Florida Onsite Sewage Nitrogen Reduction Strategies Study

Task C
Quality Assurance Project Plan

Draft Report
October 2009
Florida Onsite Sewage Nitrogen Reduction Strategies Study

TASK C
DRAFT REPORT

Quality Assurance Project Plan

Prepared for:

Florida Department of Health
Division of Environmental Health
Bureau of Onsite Sewage Programs
4042 Bald Cypress Way Bin #A-08
Tallahassee, FL 32399-1713

FDOH Contract CORCL

October 2009

Prepared by:

HAZEN AND Sawyer
Environmental Engineers & Scientists

In Association With:
# Table of Contents

Section 1.0 Introduction ........................................................................................................... 1-1

1.1 Project Background .......................................................................................... 1-1
1.2 Project Scope and Purpose ........................................................................ 1-2
1.3 Project Organization .................................................................................. 1-3

Section 2.0 Task C Description ......................................................................................... 2-1

2.1 Description of Activities .................................................................................. 2-1

2.1.1 Controlled Field Testing at GCREC ......................................................... 2-1

2.1.1.1 GCREC Site Conditions ................................................................. 2-1
2.1.1.2 Test Area Design ............................................................................. 2-5
2.1.1.3 Monitoring Framework ................................................................. 2-6
2.1.1.4 Tracer Testing .................................................................................. 2-10

2.1.2 Field Monitoring at Home Sites ............................................................. 2-11

2.1.2.1 Site Selection .................................................................................. 2-11
2.1.2.2 Monitoring Framework ................................................................. 2-12

2.2 Performance Assessment ............................................................................... 2-14
2.3 Contingency Measures .................................................................................. 2-15

Section 3.0 Quality Assurance and Quality Control ......................................................... 3-1

3.1 Data Quality Objectives (DQOs) ................................................................. 3-1
3.2 Field Activities ............................................................................................ 3-2

3.2.1 Sample Methods ..................................................................................... 3-2

3.2.1.1 Sample Collection ........................................................................... 3-3
3.2.1.2 Sample Handling and Custody ...................................................... 3-8
3.2.1.3 Sample Analysis ............................................................................. 3-10
3.2.1.4 QC Samples .................................................................................. 3-13
3.2.2 Field Testing ................................................... 3-15  
3.2.3 Non-standard or Alternative Field Methods .... 3-17  

3.3 Laboratory Activities..................................................... 3-19  

3.4 Documentation, Assessment, and Reporting............... 3-20  
3.4.1 Documentation....................................................... 3-20  
3.4.2 Data Assessment.................................................... 3-22  
3.4.2.1 Precision ................................................. 3-23  
3.4.2.2 Accuracy .................................................. 3-23  
3.4.2.3 Representativeness ............................. 3-24  
3.4.2.4 Comparability .................................. 3-24  
3.4.2.5 Completeness ................................ 3-24  
3.4.2.6 Validation ........................................... 3-25  
3.4.3 Reporting ......................................................... 3-25  

3.5 QA Surveillance ......................................................... 3-26  

Section 4.0 Health and Safety ................................................. 4-1  
4.1 Hazard Assessment..................................................... 4-1  
4.2 Personal Protection Requirements .......................... 4-5  
4.3 Emergency Response............................................... 4-6  

Section 5.0 References .......................................................... 5-1  

Appendix A GCREC Memo................................................. A-1  
Appendix B 50% Test Design .............................................. B-1  
Appendix C Activity Hazard Analysis .................................. C-1
List of Tables

Table 2.1  Selected Soil Properties of Soils Identified at the GCREC Facility...........2-4
Table 2.2  Study Design Conditions for Test Areas..................................................2-5
Table 2.3  Summary of Field Monitoring Framework.............................................2-13

Table 3.1  List of FDEP SOPs (FDEP-SOP-001/01) for Task C..............................3-3
Table 3.2  Summary of Sample Collection .............................................................3-4
Table 3.3  Summary of Field Measurements.........................................................3-6
Table 3.4  Nomenclature for Sample Identification................................................3-9
Table 3.5  Sample Analyses Methods ....................................................................3-12
Table 3.6  Sample Analyses Requirements............................................................3-13
Table 3.7  Summary of QC Samples Collected and Analyses Conducted.............3-14

Table 4.1  Microorganisms Found in STE and Untreated Wastewater .............4-2
           (in MPN/100 mL)
Table 4.2  Pathogenic Microorganisms Found in STE and Untreated Wastewater.4-3
           (Lowe et al., 2007)
List of Figures

Figure 1-1  Nitrogen Processes Occurring in a Typical OSTDS ......................... 1-2
           (after Heatwole and McCray, 2007)

Figure 2-1  GCREC Facility Soil Survey (NRCS, 2009).................................. 2-3
Figure 2-2  General Schematic of Unsaturated Zone Monitoring Framework at ... 2-8
           the GCREC
Figure 2-3  Illustration of Standpipe and Drive Point Piezometers.................. 2-10

Figure 3-1  Configuration of Soil Suction Lysimeters Used for Pore Water ....... 3-18
           Sample Collection(from www.soilmeasurement.com)
Section 1.0
Introduction

1.1 Project Background

Nitrogen is an important concern for water quality and nitrate-nitrogen represents perhaps the most common groundwater pollutant. Animals, crops, ecosystems, and human health can be adversely impacted by the presence of nitrogen in water supplies. The environmental effects of nitrogen on groundwater and surface water can ultimately lead to the degradation of surface waters in watershed systems that have strong groundwater/surface water interactions. Nitrogen that enters surface water bodies via these interactions can lead to algal blooms and eutrophication. These processes lead to oxygen depletion in surface waters which can be harmful to natural aquatic life. In Florida, the protection of watersheds, in particular surface water bodies, has led to the legislation of protection of these areas (i.e., the Wekiva River Protection Act).

Nitrogen transport in the subsurface is a complex process, especially when considering the nitrogen inputs from onsite sewage treatment and disposal systems (OSTDS). Figure 1-1 summarizes the conceptual understanding of the inputs of nitrogen and the transformative and advective processes that lead to nitrogen contamination of groundwater. Additional discussion regarding the fate and transport of nitrogen and its movement and distribution in groundwater related to OSTDS was presented in the Task C Literature Review.
1.0 Introduction

October 2009

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY

TASK C DRAFT QUALITY ASSURANCE PROJECT PLAN

HAZEN AND SAWYER, P.C.

Figure 1-1: Nitrogen Processes Occurring in a Typical OSTDS
(after Heatwole and McCray, 2007)

As a result of the widespread impacts of nitrogen on groundwater and surface waters in Florida, the management of nitrogen sources, including OSTDS, is of paramount concern for the protection of the environment. As part of Task C of the Florida Onsite Sewage Nitrogen Reduction Strategies (FOSNRS) Study, field testing related to nitrogen fate and transport will be conducted at the University of Florida Gulf Coast Research and Education Center (GCREC) and individual residential home sites to evaluate expected full-scale performance and produce data required for calibration and validation of fate and transport models developed in Task D.

1.2 Project Scope and Purpose

The overall goal of Task C is to critically characterize nitrogen reduction in Florida soils and groundwater. To accomplish this goal several objectives are identified:

- determine the cumulative mass loading of N to the soil and groundwater (i.e., at the GCREC),
1.0 Introduction

- identify how currently designed and implemented OSTDS perform (i.e., home sites),
- understand treatment processes involved, and
- obtain/refine model parameter inputs (e.g., denitrification rates).

To meet these objectives a combination of controlled field testing and field monitoring at home sites is planned. Controlled field testing will be conducted at the GCREC. Home sites will be selected from three regions: north Florida, central Florida, and south Florida. Monitoring at each site will include effluent quality, hydraulic loading rate to the soil, soil properties, groundwater properties, groundwater concentrations, and climate/weather conditions. The project approach is described in detail in Section 2.0.

1.3 Project Organization

Task C is comprised of several interrelated subtasks that fall within four primary categories:

1) literature review and work plan development,
2) controlled pilot-scale testing,
3) field monitoring, and
4) reporting.

The literature review and work plan development are the first tasks to be completed. This Quality Assurance Project Plan (QAPP) describes the proposed testing and field monitoring framework building off of the existing knowledge of OSTDS performance. The literature review has been previously submitted to the Florida Department of Health (FDOH) and the Research Review and Advisory Committee (RRAC) for review (Task C.1). Supplemental plans to this QAPP will include the homeowner agreement (Task C.6), home site installation reports (Task C.7), and the test facility design and construction (Tasks C.11 – C.18). The work described in this QAPP encompasses the entire scope of the 5 year project. However, efforts to be completed in subsequent years will build off of the previous findings using the observational method, and will be dependent on future project funding.

Controlled pilot-scale testing will be conducted at GCREC to characterize nitrogen fate and transport under a variety of typical operating conditions. The test area will be highly monitored in the both the unsaturated and saturated zones to enable definition of key
1.0 Introduction

October 2009

treatment processes. Tracer tests are also planned to determine groundwater velocity and enable assessment of the groundwater dilution that occurs in an OSTDS. Each test area will be monitored to delineate effluent quality, hydraulic and nitrogen loading rates to the soil, nitrogen transformation in the vadose zone, and potential groundwater impacts. Sufficient temporary piezometers will be used to enable hydrogeologic characterization.

Field monitoring will be conducted at residential home sites in Florida to evaluate current nitrogen reduction in soil and groundwater. The nitrogen mass loading to the environment and the resulting groundwater concentrations will provide input for parameter selection as well as validation of the simple models developed in Task D. Each site will be monitored to delineate the OSTDS effluent quality, hydraulic and nitrogen loading rates to the soil, and potential groundwater impacts. Sufficient temporary piezometers will be used to enable hydrogeologic characterization.

Reporting of Task C results and findings will be through submittal of routine monitoring reports. A final report summarizing the results of Task C will be provided at the completion of the overall project.
Section 2.0
Task C Description

Controlled field testing will be conducted during the first phase of Task C with field monitoring at individual home sites conducted in subsequent phases. This approach will enable more efficient instrumentation and monitoring of home sites by applying what has been learned from the controlled field testing to the monitoring framework at each home. For example, if it is determined through controlled field testing that treatment in the unsaturated zone is very similar for each operating condition (e.g., 30% removal in 2 feet of soil), then the number of monitoring points in the unsaturated zone at the homes sites can be minimized. Alternatively, monitoring at the controlled field test areas may suggest that specific conditions are critical to capture (e.g., significant rainfall events) and the frequency of monitoring may be modified to ensure key operational stages or conditions are sufficiently characterized. The following sections describe the field activities that will be conducted during the controlled field testing and outline the field activities anticipated during the individual home field monitoring.

2.1 Description of Activities

The work scope described in this section is consistent with the scope of work and deliverables in the FOSNRS contract. The following description of activities provides details related to the controlled field testing and field monitoring including the test area design, operating conditions, number and location of monitoring points, sample collection and analyses, and data handling.

The overall goal of Task C is to critically characterize nitrogen reduction in Florida soils and groundwater. To accomplish this goal several objectives are identified:

2.1.1 Controlled Field Testing at GCREC

Controlled pilot-scale testing will be conducted at the GCREC to characterize nitrogen fate and transport under a variety of typical operating conditions.

