Number of Samples Collected PARAMETER READING UNITS PERMIT LIMIT INSTRUMENT ID pH 7 2 SU SAL-SAM-63-C // Secondray Source -1/2 & 2 SU SAL-SAM-63-C // Secondray Source -1/2 & 2 SU SAL-SAM-63-C // Dissolved Oxygen -1/2 & 2 SU SAL-SAM-63-C // Secondray Source -1/2 & 2 SU SAL-SAM-63-C // Preservative Verification with Field? -1/2 & 2 SU SAL-SAM-63-C // Dissolved Oxygen 7 // 2 SU SAL-SAM-63-C // #dfbidity -1/2 & 2 µmhos/cm SAL-SAM-63-C // #dfbidity -1/2 & 2 µmhos/cm SAL-SAM-63-C // Braidened Evertifier -1/2 & 2				COMPO	SITE DAT	4	Composi	te ID Num	ber:			
Composite Type Time Flow Continuous Collect Sample Every Minutes Calibrated Sample Volume mLs Minutes Calibrated Sample Scalected Programmed Number of Samples Actual Number of Samples Collected Ves No GRAB SAMPLE DATA Grab ID Number: 23 Date Collected 11 // v // Time Collected Ves No Field PARAMETERS PARAMETER READING UNITS PERMIT LIMIT INSTRUMENT ID pH 77 2 SU SAL-SAM-63-C 7 Temperature 7/ °C SAL-SAM-63-C 7 Temperature 1/ U °C SAL-SAM-63-C 7 Specific Conductance 1/ U SO µmhos/cm SAL-SAM-63-C 7 Specific Conductance 1/ U SO µmhos/cm SAL-SAM-65-C Q Specific Conductance 1/ U SO µmhos/cm SAL-SAM-65-C Q Prostoved Oxygen 7/ 7/ 7/ 8/ 7 mg/L SAL-SAM-65-C Q Prestervation Checked In Field? N Checked By SAL-SAM-65-C Q Comments: 2 2 2 SAL-SAM-65-C Q Sampler(s) Signature: 2 2 3 3	START	Date			Time:			Comp	ositor Set-up By:			
Calibrated Sample Volume mLs model Programmed Number of Samples Actual Number of Samples Collected ves No Final Compositor Temperature °C ice Present in Compositor at Pick-up? ves No Date Collected 11 / 1/1 / 1/1 Time Collected +0.47 / 1/3 -70 Collected By PARAMETER READING UNITS PERMIT LIMIT INSTRUMENT ID PH 72 SU SAL-SAM-63-C3 Temperature 21.4/ °C SAL-SAM-63-C3 Temperature 21.4/ °C SAL-SAM-63-C3 Temperature 21.4/ °C SAL-SAM-63-C3 Dissolved Oxygen 7.2/3 × 70 mg/L SAL-SAM-63-C3 Dissolved Oxygen 7.2/3 × 70 mg/L SAL-SAM-63-C3 Preservation Checked In Y N Checked By List any Preservatives Added in Field: Comments: Comments: Date Sampler(s) Signature: Comments: Date 11 / 1/1 / 3	STOP	Date			Time:			Composit	or Picked-up By:			
Programmed Number of Samples Actual Number of Samples Collected Final Compositor Temperature C Ice Present in Compositor at Pickup? Yes No GRAB SAMPLE DATA Grab ID Number: 23 Date Collected //////. Time Collected /////. Time Collected /////. Yes No FIELD PARAMETERS PARAMETER READING UNITS PERMIT LIMIT INSTRUMENT ID pH 7 2 SU SAL-SAM-63.C 3 Temperature Z / 4 °C SAL-SAM-63.C 3 Specific Conductance //, U & U umhos/cm SAL-SAM-63.C 3 Dissolved Oxygen 7.0 & SAL mg/L SAL-SAM-63.C 3 Temperature Z / 4 °C SAL-SAM-63.C 3 Dissolved Oxygen 7.0 & SAL mg/L SAL-SAM-60.C 3 Registrat-Chorine N NFU SAL-SAM-005.C 3 R	Cor	mposite Type	Time	Flow Co	ontinuous	Collect	Sample Every		Minutes (Gallons		
Final Compositor Temperature 'C' Ice Present in Compositor at Pickup? Yes No GRAB SAMPLE DATA Grab ID Number: 23 Date Collected 11 /1/r. Time Collected ####################################	Calibrated Sa	mple Volume			mLs							
GRAB SAMPLE DATA Grab ID Number: 23 Date Collected 11 // / / / / / / / / / / / / / / / / /	Programmed Numbe	er of Samples			Actual N	umber of Sam	ples Collected					
Date Collected 11 /1 / / / / / / / / / / / / / / / / /	Final Compositor	Temperature			°C	Ice Pres	ent in Compos	itor at Pick-up?		Yes	No	
FIELD PARAMETERS PARAMETER READING UNITS PERMIT LIMIT INSTRUMENT ID pH 7 2 SU SAL-SAM-63-C3 Temperature 2.1.4 °C SAL-SAM-63-C3 Temperature Verification with Secondary Source -1.2.8, c.0.7, °C, V SAL-SAM-63-C3 Specific Conductance 1,4.4.5.0 µmhos/cm SAL-SAM-63-C3 Dissolved Oxygen 7.7, 8.X.7, mg/L SAL-SAM-63-C3 Dissolved Oxygen 7.7, 8.X.7, mg/L SAL-SAM-605-C2 Preservation Checked in Field? NTTU SAL-SAM-005- Residuat-Chlorine				GRAE	SAMPLE	DATA	Grab I	D Number		23		
FIELD PARAMETERS PARAMETER READING UNITS PERMIT LIMIT INSTRUMENT ID pH 7.2 SU SAL-SAM-63-C3 Temperature 2.1.4 °C SAL-SAM-63-C3 Temperature Verification with Secondary Source -13.9	Date Collected:	11/10	11.		Time Collected:	+04	o 1 33	0 700	Collected By:	15		
pH 7.2 SU INSTRUMENTIO pH 7.2 SU SAL-SAM-63-C3 Temperature 21.4 °C SAL-SAM-63-C3 [emperature Verification with Secondary Source -13.8, 20.0 76. MV SAL-SAM-63-C3 Specific Conductance 1,48.0 µmhos/cm SAL-SAM-63-C3 Dissolved Oxygen 7.7,8% 70. mg/L SAL-SAM-63-C3 Dissolved Oxygen 7.7,8% 70. mg/L SAL-SAM-63-C3 Preservation 7.7,8% 70. mg/L SAL-SAM-63-C3 Preservation Checked In Field? N Checked By: SAL-SAM-006- Comments:					FIEL							
Temperature Z / 4 °C SAL-SAM-63- C Imperature Verification with Secondary Source - / X & C 76 V SAL-SAM-63- C Specific Conductance / / 4 & C µmhos/cm SAL-SAM-63- C Dissolved Oxygen 7 0 7 x & Tr mg/L 9AL-SAM-63- C Temperature 70 7 x & Tr mg/L 9AL-SAM-63- C Dissolved Oxygen 7 0 7 x & Tr mg/L 9AL-SAM-63- C Temperature NTU SAL-SAM-605- C Residual-Chlorine NTU SAL-SAM-006- C Preservation Checked in Field? Y N Checked By: List any Preservatives Added in Field: Comments: Date 1////// Sampler(s) Signature: Comments: Date 1//////	PARAMETE	R	READ	NG	UNI	TS	F	PERMIT LIM	ΙТ	INST	RUMENT ID	
Secondary Source $-1X \mathcal{B}_{x} \mathcal{O}_{x} \mathcal{O}_{x} \mathcal{D}_{x} \mathcal{D}_{$	рН		7.	2	รเ	J				SA	-SAM-63- 03	
Secondary Source $-1X \mathcal{B}_{x} \mathcal{O}_{x} \mathcal{O}_{x} \mathcal{D}_{x} \mathcal{D}_{$				4		;				SA		
Specific Conductance 1,480 µmhos/cm SAL-SAM-63-C3 Dissolved Oxygen 7,7,82 mg/L 9AL-SAM-55-C3 Forbidity NTU SAL-SAM-005- Residual-Chorine NTU SAL-SAM-006- Preservation Checked in Field? Y N Checked By: List any Preservatives Added in Field: Comments: Date 1////////////////////////////////////			-178	9,0,0	Tes to	: "V					-SAM-006- Cecce	
Forbidity NTU SAL-SAM005- Residual-thiorine NTU SAL-SAM006- Preservation Checked in Field? Y N Checked By: Checked By: Checked By: List any Preservatives Added in Field: Checked By: Checked By: Comments: Comments: Comments: Sampler(s) Signature: Comments: Date Date Date	Specific Conduc	tance	1,4	80		s/cm				SAI	SAM-63- C 3	
Forbidity NTU SAL-SAM 005- Residual-Chlorine SAL-SAM 005- SAL-SAM 006- Preservation Checked in Field? Y N Checked By: List any Preservatives Added in Field: V N Checked By: Comments: V V V Sampler(s) Signature: V Date V Date V V V	Dissolved Oxy	gen	7,7,8	X TO	, mg/	/L				SAI	-SAM-55- Cecer	
Preservation Checked in Field? Y N Checked By: List any Preservatives Added in Field:	Turbidity			· .	NT	₽						
Field? Y N Checked By: List any Preservatives Added in Field:	-					-				SAL	-SAM-006-	
in Field: Comments: Sampler(s) Signature: Date Date Date		cked in	Y	N	Cł	hecked By:			h			
Sampler(s) Signature: Date 11/10/05 Date Date		es Added										
Sampler(s) Signature: Date	Comments:			2	\bigcirc				1 1			
Date	Sampler(s) Sign	ature:	7 01	w	/		Date	11	115%	3		
Reviewed By: Date:	,				1		Date		······			
	Rev	iewed By:					Date:					

