Florida HEALTH

Florida Onsite Sewage Nitrogen Reduction Strategies Study

Task B.7

B-HS6 Field System Monitoring Report No. 7

Progress Report

December 2014

In association with:

Otis Environmental Consultants, LLC

Florida Onsite Sewage Nitrogen Reduction Strategies Study

TASK B.7 PROGRESS REPORT

B-HS6 Field System Monitoring Report No. 7

Prepared for:

Florida Department of Health Division of Disease Control and Health Protection Bureau of Environmental Health Onsite Sewage Programs 4042 Bald Cypress Way Bin #A-08 Tallahassee, FL 32399-1713

FDOH Contract CORCL

December 2014

Prepared by:

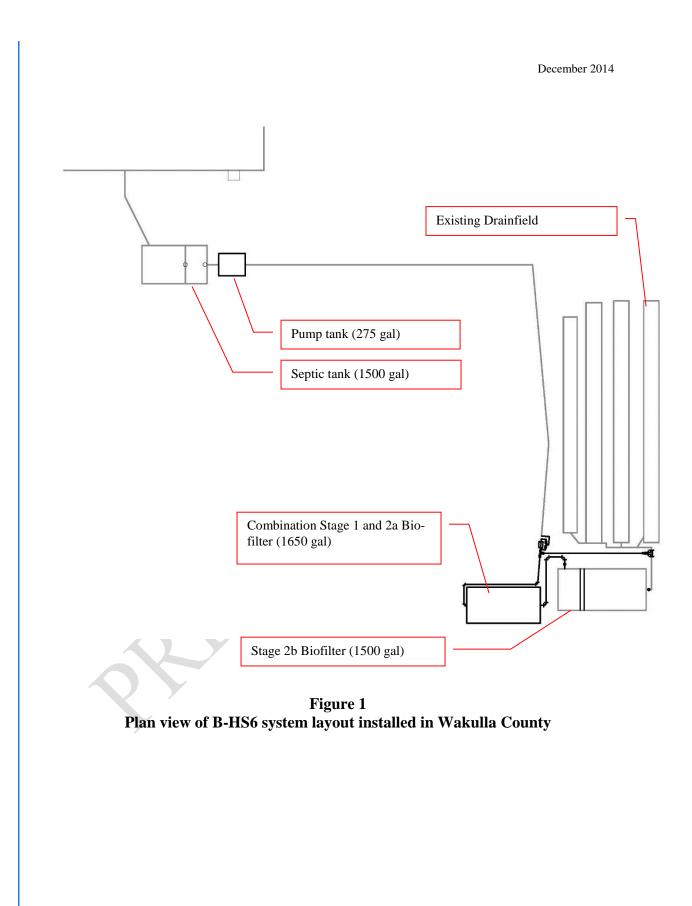
In Association With:

B-HS6 Field System Monitoring Report No. 7

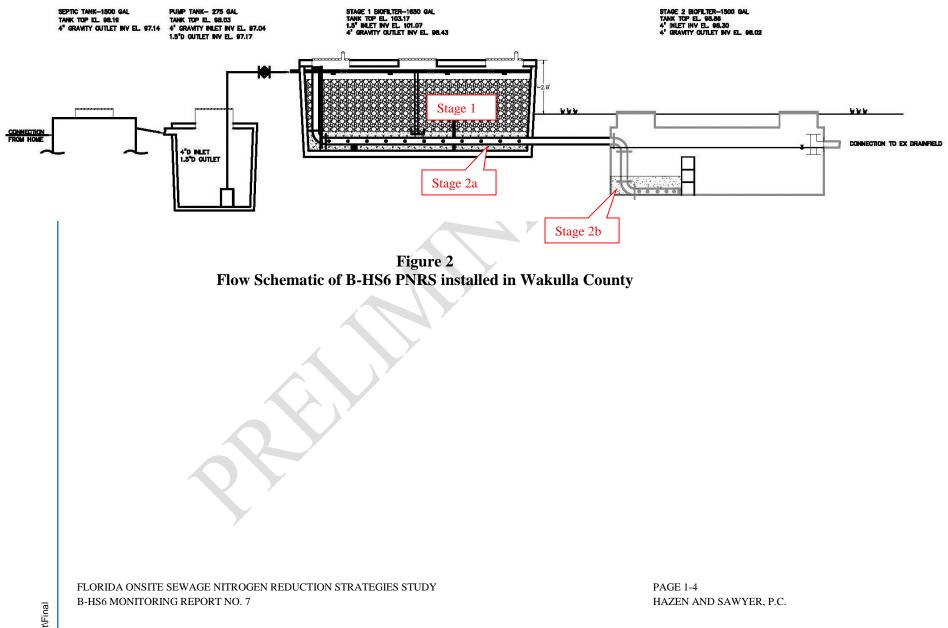
1.0 Background

Task B of the Florida Onsite Sewage Nitrogen Reduction Strategies Study (FOSNRS) includes performing field experiments to critically evaluate the performance of nitrogen removal technologies that were identified in FOSNRS Task A.9 and pilot tested in PNRS II. To meet this objective, full scale treatment systems are being installed at various residential sites in Florida and monitored over an extended timeframe under actual onsite conditions. The Task B Quality Assurance Project Plan (Task B.5) documents the objectives, monitoring framework, sample frequency and duration, and analytical methods to be used at the home sites. This report documents the seventh sample event of the passive nitrogen reduction system at home site B-HS6 in Wakulla County, Florida.

2.0 Purpose


This monitoring report documents data collected from the seventh B-HS6 monitoring and sampling event conducted on December 29, 2014 (Experimental Day 410). This monitoring event consisted of collecting flow measurements from the household water use meter, treatment system flow meter, recording electricity use, monitoring of field parameters, collection of water samples from four points in the treatment system, and chemical analyses of water samples by a NELAC certified laboratory.

3.0 Materials and Methods


3.1 Project Site

The B-HS6 field site is located in Wakulla County, FL. The nitrogen reducing onsite treatment system for the single family residence was installed in November 2013. Operation commenced on November 14, 2013. Design and construction details were presented previously in the Task B.6 document. Figure 1 is a system schematic showing the system components and layout of the installation. A flow schematic of the system is shown in Figure 2. The new system replaced the previously installed PNRS system installed at field site B-HS1. The previously installed components that were removed were the Aerocell[™] unsaturated media filter chamber, Nitrex[™] media and split

recirculation device. The existing 1,500 gallon dual chamber septic tank will continue to provide primary treatment for the new PNRS system. However, the effluent screen was moved to the outlet and a vented tee was installed between the chambers per 64E-6.013(2)(h). The existing pump and floats were moved from the second chamber of the primary tank into a new 275 gallon pump tank. A 1,650 gallon concrete tank housing a combined Stage 1 and Stage 2a media biofilter was installed. The existing 1,500 gallon concrete single chamber tank which had contained the Nitrex[™] media was converted to a Stage 2b saturated sulfur media biofilter. The denitrified treated effluent is discharged into the soil via the existing drainfield (standard Infiltrator EQ36 Quick 4 trenches).

December 2014

3.2 Monitoring and Sample Locations and Identification

Four of the eight monitoring points shown in Figure 3 were sampled for this sample event. Monitoring point B-HS6-ST2b-T was not sampled as the water quality was very similar to the adjacent monitoring point B-HS6-STb-P. B-HS6-DP1, B-HS6-DP3, B-HS6-DP4 located in the Stage 1&2a tank were also not sampled during this sample event. Household wastewater enters the 1st chamber of the primary tank and exits the second chamber as septic tank effluent through an effluent screen into the pump tank (which contains the pump and float switches). The first monitoring point, B-HS6-STE, is the effluent sampled from a sample port on the pump discharge line (Figure 4), which is referred to as primary effluent or septic tank effluent (STE). Samples from monitoring point B-HS6-STE are representative of the whole household wastewater and represent the influent to the remainder of the onsite nitrogen reduction system.

December 2014

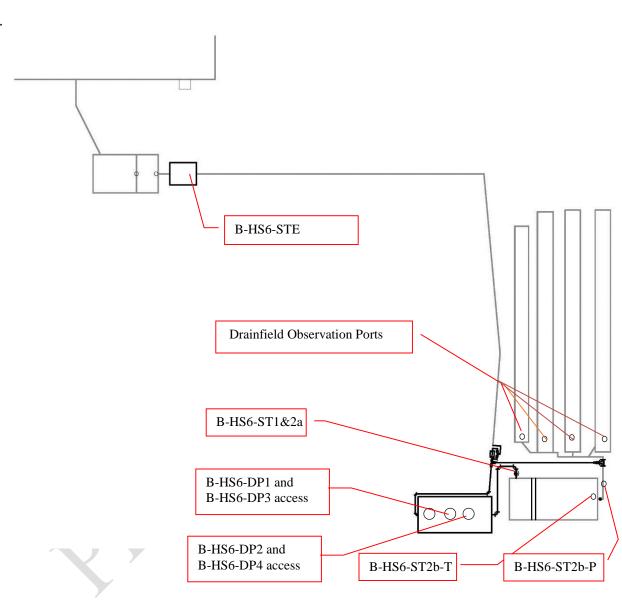


Figure 3 B-HS6 Treatment System Sampling and Monitoring Locations

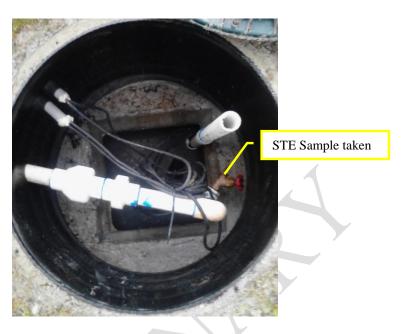


Figure 4 Primary Effluent (B-HS6-STE sample)

The pump tank contents are discharged to the top of the Stage 1 biofilter through three Orenco[™] spin nozzles. The spin nozzles appear to adequately cover the surface area of the biofilter and provide relatively uniform flow distribution. The four spray nozzles that were originally installed were replaced with the three spin nozzle sprayers on March 20, 2014. In the Stage 1 biofilter, wastewater percolates downward through the unsaturated expanded clay media where nitrification occurs. The Stage 1 biofilter contains 30 inches of coarse expanded clay media (Riverlite[™] 1/4; 1.1 to 4.8 mm). Two shallow pans, each containing a drive point sampler, were installed underneath the expanded clay layer and on top of the Stage 2a lignocellulosic media (see Figure 5). The second and third sampling points (B-HS6-DP1 and B-HS6-DP2) are sampled by connecting a peristaltic pump to the drivepoint tubing, representing the Stage 1 biofilter effluent.

December 2014

Figure 5 Stage 1 Unsaturated Biofilter Effluent (B-HS6-DP1 and B-HS6-DP2 sample)

Twelve inches of lignocellulosic media, a blended waste wood from AAA Tree Experts, Tallahassee, FL, was installed underneath the expanded clay media as a supplemental carbon source for denitrification. A single 4-inch diameter outlet pipe connected the Stage 1&2a tank to the Stage 2b tank. The pipe was installed along the centerline of the Stage 1&2a tank with the invert at 4-inches above the interior bottom of the tank. Therefore, approximately 4-inches of the lignocellulosic media is saturated, promoting oxygen depletion and denitrification of the nitrified effluent. Two additional stainless steel drive points were installed at the bottom of the Stage 2a saturated lignocellulosic media (see Figure 6). These drive points sampled water from near the very bottom of the tank. The fourth and fifth sampling points (B-HS6-DP3 and B-HS6-DP4) are sampled by connecting a peristaltic pump to the drive point tubing, representing the Stage 2a saturated biofilter effluent.

Figure 6 Stage 2a Saturated Biofilter Effluent (B-HS6-DP3 and B-HS6-DP4) sample tubing

The tubing for sample points B-HS6-DP1 and B-HS6-DP3 are accessed via the middle tank cover (Figure 7), and B-HS6-DP2 and B-HS6-DP4 are accessed through the tank cover on the outlet side of the tank.