2.1.1.1 GCREC Site Conditions

The GREC facility is located at 14625 County Road 672, Wimauma, Florida. The facility is situated on 475 acres of land that were donated by Hillsborough County government. A preliminary soils assessment conducted by the United States Department of Agricul-
ture (USDA) Natural Resources Conservation Service (NRCS) identified the soils in the area to be used for this project as primarily Seffner fine sand and Zolfo fine sand, with a limited area of Myakka fine sand (Figure 2-1). The Zolfo fine sand in the northeastern portion of the project area gradually transitions to Seffner fine sand in the southwestern portion of the project area. These soils are somewhat poorly to poorly drained and are typical of the Florida flatwoods land resource area. A well developed spodic horizon was identified between 54 and 58 inches in the northeastern portion of the project area. Selected key soil properties of the soils in the project area are summarized in Table 2.1. The Test Facility Site Evaluation with soils information is provided in Appendix A for reference.
2.0 Task C Description

Figure 2-1: GCREC Facility Soil Survey (NRCS, 2009)
### Table 2.1
Selected Soil Properties of Soils Identified at the GCREC Facility

<table>
<thead>
<tr>
<th>Soil Name</th>
<th>Depth (in.)</th>
<th>USDA Texture</th>
<th>Moist Bulk Density (g/cm³)</th>
<th>Organic Matter (%)</th>
<th>Cation Exchange Capacity (meq/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seffner fine sand</td>
<td>0-13</td>
<td>fine sand</td>
<td>1.35 – 1.45</td>
<td>0 – 2.9</td>
<td>1.2 – 7.6</td>
</tr>
<tr>
<td></td>
<td>13-21</td>
<td>fine sand, sand</td>
<td>1.35 – 1.45</td>
<td>0 – 2.9</td>
<td>0.7 – 5.6</td>
</tr>
<tr>
<td></td>
<td>21-80</td>
<td>fine sand, sand</td>
<td>1.50 – 1.60</td>
<td>0 – 2.9</td>
<td>0.7 – 5.6</td>
</tr>
<tr>
<td>Zolfo fine sand</td>
<td>0-3</td>
<td>fine sand</td>
<td>1.35 – 1.55</td>
<td>0 – 2.9</td>
<td>1.0 – 3.8</td>
</tr>
<tr>
<td></td>
<td>3-60</td>
<td>fine sand, sand</td>
<td>1.30 – 1.60</td>
<td>0 – 2.9</td>
<td>0.8 – 3.6</td>
</tr>
<tr>
<td></td>
<td>60-80</td>
<td>fine sand, sand</td>
<td>1.50 – 1.70</td>
<td>0 – 2.9</td>
<td>--</td>
</tr>
<tr>
<td>Myakka fine sand</td>
<td>0-5</td>
<td>fine sand</td>
<td>1.35 – 1.45</td>
<td>0.5 – 2.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>5-20</td>
<td>fine sand, sand</td>
<td>1.45 – 1.60</td>
<td>0 – 1.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>20-30</td>
<td>fine sand, sand,</td>
<td>1.45 – 1.60</td>
<td>1.0 – 6.0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loamy fine sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-80</td>
<td>fine sand, sand</td>
<td>1.45 – 1.70</td>
<td>0 – 0.8</td>
<td>--</td>
</tr>
</tbody>
</table>

1. Typical soil properties from “Soil Survey of Hillsborough County, FL”, NRCS

Seasonal high water table indicators were found between 24 and 39 inches. Water level measurements were obtained from existing piezometers in the project area in March, June and July 2009. Based on these water level measurements depth to groundwater ranged from approximately 3 ft to 6 ft below ground surface. It should be noted that the 6 ft depth to groundwater was measured in March 2009 after a three-year drought in the area. The regional groundwater gradient in the project area is from northeast to southwest.

Wastewater from the GCREC research offices and onsite dormitories flow to an existing OSTDS. Wastewater from Facility laboratories is not directed to the OSTDS. This existing OSTDS consists of a pressure dosed mound system designed for 2,850 gallons per day. Two septic tanks (2,500 and 1,250 gallons) provide primary treatment followed by a dosing tank (3,000 gallons). The mound drainfield has 4,351 ft² of infiltrative area (design hydraulic loading rate of 0.65 gpd/ft²) with each half of the drainfield receiving alternating doses. As part of this project, a flow meter will be installed to monitor the actual daily flow to the drainfield.
2.1.1.2 Test Area Design

Test areas representative of typical mounded OSTDS will be established at the GCREC to enable controlled testing and evaluation of nitrogen reduction in soil and groundwater. Four test areas will be established receiving either septic tank effluent (STE) or nitrified effluent delivered to the soil via a pressure dosed mound or a shallow drip dispersal system (Table 2.2). Effluent will be delivered to the soil at the maximum allowable rate for the sandy soils of 0.8 gpd/ft². The combination of STE at the maximum hydraulic loading rate represents the highest allowable mass loading rate to the soil and is therefore expected to provide the most conservative nitrogen removal resulting in the highest expected concentrations of nitrogen reaching the groundwater. However, it is also recognized that many systems in Florida employ an aerobic treatment unit (ATU) which results in delivery of a nitrified effluent to the soil treatment unit (aka, drainfield). Delivery of both STE and nitrified effluent to the soil will enable comparison of the groundwater plumes and evaluation of the benefits (or lack of) of nitrogen transformation and/or reduction prior to groundwater recharge. These two effluents will be delivered to the soil via conventional pressure dosed mound systems or shallow subsurface drip dispersal systems (mounded as required to meet groundwater separation). The drip dispersal system is designed to optimize nitrogen removal through plant uptake and reduce the mobile nitrate-nitrogen fraction that recharges the groundwater. A more detailed description of nitrogen uptake in drip dispersal systems can be found in Parzen (2007).

Table 2.2

<table>
<thead>
<tr>
<th>Test Area ID</th>
<th>Effluent Quality</th>
<th>Design HLR (gpd/ft²)</th>
<th>Soil Treatment Unit Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA1</td>
<td>STE</td>
<td>0.8</td>
<td>pressure dosed mound</td>
</tr>
<tr>
<td>TA2</td>
<td>STE</td>
<td>0.8</td>
<td>shallow drip dispersal</td>
</tr>
<tr>
<td>TA3</td>
<td>nitrified effluent</td>
<td>0.8</td>
<td>pressure dosed mound</td>
</tr>
<tr>
<td>TA4</td>
<td>nitrified effluent</td>
<td>0.8</td>
<td>shallow drip dispersal</td>
</tr>
<tr>
<td>TA5</td>
<td>in situ nitrified effluent (Task A)</td>
<td>from PNRS II pilots</td>
<td>mounded drip dispersal over denitrification media</td>
</tr>
<tr>
<td>TA6</td>
<td>in situ STE effluent (Task A)</td>
<td>from PNRS II pilots</td>
<td>mounded drip dispersal over denitrification media</td>
</tr>
</tbody>
</table>

STE will be pumped from the first GCREC septic tank to a holding tank near the test areas. Excess effluent will be returned to the existing GCREC mound to prevent effluent from discharging to the ground and to minimize the holding tank residence time. A portion of the STE from this holding tank will be directed to an approved aerobic treatment unit (e.g., textile filter, single pass sand filter, or other) with the treated effluent held in a
separate tank as the source of the nitrified effluent. The aerobic treatment unit will be operated in accordance to approved manufacturer specifications and allowed to begin nitrifying (10 to 30 days from start-up) prior to delivery to the soil.

Test areas TA1 – TA4 will have an infiltrative surface of 40 ft$^2$ (20 ft long and 2 ft wide) and receive effluent in 6 equal doses of 5.33 gallons/dose each day. Equal distribution of effluent to the soil will enable replicate monitoring locations along the length of each test area. Orifice controlled pressure distribution, with orifices located at 1 ft intervals, will be used to deliver the effluent to the mound test areas. This delivery approach will ensure that effluent is equally distributed along the length of the mound. Effluent will be delivered via commercial pressure tubing with pressure compensating emitters located at 1 ft intervals in the drip dispersal systems.

Mound test areas will be constructed using two rows of orifice controlled pressure distribution piping placed 1 ft apart in the center of a 20 ft long, 2 ft wide, and 1 ft thick gravel (mineral aggregate meeting requirements of 64E-6.014(5)(C)) infiltrative surface. One ft of mound or filter sand will underlie the gravel and be placed on the ground surface, providing at least 2 ft of unsaturated separation during high water tables and 3 or more ft of unsaturated separation during low water tables. Native soil will be placed over the gravel with vegetation to minimize erosion. Sides of the mound will be graded to a slope of 2:1 (horizontal:vertical). Additional detail is illustrated on the 50% Test Facility Design drawings (Task C.12) provided in Appendix B for reference.

Drip dispersal test areas will be constructed in 1.5 ft of mound or filter sand placed on the ground surface, again providing at least 2 ft of unsaturated separation during high water tables and 3 or more ft of unsaturated separation during low water tables. Two rows of commercially available drip tubing will be placed 4 to 6 inches deep and 1 ft apart. Turf grass will be placed on the drip dispersal area to replicate a typical residential installation. Additional detail is illustrated on the 50% Test Facility Design drawings (Task C.12) provided in Appendix B for reference.

Test areas will be separated by 20 to 30 ft to minimize potential plume interactions between each test area. In addition, prior to test area construction, vertical and horizontal groundwater gradients will be determined. Test areas will be oriented with the 20 ft dimension in line with the horizontal gradient to further minimize potential plume interactions and enable groundwater plume characterization with fewer monitoring points.

2.1.1.3 Monitoring Framework

Each test area will be monitored for operational conditions, unsaturated and saturated nitrogen concentrations, soil properties, groundwater properties, and weather conditions.
Operational conditions include effluent quality, hydraulic loading rate to the soil, and ponding on the soil infiltrative surface. The STE and nitrified effluent quality will be monitored weekly for the first month and then bi-monthly for the duration of testing. Due to the multiple wastewater sources to the septic tank, the STE quality is expected to be relatively consistent (compared to typical single family residential homes). The sampling frequency will be further reduced, if indeed the effluent quality is consistent, but the frequency will remain sufficient to estimate nitrogen mass loading rates to the soil. Effluent samples will be analyzed for temperature, specific conductance, pH, dissolved oxygen (DO), total kjeldahl nitrogen (TKN), nitrate-nitrogen, ammonium-nitrogen, and chloride. In addition, half of the samples will also be analyzed for pH, alkalinity, 5-day carbonaceous biochemical oxygen demand (cBOD₅), total phosphorus, total solids (TS), total suspended solids (TSS), fecal coliform and \(E.\text{coli}\). Up to 10% of the samples will also be analyzed for anions and cations. Sample collection, handling and analysis methods will be in accordance with Florida Department of Environmental Protection (FDEP) standard operating procedures (SOPs) and are discussed in Section 3.0. The hydraulic loading rate to the soil will be monitored by recording the delivery pump cycles and with a flow meter for each test area. Should ponding develop within the gravel of the mound test areas, the ponding height will be recorded with water level indicators (+/- 1/32 in. ponding) and visual observations.

The center of test areas TA1 – TA4 will be equipped with unsaturated and shallow saturated zone monitoring instrumentation. Up to two sets of such monitoring equipment will be placed in each of the four test areas. This instrumentation will include stainless steel suction lysimeters, soil moisture probes, and tensiometers. Suction lysimeters, soil moisture probes, and tensiometers will be located at 0.5, 1.0, 1.5, 2.5, and 3.5 ft below the bottom of the gravel or below the drip emitter. During installation, the depth intervals may be adjusted to capture the transition between soil layers (e.g., spodic horizon noted in Soil Survey) and the capillary zone of the low water table. At least four soil moisture probe depth intervals will be located in the unsaturated zone to ensure adequate parameter estimation during inverse modeling (Ritter et al. 2004). Installation methods are discussed in Section 3.0. Figure 2-2 provides general schematics illustrating the locations of the unsaturated zone instrumentation.
Suction lysimeter samples will be collected at 1, 3, 5, 7, 9, and 11 months after effluent delivery. All unsaturated zone solution samples will be analyzed for temperature, pH, specific conductance, DO, TKN, nitrate-nitrogen, ammonium-nitrogen, and chloride. In addition, half of the samples will also be analyzed for alkalinity, chemical oxygen demand (COD), and total phosphorus. COD is a measure of the oxygen equivalent of the organic matter content that is susceptible to oxidation by a strong chemical oxidant and can be empirically related to cBOD₅. Because cBOD₅ is expected to be at very low concentrations in soil moisture and groundwater samples and is time consuming to measure, COD will be analyzed instead of cBOD₅. Up to 10% of the samples will also be analyzed for dissolved organic carbon (DOC), anions, and cations. Note the 0.2 micron nominal pore size of the suction lysimeter precludes total organic carbon (TOC), solids, and microorganism sample analyses. Sample handling and analysis methods will be in accordance with FDEP SOPs and are discussed in Section 3.0. Sample frequency may be increased or decreased to capture seasonal trends and/or changes in system performance as the biozone is developed. Previous work at CSM with suction lysimeter sampling suggests changes in treatment performance within a mature soil treatment unit are adequately captured with samples collected at intervals up to 2 to 3 months (Tillotson, 2009). In addition, samples collected daily over 2 weeks showed relative percent difference (RPD) in soil pore water concentrations of only 13% for ammonium, 11% for...
nitrate, and 10% for chloride. Rather than discrete time intervals, it is more important to capture changes in operating conditions (e.g., start-up vs. mature system) and seasonal changes (rainy season vs. dry season, hot periods vs. cool periods, etc.). Soil moisture content will be collected at least hourly through an automated data logging system. During selected intervals, soil moisture content may be collected every minute to provide high resolution data for short time periods such as capturing effluent movement between doses. Soil tension will be measured at selected time periods to obtain sufficient data resolution to correlate with soil moisture measurements and for parameter estimation during Task D.