WASTEWATER SAMPLING LOC

URP

1

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

			V	ASTEWA	IER SA					
Client Name:				Location:	NEN	IT 54	14	Contact: Phone:		
Date of Sample:	11/	10/10		SAL Project #		20112	27	Project Name:		
SAL Audit Performed:		Auditor Name:				Client Repre		(Y N	Rep. Name:	
		Signature:							Signature:	
·····					AMPLE					
Sampled By:		Client	Composi	itor Belongs To			N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:					Bottle ID			1		
Intake Tubing Type	PP P	ENPTL			takeTubing Lot				ump Tubing Lot:	
			COMPOS	SITE DAT	A	Composit	e ID Num	nber:		
START	Date:			Time			Comp	ositor Set-up By:		
STOP	Date:			Time	:		Composi	tor Picked-up By:		
Cor	mposite Type:	Time	Flow Co	ntinuous	Collect	Sample Every:		Minutes	Gallons	
Calibrated Sa	mple Volume:			mLs						
Programmed Numbe	er of Samples:			Actual I	Number of Sam	ples Collected:				
Final Compositor	Temperature:			°C	Ice Pres	ent in Composi	tor at Pick-up	2	Yes	No
	1	,	GRAE	3 SAMPLE	DATA	Grab I	D Numbe	er: , 2	4	
Date Collected:	11/1	10/1-		Time Collected	to	5 1340	TPS	Collected By	Ta	
			•	FIEI	LD PARA	METERS				
PARAMET	ĒR	REAL	DING	UN	IITS	F	PERMIT LI	ИГ	INS	TRUMENT ID
рН		7.	3	S	U					AL-SAM-63-
Temperatu		21	0	c	C				3	AL-SAM-63- CLIEN
Temperature Verific Secondary Sc		- 118	Q.0 17	70 S	S V				s/	N-SAM-006- C14107
Specific Condu		1,5	10	μmh	os/cm		• • •		S.	AL-SAM-63-
Dissolved Ox	ygen	\$7.9		m	g/L				5	AL-SAM-55- Ccie
- Turbidit y		-	<u>_</u>	N	ŦU		_			L-SAM-005-
Residual Chi	orine	-							Sł	L-SAM-006-
Preservation Che Field?	ecked in	Y	N		Checked By	:			1	
List any Preservati in Field:						,				
Comment	s:		\sum	\frown				,		
Sampler(s) Sig	nature:		m			Date	11	11010		
Gampier(s) Big				/		Date				
Re	eviewed By:					Date:				· · · ·

WASTEWATER SAMPLING LOG

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09

			W	ASTEWA	TER SA	MPLI	NG LOG			
Client Name:		,		Location:	DEA	リア-	LST	Contact: Phone:		
Date of Sample:	<u>;</u> ;	10/10		SAL Project #	10	016	27	Project Name:		
SAL Audit Performed:	ΥŃ	Auditor Name: Signature:				Client Re	presentative on Site?	(Y, N	Rep. Name:	
				S	AMPLE		······································		Signature:	
Sampled By:	SAL	Client	Compo	sitor Belongs To:			N/A	COMPB	ottle Belongs To:	SAL Client N/A
Compositor ID:			L	1	Bottle ID					
Intake Tubing Type:	PP	PE NP TL	TT SI	Inta	akeTubing Lot:			F	Pump Tubing Lot:	
			COMPO	SITE DATA	4	Compo	site ID Num	iber:		L
START	Date			Time:			Comp	ositor Set-up By:		
STOP	Date			Time:			Composi	tor Picked-up By:		
Con	nposite Type	Time	Flow Co	ontinuous	Collect	Sample Eve	ry:	Minutes (Gallons	
Calibrated Sar	mple Volume	-		mLs				·		
Programmed Numbe	r of Samples			Actual N	umber of Sam	oles Collecte	ed:		<u></u>	
Final Compositor	Temperature	:		°C	Ice Prese	ent in Comp	ositor at Pick-up?		Yes	No
	/-		GRA	B SAMPLE	DATA	Grab	ID Numbe	r: ,2	5	
Date Collected:	11/1	0/10		Time Collected:	104	J		Collected By:	Th	
		/		FIEL	D PARAN	IETERS	3			
PARAMETE	R	READ	NG	UNI	TS	<u> </u>	PERMIT LIM	11⊤	INS	TRUMENT ID
pH		7.4		su	J				SA	AL-SAM-63- c ろ
Temperatur Temperature Verific		21.4	· · · · · · · · · · · · · · · · · · ·	°C	;				S4	L-SAM-63- # Cilcon
Secondary Sou	urce	-120		°C	;				SA	L-SAM-006- Care
Specific Conduc	_ 70		00-9-	ρ _Ο μmhos	s/cm				SA	AL-SAM-63- レク
Dissolved Oxy	gen	1.10)	mg/	ΊL				SA	AL-SAM-55- CUERT
-Furbidity				- NT I	A				ŞA	L-SAM-005-
Residual Chlor Preservation Cheo									SA	L-SAM-006-
Field?		Υ	N	Cł	necked By:					
List any Preservative in Field:	es Added									
Comments:			7 -	\frown						
Sampler(s) Signa	ature:		w	4		Date Date	101	10/0		
Revi	ewed By:		-			Date				
							1			