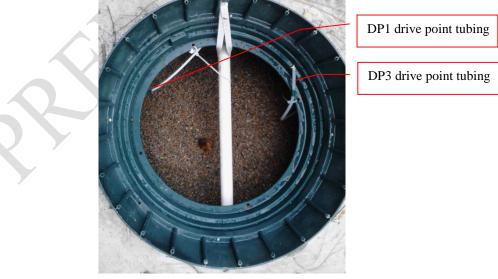


Figure 7 Drivepoint tubing access (B-HS6-DP1 and B-HS6-DP3 sample)

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS6 MONITORING REPORT NO. 7

PAGE 1-9 HAZEN AND SAWYER, P.C. The effluent from the Stage 1&2a biofilter flows into the Stage 2b biofilter by gravity. The sixth sampling point (B-HS6-ST1&2a) is taken from a sample port in the gravity pipe connecting the Stage 1&2a biofilter outlet to the Stage 2b biofilter inlet representing the Stage 1&2a biofilter effluent (see Figure 8).

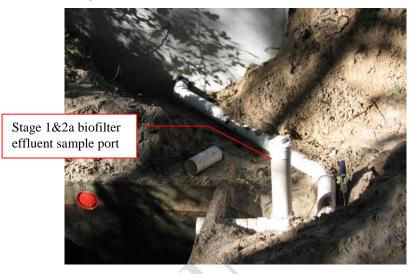


Figure 8 Stage 1&2a Biofilter Effluent Sample Port (B-HS6-ST1&2a sample)

Effluent from the Stage 1&2a biofilter enters the saturated denitrification (Stage 2b) biofilter at the bottom of the tank through a 4-inch diameter perforated pipe, flows upward through the 12-inches of elemental sulfur and oyster shell media mixture, and moves laterally over a concrete block wall to the second chamber. The Stage 2b biofilter effluent discharges near the top of the tank; therefore denitrification occurs in the saturated environment. The seventh primary sampling point, (B-HS6-ST2b-T) is the second chamber of the Stage 2 biofilter effluent which is sampled approximately 1 foot below the surface of the effluent baffle tee. This sample location is after passage through the sulfur media; it is the final effluent from the treatment system prior to being discharged to the soil infiltration system, or drainfield (Figure 9).

December 2014

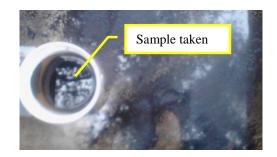


Figure 9 Stage 2b Biofilter Effluent (B-HS6-ST2b-T sample)

The eighth sampling point (B-HS6-ST2b-P) is from a sample port in the gravity pipe connecting the Stage 2b biofilter outlet to the drainfield inlet also representing the treated effluent (Figure 10).

Figure 10 Stage 2b Biofilter Effluent (B-HS6-ST2b-P sample)

Treated effluent is discharged to a soil dispersal system (drainfield) consisting of four Infiltrator trenches. Three of the four Infiltrator trenches are 40 feet in length, and the fourth is 36 feet. The layout of the system and a flow schematic are shown in Figures 1 and 2, respectively.

3.3 Operational Monitoring

Start-up of the system occurred on November 14, 2013 (Experimental Day 0). The PNRS system has operated continually since that date. For this seventh formal sampling event, the water meter for the house and treatment system flow meter were read and recorded on December 29, 2014 (Experimental Day 410).

The household water meter is located on the potable water line from the onsite well prior to entering the household plumbing. The water meter does not include the irrigation water use. Therefore, the water meter reading should be indicative of the wastewater flow to the PNRS system.

The PNRS treatment system flow meter (Figure 11) is located on the pump tank discharge line and records the cumulative flow in gallons pumped from the pump chamber to the combined Stage 1&2a biofilter. The control panel includes telemetry where reports are generated regarding alarms, pump cycles, and other information using a Vericomm control panel system.

Figure 11 Treatment system flow meter

3.4 Energy Consumption

Energy consumption was monitored using an electrical meter installed between the main power box for the house and the control panel. The electrical meter records the cumulative power usage of the system in kilowatt-hours. The power usage of the system is primarily due to the single lift station pump installed within the pump tank, although a small amount of power is used by the control panel itself. There are no chemicals added to the system. However, the Stage 2 biofilter media (lignocellulosic and sulfur) are "reactive" media which will be consumed during operation. The Stage 1&2a biofilter was initially filled with 12 inches of lignocellulosic media. The Stage 2b biofilter was filled with 12 inches of sulfur and oyster shell mixture media, which ostensibly will last for many years without replenishment or replacement.

3.5 Water Quality Sample Collection and Analyses

The seventh formal sample event (Sample Event No. 7), which is the subject of this report, was conducted on December 29, 2014 (Experimental Day 410). A full suite of influent, intermediate and effluent water quality samples were collected from the system for water quality analysis. Samples were collected at four monitoring points described in Section 3.2: B-HS6-STE, B-HS6-DP2, B-HS6-ST1&2a, B-HS6-ST2b-P. A duplicate sample was also taken at B-HS6-ST1&2a. A peristaltic pump was used to collect samples and route them directly into analysis-specific containers after sufficient flushing of the tubing had occurred. Field parameters were then recorded. For sample B-HS6-STE, the system pump was briefly turned on to collect sample from the spigot. In addition, a field blank and equipment blank (EB) were taken. The field blank was collected by filling sample containers. The equipment blank was collected by pumping deionized water through the cleaned pump tubing.

The analysis-specific containers were supplied by the analytical laboratories and contained appropriate preservatives. The analysis-specific containers were labeled, placed in coolers and transported on ice to the analytical laboratories. Each sample container was secured in packing material as appropriate to prevent damage and spills, and was recorded on chain-of-custody forms supplied by the laboratory. Chain of custody forms, provided in Appendix A, were used to document the transfer of samples from field personnel to the analytical laboratory.

Field parameters were measured using portable electronic probes and included temperature (Temp), dissolved oxygen (DO), oxidation-reduction potential (ORP), pH, and specific conductance. Field parameters were measured directly in the tank/port for the B-HS6-STE, B-HS6-ST1, and B-HS6-ST2-P samples. Due to the design of the probe, ORP was measured in a container overflowing with sample water. Due to low sample volume, no field parameters were taken during sampling of B-HS6-DP2.

The influent, intermediate, and effluent samples were analyzed by the laboratory for: total alkalinity, chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH₃-N), nitrate nitrogen (NO₃-N), nitrite nitrogen (NO₂-N), total phosphorus (TP), orthophosphate (Ortho P), total suspended solids (TSS), volatile suspended solids

(VSS), total organic carbon (TOC), fecal coliform (fecal), and E. coli. The influent and sulfur media samples included sulfate, sulfide, and hydrogen sulfide (unionized). Due to the small sample volume, B-HS6-DP2 was only analyzed for the nitrogen species and CBOD₅. All analyses were performed by independent and fully NELAC certified analytical laboratories (Southern Analytical Laboratory and Ackuritlabs, Inc.). Table 1 lists the analytical parameters, analytical methods, and detection limits for laboratory analyses.

Analytical Parameters	, Method of Analysis, and	Detection Limits
Analytical Parameter	Method of Analysis	Method Detection Limit (mg/L)
Total Alkalinity as CaCO ₃	SM 2320B	2 mg/L
Chemical Oxygen Demand (COD)	EPA 410.4	10 mg/L
Total Kjeldahl Nitrogen (TKN)	EPA 351.2	0.05 mg/L
Ammonia Nitrogen (NH ₃ -N)	EPA 350.1	0.005 mg/L
Nitrate Nitrogen (NO ₃ -N)	EPA 300.0	0.01 mg/L
Nitrite Nitrogen (NO ₂ -N)	EPA 300.0	0.01 mg/L
Nitrate+Nitrite Nitrogen (NO _X -N)	EPA 300.0	0.02 mg/L
Total Phosphorus (TP)	SM 4500P-E	0.01 mg/L
Orthophosphate as P (Ortho P)	EPA 300.0	0.01 mg/L
Carbonaceous Biological Oxygen Demand (CBOD ₅)	SM5210B	2 mg/L
Total Solids (TS)	EPA 160.3	.01 % by wt
Total Suspended Solids (TSS)	SM 2540D	1 mg/L
Volatile Suspended Solids (VSS)	EPA 160.4	1 mg/L
Total Organic Carbon (TOC)	SM5310B	0.06 mg/L
Sulfate	EPA 300.0	2.0 mg/L
Sulfide	SM 4500SF	0.10 mg/L
Hydrogen Sulfide (unionized)	SM 4550SF	0.01 mg/L
Fecal Coliform (fecal)	SM9222D	1 ct/100mL
E.coli	EPA1603	2 ct/100mL

Table 1	
Analytical Parameters, Method of Analysis, and Detection Limit	s

4.0 Results and Discussion

4.1 Operational Monitoring

Table 2 provides a summary of the household water use since the new treatment system installation on November 6, 2013. The treatment system flow meter readings for the B-HS6 field site are summarized in Table 2. The operation and maintenance log which includes actions taken since start-up is provided in Appendix B. Summary tables of the Vericomm PLC recorded data are provided in Appendix C. These include daily and cumulative pump runtime and system alarms that are used to check general pump operation and performance.

		Table Summary of F			
Date and Time Read	House- hold Water Meter Reading	Average Daily Household Flow be- tween read- ings	PNRS Flow Meter Reading	Average PNRS Flow be- tween read- ings	Ratio PNRS flow to Household flow
	Cumula- tive Volume (gallons)	gallons/ day	Cumulative Volume (gallons)	gallons/ day	PNRS:HH
11/6/2013 12:15	99,030.4	Installed	1,027,435.3	Installed	Installed
11/14/2013 12:30	100,113.9	Start-up	1,027,435.3	Start-up	Start-up
11/20/2013 8:04	100,925.7	139.6	1,028,375.4	161.7	1.16
12/4/2013 7:52	102,616.8	120.9	1,030,645.4	162.3	1.34
12/20/2013 12:46	104,570.6	120.6	1,033,374.2	168.4	1.40
1/9/2014 11:49	107,163.1	129.9	1,036,306.1	146.9	1.13
1/22/2014 8:55	109,061.5	147.4	1,038,248.5	150.8	1.02
3/7/2014 10:30	115,093.0	136.9	1,045,302.0	160.1	1.17
3/20/2014 11:45	116,543.0	111.1	1,047,111.1	138.6	1.25
3/24/2014 10:50	116,979.0	110.1	1,047,597.8	122.9	1.12
4/10/2014 9:29	118,873.3	111.8	1,050,015.7	142.7	1.28
4/14/2014 19:15	119,370.5	112.8	1,050,622.9	137.8	1.22
4/16/2014 14:29	119,594.6	124.4	1,050,904.4	156.3	1.26
4/28/2014 12:47	120,956.3	114.1	1,052,696.0	150.2	1.32
5/7/2014 9:33	122,109.1	130.0	1,054,174.5	166.8	1.28
5/27/2014 12:26	124,623.2	125.0	1,057,401.8	160.4	1.28
5/30/2014 9:45	124,853.9	79.9	1,057,698.3	102.6	1.28
6/23/2014 9:00	127,482.8	109.7	1,060,658.0	123.5	1.13
7/21/2014 11:34	130,874.8	120.7	1,064,238.6	127.4	1.06
8/26/2014 8:54	135,223.9	121.2	1,068,857.5	128.7	1.06
8/27/2014 10:05	135,334.0	104.9	1,069,055.3	188.4	1.80
9/26/2014 11:27	139,560.0	140.6	1,074,161.6	169.9	1.21
10/3/2014 9:59	140,410.5	122.6	1,075,072.1	131.2	1.07
10/16/2014 11:36	142,525.8	161.9	1,077,527.8	187.9	1.16
10/30/2014 9:30	144,872.7	168.7	1,080,135.5	187.4	1.11
11/26/2014 12:38	148,920.8	149.2	1,084,870.1	174.5	1.17
12/29/2014 12:46	153,837.0	149.0	1,090,591.4	173.3	1.16
Average since start- up to December 29, 2014		131.0		154.0	1.18

On November 14, 2013, an alarm indicated a pump failure and upon inspection loose wiring was discovered and repaired. PNRS flow readings indicated that the pump had not run since installation until the time the wiring was repaired, therefore the official startup of the PNRS system was November 14, 2013 (Experimental Day 0). From system start-up through December 29, 2014, the household water use average was 131.0 gallons per day with periods of higher and lower flows (Table 2). The average pumped flow to the PNRS was 154.0 gallons per day from start-up through December 29, 2014. The metered PNRS flow is continuously reading higher (by approximately 20 percent) than the household water meter. The reason for the difference in the two meter readings is not known. There is a possibility that there is some drainage back to the pump tank following each dose cycle, because a check valve was not installed on the pump discharge line.