Saturated zone monitoring will include groundwater quality, depth of groundwater table, and gradient (i.e., water level). Groundwater will be monitored through two types of piezometers: small diameter standpipe piezometers and drive point piezometers (Figure 2-3). Standpipe piezometers are 0.75 to 1.0 inch diameter wells for groundwater sampling, water levels, and hydraulic testing (e.g., pump tests, slug tests, etc.). Drive point piezometers are stainless steel drive points attach to polyethylene tubing and will be used to locate and define groundwater plumes and enable collection of groundwater samples. Installation methods are described in Section 3.0. Initially up to 12 drive point piezometers will be installed along 2 or 3 transects perpendicular to groundwater flow. Seven or more multi-level piezometers will be installed within the project area (encompassing all four test areas) to monitor vertical gradients, horizontal gradients, and nitrogen flux. One standpipe piezometer will be located at the center of the test area adjacent to the unsaturated zone instrumentation. Two additional standpipe piezometers will be installed down gradient of the test area. These downgradient standpipe piezometers may not be installed until a groundwater plume is identified and additional hydrogeologic information is required.
2.0 Task C Description

Figure 2-3: Illustration of Standpipe and Drive Point Piezometers

Water level measurements will be taken from all piezometers monthly. Initially, specific conductance, nitrate, and chloride will be monitored monthly, at a minimum, to identify development of a groundwater plume from each test area. After development of a groundwater plume, groundwater samples will be collected at the same frequency and for the same analytes as the soil suction lysimeter samples described above. In addition, all groundwater samples will be analyzed for specific conductance, DO, and chloride. The location of the groundwater samples will be based on groundwater quality field screening (specific conductance). Sufficient groundwater samples will be collected to delineate the groundwater plume (horizontal and vertical) and determine denitrification rates.

2.1.1.4 Tracer Testing

Tracer tests will be conducted at two time points during test area operation; prior to effluent delivery and after six months or more of effluent delivery. Bromide (Br⁻) will be used as a conservative tracer (added to clean water or effluent as potassium bromide) representative of the water movement through soil, although some diffusion from mobile to immobile water may occur. The first tracer test, prior to effluent delivery to the test areas, will enable characterization of the background groundwater velocity and dilution. The second test will be conducted after a groundwater plume has been defined and enable comparison of the subsurface changes attributed to effluent delivery. During this
second tracer test, a nitrogen isotope tracer ($^{15}$N ammonium chloride) may be added to assess concentration, movement and species partitioning of nitrogen in the effluent delivered to the soil. Tracer test methods are described in Section 3.0.

2.1.2 Field Monitoring at Home Sites

Field monitoring will be conducted at residential home sites in Florida to evaluate current nitrogen reduction in soil and groundwater, to assess groundwater impacts due to conventional and nitrogen removal systems, and to provide data for parameter estimation, and verification and validation of models developed in Task D. Field monitoring will be conducted in subsequent phases of this project and are dependent on continued funding. However, the existing OSTDS at the GCRC will be monitored during this first phase allowing for methodology refinement for future home site monitoring.

2.1.2.1 Site Selection

Up to 8 home sites from three geographical regions (north, central, and south Florida) will be selected for inclusion in this study. Six of these home sites will be monitored. The remaining two sites will enable quick replacement of a home site if it is subsequently deemed inappropriate after monitoring has begun (i.e., unplanned extended absence of the homeowner, homeowner withdraws, etc.).

Home sites located in Wakulla County will serve as representative homes of northern Florida. Wakulla County covers approximately 607 square miles and is predominantly rural (~51 people per square mile). Home sites in Wakulla County are currently being monitored by project team members (Water Research Consulting, LLC) to assess nitrogen in groundwater from performance-based treatment systems. Selected locations within the soil treatment unit have been monitored, but the full extent of the groundwater plume has not been delineated. Leveraging monitoring at these sites will provide historical information beneficial to understanding longer-term behavior and performance. For central Florida, home sites will be located in the Wekiva Study Area, and for southern Florida, home sites will be located near the Gulf Coast in Charlotte County. The Wekiva Study Area covers approximately 300,000 acres within Seminole, Lake and Orange Counties, and is the subject of considerable recent study and proposed nitrogen reduction regulations pertaining to OSTDS. Home sites in the Wekiva Study Area have also been previously monitored by project team members (Mechling Engineering & Consultants, Inc.) to assess fate and transport of nitrogen in highly vulnerable aquifers. Leveraging monitoring at these sites will build off of a large existing knowledge base and again provide understanding of longer-term behavior and performance. Charlotte County covers approximately 694 square miles and is predominantly urban in the eastern portions of the county and rural in the western portions (~216 people per square mile). FDOH permit information will be gathered for each candidate site and a system inspec-
tion and evaluation will be conducted at the selected sites. If suitable home sites with willing home owners cannot be identified in these locations, the search for sites will be broadened to include additional Counties.

Factors that will be considered during site selection will encompass a range of conditions affecting nitrogen mass loading to the soil and resulting groundwater concentrations. It is not the intent of this study to monitor older OSTDS which do not meet recent or current code requirements. Rather, only approved and permitted sites will be considered ranging in system age from 5 to 10 years old. To enable comparison of the findings with the controlled testing at GCREC, one conventional OSTDS (i.e., STE) and one approved ATU or nitrogen reducing OSTDS (i.e., nitrified effluent) will be monitored in each geographic location. Key factors to be considered also include homeowner amenability, site access, occupancy, and daily household flow. Homeowner amenability is critical. Field monitoring will include installation of numerous instruments which the homeowner must be comfortable with. After potential candidate sites are selected based on FDOH permit review, project team members will meet with prospective homeowners to discuss the project goals and scope. An agreement will be established with the homeowner if identified for inclusion in this study. Site access is also a critical factor. Only sites with readily accessible OSTDS will be selected (no landscape interferences, nearby power and clean water). Candidate sites will have two or more occupants residing in the home year round. To the extent possible, home sites with daily household flow within typical ranges (e.g., 50 – 70 gallons per capita per day) will be selected. After selection, each home site will be equipped with a flow meter. Should daily household flow rates be significantly outside the typical range, the site will be removed from the study and an alternate site included. While numerous subtleties exist between individual OWS, monitoring these key conditions and factors will enable comparison of sites between the three geographical regions and determination of the relative impact of mass loading and nitrogen reduction based on hydraulic loading rate, effluent quality, and season.

2.1.2.2 Monitoring Framework

The existing OSTDS at the GCREC provides a unique opportunity to combine controlled field testing with field scale monitoring. Methods for field monitoring and refinement of the overall monitoring framework will be conducted here to enable development of the simple groundwater model in Task D and streamline future data collection at home sites. The following framework is specific to the existing OSTDS at the GCREC. Field monitoring at home sites will be patterned on the same framework with revisions to sample locations and frequency based on the findings at the GCREC site.

Field monitoring will follow 5 general steps as summarized in Table 2.3. First, the plume extent and location will be determined. Second, based on the delineation of the plume,
the site will be instrumented with drive point and standpipe piezometers. Next the aquifer will be characterized to determine the groundwater gradient, hydraulic conductivity, and velocity. Following aquifer characterization, routine monitoring will be conducted for at least 12 months. Finally, based on each data collection event, the need for additional information and instrumentation will be assessed. Additional data will be collected as needed to refine the evaluation of nitrogen reduction from OSTDS (e.g., higher resolution of data collection for a short period of time to capture key conditions, additional tracer testing with $^{15}$N isotope tracers to refine denitrification rates). Methods for field activities and laboratory analyses during each step are described in Section 3.0.

Table 2.3
Summary of Field Monitoring Framework

<table>
<thead>
<tr>
<th>Step</th>
<th>Purpose</th>
<th>Approach</th>
<th>Data to be Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plume identification</td>
<td>sampling grid for groundwater screening</td>
<td>in-field measurements of groundwater specific conductivity</td>
</tr>
<tr>
<td>2</td>
<td>Instrumentation</td>
<td>install multi-level drive point piezometers and shallow standpipe piezometers</td>
<td>soil properties determined from soil borings during standpipe piezometer installation</td>
</tr>
<tr>
<td>3</td>
<td>Aquifer characterization</td>
<td>conduct pump test and slug tests on standpipe piezometers</td>
<td>hydraulic gradient, saturated hydraulic conductivity baseline tracer test</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>establish groundwater velocity, dispersivity coefficients, and groundwater dilution</td>
</tr>
<tr>
<td>4</td>
<td>Routine monitoring</td>
<td>effluent quality, groundwater concentrations, water levels, climatic conditions</td>
<td>water quality parameters as necessary to determine nitrogen reduction</td>
</tr>
<tr>
<td>5</td>
<td>Additional instrumentation, testing, and/or monitoring</td>
<td>as warranted</td>
<td>refine denitrification rates, aquifer properties</td>
</tr>
</tbody>
</table>

Initially a grid will be established downgradient of the soil treatment unit. A 25 ft by 25 ft grid will be marked (a smaller grid such as 10 ft by 10 ft will be used for home sites with smaller soil treatment units). Hand held methods (e.g., slide hammer, hand auger) will place a drive point connected to flexible tubing in the subsurface. The specific conductivity of the groundwater at that location will be measured and recorded. The drive point will be advanced to additional depths, as feasible, to obtain a vertical conductivity profile at that location. Based on the groundwater specific conductivity, the general plume location and extent will be determined.
After the groundwater plume has been identified, drive point and standpipe piezometers will be installed. Up to 20 multi-level (up to 5 depths) drive point piezometers will be installed based on the extent of the plume. This network of drive point piezometers will enable vertical and horizontal monitoring of nitrogen in groundwater. Four standpipe piezometers will also be installed: one upgradient of the plume and three within the plume downgradient of the soil treatment unit. These standpipe piezometers will enable aquifer characterization of the gradient and saturated hydraulic conductivity. Soil samples will be collected from the soil borings during standpipe installation to determine general soil properties (lithology, soil features, organic matter content, grain size, etc.). An installation report describing the monitoring system installed will be provided for each home site (Deliverable C.7).

Next the aquifer will be characterized through a pump test and slug tests to determine the saturated hydraulic conductivity and variability within the plume. A conservative tracer test will be conducted to determine groundwater velocity and the affect of aquifer dilution.

Routine groundwater and effluent quality monitoring will be conducted at least four times (i.e., seasonally) to capture the range of likely climatic conditions. Groundwater and effluent samples will be analyzed for temperature, pH, specific conductance, DO, TKN, nitrate-nitrogen, ammonium-nitrogen, and chloride. Effluent samples will also be analyzed for TS and TSS. In addition, half of the samples will also be analyzed for alkalinity, cBOD₅ or COD, total phosphorus, fecal coliform and E.coli. Up to 10% of the samples will also be analyzed for anions and cations. Sample collection, handling and analysis methods will be in accordance with FDEP SOPs and are discussed in Section 3.0. Higher frequency sample collection and additional sample analysis as needed for model development, calibration, and validation may be conducted based on the results from the GCREC OSTDS monitoring. Sufficient groundwater samples will be collected to delineate the groundwater plume (horizontal and vertical) and determine denitrification rates. A monitoring report describing the each monitoring event will be provided for each home site (see Section 3.4.3).

Finally, based on the field monitoring results, additional testing and/or instrumentation may be required. Additional testing and monitoring will be conducted as needed to ensure the data quality objectives (DQOs) are met or it is determined that the required data collection is not feasible (Section 3.1).

2.2 Performance Assessment
The performance assessment of Task C will be evaluated by the acquisition of sufficient data to:
2.0 Task C Description

- delineate nitrogen reduction in the soil and groundwater at the selected sites, and
- calibrate and validate the simple model developed in Task D.