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09

			W	ASTEWA	ATER SA	MPLING	j log			
Client Name:		1		Location:	DEN	117-2	52	Contact:		
Date of Sample:	11/	10/10		SAL Project #		6011	17	Phone: Project Name:		
		Auditor Name:		1	L/		~		Rep. Name:	
SAL Audit Performed:	Y 💆 .	Signature:					esentative on te?	(Y N	Signature:	
			L	SA						
Sampled By:	SAL	Client	Compo	sitor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:	Ć				Bottle ID			L		
Intake Tubing Type:	PP F	PE NP TL	IT SI	Int	akeTubing Lot			Р	ump Tubing Lot:	
			СОМРО		4	Composit	e ID Num	ber:		
START	Date:			Time:			Comp	ositor Set-up By:		
STOP	Date:			Time:			Composit	or Picked-up By:		
Com	posite Type:	Time	Flow Co	ontinuous	Collect	Sample Every:		Minutes (Gallons	
Calibrated San	ple Volume:			mLs	I					
Programmed Number	of Samples:			Actual N	lumber of Sam	ples Collected:			- 11	
Final Compositor T	emperature:			°C	Ice Pres	ent in Composi	tor at Pick-up?		Yes	No
	,		GRA	B SAMPLE	DATA	Grab I	D Numbe	r: ,2	6	
Date Collected:	uli	olco	·	Time Collected:	121.	5		Collected By:	-74	
· · · · · · · · · · · · · · · · · · ·				FIEL	D PARAN					
PARAMETE	R	READ	NG	UNI	ITS	F	PERMITLIN	π	INS	TRUMENT ID
рH		7.	4	SI	U				SA	AL-SAM-63- 03
Temperature		27.	5	°C	c				SĮ	L-SAM-63- CI C Far-
Temperature Verifica Secondary Sou		71.	O	°C	;				SA	AL-SAM-63- С. С. Г L-SAM-006- С. С. Г.
Specific Conduct	ance	1,2.	50	μmho	s/cm				SA	L-SAM-63- & 3
Dissolved Oxyg	gen	4.1	0	mg	/L		· · · · · · · · · · ·		SA	L-SAM-55- C
Turbidity				NT	:ป					L-SAM=005-
Residual Chlor				_			-		SA	L-SAM-006-
Preservation Chec Field?	ked in	Y	N	С	hecked By:					
ist any Preservative. in Field:	s Added									
Comments:)	$\overline{}$						
		1cm	/	$\langle \frown \rangle$		Date	11/	10/1.		
Sampler(s) Signa	iture:					Date				

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09

-

OR?

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

			w	ASTEWA	TER SA		S LOG			
Client Name:		,		Location:	DEA	11T-L	53	Contact:		
Date of Sample:		-/ /-			ULI		7	Phone:		
Date of Sample:	1/	11010	T	SAL Project #	/(0/6	17	Project Name:		
SAL Audit Performed:	YN	Auditor Name:				Client Repre		Υ N	Rep. Name:	
	(Signature:				Sit	e?	\bigcirc	Signature:	
				SA	AMPLE	ΟΑΤΑ				
Sampled By:	SAL	Client	Compos	sitor Belongs To:	SAL	Client	N/A	COMP Bo	ottle Belongs To:	SAL Client N/A
Compositor ID:	\subseteq				Bottle ID					
Intake Tubing Type:	PP F	PE NP TL	TT SI	Inta	akeTubing Lot:			P	ump Tubing Lot:	
			СОМРО	SITE DATA	<u>ــــــــــــــــــــــــــــــــــــ</u>	Composit	e ID Num	ber:		
START	Date:			Time:			Comp	ositor Set-up By:		
STOP	Date:			Time:		-	Composit	or Picked-up By:		
Cor	mposite Type:	Time	Flow Co	ontinuous	Collect	Sample Every:		Minutes (Gallons	
Calibrated Sa	mple Volume:			mLs						
Programmed Numbe	er of Samples:				umber of Sam	ples Collected				
Final Compositor				°c		ent in Composi	tor at Pick-un?		Yes	No
· · · · ·			GRA	B SAMPLE			D Numbe		2	NO
Date Collected:	11/10	110		Time Collected:	123			Collected By:	Ta	
	111.0	/ •	1	FIEL	DPARA				12	
PARAMETE	ĒR	REAL	DING	UNI	тs	F	ERMIT LIN	ΙТ	INS	TRUMENT ID
pН		6.	9	SI	J				SA	AL-SAM-63-63
Temperatu	re	20	. 0	°C	;				SA	AL-SAM-63- (
Temperature Verific Secondary So		6-	7.5	°C.	2 11				SA	аl-SAM-63- Ссор L-SAM-006- Сосо
Specific Conduc		1,20		μmho						AL-SAM-63- C>
Dissolved Oxy	ygen		70	mg	/L					AL-SAM-55- CCC 12
			~	NT	и					E-SAM-005-
Residual Chic	prine			<u> </u>			·			L- SAM-006-
Preservation Che Field?	cked in	Y	N	с	hecked By:					
Field?				L						
List any Preservativ	es Added									
in Field:										
Comments										
Comments			7	\frown						
		<u> </u>						-/- <i>i</i> -	<u> </u>	
Sampler(s) Sign	nature:	1.	m	In		Date	1[113/11		
						Date				
Rev	viewed By:					Date:				

			W	ASTEWA	TER SA		IG LOG			
Client Name:				Location:	DEN	117-	2.54	Contact: Phone:		
Date of Sample:	, , , /	10/10		SAL Project #		116	27	Project Name:		
	~	Auditor Name:		1	/ U		presentative on		Rep. Name:	
SAL Audit Performed:	Y	Signature:					Site?	C" N	Signature:	
	I			S	AMPLE	DATA		L		
Sampled By:	(SAL)	Client	Compos	sitor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:					Bottle ID			- I	I	
Intake Tubing Type:	PP F	E NP TL	r⊤ si	Int	takeTubing Lot:			F	ump Tubing Lot:	
			СОМРО	SITE DAT	A	Compo	site ID Nun	nber:		
START	Date:			Time			Com	positor Set-up By:		
STOP	Date:			Time	:		Compos	itor Picked-up By:		
Com	posite Type:	Time	Flow Co	ontinuous	Collect	Sample Eve	ry:	Minutes	Gallons	
Calibrated San	nple Volume:			mLs						
Programmed Number	of Samples:			Actual N	Number of Sam	ples Collect	ed:			
Final Compositor T	emperature:			°C	Ice Pres	ent in Comp	ositor at Pick-up		Yes	No
	1		GRA	B SAMPLE	DATA	Grat	D Numbe	er: ,2	g	
Date Collected:	10/1	0/10		Time Collected	1200	5		Collected By	1.	,
		t		FIEL	_D PARA	METER	8		r	
PARAMETE	R	READ		UN	ITS		PERMIT LI	MIT	INS	TRUMENT ID
рН		7.	<u>'5</u>		SU					AL-SAM-63- 🖉 🏷
Temperature Temperature Verifica			<u>0.0</u>		С				_S_	AL-SAM-63- (c (CA
Secondary Sou		., ,	. 0		env					
Specific Conduc	tance	900		μmho	os/cm					AL-SAM-63
Dissolved Oxy	gen	3.8	50	mį	g/L				S.	AL-SAM-55- CUICH-
Turbidity				-N	FU				S/	L-SAM-005-
Residual Chlor				·	<u> </u>				S/	AL-SAM-006-
Preservation Cher Field?		Y	N		Checked By:					
List any Preservative in Field:	es Added									
Comments	:		2					1 1	n	
Sampler(s) Sign	ature:	10	1-		$\overline{}$	Date Date	11	11.01%		
Rev	viewed By:					Dat	e:			