Based on the hydraulic design of the system, a normally expected water level in the Stage 1&2a tank would be approximately 98.52 ft. elevation, or a depth above tank bottom of 4.8 inches. The normal operation level in the Stage 1&2a tanks therefore could be expected to vary between 4 and 6 inches above the tank bottom. Water levels above these values could adversely affect treatment performance and would suggest hydraulic blockages in the system. While purging the Stage 1 effluent drive points DP1 and DP2 during Sample Event No. 2, it was observed that the water level in the Stage 1&2a tank was elevated above the pans holding the drive points. The water level in the Stage 1&2a tank was found to be elevated approximately 10-inches above the invert of the collection pipe during that sample event. This water level would saturate all 12-inches of the lignocellulosic media and approximately 2-inches of the expanded clay media. The elevated water level could quite possibly have affected the performance of the system as monitored in Sample Event 2. A piezometer was installed within the Stage 1&2a tank on April 10, 2014 to provide water level observations (Figure 12).

Figure 12 Piezometer installed on April 19, 2014 in the Stage 1&2a Tank

Table 3 summarizes the water level readings recorded. On April 14, 2014, it was determined the clog in the system was in the inlet pipe on the Stage 2b sulfur tank. An unsuccessful attempt was made with a plumbing snake to clear the clog. On April 16, 2014, the clog was cleared using compressed air and a 4-inch rubber bladder; the water level in the Stage 1&2a tank was restored to normal operational levels. During the following monitoring event, Sample Event No. 3, the water level in the Stage 1&2a tank was at normal operational levels. A system check on May 27, 2014 indicated that the water level was elevated approximately 8 inches above the tank bottom. A repair on the inlet pipe to the Stage 2b sulfur tank was completed on May 31, 2014. The repair included drilling additional holes in the inlet pipe and replacing the mesh material surrounding the pipe with a different type with larger mesh size to prevent future clogging. During a system check on September 26, 2014, the water level in the Stage 1&2a tank piezometer was elevated by approximately 8 inches. This could have resulted in greater saturation of lignocellulosic media in Stage 2a, but submergence of the pans holding drive points DP1 and DP2 would not be expected. It was determined that the outflow pipe of the Stage 1&2a tank was partially clogged. A clean out was installed on the outflow pipe, just downgradient of the Stage 1&2a tank on October 9, 2014 which allowed access to clean the perforations in the effluent collection pipe. In addition, additional holes were drilled in the effluent collection pipe inside the tank. The water level in the Stage 1&2a tank was at normal operational levels during Sample Event No. 7, the subject of this report.

	Summ	hary of Stage	1&2a Water Level	
Data and	Water level		Water level	Water level
Date and	In Stage1&2a	Water Elev	above bottom of tank ¹	above outlet invert
Time Read	PZ from TOC			
	(ft)	(ft)	(in)	(in)
4/14/2014 19:20	3.74	99.57	17.63	13.63
4/14/2014 19:35	3.75	99.56	17.51	13.51
4/16/2014 14:35	3.77	99.54	17.27	13.27
4/16/2014 16:16	4.76	98.55	5.39	1.39
4/16/2014 16:25	4.79	98.52	5.03	1.03
4/16/2014 16:49	4.81	98.50	4.79	0.79
5/6/2014 9:35	4.71	98.60	5.99	1.99
5/6/2014 9:58	4.66	98.65	6.59	2.59
5/7/2014 9:39	4.68	98.63	6.35	2.35
5/7/2014 10:51	4.70	98.61	6.11	2.11
5/27/2014 12:00	4.02	99.29	14.27	10.27
5/30/2014 9:51	4.09	99.22	13.43	9.43
5/30/2014 15:10	4.79	98.52	5.03	1.03
5/31/2014 19:03	4.79	98.52	5.03	1.03
6/23/2014 9:06	4.61	98.70	7.19	3.19
6/23/2014 12:25	4.52	98.79	8.27	4.27
7/21/2014 11:43	4.49	98.82	8.63	4.63
8/26/2014 9:05	4.36	98.95	10.19	6.19
8/27/2014 10:13	4.33	98.98	10.55	6.55
9/26/2014 12:32	4.04	99.27	14.03	10.03
10/3/2014 10:03	4.11	99.20	13.19	9.19
10/20/2014 15:58	4.70	98.61	6.11	2.11
10/29/2014 13:19	4.71	98.60	5.99	1.99
10/30/2014 9:33	4.71	98.60	5.99	1.99
11/26/2014 12:42	4.65	98.66	6.71	2.71
12/29/2014 12:44	4.66	98.65	6.59	2.59

Table 3 Summary of Stage 1&2a Water Level

¹Stage 1&2a tank interior bottom elev = 98.10

4.2 Energy Consumption

Energy consumption is monitored using an electrical meter installed between the main power box for the house and the control panel to record cumulative power usage of the pump in kilowatt-hours. The recorded electrical use for the system is summarized in Table 4 and has been fairly consistent through system operation.

	Summary	Table 4 of System Elec	trical lleo	
Date and Time Read	Electrical Meter Reading	Average Daily Electrical Use	Average Elec- trical Use per Gallon Treated	Average Electrical Use per 1,000 Gallons Treated
	Cumulative (kWh)	(kWh/day)	(kWh/gal)	(kWh/ 1,000 gal)
11/6/2013 12:22	2,749	0.00		
11/14/2013 12:32	2,749	0.00		
11/20/2013 8:08	2,751	0.34	0.0021	2.127
12/4/2013 7:54	2,757	0.43	0.0026	2.643
12/20/2013 12:48	2,764	0.43	0.0026	2.565
1/9/2014 11:53	2,772	0.40	0.0027	2.729
1/22/2014 8:57	2,777	0.39	0.0026	2.574
3/7/2014 10:32	2,797	0.45	0.0028	2.836
3/20/14 11:47	2,802	0.38	0.0028	2.764
3/24/2014 10:51	2,803	0.25	0.0021	2.054
4/10/2014 9:32	2,811	0.47	0.0033	3.309
4/14/2014 19:17	2,813	0.45	0.0033	3.293
4/16/2014 14:31	2,814	0.56	0.0036	3.552
4/28/2014 12:48	2,820	0.50	0.0033	3.349
5/7/2014 9:34	2,825	0.99	0.0034	3.382
5/27/2014 12:27	2,835	0.50	0.0031	3.099
5/30/2014 9:47	2,836	0.35	0.0034	3.373
6/23/2014 9:01	2,846	0.42	0.0034	3.379
7/21/2014 11:36	2,857	0.39	0.0031	3.072
8/27/2014 10:03	2,876	0.51	0.0024	2.417
9/26/2014 11:25	2,897	0.70	0.0041	4.113
10/3/2014 9:57	2,901	0.58	0.0044	4.393
10/16/2014 11:35	2,910	0.69	0.0037	3.665
10/30/2014 9:28	2,918	0.58	0.0031	3.068
11/26/2014 12:36	2,932	0.52	0.0030	2.957
12/29/2014 12:44	2,951	0.58	0.0033	3.321
Total average start-up to 12/29/2014		0.49	0.0032	3.198

The total average electrical use through December 29, 2014 was 0.49 kWh per day. The average electrical use per 1,000 gallons treated was 3.20 kWh per 1,000 gallons treated, and this parameter has been fairly stable since start-up.

4.3 Water Quality

As discussed in the Sample Event No. 1 (SE1) report, the preliminary sampling results indicated that ammonia reduction through the Stage 1 biofilter was limited. During preliminary sampling, it was observed that the sprayers were not spraying uniformly over the Stage 1 media surface. Therefore on December 21, 2013, the sprayers were rotated to spray up on the tank lid rather than straight down for better distribution over the media surface. The results from the SE1 DP1 and DP2 samples indicated significant nitrification was occurring with this sprayer set-up; however, the long-term operation and maintenance of the sprayers in this set-up was a concern. Therefore, on March 20, 2014, the four originally installed spray nozzles were replaced by three Orenco[™] spin nozzles positioned under the tank lids allowing for easy maintenance and maximum spray coverage. During a system check on October 3, 2014, two of the Orenco[™] spin nozzles were observed to be spinning slowly and not providing full coverage. New nozzles were installed on October 20, 2014 prior to SE6 and were working during SE7.

Water quality results for the seventh full sampling event (Sample Event No. 7) are listed in Table 5. Nitrogen results are graphically displayed in Figure 13. The laboratory report containing the raw analytical data is included in Appendix A. The following discussion summarizes the water quality analytical results for Sample Event No. 7. The performance of the various system components was compared by considering the changes through treatment of nitrogen species (TKN, NH₃-N, and NO_x-N), as well as supporting water quality parameters.

		STAGE 1	STAGE 2a LIGNO	ie 🔥 STAGE 2b	٦.
	STE	DP1 & DP2	DP3 & DP4 1&2		7 Q
CBOD ₅ mg/L	74	10	6	2	_
TKN mg N/L	69	8.9	9	5.1	
$\rm NH_3~mg~N/L$	61	1.4	8.7	0.9	
NO _x mg N/L	36	41	35	12	
TN mg N/L	105	50	44	17	
Sulfate mg/L	10	NA	27	190	
Fecal Coliform (Ct/100mL)	280,000	NA	4,900	1,300	

NA = not analyzed

Figure 13 Graphical Representation of Nitrogen Results Sample Event 7 December 29, 2014 (Experimental Day 410)

Septic Tank Effluent (STE) Quality: The water quality characteristics of STE collected in Sample Event 7 were within the typical range generally expected for domestic STE except for the NO_x-N concentration of 36 mg/L. In the previous 8 samples of STE the NO_x-N concentration ranged from 0.01 to 0.13 mg/L with a mean of 0.03 \pm 0.04 mg/L, n=8. The reported NO_x-N concentration of 36 mg/L is likely a laboratory error as STE is a highly reducing environment with measured DO of 0.37 mg/L and ORP of -215 mV. Assuming the NO_x-N value is a laboratory error, the measured TN concentration for this sample event was approximately 69 mg-N/L, which is in the range typically seen for this household.

Stage 1 Unsaturated Effluent (DP2): Stage 1 effluent NO_x-N concentration was 41 mg/L for sample DP2. The TKN and NH₃-N concentrations were 8.9 mg/L and 1.4 mg/L, respectively. These results indicate incomplete nitrification of the effluent by the Stage 1 biofilter.

Stage 2a Saturated Effluent (DP3 and DP4): Not sampled for Sample Event 7.

Stage 1&2a Tank Effluent (ST1&2a): The sample port between the Stage 1&2a combination tank and the Stage 2b sulfur tank represents the effluent from the Stage 1&2a tank and the influent to the Stage 2b biofilter. The Stage 1&2a sample port effluent TKN was 9 mg/L of which 8.7 mg/L was NH₃-N. The NO_x-N concentration was 35 mg/L and was accompanied by a measured DO of 1.47 mg/L DO and ORP of 167 mV. The Stage 1&2a effluent TSS concentration was below the method detection level of 1 mg/L and CBOD₅ was 6 mg/L. The ST1&2a sample indicates incomplete ammonia removal and some nitrate removal in the Stage 1&2a biofilter.