Successful completion of the first measure listed above will enable determination of the cumulative mass loading of N to the soil and groundwater, identify how currently designed and implemented OSTDS perform, and provide understanding of treatment processes occurring with OSTDS. The second measure will enable development of a simple, yet robust, model for nitrogen fate and transport in Florida subsurface environments in Task D. The combination of these two measures will provide an understanding of how Florida OSTDS perform and a user-friendly tool to predict nitrogen concentration at specified location downgradient of an OSTDS or the nitrogen loading / mass flux at a specified location.

2.3 Contingency Measures

The observational method for technical decision making will be employed during controlled field testing and home site monitoring. This method is a continuous, integrated, process of design, monitoring, and review that enables modifications to be incorporated into the field monitoring framework as appropriate. The observational method provides for initial design based on the most probable conditions rather than the most unfavorable. The gaps in the available information are then filled by observations (e.g., nitrogen concentrations, subsurface soil layers, daily flow rates, etc.) which aid in the assessment of the groundwater by modifying the monitoring framework based on these findings. This approach enables decisions in the field and can be described as a “learn as you go” method. For example, the observational method enables locating groundwater piezometers based on field screening of groundwater specific conductance rather than at preselected locations that may not capture the highest nitrogen concentrations (critical for being able to determine the denitrification rate and nitrogen fate and transport). Coupled with the observational method for this study are identification of additional home sites, infeld screening approaches, frequent data review and assessment, and flexibility in the number and location of sampling points as well as frequency of sample collection. This initial monitoring framework and observational method will be consistent with the Task C DQOs.

During Task C, corrective actions may be required for two types of problems: analytical or equipment problems and nonconformance problems. Analytical or equipment problems may occur during sampling, sample handling, sample preparation, field measurements, laboratory analysis, and data review. Nonconformance problems may develop at any time during these activities and are often discovered during data review. Analytical laboratory contingency measures are discussed in Section 3.3.
Members of the field team will monitor ongoing work performance as a normal part of their daily responsibilities. All project personnel will promptly identify, report, and solicit approved correction for conditions adverse to quality. All findings and actions concerning equipment problems and nonconformance problems will be documented in field or office logbooks.

Equipment problems or nonconformance problems should be reported to the Hazen and Sawyer project manager. The field team will then document the condition, its cause, any other related information, and the proposed corrective action. The field team will implement the corrective actions and document them in the field logbook. If appropriate, the field team will ensure that no additional work that is dependent on the nonconforming activity is performed until the corrective actions are completed.

Examples of corrective actions for field measurements include:

- Repeat the measurement to check the error;
- Check for all proper adjustments for ambient conditions, such as temperature;
- Check instrument batteries;
- Recalibrate instrument or device; and
- Replace the instrument or measurement device.
Section 3.0
Quality Assurance and Quality Control

3.1 Data Quality Objectives (DQOs)
The general quality assurance (QA) objective for Task C is to ensure that the field data collected are of known and acceptable quality. When available, FDEP SOPs will be used for conducting field sampling to ensure that representative data will be collected (FDEP-SOP-001/01, FDEP-QA-002/02). Specific DQOs for Task C are to:

- ensure that the home sites selected for monitoring are sufficiently characterized to be representative of the target waste stream and of properly installed OSTDS in Florida;
- ensure that the groundwater contamination by nitrogen is defined and the nitrogen reduction that is occurring is quantified at the home sites and the controlled field test site;
- ensure that soil, soil pore water, and groundwater samples are of sufficient quality to assess the presence and concentration of nitrogen (TKN, ammonium-nitrogen, nitrate-nitrogen), pH, alkalinity, carbon (TOC/DOC, CBOD$_5$, COD), and fecal coliform bacteria;
- ensure sufficient sample resolution to assess the variability within home sites and at the controlled field test site; and
- ensure sufficient sample resolution to determine model input parameters required for Task D model calibration and verification for assessment of nitrogen removal.

Of key importance is to define the groundwater concentrations and areal extent of contamination. This data will enable development of model input parameters as well as field calibration and verification of the simple model developed in Task D. Ultimately the data collected during Task C will be used to make decisions on the behavior of groundwater plumes and the mechanisms contributing to nitrogen reduction (e.g., dilution, denitrification, aerobic treatment prior to soil dispersal). While some uncertainty in the groundwater concentrations is expected, sufficient sampling locations are required to define the groundwater plume (both vertical and horizontal extent) such that factors affecting nitrogen reduction can be assessed. For example, to determine nitrogen reduction (C/$C_0$),
the maximum groundwater concentration is essential to determine the maximum reduction.

Data quality indicators will be used to collectively define the quality of the submitted data. These indicators include both qualitative and the quantitative quality control (QC) measures. Task C activities that affect data quality include the sampling design, field collection methods, laboratory analysis, and data analysis. The specific methods and quantitative data QA measures (e.g., accuracy, precision, completeness and detection limit) are described in the following sections. In addition, specific qualitative control measures to be used both field and the laboratory are also described (e.g., data type, frequency of use, handling of failed QC measures).

3.2. Field Activities

The Task C sampling framework and methodology were described in Section 2. The following descriptions pertain to the field methods to be used. Laboratory activities are described in Section 3.3.

3.2.1 Sample Methods

To preserve the sample integrity, proper sample handling procedures will be employed from the time of sample collection in the field through sample analysis. Table 3.1 lists the FDEP SOPs that are pertinent to Task C. The SOPs will be kept on site and will be used by field personnel performing field work for the project.
3.2.1.1 Sample Collection

As described in Section 2, several different types of samples will be collected in Task C including effluent samples, soil samples, groundwater samples, and soil pore moisture samples (see Section 3.2.3 for soil pore moisture samples). In addition, routine monitoring will include several field measurements including pH, temperature, specific conductance, dissolved oxygen, soil moisture content, and soil tension. Finally, operating conditions and weather conditions will be monitored and recorded. Sampling methods will be in accordance with FDEP-SOPs (FS 1000). The sample collection methods and field measurement methods are described below and are summarized in Tables 3.2 and 3.3. Associated QC samples are summarized in Section 3.2.1.4.
### Table 3.2
**Summary of Sample Collection**

<table>
<thead>
<tr>
<th>Type of Sample</th>
<th>Analysis</th>
<th>Frequencya</th>
<th>Sample Collection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled Test Site (GCREC)</td>
<td>TKN, nitrate-nitrogen, ammonium-nitrogen</td>
<td>weekly during the first month of operation, then bimonthly</td>
<td>peristaltic pump grab sample</td>
</tr>
<tr>
<td></td>
<td>pH, alkalinity, cBOD&lt;sub&gt;5&lt;/sub&gt;, total phosphorus, total solids, total suspended solids, fecal coliform and &lt;i&gt;E.coli&lt;/i&gt;</td>
<td>50% of the samples</td>
<td>depth specific grab sample</td>
</tr>
<tr>
<td></td>
<td>anions and cations</td>
<td>10% of the samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TKN, nitrate-nitrogen, ammonium-nitrogen, pH, alkalinity, cBOD&lt;sub&gt;5&lt;/sub&gt;</td>
<td>to be determined</td>
<td></td>
</tr>
<tr>
<td>Effluent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td>lithology, soil features, organic matter content, grain size</td>
<td>1 ft intervals to the total depth and location of standpipe piezometers</td>
<td>direct push soil core</td>
</tr>
<tr>
<td>Groundwater</td>
<td>nitrate-nitrogen</td>
<td>monthly at drive point piezometer locations until plume is established</td>
<td>low flow peristaltic pump grab sample</td>
</tr>
<tr>
<td></td>
<td>TKN, nitrate-nitrogen, ammonium-nitrogen</td>
<td>every 2 months at drive point piezometer locations after plume is established</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH, alkalinity, COD, total phosphorus</td>
<td>50% of the samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>anions and cations</td>
<td>10% of the samples</td>
<td></td>
</tr>
<tr>
<td>Soil moisture</td>
<td>TKN, nitrate-nitrogen, ammonium-nitrogen</td>
<td>1, 3, 5, 7, 9, and 11 months after effluent delivery</td>
<td>in situ suction lysimeter</td>
</tr>
<tr>
<td></td>
<td>pH, alkalinity, COD, total phosphorus</td>
<td>50% of the samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>anions and cations</td>
<td>10% of the samples</td>
<td></td>
</tr>
</tbody>
</table>
### Table 3.2 continued
**Summary of Sample Collection**

<table>
<thead>
<tr>
<th>Type of Sample</th>
<th>Analysis</th>
<th>Frequencya</th>
<th>Sample Collection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Sitesb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Effluent</strong></td>
<td>TKN, nitrate-nitrogen, ammonium-nitrogen</td>
<td>four times</td>
<td>peristaltic pump grab sample</td>
</tr>
<tr>
<td></td>
<td>pH, alkalinity, cBOD₅, total phosphorus, total solids, total suspended solids, fecal coliform and <em>E.coli</em></td>
<td>50% of the samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>anions and cations</td>
<td>10% of the samples</td>
<td></td>
</tr>
<tr>
<td><strong>Soil</strong></td>
<td>lithology, soil features, organic matter content, grain size</td>
<td>1 ft intervals to the total depth and location of standpipe piezometers</td>
<td>direct push soil core</td>
</tr>
<tr>
<td><strong>Groundwater</strong></td>
<td>water level</td>
<td>monthly</td>
<td>water level indicator</td>
</tr>
<tr>
<td></td>
<td>TKN, nitrate-nitrogen, ammonium-nitrogen</td>
<td>four times</td>
<td>low flow peristaltic pump grab sample</td>
</tr>
<tr>
<td></td>
<td>pH, alkalinity, COD, total phosphorus, fecal coliform and <em>E.coli</em></td>
<td>50% of the samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>anions and cations</td>
<td>10% of the samples</td>
<td></td>
</tr>
</tbody>
</table>

*see Tables 3.5 and 3.6 for analysis methods, detection limits, preservation, and holding times.*

*a  The number, location, and frequency of sample collection will be based on the observational method (in-field screening approaches, frequent data review and assessment).*

*b  Sample locations and frequency based on the findings at the GCREC site.*
### Table 3.3
**Summary of Field Measurements**

<table>
<thead>
<tr>
<th>Type of Measurement</th>
<th>Measurement</th>
<th>Frequencya</th>
<th>Field Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled Test Site (GCREC)</td>
<td>HLR</td>
<td>weekly</td>
<td>flow meter</td>
</tr>
<tr>
<td></td>
<td>ponding</td>
<td></td>
<td>visual observation</td>
</tr>
<tr>
<td>Operational Conditions</td>
<td>temperature, precipitation, barometric pressure, wind speed, relative humidity, ET</td>
<td>at least weekly</td>
<td>field weather station</td>
</tr>
<tr>
<td>Effluent</td>
<td>temperature, specific conductance, pH, DO, and chloride</td>
<td>weekly during the first month of operation, then bimonthly</td>
<td>flow through test cell, ISE</td>
</tr>
<tr>
<td>Groundwater</td>
<td>specific conductance and chloride</td>
<td>monthly until plume is established</td>
<td>flow through test cell, ISE</td>
</tr>
<tr>
<td></td>
<td>specific conductance, DO, and chloride</td>
<td>every 2 months after the plume is established</td>
<td>flow through test cell, ISE</td>
</tr>
<tr>
<td>Soil moisture</td>
<td>purge and sample volumes</td>
<td>1, 3, 5, 7, 9, and 11 months after effluent delivery</td>
<td>graduated cylinder or flask</td>
</tr>
<tr>
<td></td>
<td>temperature, specific conductance, pH, DO, and chloride</td>
<td>hourly</td>
<td>flow through test cell</td>
</tr>
<tr>
<td></td>
<td>soil moisture content</td>
<td>to be determined</td>
<td>in situ probes with automated data logger</td>
</tr>
<tr>
<td></td>
<td>soil tension</td>
<td></td>
<td>in situ tensiometers</td>
</tr>
<tr>
<td>Home Sitesb</td>
<td>HLR, ponding</td>
<td>every visit (4 times)</td>
<td>flow meter and visual observation</td>
</tr>
<tr>
<td>Operational</td>
<td>temperature, specific conductance, pH, DO, and chloride</td>
<td>every visit (4 times)</td>
<td>flow through test cell, ISE</td>
</tr>
<tr>
<td>Effluent</td>
<td>temperature, specific conductance, pH, DO, and chloride</td>
<td>every visit (4 times)</td>
<td>flow through test cell, ISE</td>
</tr>
</tbody>
</table>

See Tables 3.5 and 3.6 for measurement methods, detection limits, preservation, and holding times.