ORP

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

			W	ASTEWA	TER SA	MPLING	i log			
Client Name:				Location:	DEN	11T-C	the	Contact: Phone:		
Date of Sample:	1	stict		SAL Project #		0076	27	Project Name:		
		Auditor Name:	· · · ·		/		~7		Rep. Name:	
SAL Audit Performed:	Y (N/	Y N Signature:				Client Representative on Site?		(N	Signature:	
				S	AMPLE		· · · ·	l	olgrididio.	
Sampled By:	/SAL/	/ Client/	Compos	sitor Belongs To:	Γ		N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:	$-\mathcal{H}$		· · · · · · · · · · · · · · · · · · ·		Bottle ID			I		
Intake Tubing Type: PP		PE NP TL TT SI		IntakeTubing Lot				Pump Tubing Lot:		
			COMPO			L Composit	e ID Num	L		
START	Date:			Time:			Compositor Set-up By:			
STOP	Date:			Time			Compositor Picked-up By			
Composite Type:				ontinuous	Collect Sample Every:		1	Gallons		
Calibrated Sa			mLs		voiy.					
Programmed Number of Samples: Actual Number of Samples Collected:										
Final Compositor			°C Ice Present in Compositor at Pick-up?					Yes	No	
· · · ·			GRAF	I SAMPLE			D Numbe		16	
Date Collected:	11/10	+		· · · · · · · · · · · · · · · · · · ·				Collected By:	pllected By:	
	1. 110	10			10. D PARAN				11-	
PARAMETER		READING		UNITS		PERMIT LIMIT		 /IT	INSTRUMENT ID	
рН		6.9		SU		· · · · · · · · · · · · · · · · · · ·			SAL-SAM-63- 0 3	
Temperature		21.0		°C				SAL-SAM 63- CILITY		
Temperature Verification with		-180.0		20 mV					SA	L-SAM-006- Cena
Specific Conductance		900		μmhos/cm				SAL-SAM-63-		
Dissolved Oxygen		C. SU		mg/L				-SAL-SAM-55- Cerci		
- Turbidity									SAL-SAM-005-	
Residu al Ch lorine								SAL-SAM-006-		
Preservation Checked in		Y N		Checked By:						
Field? List any Preservativ in Field:	ves Added			I		L				
Comments		7 /	\frown		<u> </u>		/	1		
Sampler(s) Signature:		Com la				Date 11/10/13				
						Date				
Reviewed By:						Date:				

ORP

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

			_	VASIEVVA						
	Client Name:			Location:	DF	- T		Contact: Phone:		
	Date of Sample:	11/	· c/rs	SAL Project #	Í	0162	7	Project Name:		
	SAL Audit Performed:	Y E	Auditor Name: Signature:			Client Repre	sentative on	(Y N	Rep. Name:	
	I			S	AMPLE					
	Sampled By:	SAL	Client Comp	ositor Belongs To:	1	Client	N/A	COMP B	ottle Belongs T	o: SAL Client N/A
	Compositor ID:				Bottle ID					
	Intake Tubing Type:	PP F	PE NP TL TT SI	Int	akeTubing Lot			P	ump Tubing Lo	bt:
			СОМРО		۹	Composit	e ID Num	ber:		
	START	Date:		Time:	r · · ·			ositor Set-up By:		
	STOP	Date:		Time:			Composit	or Picked-up By:		
	Co	mposite Type:	Time Flow (Continuous	Collect	Sample Every:		Minutes	Gallons	
	Calibrated Sa	mple Volume:		mLs	J					
	Programmed Numbe	er of Samples:		Actual N	lumber of Sam	oles Collected:				
	Final Compositor	Temperature		°C	Ice Pres	ent in Composi	tor at Pick-up?		Yes	No
		1	, GRA	B SAMPLE	DATA	Grab I	D Numbe	r: ,3	0	
	Date Collected:	11/10	100	Time Collected	115	0		Collected By:	TM	
				FIEL	D PARA	IETERS				
	PARAMETI	ER	READING	UN	ITS	F	PERMIT LIN	1IT	IN	STRUMENT ID
	рН		7.2	s	U					SAL-SAM-63-
_	Temperatu		18.5	°(с					SAL-SAM-63- Ссса
P	Temperature Verific	cation with	62.2	هم	Chu				, S	SAL-SAM-006-として
	Specific Condu	ctance	9803 TR	_ν , μmho	os/cm					SAL-SAM-63-23
	Dissolved Ox	ygen	8.3	mį	g/L					SAL-SAM-55- Cc . 124
			· · · · · · · · · · · · · · · · · · ·	ស	דט־				5	AL-SAM-005-
	Residual Chle		~				•••••		ç	SAL-SAM-006-
	Preservation Che Field?	ecked in	Y N	c	Checked By:					
	List any Preservation in Field:									
	Comment	s:)					
	Sampler(s) Sig	nature:	lon		\sim	Date		11/10	100	
	i i i i i i i i i i i i i i i i i i i					Date		-		

WASTEWATER SAMPLING LOG

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Client Name: Date of Sample: SAL Audit Performed:	11/1	0/1-	Location: SAL Project #	TI	- D		Contact: Phone:		
	11/1	0/1-	SAL Project #						
SAL Audit Performed:	† <u>'</u>			/ (50/63	17	Project Name:		
	YG	Auditor Name:	I I		Client Repre		YN	Rep. Name:	
		Signature:						Signature:	
	\sim			MPLE			1		
Sampled By	SAL	Client C	Compositor Belongs To:	SAL	Client	N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID				Bottle ID			.		
Intake Tubing Type	PP F	E NP TL TT SI	Inta	keTubing Lot:			F	ump Tubing Lot:	
	_	CON	MPOSITE DATA	۱	Composit	e ID Num	nber:		
START	Date:		Time:			Comp	ositor Set-up By:		
STOP	Date:	44 / / ·	Time:			Composi	tor Picked-up By:		
C	omposite Type:	Time Flow	Continuous	Collect	Sample Every:		Minutes	Gallons	
Calibrated S	ample Volume:		mLs				I		
Programmed Numb	per of Samples:		Actual N	umber of Sam	ples Collected:				
Final Composito	or Temperature:		°C	Ice Pres	ent in Composi	tor at Pick-up?	?	Yes	No
		G	RAB SAMPLE	DATA	Grab I	D Numbe	r: , 3	1	
Date Collected	11/1	0/13	Time Collected:	140	5.0		Collected By:	Tim	-
	1 (777		FIEL						
PARAMET	ER	READING	UNI	тs	F	PERMIT LIN	ЛТ	INS	TRUMENT ID
рН		n.3	SI	J				S	AL-SAM-63-دع
Temperat	ure	25.3	°(>				S.	AL-SAM-63- Exerna
Temperature Verif		- 230.	ں بر	-nV					L-SAM-006- Cecer
Specific Condi		1,250	μmho						AL-SAM-632 3
Dissolved O	xygen	2.20	mg	/L.				· S/	AL-SAM-55- Cecier
Ţ urbidit	¥.	•		U	~				t- SAM-00 5-
Residual en	Torine	\sim		<i></i>		<u> </u>			L-SAM -006-
Preservation Ch		Y N	c	hecked By:					
Field? List any Preservat in Field	ives Added		I		L				
Commen	ts:		\sum				(
					Dette			1	
Sampler(s) Sid	nature:	/cm	10	1	Date		1/1/0	100	
Sampler(s) Sig	gnature:	/ cm	100	<u> </u>	Date		[/[[0	100	