Stage 2b Tank Effluent (ST2b): In Sample Events 1 and 2 the monitoring points, B-HS6-ST2b-T and B-HS6-ST2b-P had nearly identical nitrogen concentrations. For this sample event, B-HS6-ST2b-T was not sampled. B-HS6-ST2b-P was chosen as the pre-ferred sample point as it is located in the pipe leading from the PNRS system to the drainfield.

Effluent NO_x-N from the Stage 2b biofilter was approximately 12 mg/L. The NO_x-N was accompanied by a measured DO of 0.56 mg/L and ORP of 300 mV. The Stage 2b biofilter achieved some NO_x-N reduction. The NH₃-N concentration was 0.9 mg/L and TKN was 5.1 mg/L. Final total nitrogen (TN) in the treatment system effluent was 17.1 mg/L. The Stage 2b effluent sulfate concentration was 190 mg/L.

A stoichiometric equation for autotrophic denitrification using sulfur as an electron donor is (Batchelor and Lawrence, 1978):

1.0 NO_3^- + 1.10 S^0 + 0.40 CO_2 + 0.76 H_2O + 0.08 $\text{NH}_4^+ \rightarrow$ 0.08 $\text{C}_5\text{H}_7\text{O}_2\text{N}$ + 0.50 N_2 + 1.10 SO_4^{-2-} + 1.28 H^+

Based on this equation, for each gram of NO_3 ⁻N removed approximately 7.54 g SO_4^{2-} are generated. The ST2b sulfate concentration of 190 mg/L is as expected with an influent (ST1&2a) sulfate concentration of 27 mg/L, influent NO_x-N concentration of 35 mg-N/L and effluent (ST2b) NO_x-N concentration of 12 mg-N/L.

Lastly, the Stage 1 sample (DP2) showed nearly complete nitrification with an NH₃-N concentration 1.4 mg/L. However, the ST1&2a differed again with a higher NH₃-N concentration of 8.7 mg/L. Interestingly, the NH₃-N concentration in the ST2b effluent was the lowest throughout the system with a concentration of 0.9 mg/L. The unexpected differences in water quality at the various sample locations as discussed above cannot be explained at this time; however, could be attributed to hydraulic residence time, sampling methodology, an artifact from hydraulic issues previously discussed, or other factors.

Field Blank and Equipment Blank (FB & EB): Described in Section 3.5, the equipment blank (EB) and field blank (FB) results for most of the parameters measured were at or below the method detection limit. The slightly elevated parameters were total alkalinity (2.8 mg/L) and NOx-N (0.02 mg/L) in the equipment blank sample, and NH3-N (0.019 mg/L) in the field blank sample.

Table 5
Water Quality Analytical Results

Sample ID	Sample Date/Time	Temp (°C)	рН	Total Alkalinity (mg/L)	DO (mg/L)	ORP (mV)	Specific Conducta nce (µS)	TSS (mg/L)	CBOD₅ (mg/L)	COD (mg/L)	TN (mg/L N) ¹	TKN (mg/L N)	Organic N (mg/L N) ²	NH ₃ -N	NO₃-N (mg/L N)	NO ₂ -N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³		Sulfate (mg/L)	A -	Sulfide (mg/L)	Fecal (Ct/100 mL)
BHS6-STE	12/29/14 13:16	17.8	7.26	520	0.37	-215	1160	42	74	200	105.0	69	8.0	61	36	0.13	36	97	7.7	10	0.14	0.41	280,000
BHS6-DP02	12/29/14 13:46	2		180				86	10		49.9	8.9	7.5	1.4	41	0.15	41	42.4	2			2) (A	
BHS6-ST1&2a	12/29/14 13:26	16.9	6.4	200	2.12	167	886	1	6	27	44.0	9	0.3	8.7	35	0.1	35	43.7	5.1	27	0.01	0.1	4,900
BHS6-ST1&2a-DUP	12/29/14 13:28	16.7	6.37	210	1.47	167	890	1	5	31	45.1	9.1	0.3	8.8	36	0.1	36	44.8	5.2	27	0.01	0.1	5,000
BHS6-ST2b-Port	12/29/14 13:08	16.2	6.54	210	0.56	300	983	6	2	29	17.1	5.1	4.2	0.9	12	0.12	12	12.9	4.5	190	0.15	0.21	1,300
BHS6-EB	12/29/14 13:56	20.9	6.00	2.8	6.1	231	3.4	1	2	10	0.1	0.05	0.0	0.009	0.02	0.01	0.02	0.029	0.01	0.2	0.01	0.1	2.0
BHS6-FB	12/29/14 14:02	20.9	6.00	2	5.85	190	3.5	1	2	10	0.1	0.05	0.0	0.019	0.02	0.01	0.01	0.029	0.01	0.2	0.01	0.1	2.0

Notes:

 $^1\text{Total}$ Nitrogen (TN) is a calculated value equal to the sum of TKN and NO_{X}

²Organic Nitrogen (ON) is a calculated value equal to the difference of TKN and NH_{3.}

 $^3\text{Total}$ Inorganic Nitrogen (TIN) is a calculated value equal to the sum of NH_3 and NO_X

D.O. - Dissolved oxygen

Gray-shaded data points indicate values below method detection level (mdl), mdl value used for statistical analyses. Yellow-shaded data points indicate the reported value is between the laboratory method detection limit and the laboratory practical quantitation limit, value used for statistical analysis.

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS6 MONITORING REPORT NO. 7

PAGE 1-23 HAZEN AND SAWYER, P.C

December 2014

Table 6Water Quality Analytical Results

water Quanty Analytical Results																										
Sample ID	Statistical Parameter	Temp (°C)	рН⁴	Total Alkalinity (mg/L)	DO (mg/L)	ORP (mV)	Specific Conductance (µS)	TSS (mg/L)	VSS (mg/L)	CBOD₅ (mg/L)	COD (mg/L)	TN (mg/L N) ¹	TKN (mg/L N)	Organic N (mg/L N) ²	3	NO₃-N (mg/L N)	NO₂-N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³	TP (mg/L)	Ortho P (mg/L P)	Sulfate (mg/L)	-	Sulfide (mg/L)	Fecal ⁴ (Ct/100 mL)	E-coli ⁴ (Ct/100 mL)
	n	9	9	9	9	9	9	9	8	9	9	, 9	9	9	9	9	9	9	9	9	8	8	8	8	8	8
	MEAN	20.6	7.2	516.7	0.2	-190.2	1,147.0	28.0	24.1	73.9	167.8	70.2	56.4	-0.7	57.1	4.0	0.0	4.0	61.2	9.7	5.2	3.8	1.3	2.8	315,299	221,855
BHS6-STE	STD. DEV.	3.1		43.3	0.1	52.7	87.9	9.0	7.1	25.4	25.9	22.3	23.4		19.7	12.0	0.0	12.0	23.8	3.6	-		1.0	1.8	010,200	221,000
	MIN	16.1	7.1	460.0	0.0	-245.0	1,018.0	16.0	15.0	60.0	140.0	33.0	7.4		23.0	0.0	0.0	0.0	23.0	6.3			0.0	0.4	120,000	64,000
	MAX	25.9	7.4	600.0	0.4	-98.0	1,278.0	42.0	38.0	140.0	200.0		81.0		95.0	36.0	0.1	36.0	97.0	17.0	1		2.6	4.9	1,900,000	
	n	8	8	8	8	8	8	8	7	8	8	8	8	8	8	8	8	8	8	8	7	0.0	7	7	8	8
	MEAN	19.6	6.4	291.3	0.9	-58.8	903.5	6.0	6.3	32.6	74.9	33.1	13.6	3.1	10.6	18.8	0.7	19.4	30.0	5.6	2.7	17.4	0.7	1.0	16,313	13,463
BHS6-ST1&2a	STD. DEV.	3.7	0.1	98.6	0.7	101.1	88.5	4.0	3.5		66.4	12.2			12.1	14.3	0.6	13.9					1.3	1.8	10,010	10,100
	MIN	13.8	6.2	200.0	0.2		790.0	1.0	1.0	6.0	27.0	10.8	3.1	2	1.8	0.0	0.1	0.9	0			0.00	0.0	0.1	3,700	3,600
	MAX	26.5	-	500.0	2.1	167.0	1091.0	11.0	10.0	72.0	230.0	49.7	-		39.0	35.0	1.5	35.2		15.0	35		3.5	5.0	63,000	51,000
	n	8	8	8	8	8	8	8	7	8	8	8	8		8	8	8	8	8	8	8		8	8	8	8
	MEAN	19.3	6.6	343.8	0.3	-120.4	1049.6	8.1	6.7	17.4	86.1	12.4	10.8	2.7	8.1	1.5	0.0	1.5	9.7	5.4	2.5	133.4	4.8	6.0	3,325	3,113
BHS6-ST2b-Port	STD. DEV.	4.0	0.0	83.5	0.2	178.0	99.8	12.1	8.5		119.1	8.4	_	-	7.4	4.2	0.0	4.2	-	-			8.7	10.0	0,020	0,110
	MIN	13.6	6.2	210.0	0.2	-239.0	895.0	2.0	2.0	2.0	29.0	4.3		100	0.9	0.0	0.0	0.0		3.0		-	0.1	0.2	1,000	1,000
	MAX	25.7	6.9		0.6	300.0	1216.0	38.0	26.0	78.0	380.0	31.0	1000		25.0	12.0	0.1	12.0		15.0			26.0	30.0	6,000	6,000
	n	3	3	3	3	3	3	3	3	3	3	3	3	3	3	.2.0	3	.2.0	3	3	3	3	3	3	3	3
	MEAN	16.3	6.6	400.0	0.1	-181.0	1082.7	21.0	18.7	32.0	146.3	20.4	20.3	6.3	14.1	0.0	0.0	0.0	14.1	6.9	3.2	95.0	7.9	10.3	4,320	3,729
BHS6-ST2b-Tee	STD. DEV.	2.3	0.0	88.9	0.0	95.3	166.1	18.1	16.6	21.4	167.7	15.3			8.6		0.0	0.0					8.2	9.3	1,020	0,720
	MIN	13.7	6.2	300.0	0.1	-237.0	897.0	2.0	1.0	15.0	49.0				8.7	0.0	0.0	0.0		3.0	-		1.0	1.4	1.800	1,800
	MAX	17.9		470.0	0.1	-71.0	1217.0		34.0	56.0	340.0		38.0	2 C	24.0	0.1	0.0	0.1	24.0	14.0	6	0.0	17.0	20.0	8,000	6,000
	n	1	1	3	1	1	1	2	2	4	3	5	5	×	7	6.1	7	7	7	0	0	0 0	0	0	0,000	0,000
	MEAN	19.7	6.9	119.0	2.5	40.0	929.0	41.0	28.0	55.8	32.3	49.7	6.0	-	11.0	42.7	0.4	36.9	47.9					-		
BHS6-DP01	STD. DEV.		0.0	28.2	2.0	10.0	02010	46.7	33.9	96.2	18.8	28.4	5.9		21.1	25.0	0.6	27.9	22.8			Ť				
	MIN	19.7	6.9	87.0	2.5	40.0	929.0	8.0	4.0	5.0	20.0	3.3			0.1	0.1	0.0	0.1	3.2							
	MAX	19.7	6.9		2.5	40.0	929.0	74.0	52.0	200.0	54.0	1			58.0	76.0	1.6	76.0								
	n	1	1	3	1	10.0	1	3	2	4	2	5	5		7	6	7	7	7	0	0	0	0	0	0	0
	MEAN	19.8	7.0	142.7	3.4	12.0	917.0	119.8	61.5	4.2	21.0	37.8	5.2	2.0	3.4	20.3	0.2	10.2	37.6	-		1			1	1
BHS6-DP02	STD. DEV.	10.0	1.0		0.1	12.0	01110	56.7	29.7	3.6			4.3		17.6	22.4	0.7	25.1	20.8		1	*				·
	MIN	19.8	7.0	95.0	3.4	12.0	917.0	86.0	44.0	2.0	20.0	7.4	0.5		0.1	0.3	0.0	0.0	6		-					1
	MAX	19.8		0	3.4	12.0	917.0		86.0	10.0	22.0				50.0	68.0	2.1	68.0	0			-				2
-	n	6	6	3	6	6	6	3	3	6	2	6	6		6	6	6	6	6	1	0	0	0	0	2	2
	MEAN	20.7	6.3	374.3	0.4	-132.5	933.8	3.8	3.5	75.5	49.5	20.1	10.1	4.0	6.1	9.7	0.6	10.1	16.1	0.2					13,266	4,837
BHS6-DP03	STD. DEV.	4.6	0.0	81.9		32.2	107.5	2.5	2.6		6.4		6.5		4.9	1	0.8	9.3	1	0.2					10,200	1,001
	MIN	14.4	5.5	310.0	0.2	-184.0	795.0	2.0	2.0	2.0	45.0	5.6	0.5		0.4	0.0	0.0	0.0	3.8	0.2					11,000	2,600
	MAX	26.8	6.8		0.8	-93.0	1101.0	7.0	7.0		54.0				14.0	22.0	2.1	22.0	29.4	0.2					16,000	9,000
	n	6	6	3	6.0	6	6	3		6	3	6	6	6	6	6	6	6	6	0.2	0	3	0	0	2	2
	MEAN	20.6	6.2	353.3	0.4	-142.7	979.0	4.0	4.0	109.7	99.3	11.8	8.5	4.2	4.3	2.9	0.4	3.3	7.5			8.0	0	0	11,225	775
BHS6-DP04	STD. DEV.	4.7	0.2	56.9	0.4	45.0	102.6	4.4	4.4	169.6	27.6	7.6			5.6	2	0.4	3.6	2		-	7.8			11,220	.15
	MIN	14.2	5.3	290.0	0.2	-184.0	888.0	1.0	1.0	13.0	68.0	3.8			0.0	0.0	0.0	0.0			-	3.4			1,400	760
	MAX	26.7	-		0.2	-80.0	1166.0	9.0	9.0	450.0	120.0	21.0	16.0		14.0	8.3	1.1	9.0			-	17.0			90,000	700
		20.7	0.5	+00.0	0.9	-00.0	1100.0	3.0	3.0	+50.0	120.0	21.0	1 10.0	1-+.0	14.0	0.5	1.1	3.0	1.5			17.0			30,000	,90