*a The number, location, and frequency of field measurements will be based on the observational method (in-field screening approaches, frequent data review and assessment).

*b Sample locations and frequency based on the findings at the GCREC site.
Effluent samples will be collected in accordance with FS 2400, Wastewater Sampling. Grab samples will be collected at the controlled test site and the individual home sites. Grab samples will enable estimation of the mass loading of nitrogen to the soil. The frequency of effluent sample collection and analyses methods are summarized in Tables 3.2 and 3.3. Effluent samples will be collected using a peristaltic pump with dedicated tubing (FS 2430). The suction inlet tubing will be located in the mid section of the clear liquid phase in the latter most tank at the home sites and of the effluent holding basins at the GCREC immediately prior to discharge to the soil. Effluent samples will be collected into a 500 mL or larger sample container and placed in a cooler on ice.

Soil samples will be collected from the cores during installation of standpipe piezometers (see Section 3.2.2 for field methods and equipment) following FDEP-SOP FS 3000 using direct push techniques (FS 3220-5.0). Soil characteristics, will be obtained from up to 4 boreholes located within the area of interest (controlled test site or home site). The number and layout of the boreholes may be adjusted as necessary based on field results. Borings will be drilled to a maximum depth of 30 ft using direct-push equipment and GeoProbe sampling tools. Continuous core samples will be obtained starting at the surface. The soils retrieved during coring will be used for field and laboratory analytical analysis (Tables 3.2 and 3.3). Soil samples will be collected at 2-ft intervals from the water table for soil texture, soil features, total organic carbon (TOC), and grain size distribution. Depending upon the results of these field measurements and analyses, specific analytes, locations, or frequency may be altered.

All groundwater samples will be collected using a peristaltic pump and dedicated tubing in accordance with FDEP-SOP (FS 2201-2.1.1, FS 2220-3.4, and FS 2221-1.1). Prior to groundwater sample collection, the piezometer will be micropurged using low-flow purging and sampling methods (USGS 1998, Kearl et al, 1992 and 1994). The flow rate of the peristaltic pump is adjusted to match the piezometer groundwater yield rate by monitoring the water level until it is stabilized. Micropurging is continued until water quality indicators (temperature, pH, specific conductance, DO, turbidity) are stabilized (three consecutive measurements within the limits as stated in FS 2212-3.1). Groundwater samples will be collected into a 500 mL or larger sample container and placed in a cooler on ice. The frequency of groundwater sample collection and analyses methods are summarized in Tables 3.2 and 3.3. The number and location of groundwater samples will be adjusted as necessary based on field screening results and the previous sample results. Field measurements of pH, specific conductivity, temperature, and DO will be conducted in accordance with FDEP-SOPs (FT 1000, FT 1100, FT 1200, FT 1400, and FT 1500).
All non-dedicated sampling equipment will be decontaminated (soap wash, triple DI rinse, and acid wash as required) between sampling locations in accordance with FDEP-SOPs (FC 1000).

In addition, operating and weather conditions will be monitored in the field (Table 3.3). A flow meter installed on the pump discharge will measure daily flow. The flow meter will be recorded at least weekly to determine HLRs to the test area or home site. In addition, a data logger with time stamp may be used to record pump cycles and assess water use patterns and peak flows. Should ponding occur, visual observations will measure the depth of ponding from a standard reference point at each test area or home site. A reference mark will be made on the observation port casing and the distance from this reference to the infiltrative surface measured. Ponding will be measured by lowering a measuring tape, with a hook on the tip, down the observation port so that when the tip of the hook breaks the surface of the effluent the distance on the measuring tape can be recorded. This technique provides a ponding height measurement accurate to ~ ±1/32 in. (±1 mm). There is a weather station currently located at the GCREC. Weather conditions are recorded every minute with data available via a private website. Direct measurements for evapotranspiration (ET) will be conducted if estimates calculated from the available weather data are not sufficient for modeling in Task D.

3.2.1.2 Sample Handling and Custody

Sample handling procedures include the use of correct sample containers, labeling, documentation, preservation, and transport. Sample bottles will be purchased precleaned where applicable; certificates of cleanliness will be maintained in the project file. The bottles will be stored in a secured area to maintain integrity. Preservatives will consist of reagent grade chemicals and will be placed in the bottles prior to sample collection. Selection of sample containers is governed by sample type and size and the required analyses. Each sample aliquot will be labeled with the site ID, sample ID, date, time, and sampler initials and logged into laboratory notebooks. Sample identification nomenclature will provide a unique number for each sample location/type and is summarized in Table 3.4. For example, CE-HS1-DP3-240 is the groundwater sample collected from drive point piezometer 3 (240 cm below ground surface) at home site 1 in Central Florida. For simplification in the field, a 4-digit cross reference code may be noted on the sample label with the full sample identification recorded in the field logbook. Duplicate samples will be designated with a “D” or “dup” after the last character of the sample designation. Equipment rinsates will be designated with an “ER” after the last character of the last sample collected prior to the equipment rinsate. Field blanks will be numbered consecutively.
Due diligence will be exercised to minimize the time between sample removal from the site and transport to the laboratory for analysis. After the samples have been collected, labeled and preserved, the samples will be placed in a cooler and transported on ice or frozen Blue Ice® to the GCREC laboratory or commercial analytical laboratory for analyses. Each sample container will be secured in packing material as appropriate to prevent damage and spills. Sample delivery will be conducted on a daily to weekly basis, dependent upon the sampling frequency.

<table>
<thead>
<tr>
<th>Region (AA)</th>
<th>Location (AAN)</th>
<th>Sample Type (AAA/N)</th>
<th>Depth (NNN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>TA1 test area</td>
<td>STE effluent sample, septic tank effluent</td>
<td>NA</td>
</tr>
<tr>
<td>NO</td>
<td>HS1 home site</td>
<td>NTE effluent sample, nitrified effluent</td>
<td>NA</td>
</tr>
<tr>
<td>CE</td>
<td>SB1 soil sample, soil boring</td>
<td>60, 120, etc.</td>
<td></td>
</tr>
<tr>
<td>SO</td>
<td>SM1 unsaturated zone, soil moisture probe</td>
<td>15, 30, etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ST1 unsaturated zone, soil tension probe</td>
<td>15, 30, etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LY unsaturated zone, lysimeter soil pore water</td>
<td>15, 30, etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD1 groundwater, standpipe piezometer</td>
<td>90, 240, etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DP1 groundwater, drive point piezometer</td>
<td>90, 240, etc.</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.4
Nomenclature for Sample Identification

A sample will be considered under custody if it is in:

- actual possession of a member of the sampling crew,
- view of the sampling crew (constituting actual possession by the crew), or
actual possession of the sampling crew and locked in a secured area or vehicle in a manner such as to prevent tampering.

Chain of custody forms will be used to document the transfer of samples from field personnel to the GCREC or analytical laboratory. One chain of custody form will be filled out for each set of samples and placed inside the cooler. The chain of custody form will list the following:

- regional location,
- sampler(s),
- sample identification,
- sample type,
- date and time of collection,
- analyses requested,
- preservative (if applicable),
- signature and date, and
- remarks.

Sample custody for samples received by the analytical laboratory will be performed according to their procedures. The analytical laboratory will be in compliance with the FDOH Environmental Laboratory Certification Program (ELCP) and ensure that all samples are properly stored, handled, and analyzed within the required holding time (see Section 3.3). The laboratory will be notified of upcoming field sampling activities and the subsequent transfer of samples to the laboratory. This notification will include information concerning the number and type of samples to be shipped, as well as the anticipated date of arrival.

### 3.2.1.3 Sample Analysis

Tables 3.5 and 3.6 list the analytical methods, target analytes, sample containers, preservatives, and holding times for effluent, soil, soil pore moisture, and groundwater sampling that is anticipated to be conducted during Task C. Constituents of interest will be analyzed on effluent, groundwater, and soil pore moisture samples following standard methods as described in Table 3.5 (FDEP 2008, APHA 2005, Hach 1998). Laboratory analysis of the samples shall be performed on the unfiltered sample within 24 hours of collection or within the appropriate holding times as specified in individual analysis methods (Table 3.6).
Sample aliquots of approximately 15 mL each will be collected, placed into sterilized containers (e.g., 15 mL conical tubes), and immediately placed on ice for microbial analyses. Studies have shown that sample holding times of up to 24 hours have little impact on bacterial counts or coliphage numbers (Van Cuyk 2003, Selvakumar et al. 2004). Both fecal coliforms and *E. coli* will be enumerated using a modified version of the enzyme substrate test or membrane filtration (APHA 2005, 9222D). For the enzyme substrate test, samples are diluted and added to a chromogenic and fluorogenic substrate. After adding sample to the substrates, the mixture is incubated at 45°C for 24 hours, the system then provides the concentrations of both fecal coliforms and *E. coli* through a most probable number result based on the substrate color change or UV fluorescence. Note that the incubation temperature has been modified from the manufacturer’s recommendation of 35°C in order to enumerate only fecal coliforms rather than total coliforms. However, several groups (Yakub et al., 2002; Chihara et al., 2005) have shown similar fecal coliform counts when comparing the above method to the membrane filtration method.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Detection Limits</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>Manufacturer specifications</td>
<td>Water meter</td>
</tr>
<tr>
<td>pH</td>
<td>0.1</td>
<td>Electrode - (APHA method 4500-H^B)</td>
</tr>
<tr>
<td>Temperature</td>
<td>0.1 °C</td>
<td>Field method - (APHA method 2550B)</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>2.0 mg-CaCO₃/L</td>
<td>Titration - (APHA method 2320B)</td>
</tr>
<tr>
<td></td>
<td>0.2b mg-CaCO₃/L</td>
<td></td>
</tr>
<tr>
<td>cBOD₅</td>
<td>1.0 mg/L</td>
<td>Carbonaceous 5-day test - (APHA method 5210B)</td>
</tr>
<tr>
<td></td>
<td>0.3b mg/L</td>
<td></td>
</tr>
<tr>
<td>COD</td>
<td>3.0 mg/L</td>
<td>Closed reflux, colorimetric method (APHA method 5220D and HACH 1998 U.S. EPA-approved)</td>
</tr>
<tr>
<td></td>
<td>0.2b mg/L</td>
<td></td>
</tr>
<tr>
<td>TOC / DOC</td>
<td>1.0 mg-C/L</td>
<td>Combustion-infrared method - (APHA method 5310B)</td>
</tr>
<tr>
<td>TS and TSS</td>
<td>5.0 mg/L</td>
<td>Gravimetrically, dried at 103–105°C - (APHA methods 2540B and 2540D)</td>
</tr>
<tr>
<td>TKN</td>
<td>0.03 mg-N/L</td>
<td>Block digestion, flow injection analysis - (APHA method 4500Norg D)</td>
</tr>
<tr>
<td>Ammonia nitrogen</td>
<td>0.6 mg-N/L</td>
<td>Salicylate method - (HACH 1998, U.S. EPA-approved)</td>
</tr>
<tr>
<td></td>
<td>0.03b mg-N/L</td>
<td>Distillation and titration - (APHA method 4500-NH₃ C)</td>
</tr>
<tr>
<td>Nitrate-nitrogen</td>
<td>0.2 mg-N/L</td>
<td>Spectrophotometric, chromotropic acid method (HACH 1998, U.S. EPA-approved)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ion chromatographic method - (APHA method 4110)</td>
</tr>
<tr>
<td>Total phosphorus</td>
<td>0.06 mg-P/L</td>
<td>Nitric acid-sulfuric acid method - (APHA method 4500-P)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Persulfate oxidation method - (U.S. EPA 365.2)</td>
</tr>
<tr>
<td>Chloride</td>
<td>4.0 mg-Cl/L</td>
<td>Solid state ion selective electrode - (U. S. EPA 9212)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ion chromatographic method - (APHA method 4110)</td>
</tr>
<tr>
<td>Fecal coliform</td>
<td>1cfu/100mL</td>
<td>Enzyme substrate test - (APHA method 9223B, modified by incubation at 45°C)</td>
</tr>
<tr>
<td>E. coli</td>
<td>1cfu/100mL</td>
<td>Enzyme substrate test - (APHA method 9223B)</td>
</tr>
</tbody>
</table>

^a Detection limits are for wastewater samples. Actual minimum detection limits may vary due to sample concentrations and subsequent dilutions. The detection limit will be reported with the data.