WASTEWATER SAMPLING LOG

URP

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

			V	ASTEWA	VIEK SA		LUG			
Client Name:		1		Location:	FR			Contact: Phone:		
Date of Sample:	17/	enter .		SAL Project #	- Y	0167	17	Project Name:		
		Auditor Name:		I			·	-5	Rep. Name:	
SAL Audit Performed:	Y N	Signature:					esentative on te?	YN	Signature:	
				S	AMPLE	DATA				
Sampled By:	SAL	Client	Compo	sitor Belongs To			N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:	\sim				Bottle ID			L	1	
Intake Tubing Type:	PP F	PE NP TL	IT SI	Ini	akeTubing Lot:			F	ump Tubing Lot:	
		· · · · · · · · · · · · · · · · · · ·	СОМРО	SITE DAT	A	Composit	te ID Num	ber:		
START	Date:			Time				ositor Set-up By:		
STOP	Date:			Time			Composit	or Picked-up By:		
Co	mposite Type:	Time	Flow Co		Collect	Sample Every:		<u> </u>	Gallons	
Calibrated Sa	ample Volume:			mLs	I			· · · · ·		
Programmed Numb	er of Samples:			Actual N	lumber of Sam	ples Collected:				
Final Compositor	r Temperature:			°C	Ice Pres	ent in Composi	tor at Pick-up?		Yes	No
			GRA	B SAMPLE			D Numbe		2	
Date Collected:	11/10	10		Time Collected	r			Collected By:	Ta	
	11 170	<u> </u>			D PARAM				100	
PARAMET	ER	READ	NG	UN	ITS	F	PERMIT LIN	11T	INST	FRUMENT ID
рH		6.4)	s	U				SA	L-SAM-63-4-3
Temperatu	ire	24.	5	°(c				_SA	L-SAM-63- Cecerra
Temperature Verifie Secondary So		12.	5	-	SAU				SA	L-SAM-006- CCC
Specific Condu		25	λu	μmho					SA	L-SAM-63- 23
Dissolved Ox	ygen	8.0)	mç	j/L				SA	L-SAM-55- Ceccie
Turbidity				FIA_	₩					L-SAM-005-
Residual Chlo	orine		/							L-SAM-006-
Preservation Che Field?	ecked in	Y	N	c	hecked By:		<u> </u>			
List any Preservativ in Field:				L		L				
Comments	s:		7		2			, .		
Sampler(s) Sigr	nature:	lei	n	1		Date	i	15/18		
	auro.		/			Date	<i>L / 4</i>			
Re	viewed By:					Date:				

WASTEWATER SAMPLING LOG

ORP

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

				ASIEWA	VIEK 24		LOG			
Client Name:				Location:	E	B		Contact:		
Date of Sample:	11	10/1.		SAL Project #		5016	17	Phone: Project Name:		
		Auditor Name:		<u></u>	/				Rep. Name:	
SAL Audit Performed:	Y M	Signature:				Client Repre Sil		Y N	Signature:	
				S	AMPLE	DATA		L		
Sampled By:	8AL	Client	Compos	sitor Belongs To			N/A	COMP B	ottle Belongs To:	SAL Client N/A
Compositor ID:	\leftarrow			[Bottle ID			L		
Intake Tubing Type:	PP I	PE NP TL 1	IT SI	ini	takeTubing Lot			F	ump Tubing Lot:	
			COMPO		A	Composit	e ID Num	ber:		
START	Date:			Time	T			ositor Set-up By:		
STOP	Date:			Time	:		Composi	tor Picked-up By:		
(Co	mposite Type:	Time	Flow Co	Intinuous	Collect	Sample Every:	······	<u> </u>	Gallons	
	mple Volume:			mLs	L			L		
Programmed Numbe					Number of Sam	ples Collected:				
Final Compositor				°C	<u> </u>	ent in Composi	tor at Pick-up	2	Yes	No
		L <u></u>	GRAE	B SAMPLE	<u></u>		D Numbe		2	
Date Collected:	rite	0/10		Time Collected	· · · · · · · · · · · · · · · · · · ·			Collected By:		
		0 [75	L	FIEL	D PARAI				/.1.	
PARAMET	ER	READ	DING	UN	IITS	F	PERMITLI	ИГ	INS	TRUMENT ID
рН		67.6	To	s	ευ 				S,	AL-SAM-63- 7 3
Temperatu	ire	23.	0		с					AL-SAM-63-CCLC-
emperature Verifie Secondary So		- 8	0.0	0	с					L-SAM-006€ ((;)
Specific Condu		28	~	μmhc	os/cm					AL-SAM-63-63
Dissolved Ox	ygen	8.5		mı	g/L				S	AL-SAM-55-6(()
-Turbidity	 		·	N	ŦU				s	L-SAM-005-
Residual Chi	orine	L _					<u> </u>		S/	NS-SAM-006-
Preservation Cho	ecked in	Y	N		Checked By:		<u> </u>		L	
Field?				<u> </u>		J				
List any Preservati		1								
in Field:						•				
Comment	·c.]	_							
Comment			7	1				1		
		F				Date		Lite		
Sampler(s) Sig	nature:	-10	n			Date		10110		
<u></u>		<u> </u>		_ 					<u></u>	
Re	eviewed By	-				Date:				

WASTEWATER SAMPLING LOG

FS-Industrial WW Monitoring Log.xls Revision Date 09/25/09 .

CPP

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 December 24, 2010 Work Order: 1002218 Revised Report

Laboratory Report

Project Name		PN	IRS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		UNSAT-IS1						
Matrix		Wastewater						
SAL Sample Number		1002218-01						
Date/Time Collected		11/12/10 06:45						
Collected by		Client						
Date/Time Received		11/12/10 10:25						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	1.8	SM 4550SF	0.04	0.01		11/12/10 16:00	KTC
Ammonia as N	mg/L	69	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/12/10 16:00	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	76	EPA 410.4	25	10		11/18/10 08:15	ARM
Sulfate	mg/L	83	EPA 300.0	0.60	0.20	11/17/10 13:00	11/18/10 12:24	MEJ
Sulfide	mg/L	4.3	SM 4500SF	4.0	1.0		11/12/10 16:00	KTC
Total Alkalinity	mg/L	370	SM 2320B	8.0	2.0		11/19/10 08:30	KTC
Total Dissolved Solids	mg/L	530	SM 2540C	10	10	11/18/10 15:13	11/18/10 15:17	MJV
Total Kjeldahl Nitrogen	mg/L	75	EPA 351.2	0.20	0.05	11/20/10 09:26	11/23/10 14:11	SMD
Total Suspended Solids	mg/L	2	SM 2540D	1	1	11/16/10 14:00	11/17/10 15:00	MJV
Nitrate+Nitrite (as N)	mg/L	0.04	EPA 353.2	0.04	0.01		11/24/10 15:22	SMB
Sample Description		UNSAT-IS2						
Matrix		Wastewater						
SAL Sample Number		1002218-02						
Date/Time Collected		11/12/10 06:45						
Collected by		Client						
Date/Time Received		11/12/10 10:25						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01		11/12/10 16:00	KTC
Ammonia as N	mg/L	0.71	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	11/12/10 16:00	11/17/10 13:07	KTC
Chemical Oxygen Demand	mg/L	13	EPA 410.4	25	10		11/18/10 08:15	ARM
Sulfate	mg/L	400	EPA 300.0	0.60	0.20	11/17/10 13:00	11/18/10 12:24	MEJ
Sulfide	mg/L	1.0 U	SM 4500SF	4.0	1.0		11/12/10 16:00	KTC
Total Alkalinity	mg/L	170	SM 2320B	8.0	2.0		11/19/10 08:30	KTC
Total Dissolved Solids	mg/L	890	SM 2540C	10	10	11/18/10 15:13	11/18/10 15:17	MJV
Total Kjeldahl Nitrogen	mg/L	1.2	EPA 351.2	0.20	0.05	11/20/10 09:26	11/23/10 14:11	SMD
Total Suspended Solids	mg/L	10	SM 2540D	1	1	11/16/10 14:00	11/17/10 15:00	MJV
Nitrate+Nitrite (as N)	mg/L	0.04	EPA 353.2	0.04	0.01		11/24/10 15:22	SMB