Notes:

 $^1 \text{Total}$ Nitrogen (TN) is a calculated value equal to the sum of TKN and $\text{NO}_{\chi_{\text{c}}}$

 $^{2}\mathrm{Organic}$ Nitrogen (ON) is a calculated value equal to the difference of TKN and $\mathrm{NH}_{\mathrm{3.}}$

 $^3\text{Total}$ Inorganic Nitrogen (TIN) is a calculated value equal to the sum of NH_3 and NO_X

⁴Geometric mean provided rather than arithmetic mean.

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS6 MONITORING REPORT NO. 7 PAGE 1-24 HAZEN AND SAWYER, P.C

5.0 B-HS6 Sample Event No. 7: Summary

5.1 Summary

The Sample Event No. 7 results indicate that:

- Septic tank effluent (STE) quality is characteristic of typical household STE quality, and within the range previously measured at this household. The TKN of 69 mg/L is in the range of values typically reported for Florida single family residence STE. As previously discussed, the NOx-N concentration of 36 mg/L is likely a laboratory error.
- The Stage 1 biofilter sample DP2 showed 98% reduction in ammonia concentration; effluent in the DP2 sample had an ammonia-N concentration of 1.4 mg/L.
- The Stage 1&2a effluent sample port (ST1&2a) between the Stage 1&2a combination tank outlet and the Stage 2b sulfur tank inlet, showed 86% reduction in ammonium concentration from STE.
- The Stage 2b sulfur biofilter (ST2b) effluent NO_x-N was 12 mg/L. The NO_x-N removal was not as high as typically seen through this system.
- The total nitrogen concentration in the final effluent from the total treatment system was 17.1 mg/L, of which 0.9 mg/L was NH₃-N, an approximately 98% reduction from STE.

o:\44237-001R004\Wpdocs\Report\Final

Appendix A: Laboratory Report

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS6 MONITORING REPORT NO. 7

PAGE A-1 HAZEN AND SAWYER, P.C.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

January 12, 2015 Work Order: 1412945

Project Name								
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Dilu	ution
Sample Description		BHS6-STE						
Matrix		Wastewater						
SAL Sample Number		1412945-01						
Date/Time Collected		12/29/14 13:16						
Collected by		Harmon Harden						
Date/Time Received		12/30/14 08:30						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.14	SM 4550SF	0.04	0.01	12/31/14 13:37	01/02/15 09:44	1
Ammonia as N	mg/L	61	EPA 350.1	3.6	0.85		01/02/15 17:42	90
Carbonaceous BOD	mg/L	74	SM 5210B	2	2	12/31/14 09:23	01/05/15 13:35	1
Chemical Oxygen Demand	mg/L	200	EPA 410.4	25	10	01/09/15 10:07	01/09/15 13:58	1
Nitrate+Nitrite (N)	mg/L	36	EPA 353.2	4.8	1.2		12/30/14 15:52	120
Nitrite (as N)	mg/L	0.13 I	SM 4500NO2-B	0.40	0.10		12/30/14 10:43	10
Phosphorous - Total as P	mg/L	7.7	SM 4500P-E	0.040	0.010	01/02/15 08:37	01/02/15 16:06	1
Sulfate	mg/L	10	EPA 300.0	0.60	0.20		01/05/15 14:13	1
Sulfide	mg/L	0.41	SM 4500SF	0.40	0.10		01/02/15 09:46	1
Total Alkalinity	mg/L	520	SM 2320B	8.0	2.0		01/05/15 13:53	1
Total Kjeldahl Nitrogen	mg/L	69	EPA 351.2	0.20	0.05	01/02/15 08:37	01/02/15 16:06	1
Total Suspended Solids	mg/L	42	SM 2540D	1	1	12/31/14 08:06	01/02/15 13:47	1
Nitrate (as N)	mg/L	36	EPA 353.2	5.2	1.3		12/30/14 15:52	120
Sample Description		BHS6-ST1&2a						
Matrix		Wastewater						
SAL Sample Number		1412945-03						
Date/Time Collected		12/29/14 13:26						
Collected by Date/Time Received		Harmon Harden 12/30/14 08:30						
		12/30/14 00:30						
<u>Inorganics</u> Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01	12/31/14 13:37	01/02/15 09:44	1
Ammonia as N	mg/L	8.7	EPA 350.1	0.40	0.095	12/01/14 10:07	01/02/15 17:13	10
Carbonaceous BOD	mg/L	6	SM 5210B	2	2	12/31/14 09:23	01/05/15 13:35	1
Chemical Oxygen Demand	mg/L	27	EPA 410.4	25	10	01/09/15 10:07		1
Nitrate+Nitrite (N)	mg/L	35	EPA 353.2	4.8	1.2	01/00/10 10:07	12/30/14 15:53	120
Nitrite (as N)	mg/L	0.10 U	SM	0.40	0.10		12/30/14 10:44	10
		0.10 0	4500NO2-B	0.10	0.10		. 2,00,14,10.44	10
Phosphorous - Total as P	mg/L	5.1	SM 4500P-E	0.040	0.010	01/02/15 08:37	01/02/15 16:06	1
Sulfate	mg/L	27	EPA 300.0	0.60	0.20		01/05/15 15:48	1
Sulfide	mg/L	0.10 U	SM 4500SF	0.40	0.10		01/02/15 09:46	1
Total Alkalinity	mg/L	200	SM 2320B	8.0	2.0		01/05/15 14:00	1
Total Kjeldahl Nitrogen	mg/L	9.0	EPA 351.2	0.20	0.05	01/02/15 08:37	01/02/15 16:06	1
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	12/31/14 08:06	01/02/15 13:47	1
iotal ouopollada oollad								

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 12, 2015

Work Order: 1412945

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Project Name		BHS6	SE#8					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed D	ilution
Sample Description		BHS6-ST1&2a-DUP						
Matrix		Wastewater						
SAL Sample Number		1412945-04						
Date/Time Collected		12/29/14 13:28						
Collected by		Harmon Harden						
Date/Time Received		12/30/14 08:30						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01	12/31/14 13:37	01/02/15 09:44	41
Ammonia as N	mg/L	8.8	EPA 350.1	0.40	0.095		01/02/15 17:13	3 10
Carbonaceous BOD	mg/L	5	SM 5210B	2	2	12/31/14 09:23	01/05/15 13:3	51
Chemical Oxygen Demand	mg/L	31	EPA 410.4	25	10	01/09/15 10:07	01/09/15 13:58	31
Nitrate+Nitrite (N)	mg/L	36	EPA 353.2	4.8	1.2		12/30/14 15:54	4 120
Nitrite (as N)	mg/L	0.10 U	SM 4500NO2-B	0.40	0.10		12/30/14 10:44	4 10
Phosphorous - Total as P	mg/L	5.2	SM 4500P-E	0.040	0.010	01/02/15 08:37	01/02/15 16:00	6 1
Sulfate	mg/L	27	EPA 300.0	0.60	0.20		01/05/15 16:11	1
Sulfide	mg/L	0.10 U	SM 4500SF	0.40	0.10		01/02/15 09:40	6 1
Total Alkalinity	mg/L	210	SM 2320B	8.0	2.0		01/05/15 14:07	7 1
Total Kjeldahl Nitrogen	mg/L	9.1	EPA 351.2	0.20	0.05	01/02/15 08:37	01/02/15 16:00	5 1
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	12/31/14 08:06	01/02/15 13:47	7 1
Nitrate (as N)	mg/L	36	EPA 353.2	5.2	1.3		12/30/14 15:54	4 120
Sample Description		BHS6-ST2b-P						
Matrix		Wastewater						
SAL Sample Number		1412945-05						
Date/Time Collected		12/29/14 13:08						
Collected by		Harmon Harden						
Date/Time Received		12/30/14 08:30						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.15	SM 4550SF	0.04	0.01	12/31/14 13:37	01/02/15 09:44	4 1
Ammonia as N	mg/L	0.90	EPA 350.1	0.040	0.009		01/02/15 16:03	31
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	12/31/14 09:23	01/05/15 13:3	51
Chemical Oxygen Demand	mg/L	29	EPA 410.4	25	10	01/09/15 10:07	01/09/15 13:58	31
Nitrate+Nitrite (N)	mg/L	12	EPA 353.2	0.40	0.10		12/30/14 15:24	4 10
Nitrite (as N)	mg/L	0.12 I	SM 4500NO2-B	0.40	0.10		12/30/14 10:4	5 10
Phosphorous - Total as P	mg/L	4.5	SM 4500P-E	0.040	0.010	01/02/15 08:37	01/02/15 16:00	
Sulfate	mg/L	190	EPA 300.0	6.0	2.0		01/05/15 16:22	2 10
Sulfide	mg/L	0.21 I	SM 4500SF	0.40	0.10		01/02/15 09:46	51
Total Alkalinity	mg/L	210	SM 2320B	8.0	2.0		01/05/15 14:14	41
Total Kjeldahl Nitrogen	mg/L	5.1	EPA 351.2	0.20	0.05	01/02/15 08:37	01/02/15 16:00	6 1
Total Suspended Solids	mg/L	6	SM 2540D	1	1	12/31/14 08:06	01/02/15 13:47	71
Nitrate (as N)	mg/L	12	EPA 353.2	0.80	0.20		12/30/14 15:24	4 10