^b Lower estimated detection limit for groundwater samples.
3.0 Quality Assurance and Quality Control

### Table 3.6
Sample Analyses Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum Volume (mL)</th>
<th>Container Requirements</th>
<th>Preservative and Holding Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>pH</td>
<td>5</td>
<td>Pre-cleaned plastic or glass</td>
<td>None, analyze immediately</td>
</tr>
<tr>
<td>Temperature</td>
<td>5</td>
<td>Pre-cleaned plastic or glass</td>
<td>None, analyze immediately</td>
</tr>
<tr>
<td>Alkalinity, total</td>
<td>50</td>
<td>Pre-cleaned plastic or glass</td>
<td>&lt;6°C, 24 hours</td>
</tr>
<tr>
<td>cBOD₅</td>
<td>60</td>
<td>Pre-cleaned plastic or glass</td>
<td>&lt;6°C, 6 hours</td>
</tr>
<tr>
<td>COD</td>
<td>2</td>
<td>Pre-cleaned glass</td>
<td>&lt;6°C, 24 hours with H₂SO₄ to &lt;pH 2, 28 days</td>
</tr>
<tr>
<td>TOC / DOC</td>
<td>5</td>
<td>Pre-cleaned acid washed amber glass</td>
<td>&lt;6°C, 28 days</td>
</tr>
<tr>
<td>TS and TSS</td>
<td>20</td>
<td>Pre-cleaned plastic or glass</td>
<td>&lt;6°C, 7 days</td>
</tr>
<tr>
<td>TKN</td>
<td>5</td>
<td>Pre-cleaned plastic or glass</td>
<td>&lt;6°C, 24 to 48 hours with H₂SO₄ to &lt;pH 2, 28 days</td>
</tr>
<tr>
<td>Nitrate-nitrogen</td>
<td>5</td>
<td>Pre-cleaned plastic or glass</td>
<td>&lt;6°C, 24 to 48 hours with H₂SO₄ to &lt;pH 2</td>
</tr>
<tr>
<td>Ammonia-nitrogen</td>
<td>5</td>
<td>Pre-cleaned plastic or glass</td>
<td>&lt;6°C, 24 hours with H₂SO₄ to &lt;pH 2</td>
</tr>
<tr>
<td>Total phosphorus</td>
<td>5</td>
<td>1:1 HCl acid washed glass</td>
<td>&lt;6°C, 24 hours H₂SO₄ to &lt;pH 2, 28 days</td>
</tr>
<tr>
<td>Chloride</td>
<td>&lt;100</td>
<td>Pre-cleaned plastic or glass</td>
<td>&lt;6°C</td>
</tr>
<tr>
<td>Fecal coliform</td>
<td>5</td>
<td>Sterile plastic or glass</td>
<td>&lt;6°C, 24 hours</td>
</tr>
<tr>
<td><em>E. coli</em></td>
<td>5</td>
<td>Sterile plastic or glass</td>
<td>&lt;6°C, 24 hours</td>
</tr>
</tbody>
</table>


### 3.2.1.4 QC Samples

Routine QC checks of sampling and analysis procedures will be in accordance with FDEP-SOP FQ 1000 and consist of two parts: 1) field QC samples and 2) laboratory QC samples. The primary goal of the QC samples is to ensure that all data are of known quality, and that the expected quality is appropriate for the desired use of the data. Field QC samples will be collected to ensure proper sample collection and handling. Laboratory QC samples will be analyzed to ensure proper sample preparation and analytical techniques (see Section 3.3). Non-routine QC checks will include laboratory testing as needed to assure SOPs do not affect the sample quality. A summary of the QC samples is presented in Table 3.7.
Table 3.7
Summary of QC Samples Collected and Analyses Conducted

<table>
<thead>
<tr>
<th>QC Sample</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field duplicate</td>
<td>10% of samples collected</td>
</tr>
<tr>
<td>Laboratory duplicate</td>
<td>per laboratory SOPs</td>
</tr>
<tr>
<td>Equipment rinsate</td>
<td>one per sampling event per region</td>
</tr>
<tr>
<td>Field blank</td>
<td>one per sampling event per region</td>
</tr>
<tr>
<td>Split sample</td>
<td>10% of samples collected</td>
</tr>
<tr>
<td>Laboratory blank</td>
<td>per laboratory SOPs</td>
</tr>
<tr>
<td>Laboratory spike</td>
<td>per laboratory SOPs</td>
</tr>
<tr>
<td>Non-routine method check</td>
<td>as necessary</td>
</tr>
</tbody>
</table>

Field QC samples will include duplicates, equipment rinsates, and field blanks. Duplicate samples will be collected with the regular samples. Field duplicate samples will be collected from the same 24-hr composite sample container. Duplicate grab samples will be collected at the same location in immediate succession with a regular sample. The number of duplicates collected will be 10% of the total samples collected. The identification numbers and locations of the duplicate and regular samples will be clearly indicated in the log book. Duplicate samples will undergo the same laboratory analyses as regular samples.

Field blanks are samples of the source water used for decontamination. These field QC samples are collected to ensure that constituents of interest (i.e., nitrogen) are not introduced into the sample during decontamination. The rinse water used for decontamination is typically organic-free deionized water. The water used for washing is potable tap water. At a minimum, one sample from each source of water for a given sampling event will be collected for analysis. The field blanks will be analyzed for the same parameters as the associated sample medium. The water used for decontamination will be resampled whenever the source or supplier is changed.

Equipment rinsate samples will be collected to determine the effectiveness of decontamination procedures. These samples will be collected by pouring deionized water into or through the sampling device after it is thoroughly decontaminated. The equipment rinsate samples will be analyzed for the same parameters as the associated samples. At least one equipment rinsate sample will be collected during each sampling event if the sampling involves the use of decontaminated equipment (e.g., samples may be collected with dedicated and/or disposable equipment; therefore, no decontamination is performed).
3.2.2 Field Testing

Field testing will include operational monitoring, piezometer installation for subsequent groundwater monitoring, field measurements, and weather monitoring. The field equipment for Task C includes a field spectrophotometer, flow meters for effluent delivery, meters for measuring pH, specific conductivity, temperature, DO, water levels, etc., and a weather station. Equipment used in the field will be maintained and calibrated in accordance with the manufacturers specifications (FDEP-SOP FT 1900). Field instruments will be thoroughly checked and calibrated before they are transported to the field. These instruments will be inspected for damage once they have arrived in the field. Damaged instruments will be immediately replaced or repaired. Service and repair of field instruments will be performed by qualified personnel and will be recorded in the field logbook.

Instruments and equipment used to gather, generate, or measure environmental data (e.g., field spectrophotometer, multiparameter sonde for pH, specific conductivity, temperature, DO) will be calibrated with sufficient frequency and in such a manner that accuracy and reproducibility of results are consistent with the manufacturer's specifications. Calibration or calibration checks, as appropriate, of field instruments and equipment will be performed at least daily or at more frequent intervals as specified by the manufacturer. Calibrations may be performed at the start and completion of each test run. However, calibrations will be reinitiated as appropriate after a period of elapsed time due to meals, work shift change, or if damage has occurred. Records of calibration procedures, frequencies, lot numbers of standard reference solutions used as calibration standards, and any repairs or replacements will be recorded in the calibration log and/or field logbook.

Piezometers will be installed to enable groundwater monitoring as described in Section 2. During standpipe piezometer installation, soil samples will be collected to characterize the soil and aquifer. Borings for standpipe piezometer installation will be drilled using direct-push equipment and sampling tools. Continuous core samples will be obtained starting at the surface. Soil samples will be collected at 2-ft intervals from the soil cores. The GeoProbe/Terraprobe sampling method utilizes a 4-ft. long x 2-in. inner diameter (ID) dual-tube assembly with polyethylene terephthalate (PETG) liners to collect continuous undisturbed samples. The dual-tube assembly is comprised of an outer stainless steel core barrel (3.25-in ID), an inner stainless steel core barrel (2.25-in ID) and PETG liners (2-in ID) inserted into the inner core barrel. The dual-tube assembly is hammered, without rotation, ~3.5 ft into the ground surface. The inner core barrel with PETG sleeve and soil core is then retrieved to the surface. Upon retrieval to the surface, the PETG liner with the intact soil core is removed from the sampler, capped and stored at 4°C prior to transporting to the laboratory for analyses. A clean PETG sleeve is then replaced into the inner core barrel and reinserted into the outer core barrel retained in the subsur-
face. The dual-tube assembly is then again advanced ~3.5 ft and the process repeated until a continuous core to the desired depth was obtained. These soil core collection methods enabled relatively intact core samples to be aseptically collected vertically downward.

Standpipe piezometers will be installed in the soil borings to a maximum depth of approximately 30 ft using standard well construction practices (Driscoll 1986). The screen length of each standpipe piezometer will be selected based on the soil profile at that location. All couplings will have flush threaded connections. No glues or lubricants will be used. The annular space will be filled with native filter pack or with a grade of silica sand pack selected based on the soil grain size and the slot size of the screen. The sand pack will extend one to two feet above the top of the screen with a one to two foot bentonite seal placed on top of the sand pack to prevent preferential flow between the multiple completions. Each standpipe piezometer will be grouted at the ground surface and have a locking cap to prevent tampering. Upon completion, all standpipe piezometers will be developed by surging and pumping (Driscoll 1986). Piezometers will be allowed to set for a minimum of 24 hours before development to allow the grout to set. Development will begin at the top of the screen and proceed vertically downward with pumping rates and water levels monitored and recorded during the development process. Development will continue until at least five times the volume of standing water has been removed or the water is as clear as practical. All development water will be recharged to the ground.

All direct push and soil sampling equipment (e.g., drive points, core barrels, sampling utensils, etc.) that contacts potential soil samples will be cleaned according to FDEP-SOP FC 1000 between each piezometer location. Any residual soil will be spread on the ground surface or containerized and disposed of to not alter home site landscaping.

Drive point piezometers will be used to locate and define groundwater plumes and enable collection of groundwater samples. Stainless steel drive points are attach to polyethylene tubing inserted into standard 3/4" (20 mm) NPT steel drive pipe which is widely available through local plumbing and hardware stores. The steel drive pipe allows for the drive point piezometers to be driven into the ground with either direct push drilling or hand methods such as slide hammers (FDEP-SOP FS 3000). The drive casing is then removed leaving the drive point at the desired depth and the attached tubing extending to the surface.

Following standpipe piezometer installation hydraulic tests will be performed. Single well step drawdown tests will be conducted to determine the relative distribution of hydraulic conductivity within the test area or home site. Understanding the permeability distribution will be critical for interpreting the results of the field monitoring. Alternatively, single-well
3.0 Quality Assurance and Quality Control

3.2.3 Non-standard or Alternative Field Methods

Monitoring of the unsaturated zone will require the use of non-standard field methods including suction lysimeters, in situ soil tensiometers, and in situ soil moisture probes. However, these methods have been widely used in field research and are proven techniques (Anderson, 1994; Wolt, 1994; Hart and Lowery, 1997; Tackett, 2004; Dimick, 2005). A brief description is provided here.

Stainless steel suction lysimeters (SW-074, Soil Measurement Systems, Tucson, AZ) will be installed at the controlled field test site (Figure 3-1). Suction lysimeters are preferred due to the minimal subsurface disruption and the ability to easily collect discrete samples compared to pan lysimeters. The 0.86-in. diameter lysimeters are 4.5-in. long including a 3.5-in. length that is porous with a nominal pore size of 0.2 microns and tubing that extends to the ground surface. The small pore size limits sampling for bacteria, but is necessary to inhibit air from entering the lysimeters in lieu of soil water solution. Lysimeters will be installed within a single 2-in. diameter borehole with a sieved native soil and water slurry (3:1 volume:volume) to ensure continuous contact between the porous lysimeter and surrounding undisturbed soil. A bentonite seal will be placed between the lysimeters to prevent preferential flow paths within the borehole that could yield artifacts during soil pore water sampling and analyses (see Figure 3-1).