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 December 24, 2010 Work Order: 1002218 Revised Report

Laboratory Report

Project Name		PN	IRS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		UNSAT-IS3 Wastewater 1002218-03 11/15/10 08:30 Client 11/15/10 14:50						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01	11/19/10 11:27	11/19/10 11:29	ктс
Ammonia as N	mg/L	6.2	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Carbonaceous BOD	mg/L	3	SM 5210B	2	2	11/17/10 08:30	11/22/10 13:10	MEJ
Chemical Oxygen Demand	mg/L	46	EPA 410.4	25	10		11/18/10 08:15	ARM
Sulfate	mg/L	290	EPA 300.0	0.60	0.20	11/17/10 13:00	11/18/10 12:24	MEJ
Sulfide	mg/L	1.0 U	SM 4500SF	4.0	1.0		11/19/10 11:29	ктс
Total Alkalinity	mg/L	280	SM 2320B	8.0	2.0		11/19/10 08:30	ктс
Total Dissolved Solids	mg/L	2,300	SM 2540C	10	10	11/18/10 15:13	11/18/10 15:17	MJV
Total Kjeldahl Nitrogen	mg/L	6.4	EPA 351.2	0.20	0.05	11/20/10 09:26	11/23/10 14:11	SMD
Total Suspended Solids	mg/L	4	SM 2540D	1	1	11/16/10 14:00	11/17/10 15:00	MJV
Nitrate+Nitrite (as N)	mg/L	28	EPA 353.2	0.04	0.01		11/24/10 15:22	SMB
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		UNSAT-IS4 Wastewater 1002218-04 11/12/10 00:00 Client 11/15/10 14:50						
Inorganics								
Ammonia as N	mg/L	0.086	EPA 350.1	0.010	0.005		11/17/10 17:04	SMB
Chemical Oxygen Demand	mg/L	35	EPA 410.4	25	10		11/18/10 08:15	ARM
Sulfate	mg/L	440	EPA 300.0	0.60	0.20	11/17/10 13:00	11/18/10 12:24	MEJ
Total Alkalinity	mg/L	280	SM 2320B	8.0	2.0		11/19/10 08:30	ктс
Total Kjeldahl Nitrogen	mg/L	1.8	EPA 351.2	0.20	0.05	11/20/10 09:26	11/23/10 14:11	SMD
Nitrate+Nitrite (as N)	mg/L	11	EPA 353.2	0.04	0.01		11/24/10 15:22	SMB

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

December 24, 2010

Revised Report

Work Order: 1002218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BK01205 - BOD										
Blank (BK01205-BLK1)					Prepared:	11/12/10 Ar	nalyzed: 11	/17/10		
Carbonaceous BOD	2 U	2	2	mg/L						
Blank (BK01205-BLK2)					Prepared:	11/12/10 Ar	nalyzed: 11	/17/10		
Carbonaceous BOD	2 U	2	2	mg/L						
LCS (BK01205-BS1)					Prepared:	11/12/10 Ar	nalyzed: 11	/17/10		
Carbonaceous BOD	190	2	2	mg/L	200		95	85-115		
LCS (BK01205-BS2)					Prepared:	11/12/10 Ar	nalyzed: 11	/17/10		
Carbonaceous BOD	190	2	2	mg/L	200		95	85-115		
LCS Dup (BK01205-BSD1)					Prepared:	11/12/10 Ar	nalyzed: 11	/17/10		
Carbonaceous BOD	191	2	2	mg/L	200		96	85-115	0.5	10
LCS Dup (BK01205-BSD2)					Prepared:	11/12/10 Ar	nalyzed: 11	/17/10		
Carbonaceous BOD	191	2	2	mg/L	200		96	85-115	0.5	10
Batch BK01304 - Sulfide prep	o									
Blank (BK01304-BLK1)					Prepared &	& Analyzed:	11/12/10			
Sulfide	1.0 U	4.0	1.0	mg/L						
LCS (BK01304-BS1)					Prepared &	& Analyzed:	11/12/10			
Sulfide	5.11	4.0	1.0	mg/L	5.0		102	85-115		
Batch BK01731 - Ion Chroma	tography 300.0 F	Prep								
Blank (BK01731-BLK1)					Prepared:	11/17/10 Ar	nalyzed: 11	/18/10		
Sulfate	0.20 U	0.60	0.20	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

December 24, 2010

Revised Report

Work Order: 1002218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BK01731 - Ion Chroma	tography 300 0	Pren								
LCS (BK01731-BS1)					Prepared:	11/17/10 Ar	nalyzed: 11	/18/10		
Sulfate	8.72	0.60	0.20	mg/L	9.0		97	85-115		
LCS Dup (BK01731-BSD1)					Prepared:	11/17/10 Ar	nalyzed: 11	/18/10		
Sulfate	8.73	0.60	0.20	mg/L	9.0		97	85-115	0.1	10
Matrix Spike (BK01731-MS1)		Source: 1	002218-02		Prepared:	11/17/10 Ar	nalyzed: 11	/18/10		
Sulfate	441 +O	0.60	0.20	mg/L	90	397	49	85-115		
Batch BK01747 - BOD										
Blank (BK01747-BLK1)					Prepared:	11/17/10 Ar	nalyzed: 11	/22/10		
Carbonaceous BOD	2 U	2	2	mg/L						
LCS (BK01747-BS1)					Prepared:	11/17/10 Ar	nalyzed: 11	/22/10		
Carbonaceous BOD	195	2	2	mg/L	200		98	85-115		
LCS Dup (BK01747-BSD1)					Prepared:	11/17/10 Ar	nalyzed: 11	/22/10		
Carbonaceous BOD	190	2	2	mg/L	200		95	85-115	3	10
Batch BK01801 - COD prep										
Blank (BK01801-BLK1)					Prepared 8	& Analyzed:	11/18/10			
Chemical Oxygen Demand	10 U	25	10	mg/L						
LCS (BK01801-BS1)					Prepared &	& Analyzed:	11/18/10			
Chemical Oxygen Demand	48	25	10	mg/L	50		96	90-110		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

December 24, 2010

Revised Report

Work Order: 1002218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
			mbe	Onto	Level	rteour	/iiteo	Linito		Linin
Batch BK01803 - Ammonia by	SEAL									
Blank (BK01803-BLK1)					Prepared 8	& Analyzed:	11/17/10			
Ammonia as N	0.005 U	0.010	0.005	mg/L						
Blank (BK01803-BLK2)					Prepared &	& Analyzed:	11/17/10			
Ammonia as N	0.005 U	0.010	0.005	mg/L						
Blank (BK01803-BLK3)					Prepared &	& Analyzed:	11/17/10			
Ammonia as N	0.005 U	0.010	0.005	mg/L						
Blank (BK01803-BLK4)					Prepared &	& Analyzed:	11/17/10			
Ammonia as N	0.005 U	0.010	0.005	mg/L						
LCS (BK01803-BS1)					Prepared 8	& Analyzed:	11/17/10			
Ammonia as N	0.49	0.010	0.005	mg/L	0.50		98	90-110		
LCS (BK01803-BS2)					Prepared 8	& Analyzed:	11/17/10			
Ammonia as N	0.52	0.010	0.005	mg/L	0.50		104	90-110		
LCS (BK01803-BS3)					Prepared 8	& Analyzed:	11/17/10			
Ammonia as N	0.52	0.010	0.005	mg/L	0.50		105	90-110		
LCS (BK01803-BS4)					Prepared &	& Analyzed:	11/17/10			
Ammonia as N	0.53	0.010	0.005	mg/L	0.50		106	90-110		
Batch BK01836 - TDS Prep										
Blank (BK01836-BLK1)					Prepared &	& Analyzed:	11/18/10			
Total Dissolved Solids	10 U	10	10	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