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 12, 2015

Work Order: 1412945

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Project Name		BHS	S6 SE#8					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed [Dilution
Sample Description		BHS6-EB						
Matrix		Reagent Water						
SAL Sample Number		1412945-06						
Date/Time Collected		12/29/14 13:56						
Collected by		Harmon Harden						
Date/Time Received		12/30/14 08:30						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01	12/31/14 13:37	01/02/15 09:4	4 1
Ammonia as N	mg/L	0.009 U	EPA 350.1	0.040	0.009		01/02/15 16:0	5 1
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	12/31/14 09:23	01/05/15 13:3	5 1
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10	01/09/15 10:07	01/09/15 13:5	8 1
Nitrate+Nitrite (N)	mg/L	0.02 l	EPA 353.2	0.04	0.01		12/30/14 15:2	5 1
Nitrite (as N)	mg/L	0.01 U	SM 4500NO2-B	0.04	0.01		12/30/14 10:4	5 1
Phosphorous - Total as P	mg/L	0.010 U	SM 4500P-E	0.040	0.010	01/02/15 08:37	01/02/15 16:0	6 1
Sulfate	mg/L	0.20 U	EPA 300.0	0.60	0.20		01/06/15 10:0	8 1
Sulfide	mg/L	0.10 U	SM 4500SF	0.40	0.10		01/02/15 09:4	6 1
Total Alkalinity	mg/L	2.8 I	SM 2320B	8.0	2.0		01/05/15 14:1	7 1
Total Kjeldahl Nitrogen	mg/L	0.05 U	EPA 351.2	0.20	0.05	01/02/15 08:37	01/02/15 16:0	6 1
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	12/31/14 08:06	01/02/15 13:4	7 1
Nitrate (as N)	mg/L	0.02 1	EPA 353.2	0.08	0.02		12/30/14 15:2	5 1
Sample Description		BHS6-FB						
Matrix		Reagent Water						
SAL Sample Number		1412945-07						
Date/Time Collected		12/29/14 14:02						
Collected by		Harmon Harden						
Date/Time Received		12/30/14 08:30						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01	12/31/14 13:37	01/02/15 09:4	4 1
Ammonia as N	mg/L	0.019 I	EPA 350.1	0.040	0.009		01/02/15 16:0	
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	12/31/14 09:23	01/05/15 13:3	5 1
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10	01/09/15 10:07	01/09/15 13:5	
Nitrate+Nitrite (N)	mg/L	0.01 U	EPA 353.2	0.04	0.01		12/30/14 15:2	
Nitrite (as N)	mg/L	0.01 U	SM 4500NO2-B	0.04	0.01		12/30/14 10:4	6 1
Phosphorous - Total as P	mg/L	0.010 U	SM 4500P-E	0.040	0.010	01/02/15 08:37	01/02/15 16:0	6 1
Sulfate	mg/L	0.20 U	EPA 300.0	0.60	0.20		01/06/15 10:2	0 1
Sulfide	mg/L	0.10 U	SM 4500SF	0.40	0.10		01/02/15 09:4	6 1
Total Alkalinity	mg/L	2.0 U	SM 2320B	8.0	2.0		01/05/15 14:3	7 1
Total Kjeldahl Nitrogen	mg/L	0.05 U	EPA 351.2	0.20	0.05	01/02/15 08:37	01/02/15 16:0	6 1
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	12/31/14 08:06	01/02/15 13:4	7 1
Nitrate (as N)	mg/L	0.02 U	EPA 353.2	0.08	0.02		12/30/14 15:2	6 1

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 12, 2015

Work Order: 1412945

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Project Name		BHS	6 SE#8					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed [Dilution
Sample Description Matrix	v	3HS6-DP02 Vastewater						
SAL Sample Number Date/Time Collected Collected by	1	412945-08 2/29/14 13:46 Iarmon Harden						
Date/Time Received	1	2/30/14 08:30						
Inorganics								
Ammonia as N	mg/L	1.4	EPA 350.1	0.040	0.009		01/02/15 16:0	91
Carbonaceous BOD	mg/L	10	SM 5210B	2	2	12/31/14 09:23	01/05/15 13:3	51
Nitrate+Nitrite (N)	mg/L	41 J5	EPA 353.2	0.96	0.24		12/30/14 16:0	8 24
Nitrite (as N)	mg/L	0.15	SM 4500NO2-B	0.04	0.01		12/30/14 10:4	6 1
Total Alkalinity	mg/L	180	SM 2320B	8.0	2.0		01/05/15 14:4	31
Total Kjeldahl Nitrogen	mg/L	8.9	EPA 351.2	0.20	0.05	01/02/15 08:37	01/02/15 16:0	61
Total Suspended Solids	mg/L	86	SM 2540D	1	1	12/31/14 08:06	01/02/15 13:4	71
Nitrate (as N)	mg/L	41	EPA 353.2	1.0	0.25		12/30/14 16:0	8 24

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 12, 2015

Work Order: 1412945

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BA50206 - Digestion f	or TP and TKN									
Blank (BA50206-BLK1)					Prepared &	& Analyzed:	01/02/15 16	6:06		
Phosphorous - Total as P	0.010 U	0.040	0.010	mg/L						
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
LCS (BA50206-BS1)					Prepared &	& Analyzed:	01/02/15 16	3:06		
Phosphorous - Total as P	0.998	0.040	0.010	mg/L	1.0		100	90-110		
Total Kjeldahl Nitrogen	1.01	0.20	0.05	mg/L	1.0		101	90-110		
Matrix Spike (BA50206-MS1)		Source: 1	412945-06		Prepared &	& Analyzed:	01/02/15 16	3:06		
Phosphorous - Total as P	1.08	0.040	0.010	mg/L	1.0	ND	108	90-110		
Total Kjeldahl Nitrogen	1.09	0.20	0.05	mg/L	1.0	ND	109	90-110		
Matrix Spike (BA50206-MS2)		Source: 1	412945-07		Prepared &	& Analyzed:	01/02/15 16	3:06		
Phosphorous - Total as P	0.998	0.040	0.010	mg/L	1.0	ND	100	90-110		
Total Kjeldahl Nitrogen	1.05	0.20	0.05	mg/L	1.0	ND	105	90-110		
Matrix Spike Dup (BA50206-MS	D1)	Source: 1	412945-06		Prepared & Analyzed: 01/02/15 16:06					
Total Kjeldahl Nitrogen	1.08	0.20	0.05	mg/L	1.0	ND	108	90-110	0.9	20
Phosphorous - Total as P	1.09	0.040	0.010	mg/L	1.0	ND	109	90-110	0.6	25
Matrix Spike Dup (BA50206-MS	D2)	Source: 1	412945-07		Prepared &	& Analyzed:	01/02/15 16	6:06		
Total Kjeldahl Nitrogen	1.04	0.20	0.05	mg/L	1.0	ND	104	90-110	0.5	20
Phosphorous - Total as P	1.00	0.040	0.010	mg/L	1.0	ND	100	90-110	0.3	25
Batch BA50231 - Ammonia b	SEAL									
Blank (BA50231-BLK1)					Prepared &	& Analyzed:	01/02/15 1	5:48		
Ammonia as N	0.009 U	0.040	0.009	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 12, 2015

Work Order: 1412945

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BA50231 - Ammonia by S										
LCS (BA50231-BS1)					Prepared &	Analyzed:	01/02/15 1	5:50		
Ammonia as N	0.55	0.040	0.009	mg/L	0.50		110	90-110		
Matrix Spike (BA50231-MS1)		Source: 1	412945-01		Prepared &	Analyzed:	01/02/15 17	7:39		
Ammonia as N	59 L2	3.6	0.85	mg/L	0.50	61	NR	90-110		
Matrix Spike (BA50231-MS2)		Source: 1	413512-07		Prepared &	Analyzed:	01/02/15 16	6:17		
Ammonia as N	0.60 J2	0.040	0.009	mg/L	0.50	0.018	117	90-110		
Matrix Spike Dup (BA50231-MSD1)		Source: 1	412945-01		Prepared &	Analyzed:	01/02/15 17	7:41		
Ammonia as N	59 L2	3.6	0.85	mg/L	0.50	61	NR	90-110	1	10
Matrix Spike Dup (BA50231-MSD2)		Source: 1	413512-07		Prepared &	Analyzed:	01/02/15 16	6:19		
Ammonia as N	0.61 J2	0.040	0.009	mg/L	0.50	0.018	118	90-110	0.6	10
Batch BA50510 - alkalinity										
Blank (BA50510-BLK1)					Prepared &	& Analyzed:	01/05/15 13	3:32		
Total Alkalinity	2.0 U	8.0	2.0	mg/L						
LCS (BA50510-BS1)					Prepared &	Analyzed:	01/05/15 13	3:37		
Total Alkalinity	130	8.0	2.0	mg/L	120		106	90-110		
Matrix Spike (BA50510-MS1)		Source: 1	412945-06		Prepared &	& Analyzed:	01/05/15 14	4:23		
Total Alkalinity	130	8.0	2.0	mg/L	120	2.8	101	80-120		
Matrix Spike Dup (BA50510-MSD1)		Source: 1	412945-06		Prepared &	& Analyzed:	01/05/15 14	4:34		
Total Alkalinity	130	8.0	2.0	mg/L	120	2.8	101	80-120	0.09	26

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 12, 2015

Work Order: 1412945

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BA50511 - Ion Chroma	tography 300.0	Prep								
Blank (BA50511-BLK1)					Prepared &	Analyzed:	01/05/15 11	:58		
Sulfate	0.20 U	0.60	0.20	mg/L						
Surrogate: Dichloroacetate	0.819			mg/L	1.0		82	78-120		
LCS (BA50511-BS1)					Prepared &	Analyzed:	01/05/15 12	2:10		
Sulfate	9.44	0.60	0.20	mg/L	9.0		105	85-115		
Surrogate: Dichloroacetate	1.07			mg/L	1.0		107	78-120		
LCS Dup (BA50511-BSD1)					Prepared &	Analyzed:	01/05/15 12	2:21		
Sulfate	9.42	0.60	0.20	mg/L	9.0		105	85-115	0.2	200
Surrogate: Dichloroacetate	1.08			mg/L	1.0		108	78-120		
Matrix Spike (BA50511-MS1)		Source: 1	413540-02		Prepared &	Analyzed:	01/05/15 13	3:39		
Sulfate	1,570	60	20	mg/L	900	661	101	85-115		
Surrogate: Dichloroacetate	1.06			mg/L	1.0		106	78-120		
Matrix Spike (BA50511-MS2)		Source: 1	412945-05		Prepared &	Analyzed:	01/05/15 16	6:44		
Sulfate	281	6.0	2.0	mg/L	90	185	106	85-115		
Surrogate: Dichloroacetate	1.07			mg/L	1.0		107	78-120		
Batch BA50910 - COD prep										
Blank (BA50910-BLK1)					Prepared &	Analyzed:	01/09/15 13	3:58		
Chemical Oxygen Demand	10 U	25	10	mg/L						
LCS (BA50910-BS1)					Prepared &	Analyzed:	01/09/15 13	3:58		
Chemical Oxygen Demand	45	25	10	mg/L	50		90	90-110		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 12, 2015

Work Order: 1412945

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BA50910 - COD prep										
Matrix Spike (BA50910-MS1)		Source: 1	412945-06	;	Prepared 8	Analyzed:	01/09/15 13	3:58		
Chemical Oxygen Demand	47	25	10	mg/L	50	ND	94	85-115		
Matrix Spike Dup (BA50910-MSI	01)	Source: 1	412945-06	;	Prepared &	& Analyzed:	01/09/15 13	3:58		
Chemical Oxygen Demand	45	25	10	mg/L	50	ND	90	85-115	4	32
Batch BL43006 - Nitrite SM 4	500NO2-B by se	eal								
Blank (BL43006-BLK1)					Prepared 8	Analyzed:	12/30/14 10):41		
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
LCS (BL43006-BS1)					Prepared &	& Analyzed:	12/30/14 10):42		
Nitrite (as N)	0.0786	0.04	0.01	mg/L	0.080		98	90-110		
Matrix Spike (BL43006-MS1)		Source: 1	412945-08	ł	Prepared &	Analyzed:	12/30/14 11	1:01		
Nitrite (as N)	0.242 I	0.40	0.10	mg/L	0.10	0.148	94	77-119		
Matrix Spike Dup (BL43006-MSD	01)	Source: 1	412945-08	ł	Prepared &	Analyzed:	12/30/14 11	1:01		
Nitrite (as N)	0.236 I	0.40	0.10	mg/L	0.10	0.148	87	77-119	3	20
Batch BL43013 - Nitrate 353.	2 by seal									
Blank (BL43013-BLK1)					Prepared 8	& Analyzed:	12/30/14 1	5:15		
Nitrate+Nitrite (N)	0.0100 I	0.04	0.01	mg/L						
LCS (BL43013-BS1)					Prepared &	Analyzed:	12/30/14 1	5:17		
Nitrate+Nitrite (N)	0.786	0.04	0.01	mg/L	0.80		98	90-110		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 12, 2015