Individual lysimeter tubing is inserted into a rubber stopper with another set of tubing leading to the vacuum line. A vacuum is applied to the tubing to facilitate sample collection from the unsaturated zone. The vacuum applied must be strong enough to overcome the soil moisture tension and to draw soil water present in the vadose zone into the lysimeter. The SW-074 lysimeters have a bubbling pressure of 700 millibars. This pressure is the air entry value, which is the air pressure required to force air through the thoroughly wetted porous material. The bubbling pressure is a function of pore size; the smaller the pores, the higher the bubbling pressure value. When this critical value is exceeded, the bonds attaching water to the porous material can be broken. Soil solution then travels up from the lysimeter by vacuum and drops into a pre-cleaned stoppered flask for sample collection (Figure 3-1). The initial soil solution volume collected is purged (dumped) in order to ensure a representative sample from the soil profile. To provide the vacuum needed for soil solution sampling, a manifold of PVC pipe will be connected with flexible tubing to vacuum pumps. All glassware will be washed in phosphorus-free soap, followed by acid/base baths separated by DI water rinses, allowed to air dry, and then covered with foil until use.
Figure 3-1: Configuration of Soil Suction Lysimeters Used for Pore Water Sample Collection (from www.soilmeasurement.com)

In situ soil tension and soil moisture measurements will be collected for model development in Task D. Parameter estimation for porous media flow by inverse modeling has been shown to be sufficient with four observation depths and at least two of three conditions: soil water content, matric pressure head, and or water flux (Ritter, 2004). The matric potential is the pressure potential due to the interaction of water and soil grains with both positive and negative pressures are measured with a tensiometer (Marshall et al., 1996). Soil moisture tension will be monitored with tensiometers installed at up to 4 depths as described in Section 2. Tensiometers have a ceramic cup and tube assembly equipped with a pressure transducer. The pressure transducer allows for precise measurement of the water potential. Tensiometers can be automated to enable recording of soil moisture tension at up to 15 minute intervals to evaluate short-term changes in soil moisture status associated with wastewater dosing events. Alternatively, tensiometers will be manually read at weekly intervals. Soil moisture will be measured through time domain reflectometry (TDR) probes. TDR measures the travel time of an electric pulse.
down a wave guide inserted in the soil. The travel time of the pulse depends on the apparent permittivity or dielectric constant, $\varepsilon$, of the soil media. Since the $\varepsilon_{\text{water}}$ is approximately 70 times greater than $\varepsilon_{\text{soil}}$ (dry soil), the $\varepsilon_{\text{soil media}}$ depends strongly on the water content ($\theta_w$) of the soil system (Jury et al. 1991). Prior to installation, the global and individual settings for each wave guide will be adjusted according to the manufacturer’s recommendations. Wave guides will be connected to a data logger to automatically acquire water content measurements for each TDR wave guide every 2 hours. The frequency of data logging may be modified based on the observational approach. Both tensiometers and soil moisture probes will be installed with direct push hand methods. During installation, the depth intervals may be adjusted to capture the transition between soil layers (e.g., spodic horizon noted in Soil Survey) and the capillary zone of the low water table.

### 3.3 Laboratory Activities

All laboratory activities will meet the minimum QC as specified in the FDEP-SOPs which meet the National Environmental Laboratory Accreditation Program (NELAP) requirements. However, if a certified laboratory is not identified, a waiver may be requested based on the research nature of this project (DEP 62-160.600 (1)(d) and (3)(f)). Regardless of if a waiver for the laboratory certification is obtained, all laboratories conducting work for this project will operate and maintain a QA Program consistent with NELAP standards. All laboratory methods to be utilized during Task C are standard methods. Should any non-standard laboratory methods be required, an addendum to this QAPP will be prepared.

Analytical methods, target analytes, sample containers, preservatives, and holding times for effluent, soil, soil pore moisture, and groundwater samples are discussed in Section 3.2.1.3 (Tables 3.5 and 3.6). Once samples are received, the laboratory will have a document-control system including: sample labels, analysis logbooks, computer printouts, and raw data summaries. The analytical laboratory will be in compliance with the FDOH ELCP and ensure that all samples are properly stored, handled, and analyzed within the required holding time. A qualitative assessment of each sample container will be performed to note any anomalies, such as broken or leaking bottles and any labeling or descriptive errors. In the event of discrepant documentation, breakage, or any condition that would compromise sample integrity, the laboratory will immediately contact the field team. The samples will be stored at a temperature of approximately $<6^\circ\text{C}$ (as applicable) until analyses are performed.

The analytical laboratory will have approved SOPs for preventative maintenance for each instrument system and for required support activity. These records will be reviewed by auditors who perform internal and external system audits of the laboratory. All labora-
3.0 Quality Assurance and Quality Control

Laboratory instrumentation maintenance and calibration will be performed and documented in accordance with the laboratory SOPs.

Laboratory QC procedures will include split samples, method blanks, spikes, and duplicate samples. The analytical laboratory will be in compliance with the FDOH ELCP and routinely analyze QC samples in accordance with their approved SOPs. Split samples will be sent to an outside commercial analytical laboratory for 10% of the nitrogen samples. Reagent blanks will be run for all appropriate analyses to verify that the procedures used do not introduce contaminants that affect the analytical results. Surrogate spike analysis is used to determine the efficiency of recovery of analytes in sample preparation and analysis. Calculated percent recovery of the spike is used as a measure of the accuracy of the analytical method. A surrogate spike is prepared by adding to an environmental sample (before extraction) a known amount of pure compound similar in type to the one to be assayed in the environmental sample. Surrogate spike recovery must fall within certain limits; if the recovery is not within these limits, corrective action will be implemented. Duplicate samples will be used to confirm laboratory method precision. Duplicate samples will be prepared from the same sample in immediate succession with a regular sample. A summary of the QC samples is presented in Table 3.7 (Section 3.2.1.4).

Corrective actions at the analytical laboratory are required whenever an out-of-control event or potential out-of-control event is noted. Corrective action procedures are often handled at the bench level by the analyst, who reviews the preparation or extraction procedure for possible errors and checks the instrument calibration, spike and calibration mixes, instrument sensitivity, and other parameters. If the problem persists or cannot be identified, the matter is referred to the laboratory supervisor, manager, and/or QA department for further investigation. Each certified laboratory has written SOPs specifying the corrective action to be taken when an analytical error is discovered or when the analytical system is determined to be out of control.

3.4 Documentation, Assessment, and Reporting

To ensure representative data is collected to meet the DQOs, the following documentation, assessment, and reporting methods will be performed.

3.4.1. Documentation

Information to be documented will be in accordance with FDEP-SOPs (FD 1000). Logbooks will be used by the project team members and subcontractors responsible for sample collection and analyses. Each team member will be responsible for recording...
daily activities and/or significant events, observations, and measurements. Enough information will be recorded such that clarification, interpretations, or explanations of the data and activities are not required from the originator of the documentation. Checklists and FDEP forms will be used as appropriate and maintained in the project files. Specifically, forms FD 9000-7, FD 9000-8, FD 9000-9, FD 9000-22, FD 9000-23, and FD 9000-24 are expected to be used. All logbooks will be bound books with entries signed and dated. All field data will be protected to prevent loss. All Task C documentation will be retained for a minimum of 5 years.

Entries in the logbooks will include the following when applicable:

- description of activity,
- date and time,
- location,
- weather conditions,
- names and affiliations of field team,
- work progress,
- test area and OSTDS operational conditions,
- field measurements and observations,
- equipment maintenance and calibration (Section 3.2.2), and
- any unusual occurrences, depending upon the nature of the occurrence, such as:
  - delays,
  - unusual situations,
  - departure from established field procedures,
  - equipment breakdown and repairs,
  - instrument problems, and
  - accidents.

In addition, the latitude and longitude of each fixed monitoring point (piezometers, suction lysimeters, etc.) will be documented. Sufficient information will be included such that all team members can easily locate the monitoring point. At the time of collection, each sample will be labeled with notations made in waterproof, indelible ink. Minimum information on the sample label will include:

- unique sample identification number (Section 3.2.1.2),
3.0 Quality Assurance and Quality Control

- analyses required,
- preservative used (if any),
- name or initial of sample collector(s), and
- date and time of sample collection.

All original data recorded in field logbooks, standard checklists, and sample labels will be written with black indelible ink. If a previously recorded value is discovered to be incorrect or if blank lines are left, the wrong information or blank lines will be crossed through with a single line, the correct value written in, and the change initialed and dated. If the change is made by someone other than the original author or if the change is made on a subsequent day, the reason for the change will be recorded at the current active location in the logbook, with cross reference to the original entry. All monitoring results will be entered into an electronic database such as Microsoft Access or Excel.

Laboratory documentation will be in accordance with FDOH ELCP requirements and at a minimum include:

- project information (e.g., client name, project number, etc.),
- sample information (e.g., source, location of sample, matrix, etc.)
- analysis results (e.g., analyte, result, units, comment, etc.),
- laboratory QC information (e.g., blank results, matrix spike information, RPD, etc.)
- instrumentation/equipment maintenance performed, and
- instrument calibration results.

The laboratory records shall contain sufficient information to allow independent reconstruction of all activities related to generating data that are submitted in data reports to the client (Hazen and Sawyer). All analytical results will be entered into an electronic database such as Microsoft Access or Excel.

3.4.2 Data Assessment

The data collected in Task C will be evaluated for precision, accuracy, representativeness, comparability, and completeness. When using these parameters as indicators of data quality, only precision and accuracy can be expressed in purely quantitative terms. The other parameters are mixtures of quantitative and qualitative expressions. All of these parameters are interrelated can be difficult to evaluate separately. Primary data
will also be graphically examined to identify obvious effects and trends and then subjected to classic statistical analyses such as multifactor analysis of variance, principal components analysis, and/or multivariate regression analyses (e.g., Snedecor and Cochran 1980, Minitab 2000).

### 3.4.2.1 Precision

Measurements of data precision are necessary to demonstrate the reproducibility of the data. Precision objectives for field instruments are included in the SOPs for the instruments. To the extent possible, one set of field instruments will be used for the duration of the project.

All laboratory measurements will be made with high-purity materials, by knowledgeable laboratory personnel, and following internal QC. Duplicate samples will be collected and analyzed to assess the overall precision of laboratory procedures. Analytical precision may be expressed in terms of the standard deviation or RPD. RPD is calculated as follows:

\[
\text{RPD} = \left(\frac{(X_1 - X_2)}{X_{avg}}\right) \times 100
\]

where:

- \(X_1\) = analyte concentration of first sample
- \(X_2\) = analyte concentration of a duplicate sample
- \(X_{avg}\) = average analyte concentration of first and duplicate samples.

### 3.4.2.2 Accuracy

The accuracy of a measurement is based on a comparison of the measured value with an accepted reference or true value. Accuracy of a procedure is best determined on a known quantity or quality. The accuracy of field measurements will be assessed through the use of calibration standards (e.g., pH standards), by comparing the measurement of a field instrument against a known standard. All calibration and instrument operations will be carried out using traceable standards and specified materials and methods. The accuracy of surveying measurements for the locations of wells and piezometers will be ± 0.5 ft. for horizontal measurements and ± 0.1 ft. for vertical measurements.

Sampling accuracy can be estimated by evaluating the results obtained from blanks. The types of blanks to be used for this evaluation are rinsates and field blanks. The accuracy of laboratory measurements can be expressed as percent recovery (PR) and is calculated as follows:

\[
\text{PR} = \left(\frac{(A - B)}{C}\right) \times 100
\]
where:

\[ A = \text{spiked sample concentration} \]
\[ B = \text{sample concentration} \]
\[ C = \text{concentration of spike added.} \]

### 3.4.2.3 Representativeness

All data obtained should be representative of actual conditions. The field procedures and laboratory analyses outlined in Section 2.0 were selected to provide data representative of site conditions. The representativeness of all field data will be qualitatively assessed by determining if the data are consistent with known or anticipated environmental conditions and accepted scientific and engineering principles. Field measurements will also be checked for completeness of procedures and documentation of procedures and results.