December 24, 2010

Revised Report

Work Order: 1002218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BK01836 - TDS Prep										
LCS (BK01836-BS1)					Prepared 8	Analyzed:	11/18/10			
Total Dissolved Solids	968	10	10	mg/L	1000		97	90-110		
Batch BK01905 - alkalinity										
Blank (BK01905-BLK1)					Prepared 8	Analyzed:	11/19/10			
Total Alkalinity	2.0 U	8.0	2.0	mg/L						
LCS (BK01905-BS1)					Prepared 8	Analyzed:	11/19/10			
Total Alkalinity	120	8.0	2.0	mg/L	120		95	90-110		20
Batch BK01920 - Sulfide prep										
Blank (BK01920-BLK1)					Prepared 8	Analyzed:	11/19/10			
Hydrogen sulfide (Unionized)	0.01 U	0.04	0.01	mg/L						
Sulfide	1.0 U	4.0	1.0	mg/L						
LCS (BK01920-BS1)					Prepared 8	Analyzed:	11/19/10			
Sulfide	4.70	4.0	1.0	mg/L	5.0		94	85-115		
Matrix Spike (BK01920-MS1)		Source: 1	002218-03		Prepared 8	Analyzed:	11/19/10			
Sulfide	4.70	4.0	1.0	mg/L	5.0	ND	94	85-115		
Matrix Spike Dup (BK01920-MSD1	I)	Source: 1	002218-03		Prepared 8	Analyzed:	11/19/10			
Sulfide	4.70	4.0	1.0	mg/L	5.0	ND	94	85-115	0	14

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

December 24, 2010

Revised Report

Work Order: 1002218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BK01927 - TSS prep										
Blank (BK01927-BLK1)					Prepared &	Analyzed:	11/19/10			
Total Suspended Solids	1 U	1	1	mg/L						
LCS (BK01927-BS1)					Prepared &	& Analyzed:	11/19/10			
Total Suspended Solids	45.5	1	1	mg/L	50		91	85-115		
Batch BK02001 - Digestion for	TKN by EPA 3	51.2								
Blank (BK02001-BLK1)					Prepared:	11/20/10 Ar	nalyzed: 11	/22/10		
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
Blank (BK02001-BLK2)					Prepared:	11/20/10 Ar	nalyzed: 11	/23/10		
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
LCS (BK02001-BS1)					Prepared:	11/20/10 Ar	nalyzed: 11	/22/10		
Total Kjeldahl Nitrogen	2.69	0.20	0.05	mg/L	2.5		108	90-110		
LCS (BK02001-BS2)					Prepared:	11/20/10 Ar	nalyzed: 11	/23/10		
Total Kjeldahl Nitrogen	2.62	0.20	0.05	mg/L	2.5		105	90-110		
Batch BK02434 - Nitrate 353.2	by seal									
Blank (BK02434-BLK1)					Prepared &	Analyzed:	11/24/10			
Nitrate+Nitrite (as N)	0.0124	0.04	0.01	mg/L						
Blank (BK02434-BLK2)					Prepared 8	& Analyzed:	11/24/10			
Nitrate+Nitrite (as N)	0.01 U	0.04	0.01	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

December 24, 2010

Revised Report

Work Order: 1002218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BK02434 - Nitrate 3	53.2 by seal									
Blank (BK02434-BLK3)					Prepared &	& Analyzed:	11/24/10			
Nitrate+Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
LCS (BK02434-BS1)					Prepared &	& Analyzed:	11/24/10			
Nitrate+Nitrite (as N)	0.758	0.04	0.01	mg/L	0.80		95	90-110		
LCS (BK02434-BS2)					Prepared &	& Analyzed:	11/24/10			
Nitrate+Nitrite (as N)	0.984	0.04	0.01	mg/L	1.0		98	90-110		
LCS (BK02434-BS3)					Prepared &	& Analyzed:	11/24/10			
Nitrate+Nitrite (as N)	0.968	0.04	0.01	mg/L	1.0		97	90-110		

A DIED IN ACCORDANCE

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619

* Qualifiers, Notes and Definitions

Results followed by a "U" indicate that the sample was analyzed but the compound was not detected. Results followed by "I" indicate that the reported value is between the laboratory method detection limts and the laboratory practical quantitation limit.

A statement of estimated uncertainty of test results is available upon request.

For methods marked with **, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Test results in this report meet all the requirements of the NELAC standards. Any applicable qualifiers are shown below. Questions regarding this report should be directed to Client Services at 813-855-1844.

+O Matrix spike source sample was over the reccommended range for the method.

Finbail

December 24, 2010 Work Order: 1002218

Revised Report

SAL Project No. | CODD-1 X

1 110 11:02 11:11 **OD** bleif 000 144 0.75 1505 3651 1168 Field Cond Instructions / Remarks Ť 18:3 Josephin Edeback-Hirst 813-630-4498 qmeT bleil Chain of Custody Star Star jedeback@hazanandsawyer.com 221.67.07 Ŗ しんそ PARAMETER / CONTAINER DESCRIPTION Hq blai7 ` ر ب -213.6 N NA (Y) NA 158.3 N NA AN NA N N N N NA ٨N **ORP (Client meter)** Contact / Phone: ſŲ≻ ≻ Proper preservatives indicated? Volatiles rec'd w /out headspace TKN, NH3, NoX, COD Ť Samples intact upon arrival? 250ml P, H2SO4 Rec'd within holding time? Proper containers used? Received on ice? Temp_ No Headspace Hydrogen Sulfide T HO6N/sisten nZ, 91 Seal intact? **70**\$ T 1LP, Cool 11/1/10 23 SOT Date/Time; 15110 ALP, Cool ALP, Cool Date/Time: Date/Time: ate/fime: Date/Time Grab × × × × × 1 etisoqmo 5 110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 B13-855-1844 fax B13-855-2218 MAA-Ŵ WM xinteM PNRS II Wastewater System Analyses 8 6 3 4 S 30 06:45 CONTIE emi⊺ 3 0 0 12/20 01/ 115/10 Hazan and Sawyer Received: sceived: feceived Received Date 2 11/12/1000:58 DID NOT SAMPLE TOID NOT SAMPLE Date/Time: 1640 v V V 1-11-10 Date/Time: /10 H. www. DW-Drinking Water WW-Wastewater SW-SurfaceWater SL-Sludge SO-Soil GW-Groundwater SA-Saline Water O-Other Date/Time: Date/Time: Date/Time Sample Description **R-Reagent Water** in the second Matrix Codes: Andre Him WN5AT-153 Project Name / Location Samplers: (Signature) 03 - HNSAT-IS3 UNSAT-IS2 UNSAT-184 UNSAT-IS1 Containers Prepai Chain of Custody.ds Rev.Date 11/19/01 Client Name Relinquished: Relinquished Relinquished M Sample No. 02 SAL Use Only 5 2 20-10 030