Work Order: 1412945

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BL43013 - Nitrate 353.2 b	y seal									
Matrix Spike (BL43013-MS1)		Source: 1	412945-08		Prepared 8	& Analyzed:	12/30/14 1	5:50		
Nitrate+Nitrite (N)	33.0 J2	4.8	1.2	mg/L	1.0	40.8	NR	90-110		
Matrix Spike Dup (BL43013-MSD1)		Source: 1	412945-08		Prepared &	Analyzed:	12/30/14 1	5:51		
Nitrate+Nitrite (N)	36.0 J2	4.8	1.2	mg/L	1.0	40.8	NR	90-110	9	20
Batch BL43016 - Sulfide prep										
Blank (BL43016-BLK1)					Prepared 8	Analyzed:	01/02/15 09	9:46		
Sulfide	0.10 U	0.40	0.10	mg/L						
LCS (BL43016-BS1)					Prepared &	Analyzed:	01/02/15 09	9:46		
Sulfide	4.51	0.40	0.10	mg/L	5.0		90	85-115		
Matrix Spike (BL43016-MS1)		Source: 1	412945-06	i	Prepared &	Analyzed:	01/02/15 09	9:46		
Sulfide	4.51	0.40	0.10	mg/L	5.0	ND	90	85-115		
Matrix Spike Dup (BL43016-MSD1)		Source: 1	412945-06		Prepared &	Analyzed:	01/02/15 09	9:46		
Sulfide	4.51	0.40	0.10	mg/L	5.0	ND	90	85-115	0	14
Batch BL43102 - TSS prep										
Blank (BL43102-BLK1)					Prepared:	12/31/14 An	alyzed: 01/	02/15 13:47		
Total Suspended Solids	1 U	1	1	mg/L						
LCS (BL43102-BS1)					Prepared:	12/31/14 An	alyzed: 01/	02/15 13:47		
Total Suspended Solids	45.0	1	1	mg/L	50		90	85-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 12, 2015

Work Order: 1412945

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BL43102 - TSS prep										
Duplicate (BL43102-DUP1)		Source: 1	413512-01		Prepared:	12/31/14 An	alyzed: 01/	02/15 13:47		
Total Suspended Solids	182	1	1	mg/L		172			6	30
Batch BL43103 - BOD										
Blank (BL43103-BLK1)					Prepared:	12/31/14 An	alyzed: 01/	05/15 13:35		
Carbonaceous BOD	2 U	2	2	mg/L						
LCS (BL43103-BS1)					Prepared:	12/31/14 An	alyzed: 01/	05/15 13:35		
Carbonaceous BOD	174	2	2	mg/L	200		87	85-115		
LCS Dup (BL43103-BSD1)					Prepared:	12/31/14 An	alyzed: 01/	05/15 13:35		
Carbonaceous BOD	184	2	2	mg/L	200		92	85-115	6	200
Duplicate (BL43103-DUP1)		Source: 1	413512-01		Prepared:	12/31/14 An	alyzed: 01/	05/15 13:35		
Carbonaceous BOD	270	2	2	mg/L		260			4	25

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

January 12, 2015

Work Order: 1412945

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

* Qualifiers, Notes and Definitions

Results followed by a "U" indicate that the sample was analyzed but the compound was not detected. Results followed by "I" indicate that the reported value is between the laboratory method detection limts and the laboratory practical quantitation limit.

A statement of estimated uncertainty of test results is available upon request.

For methods marked with **, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Test results in this report meet all the requirements of the NELAC standards. Any applicable qualifiers are shown below.

- L2 Analyte level in sample invalidated Matrix Spike.
- J5 Matrix spike of this sample was outside typical range. All other QC criteria were acceptable.
- J2 Quality control value for accuracy was outside control limits.

Questions regarding this report should be directed to :

Kathryn Nordmark Telephone (813) 855-1844 FAX (813) 855-2218 Kathryn@southernanalyticallabs.com

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

SOUTHERN ANALYTICAL LABORATORIES, INC. 110 BAYVIEW BOULEVARD, OLDSMAR, FL. 34677 B13-855-1844 fex 813-855-2218

Clien	t Name	and Sawye									Contact / Phone:	<u> </u>							
Proje	ect Name / Location				_														
Sam	plers: (Signature)	E#8																	
	27XH	r		r	1-1	ļ		ı		PARA	METER / CONTAIL	NER DESCRIPTIO	N		۹	1			r
SAL					ite	, Cool calinity, TSS, VOx, SO ₄	125mLP, H ₂ SO ₄ COD, TKN, NH ₃ , TP	500mLP, NaOH, Zn Acetate H₂S	500mLP, Cool Total Alkalinity, TSS, CBOD, NOX	. H ₂ SO4 1 ₃			_	Temperature	Field Conductivity	0			No. of Containers (Total per each location)
Only Sampl No.		Date	Time	Matrix	Composite Grab	500mLP, Cool Total Alkalinity, CBOD, NOX, S(125mLP, H ₂ SO ₄ COD, TKN, NH ₃	500mLP Acetate H ₂ S	500mLP Total All CBOD, 1	125mLP, H₂SO₄ TKN, NH₃			Field pH	Field Te	Field Co	Field DO			No. of C per each
01	BHS6-STE	12/29	13:16	ww	×	2	1	1					724	78	1169	.14			
02	BHS6-DP01	12/29		ww	×				1	1			÷*						
03		12/24	13:28	ww	x	2	1	1				_	6.40	16,9	886	1.47			
04	BHS6-ST1&2a-DUP	12/29	13.28	ww	×	2	1	1					637	16.7	890	1,52			
05	BHS6-ST2b-P	12/29	13:08	ww	×	2	1	1	ļ				054	15,9	987	.34			
06	BHS6-EB	12/29	1356	R	<u> </u>	2	1	1					6.01	240	3.7	532	72	-21	0
		12/29	14:02	R	×	2	1	1					554	/	28	5.62			ļ
Page	BHSG-DPOZ	1229	13:46	un					1	1			NB	é/					
12					+										ļ				
of 1			<u> </u>					· · · · · ·											
N			ļ																
Relin Relin Relin Relin	quished: Quishe	Received: Received: Received Received Received	fed et	1500 141414 1	Date/11	me:14 830 me:	14 ¹⁵	3:30	Receive Proper Rec'd w Volatile	ed on ice? preservativ rithin holdin s rec'd w /o	Temp_0,7 es indicated? g time? ut headspace?	ON NA ON NA ON NA ON NA ON NA Y NAVA		Ship to Harmo 1825 C	ons / Rem o: on Harde Cottage assee, F	en Grove		212-4	378
Relin	quished: Date/Time:	Received:			Date/Ti	me.			Proper	containers	used?	0 n na		12	412	92	ł5		

Chain of Custody xts Rev Date 11/19/01

Chain of Custody

SAL Project No. 1412945

Ackuritlabs, Inc.

3345 North Monroe Street, Tallahassee, FL 32303 • Telephone (850) 562-7751

Environmental Services Section

REPORT OF MICROBIOLOGICAL ANALYSIS

Report #:	25572
Report Date:	December 31, 2014
NELAC#:	E81350
FDEPQA#:	920087G
Project#:	211296
Sampled By:	Mark Busby
Sample Site:	Drive Septic System
Sample Date:	12-29-14

Table 1. Samples received 12-29-14.

Units:	Fecal Coliform # colonies/100 mL	Dilution Factor	<i>E. coli</i> # colonies/100 mL	Dilution Factor
Methodology:	SM 9222D		EPA 1603	
Detection Limit:	2.0		2.0	
Analysis Date:	12-29-14		12-29-14	
Analysis Time:	15:30		15:30	
Analyst:	AL		AL	
Sample Location/Time:				
Lab Number:				
ST2-P, 13:08				
#127184	1,300	100	1,000	100
STE, 13:16				
#127185	280,000	10,000	230,000	10,000
ST1, 13:26				
#127186	4,900	1,000	4,700	1,000
ST1 Dup, 13:28	5.000	1 000	4 200	1 000
#127187	5,000	1,000	4,200	1,000
Equipment Blank, 13:56	2011	2	2011	2
#127188 Field Blank, 13:56	2.0 U	2	2.0 U	2
#127189	2.0 U	2	2.0 U	2

Data Qualifiers that may apply:

U = Analyte was not detected and the indicated value is the detection limit.

B = Colony count exceeded the ideal of 20-60 (fecal coliform) or 20-80 (E. coli) colonies per plate.

Data Release Authorization:

Sample integrity and reliability certified by lab personnel prior to analysis. All quality assurance samples met quality control limits unless otherwise specified. The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval of Ackuritlabs. Please contact the undersigned at the above phone number with any questions regarding this report.

12-31-14

Amanda Lawhon, QA Officer

Ackuritlabs, Inc.

3345 N. Monroe Street, Tallahassee, FL 32303 · Telephone (850) 562-7751

CLIENT NAME & ADDRESS: Hazen + Sange LAB PROJECT #: 211296 PROJECT NAME: Siptic CONTACT PERSON: 5, stan PLASTIC CONTAINERS PRESERVATIVE **GLASS CONTAINERS** SAMPLE N S Н В Z Т A CONTAINERS WHIRLPAK - WW WHIRLPAK - DW WHIRLPAK - ICE BLANK Zn(C₂H₃O₂)₂ $Na_2S_2O_3$ 250 mL 500 mL 25 mL 250 mL 125 mL 500 mL NaOH 1 Liter mL Liter NH HNO H₂SO₄ TRIP HCI 40 REMARKS QUANTITY PRECLEANED CONTAINERS RELINQUISHED BY: MARIL Buby RELINQUISHED BY. RECEIVED BY: Mark Durby DATE: TIME TIME: DATE RECEIVED BY DATE: TIME DATE: TIME: SAMPLERS: (PRINT NAME) SAMPLE GRAB OR COMPOSITE ANALYSES REQUESTED OF CONTAINERS COLLECTION MARK Buby SAMPLERS: (SIGNATURE) 2014 60 Mark Kerly MATRIX STATION LOCATION/NUMBER FIELD ID TIME DATE NO. NUMBER MM/DD/YY LAB ID# \$1 6 ST2-P 1308 12-24-14 un 127184 H2 STE 1316 12718 3 STI 127186 1326 4 STI Dup 1328 127187 Equment Black 1356 127188 V Blank C 6 127189 Field 1402 COMMENTS: SAMPLES RECEIVED: ICED (Y IN TEMP: 18.0 °C HOLD TIME YIN PROPER PRESERVATION Y/N RELINQUISHED BY(SIGNATURE) / AFFILIATION / DATE & TIME RECEIVED BY(SIGNATURE) / AFFILIATION / DATE & TIME MARK Bushy ACIC 12-29-14 1505 RELINQUISHED BY (SKONATURE) / AFFILIATION / DATE & TIME 12-29-14 1505 RECEIVED BY(SIGNATURE) / AFFILIATION / DATE & TIME RELINQUISHED BY(SIGNATURE) / AFFILIATION / DATE & TIME RECEIVED BY(SIGNATURE) / AFFILIATION / DATE & TIME . SW SURFACE WATER DW DRINKING WATER HZ HAZARDOUS WASTE MATRIX TYPES: SL SLUDGE WW WASTE WATER FT FISH TISSUE MI MICROBENTHIC INVERTEBRATES SE SEDIMENT GW GROUND WATER SO SOIL SH SHELLFISH OT OTHER

age

Oľ

2

2

CHAIN OF CUSTODY RECORD

Page ______ of /____

Appendix B: Operation & Maintenance Log

Table B.1Operation and Maintenance Log

Date	Description
9/12/2013	Checked system. Met with contractor regarding second system construction.
11/5/2013	Started installation of second passive treatment system.
11/6/2013	Finished installation
11/14/2013	High water alarm in pump tank. Pump was not working.
	Contractor repaired loose wiring. Pump had not run from time of installation.
	Cleaned two Stage 1 sprayers clogged with construction debris.
11/20/2013	Preliminary Sample Event No. 1 (STE and ST1).
	No ponding in drainfield observation ports.
	Cleaned all four Stage 1 sprayers - not clogged but were not spraying properly.
12/4/2013	Preliminary Sample Event No. 2
	Ponding of 1.5 inches in drainfield obs. port #2, other three ports were dry.
12/20/2013	Preliminary sampling indicated nitrification was insufficient
	Checked and cleaned Stage 1 sprayers.
	Even after cleaning, majority of spray going straight down.
12/21/2013	Rotated Stage 1 sprayers so they are spraying straight up on the tank lid.
	Observed better coverage of Stage 1 media
1/9/2014	Site visit. System ok.
	Observed that vents on Stage 1 tank were pushed down (kids had pushed down).
	Vents were pulled back up and resealed with existing mastic.
	The owner has not mentioned any odor concerns.
1/22/2014	Sample Event No. 1
3/7/2014	Site visit. System ok. Observed one of the sprayers had a broken tip.
	Ponding of 1/4 inch in observation port #2, all others dry.
3/20/2014	Removed existing sprayers. Installed 3 Orenco sprayers.
3/24/2014	Site visit. System ok. Ponding of 1/4 inch in observation port #2, all others dry.
	Sprayers working well.
4/10/2014	Sample Event No. 2
	Water level within Stage 1&2a tank elevated approximately 14-inches.
4/10/2014	Installed piezometer in the Stage 1&2a tank.
4/14/2014	Attempt to clear clog in the inlet pipe to Stage 2b tank with plumbing snake.
4/16/2014	Cleared clog in inlet pipe to Stage 2b tank with compressed air and rubber bladder.
	Water level in piezometer in Stage 1&2a tank dropped by approximately 12 inches.
4/28/2014	System Check. Ponding of 1/4 inch in observation port #2, all others dry.
	Sprayers working well. Water level in ST1 sample port elevated by less than 2 inches.

PAGE B-1 HAZEN AND SAWYER, P.C.

Table B.1 (con't)Operation and Maintenance Log

5/7/2014	Sample Event No. 3.				
	Water level in ST1 sample port elevated by approximately 4 inches.				
5/27/2014	System Check				
	Water level in ST1 sample port elevated by approximately 8 inches				
5/30/2014	Started repair of sulfur tank inlet pipe. Drained tank, removed a portion of sulfur.				
5/31/2014	Finished removing sulfur from the tank to access inlet pipe at the bottom of media.				
	Repaired inlet pipe to sulfur tank and placed sulfur back into the tank.				
6/23/2014	Sample Event No. 4				
	Water level in Stage 1 tank at normal operational level.				
7/21/2014	System Check				
	Water level in Stage 1 tank elevated by approximately 1 inch.				
8/27/2014	Sample Event No. 5				
	Water level in Stage 1 tank elevated by approximately 2 inches.				
9/26/2014	System Check				
	Water level in Stage 1 tank elevated by approximately 8 inches.				
10/3/2014	System Check				
	Water level in Stage 1 tank elevated by approximately 7 inches.				
	Two end sprayers are spinning slow, not full coverage.				
10/7/2014	System repair				
	Began installation of cleanout on outflow pipe of Stage 1&2a tank.				
10/9/2014	System repair				
	Finished installation of cleanout on outflow pipe of Stage 1&2a tank.				
10/16/2014	System repair				
	Drilled holes in Stage1&2a effluent collection pipe, inside of Stage 1&2a tank.				
	Cleaned PNRS flowmeter. This increased dose volume back to normal level.				
10/19/2014	System repair				
	Drilled additional holes in Stage1&2a effluent collection pipe, inside tank.				
10/20/2014	System repair				
	Replaced all three sprayers with new ones.				
10/30/2014	Sample Event No. 6				
	Water level in Stage1&2a tank at normal operational level.				
11/26/2014	System Check				
	Water level in Stage1&2a tank at normal operational level.				
12/29/2014	Sample Event No. 7				
	Water level in Stage1&2a tank at normal operational level.				

Appendix C: Vericomm PLC Data

System	n Status		12/29/2014 14:37	12/7/2014 11:44	11/26/2014 12:41	11/8/2014 12:2
Point	Description	Status	Status	Status	Status	Status
1	Alarm Status	Automatic	OK	OK	ОК	OK
2	Alert Status	Automatic	OK	OK	OK	OK
3	System Mode	Automatic	Normal	Normal	Normal	Normal
5	Timer Mode	Automatic	Normal	Normal	Normal	Normal
6	Active Off Time	Automatic	180.0 Minutes	180.0 Minutes	180.0 Minutes	180.0 Minutes
7	Active On Time	Automatic	2.0 Minutes	2.0 Minutes	2.0 Minutes	2.0 Minutes
9	Pump Mode	Automatic	OffCycl	OffCycl	OffCycl	OffCycl
10	Pump Status	Automatic	Off	Off	Off	Off
Setting	IS					
Point	Description	Status	Value	Value	Value	Value
17	Off Cycle Time	Constant/Setpoint	180.0 Minutes	180.0 Minutes	180.0 Minutes	180.0 Minutes
18	On Cycle Time	Constant/Setpoint	2.0 Minutes	2.0 Minutes	2.0 Minutes	2.0 Minutes
19	Override Off Cycle Time	Constant/Setpoint	30.0 Minutes	30.0 Minutes	30.0 Minutes	30.0 Minutes
	Override On Cycle Time	Constant/Setpoint	2.0 Minutes	2.0 Minutes	2.0 Minutes	2.0 Minutes
21	Minimum Override Cycles	Automatic	3.0 Cycles	3.0 Cycles	3.0 Cycles	3.0 Cycles
23	Override Cycle Limit per Day	Constant/Setpoint	21.0 Cycles	21.0 Cycles	21.0 Cycles	21.0 Cycles
	Time Limit per Day	Constant/Setpoint	200.0 Minutes	200.0 Minutes	200.0 Minutes	200.0 Minutes
25	High Level Pump Test	Automatic	5.0 Minutes	5.0 Minutes	5.0 Minutes	5.0 Minutes
28	Alarm Update Interval	Timing Override	240.0 Minutes	240.0 Minutes	120.0 Minutes	480.0 Minutes
29	Page Delay	Automatic	960.0 Minutes	960.0 Minutes	960.0 Minutes	960.0 Minutes
	Page Interval	Automatic	30.0 Minutes	30.0 Minutes	30.0 Minutes	30.0 Minutes
31	Local Alarm Delay	Constant/Setpoint	1140.0 Minutes	1140.0 Minutes	1140.0 Minutes	1140.0 Minutes
32	Local Reactivate Delay	Automatic	120.0 Minutes	120.0 Minutes	120.0 Minutes	120.0 Minutes
	eshooting					
	Description	Status	Value	Value	Value	Value
	Top Float Status	Automatic	ОК	ОК	ОК	ОК
	Middle Float Status	Automatic	OK	ОК	OK	OK
35	Bottom Float Status	Automatic	ОК	ОК	ОК	ОК
37	Contactor Status	Automatic	ОК	ОК	ОК	ОК
	Pump Status	Automatic	OK	OK	ОК	OK
	Filter Status	Automatic	OK	OK	ОК	OK
-	Tank Status	Automatic	ОК	OK	OK	OK
43	Power Status	Automatic	ОК	OK	OK	OK
	ata (at the time of Vericomm call-in)					
	Description	Status	Value	Value	Value	Value
	Pump Run Time Today	Automatic	10.1 Minutes	33.3 Minutes	8.1 Minutes	19.2 Minutes
	Override Cycles Today	Automatic	0.0	8.0	0.0	4.0
	Pump Cycles Today	Automatic	5.0 Cycles	15.0 Cycles	4.0 Cycles	8.0 Cycles
	Average Run Time per Cycle Today	Automatic	2.0 Minutes	2.2 Minutes	2.0 Minutes	2.4 Minutes
04	Brownouts Today	Automatic	0.0	0.0	0.0	0.0

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS6 MONITORING REPORT NO. 7

PAGE C-1 HAZEN AND SAWYER, P.C.

Appendix C

January 2015

30-Day	/ History Data		12/29/2014 2:37	12/7/2014 11:44	11/26/2014 12:41	11/8/2014 12:21
Point	Description	Status	Value	Value	Value	Value
65	30 Day Average Run Time per Day	Automatic	19.4 Minutes	17.7 Minutes	17.7 Minutes	21.7 Minutes
66	30 Day Average Override Cycles per Day	Automatic	1.7 Cycles	1.3 Cycles	1.6 Cycles	3.0 Cycles
67	30 Day Average Cycles per Day	Automatic	9.1 Cycles	8.3 Cycles	8.4 Cycles	10.4 Cycles
68	30 Day Average Run Time per Cycle	Automatic	2.1 Minutes	2.1 Minutes	2.1 Minutes	2.1 Minutes
71	30 Day Total Pump Run Time	Automatic	582.9 Minutes	530.0 Minutes	531.2 Minutes	650.9 Minutes
72	30 Day Total Override Cycles	Automatic	51.0 Cycles	39.0 Cycles	47.0 Cycles	89.0 Cycles
73	30 Day Total Cycles	Automatic	274.0 Cycles	250.0 Cycles	253.0 Cycles	311.0 Cycles
76	30 Day Total Brownouts	Automatic	0.0	0.0	0.0	0.0
Fotaliz	ed Pump Data					
Point	Description	Status	Value	Value	Value	Value
82	Pump Total Run Time	Automatic	1693.0 Hours	1686.3 Hours	1682.5 Hours	1677.5 Hours
83	Pump Total Cycles	Automatic	50953.0 Cycles	50761.0 Cycles	50656.0 Cycles	50512.0 Cycles
lisce	laneous					
Point	Description	Status	Value	Value	Value	Value
145	Pump On Auto	Automatic	Off	Off	Off	Off
147	Pump Test Today	Automatic	Off	On	Off	On
148	Pump Check Enable	Automatic	Off	Off	Off	Off
149	Total Override Cycles	Automatic	0.0	0.0	0.0	0.0
150	High Level Condition	Automatic	Off	Off	Off	Off
151	Leak Check Enable	Automatic	On	On	On	On
152	Brownout State	Automatic	Off	Off	Off	Off
153	Test Mode	Automatic	Off	Off	Off	Off
	Points		-		-	
	Description	Status	Value	Value	Value	Value
	General Alarm	Automatic	Off	Off	Off	Off
	New Alarm	Automatic	Off	Off	Off	Off
	Update Central Enable	Automatic	On	On	On	On
	Page Alarm Start	Automatic	Off	Off	Off	Off
	Pager Signal	Override Off	Off	Off	Off	Off
	Local Alarm Start	Automatic	Off	Off	Off	Off
	Local Alarm Silence	Automatic	Off	Off	Off	Off
	& Outputs					
-	Description	Status	Value	Value	Value	Value
	High Level/Override Timer Float Input	Automatic	Off	Off	Off	Off
178	Timer Float Input	Automatic	On	On	On	On
179	Redundant Off Float & Low Level Alarm Input	Automatic	On	On	On	On
181	Push To Silence Input	Automatic	Off	Off	Off	Off
	Auxiliary Contact Input	Automatic	Off	Off	Off	Off
182					Off	Off
	Pump Output	Automatic		UII		
186	Pump Output Alarm Light Output	Automatic Automatic	Off Off	Off Off	Off	Off