PARAMETER CONTAINER Decleback@Hazanandssille Mainx Mainx Physics OP Physi	Client Name	Hazar	Hazan and Sawver			-				Contact / Phone: Josephin Edeback-Hirst	hone: deback-Hir	1	813-630-4498		
Match Colors Product Field Temp Match Colors Match Colors Match Colors<	Project Name / Location	Z	TI 1					-		edeback@	hazanand:	sawyer.con	Ct.	- Sa - 2	
Monton Water Werkensoner utdom/Water Werkensoner utdom/Water Werkensoner utdom/Water Werkensoner utdom/Water Werkensoner utdom/Water Werkensoner R. Regenting Science R. R. Regenting Science R. R. Regenting R. R. Regenting R. R. Regenting R. R. R	Samplers: (Signature)							PARAN	AETER / C(ONTAINER	2 DESCRIF	TION		م مر روا	
Sample Description Date Mail N Sample Description Date Description Mail N Will N L L Mail N Mail N L L Mail N Mail N N N Mail N Mail N N <td< td=""><td>Matrix DW-Drinking Water SW-SurfaceWater GW-Groundwater SA- R-Reage</td><td>Codes: r WW-Wastewater SL-Sludge SO-Soil Saline Water O-Other ent Water</td><td></td><td></td><td></td><td></td><td>SET ,7GOI</td><td>ر هې '×۵ ۲۵۶</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ners (Total</td></td<>	Matrix DW-Drinking Water SW-SurfaceWater GW-Groundwater SA- R-Reage	Codes: r WW-Wastewater SL-Sludge SO-Soil Saline Water O-Other ent Water					SET ,7GOI	ر هې ' ×۵ ۲۵۶							ners (Total
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		le Description	Date	əmiT	XinteM		1LP, Cool Alkalinity, -CE	тки, ин ₃ , и 260 ml P, H ₂		20	00	qməT bləif	bno O blei f	Hq bləif	No. of Contai
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SI-TAZNU Ta		11/12/10	8:30 m	AAA		4	ł			J. 14	18.7	1505	6.67	14
Milbl Mulble Milble Milble Milble Milble Milble Bantimer		7	n/12/10	Byrsam	2 N	T	$\frac{-}{\lambda}$	<u>7</u>		152.9	8.96	18.3	0.01	7.48	2
MI2IO Date/Time. MI2IO MI2IO Date/Tim							, cvvl								
Multiple Multiple Multiple Multiple Multiple Deletime Multiple Received: Multiple Deletime Multiple Received: Multiple Deletime Multiple Deletime Multiple Deletime Multiple Received: Multiple Received: Multiple Deletime Multiple Received: Multiple Deletime: Received: Deletime:							11/12/11								
Milling Milling Balefilme: Milling Seal intacti v Milling Received: Received: Datefilme: V V Milling Received: Received: Datefilme: V V Milling Received: Received: Received: V V Milling Received: Received: Received: V V Datefilme: Received: Received: N N N Datefilme: Received: Received: N N Datefilme: Received: Datefilme: N N Datefilme: Received: N N N															
Multiple Multiple Multiple Baterline:				-		1 - 1 ⁴									
Mile Mile Balefilme: Mile Seal intert V Mile Seal intert Date/Ime: Mile Seal intert V N/M/M Mile Seal intert Date/Ime: Mile Seal intert V N/M CH Wilfle Received: Date/Ime: Mile Seal intert V N/M CH Wilfle Received: Mile Received: Mile N/M N/M CH Wilfle Received: Mile N/M N/M N/M N/M CH Wilfle Received: Mile N/M N/M N/M N/M CH Wilfle Received: Mile N/M N/M N/M Date/Ime: Received: Mile N/M N/M N/M Date/Ime: Received: Mile N/M N/M Date/Ime: N/M Received: M/M N/M Date/Ime: N/M N/M N/M N/M Date/Ime: N/M N/M N/M N/M Date/Ime: Received: M/M N/M N/M Date/Ime: Received: M/M N/M N/M <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					-										
Milling Milling Milling Received: Milling Received: Received: Received: Received: Received: Received: Received: Date/Time: Received: Received: N/N Received: Received: Received: N/N Date/Time: Received: N/N N/N Received: Received: N/N N/N															
M.Date/Time: W.Date/Time: W.Date/Time: W.Date/Time: V M.M. Travit 3 - 10-10 Received: 2 - 10 1 - 10 Received: M.M. Market Date/Time: W.M. 2 - 10 Received: M.M. Market Date/Time: 1 - 10 1 - 10 Received: M.M. Market Date/Time: 1 - 11 1 - 10 Received: M.M. M.M. Date/Time: 1 - 11 1 - 11 Received: M.M. M.M. Date/Time: 1 - 11 1 - 11 Received: M.M. M.M. Date/Time: 1 - 11 1 - 11 Received: M.M. M.M. Date/Time: Received: N NA Date/Time: Received: Date/Time: N - 11 N - 11 Received: M.M. M.M. N - 11 N - 11 N - 11 Date/Time: Received: Date/Time: N - 11 N - 11 Date/Time: Received: Date/Time: N - 11 N - 11 Date/Time: Received: Date/Time: N - 11 N - 11 Date/Time: Received: Date/Time: N - 11 N - 11 Date/Time: Received: Date/Time: N - 11 N - 11															
Mail Mail Mail Mail Mail Date/Time: Received: Date/Time: Mail Mail Date/Time: Received: Date/Time: Mail CH Wilsh- Detertime: Mail Seal intact? V No Mail Mail Seal intact? V N CH Wilsh- Detertime: Mail Seal intact? V Date/Time: Received: Date/Time: Received: N N Date/Time: Received: Date/Time: N N Date/Time: Received: N N N N N <															
Mille Mille Received: Received: Date/Time: Will CH Date/Time: Received: Received: V V CH U/USI- Received: Date/Time: V V CH U/USI- Received: Date/Time: V V CH U/USI- Received: Date/Time: V V N N N N N N N N N N N N Date/Time: N N N N N N V N N N N N V N N N N N V N N N N N V N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N Date/Time: Received: N N N <															
Mark Travil Date/Time: H/101 Seal intact? V V Received: 1/102 102-10 Received: Parte/Time: H/101 Samples intact upon arrival? V R 1 1 1 1 1 1 V N N R H 1 1 1 1 1 N N N N N N 1 1 1 1 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N		2		-		 									-
AcH Date/Time: Received: Date/Time: Received: AcH 1/15/1. Victor Deut 1/15/1. Proper preservatives indicated? COULT <l< td=""> Date/Time: Received: 1/15/1. Proper preservatives indicated? COULT<l< td=""> Date/Time: Received: 1/15/1. Proper preservatives indicated? Date/Time: Received: Date/Time: Proper preservatives indicated? Date/Time: Received: Date/Time: Proper preservatives indicated? Date/Time: Received: Date/Time: Proper preservatives indicated?</l<></l<>	Ŧ	8 - 1C	0	Eet			Bu/n	Seal intacl Samples in	t? ntact upon ar			Instructio	ns / Rema		Nor
Date/Time: Date/Time: Hoper Proper Pr	Retinquished:	Date/Time: 11/15/1-	י¢ גיין		Eurz	Date/Tin	12 3	Received	on ice? Terr		N NA	collect	5 5 <u>7</u> -	- - -	2
Date/Time: Received: Date/Time: Volatiles rec'd w/out headspact Y Date/Time: Received: Date/Time: Proper containers used?	Relinquished: COULIE		Received: KM	relme	true	Date/Tin	145) 15/10	Proper pre Rec'd with	eservatives i	indicated?	N NA				
Date/Time: Received: Date/Time:	Relinquished:	Date/Time:	Received:			Date/Tir	ne: /	Volatiles r Proper cor	ec'd w /out h	leadspace					
-	Relinquished:	Date/Time:	Received:			Date/Tir	ne: ~			ب ا	A NA				

đ

Chain of Custody