To preserve the integrity of water quality data, water quality samples will be collected using appropriate collection and handling methods. Field measurements will be conducted using a flow-through cell, if possible. Additionally, to protect the quality of samples, the sampling equipment and field instruments will be kept clean.

### 3.4.2.4 Comparability

Consistency in the acquisition, handling, and analysis of samples is necessary so the results may be compared. Factors that will affect comparability are sample collection and handling techniques, sample matrix, field measurement techniques, and analytical methods. Results from two or more sampling events may be compared by specifying and standardizing these factors as much as possible. To ensure the comparability of field measurements made throughout the duration of the project, all field samples will be measured immediately, and the same field instruments and measurement techniques will be used consistently. To ensure the comparability of analytical laboratory results, all samples will be transported to the laboratory promptly to ensure holding times are met, and the instruments and techniques used for sample collection will be used consistently. Calibrations will be performed in accordance with the manufacturer's specifications and/or approved SOPs.

### 3.4.2.5 Completeness

Field measurements will also be checked for completeness of procedures and documentation of procedures and results. Completeness of field efforts will be defined by comparing the planned scope to the actual field work completed (e.g., by comparing the total number of samples planned to be taken with the number of samples successfully received by the laboratory) and by evaluating the quality of the field work completed (e.g.,...
by establishing that valid field data have been obtained through the use of proper procedures for field measurements and sample collection, etc.

3.4.2.6 Validation

Field measurements will be made by competent engineers, environmental scientists, and/or technicians. Field data and analytical results will be validated using five primary procedures:

- **Routine checks** will be made during the processing of data to check for errors in data records.
- **Internal consistency** of a data set will be evaluated by plotting the data and testing for outliers.
- **Comparison checks** of related analytical results (e.g., ammonium-nitrogen + nitrate-nitrogen is less than 120% of TKN).
- **Checks for consistency** of the data set over time will be performed by visually comparing data sets against gross upper limits obtained from historical data sets, or by testing for historical consistency. Anomalous data will be identified.
- **Checks will be made** for consistency with parallel data sets, that is, data sets obtained from the similar home sites.

The purpose of these validation checks is to identify outliers or anomalies (i.e., an observation that does not conform to the pattern established by other observations). Outliers may be the result of transcription errors or instrumental breakdowns. Outliers may also be manifestations of a greater degree of spatial or temporal variability than expected. After an outlier has been identified, obvious mistakes in data will be corrected. If no plausible explanation can be found for an outlier, it may be excluded, but a note to that effect will be included in data reporting. In addition, an attempt will be made to determine the effect of an outlier when both included in and excluded from the data set.

3.4.3 Reporting

Reports of analytical results for Task C (Deliverable C.19, Monitoring Report) will contain data sheets and the results of analysis of QC samples. Sample reports will include a log of the sample identification numbers designated in the field and the corresponding laboratory sample numbers. Analytical reports will contain the following items:
3.0 Quality Assurance and Quality Control

- project identification,
- sample number,
- sample matrix description,
- date of sample collection,
- location of sample collection,
- date of sample receipt at the laboratory,
- analytical method and reference citation,
- date of analysis (extraction, first run, and subsequent runs),
- individual parameter results,
- quantification limits,
- dilution or concentration factors, and
- corresponding QC report.

Electronic data will be tab-delimited. The final project report will contain a compilation of all the QA/QC data generated, a discussion of out-of-control events, and any corrective actions taken.

3.5 QA Surveillance

The Hazen and Sawyer project manager will be responsible for QA/QC and will ensure compliance with this QAPP. Field surveillances and assessments will be performed by the field leader at the initiation of sampling associated with the controlled test site and again at the initiation of home site sampling. These QA surveillances of the field activities will focus on verifying proper use of field procedures for sample collection and documentation. All surveillances and necessary corrective actions will be documented in the field logbook. QA reports will include a discussion of the methods used for field activities and any items that differ from those described in this QAPP. QA reports will also include a short discussion of the quality of field documentation of data, instrument calibration, corrective actions, and other field information pertinent to the field effort.

Performance audits of the analytical laboratories will be conducted on a regular basis to verify the effectiveness and implementation of the laboratory QA/QC plan as specified in the laboratory SOPs. Results of the internal audits shall be documented and kept on file at the laboratory.
Section 4.0
Health and Safety

4.1 Hazard Assessment

Field activities will consist of drilling, piezometer installation, and environmental sampling. An activity hazard analysis table will be available in the field at all times (see Appendix C). All field activities will be conducted in areas without chemical hazards. However, bentonite pellets will be used during piezometer installation. Bentonite contains crystalline silica which may induce long term respiratory problems at high exposures. Bentonite pellets or granular bentonite will be used to minimize dust. Biological hazards are associated with exposure to high concentrations of microorganisms in wastewater. The most common bacterial pathogens found in untreated wastewater are *Salmonella* and *Shigella* (Bitton 1999). Other bacterial microorganisms include *Vibrio*, *Campylobacter*, and *Leptospira* (Bitton 1999). The following are general personnel hazards anticipated during Task C field work:

1) Infectious disease exposure;
2) Slip, trip, and fall potential;
3) Potential for pinch points and striking objects due to mechanical hazards;
4) Potential electric shock from improperly grounded equipment; and
5) Potential noise hazards from drilling operations.

Proper personal hygiene and use of personal protective equipment (PPE) can significantly reduce or eliminate the biological safety hazard. Constant attention will be given to physical hazards encountered during work activities, particularly those associated with drilling equipment. Qualifications (i.e., demonstrated experience and ability) with respect to the tasks to be performed will be required. Only qualified, competent personnel with prior experience will operate drilling equipment. Prior to any site activities, all equipment will be inspected. Custom modifications to equipment is prohibited unless authorized in writing by the original equipment manufacturer or certified as safe by a registered professional engineer.

**Biological Hazards** Three general categories of pathogenic organisms that may be present in wastewater include bacteria, viruses and parasites (including protozoans and helminths). The principle pathogenic organisms found in STE and untreated wastewater and the corresponding infectious dose are shown in Table 4.1. Microorganisms of con-
Concern commonly found in STE include pathogenic bacteria at sustained high concentrations and virus at highly variable and episodically released levels (Bicki et al., 1984; Van Cuyk et al., 1999). The most common pathogenic viruses found in groundwater are hepatitis, Norwalk-like agent, echovirus, poliovirus and coxsackie virus. Enteric virus includes 72 types of virus (e.g. polio, echo and coxsackie virus) that can cause gastroenteritis, heart anomalies and meningitis. The diseases caused by common pathogens in wastewater are summarized in Table 4.2.

Table 4.1

<table>
<thead>
<tr>
<th>Organism</th>
<th>Conc. in STE</th>
<th>Infectious Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bacteria</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliform</td>
<td>$10^6-10^9$</td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>$10^5-10^8$</td>
<td>$10^6$</td>
</tr>
<tr>
<td><em>Clostridium perfringens</em></td>
<td>$10^5-10^5$</td>
<td>1-10$^-10^2$</td>
</tr>
<tr>
<td>Enterococci</td>
<td>$10^4-10^5$</td>
<td></td>
</tr>
<tr>
<td>Fecal streptococci</td>
<td>$10^3-10^6$</td>
<td></td>
</tr>
<tr>
<td><em>Pseudomonas aeruginosa</em></td>
<td>$10^3-10^4$</td>
<td></td>
</tr>
<tr>
<td><em>Shigella</em></td>
<td>$10^0-10^2$</td>
<td></td>
</tr>
<tr>
<td><em>Salmonella</em></td>
<td>$10^2-10^4$</td>
<td></td>
</tr>
<tr>
<td><strong>Protozoa</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Cryptosporidium</em> oocysts</td>
<td>$10^1-10^3$</td>
<td>1-10</td>
</tr>
<tr>
<td><em>Entamoeba</em> cysts</td>
<td>$10^1-10^1$</td>
<td>10-20</td>
</tr>
<tr>
<td><em>Giardia</em> cysts</td>
<td>$10^3-10^4$</td>
<td>&lt;20</td>
</tr>
<tr>
<td><strong>Helminths</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ova</td>
<td>$10^1-10^3$</td>
<td></td>
</tr>
<tr>
<td><em>Ascaris lumbricoides</em></td>
<td>$10^3-10^4$</td>
<td>1-10</td>
</tr>
<tr>
<td><strong>Viruses</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enteric Virus</td>
<td>$10^3-10^4$</td>
<td>1-10</td>
</tr>
<tr>
<td>Coliphage</td>
<td>$10^3-10^4$</td>
<td></td>
</tr>
</tbody>
</table>

(US EPA 2002; Crites and Tchobanoglous, 1998; Anderson et al., 1994; Brown et al., 1980; Ziebell et al. 1974). The most probable number (MPN) method is not an actual concentration, but a statistical estimate of concentration using serial dilutions.
Table 4.2
Pathogenic Microorganisms Found in STE and Untreated Wastewater
(Lowe et al., 2007)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Disease Caused</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bacteria</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>Typhoid fever</td>
<td>High fever, diarrhea</td>
</tr>
<tr>
<td>Shigella</td>
<td>Bacillary dysentery</td>
<td>Dysentery</td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td>Cholera</td>
<td>Diarrhea, dehydration</td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td>Gastroenteritis</td>
<td>Diarrhea</td>
</tr>
<tr>
<td><em>E. coli</em> (pathogenic)</td>
<td>Gastroenteritis</td>
<td>Diarrhea</td>
</tr>
<tr>
<td>Legionella pneumophila</td>
<td>Legionnaires’ disease</td>
<td>Malaise, acute respiratory illness</td>
</tr>
<tr>
<td>Leptospira spp.</td>
<td>Well’s Disease</td>
<td>Jaundice, fever</td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
<td>Gastroenteritis</td>
<td>Diarrhea</td>
</tr>
<tr>
<td><strong>Virus</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus</td>
<td>Respiratory disease</td>
<td>Jaundice, fever</td>
</tr>
<tr>
<td>Enteroviruses</td>
<td>Gastroenteritis, meningitis, heart anomalies</td>
<td></td>
</tr>
<tr>
<td>Poliovirus</td>
<td>Infectious hepatitis</td>
<td>Jaundice, fever</td>
</tr>
<tr>
<td>Echovirus</td>
<td>Gastroenteritis</td>
<td>Vomiting</td>
</tr>
<tr>
<td>Coxsackie virus</td>
<td>Gastroenteritis</td>
<td>Diarrhea</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>Gastroenteritis</td>
<td>Diarrhea</td>
</tr>
<tr>
<td>Norwalk</td>
<td>AIDS</td>
<td>Diarrhea</td>
</tr>
<tr>
<td>Parvovirus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotavirus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Protozoa</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptosporidium parvum</td>
<td>Cryptosporidiosis</td>
<td>Diarrhea, low-grade fever</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>Giardias</td>
<td>Diarrhea, nausea, indigestion</td>
</tr>
<tr>
<td>Balantidium coli</td>
<td>Balantidias</td>
<td>Diarrhea, dysentery, intestinal ulcers</td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>Amoebic dysentery</td>
<td>Diarrhea, dysentery</td>
</tr>
<tr>
<td>Cyclospora</td>
<td>Cyclosporiasis</td>
<td>Severe diarrhea, nausea, vomiting, severe stomach cramps</td>
</tr>
</tbody>
</table>

*Partially adapted from Bitton (1999) and from Crites and Tchobanoglous (1998)*

**Cold and Heat Stress** Personnel will be monitored for heat stress during summer monitoring activities. The length of periods of active work without a break will be adjusted as the weather dictates. Anyone exhibiting signs or symptoms of heat-related illness will be removed to a controlled temperature location immediately.

**Noise** Hearing protection will be available for all field workers. Hearing protection is required at 85 decibels or above, on the A-weighted scale on a slow response scale as per American National Standards Institute (ANSI). Hearing protection will be worn at all
times in proximity of the direct push drilling rig during soil sampling and piezometer installation.

_Electrical_ All temporary, 120V, single-phase, 15- and 10-ampere receptacles and cord sets will be protected by approved ground fault circuit interrupts (GFCIs) as prescribed in 29 CFR 1926.404(b)(ii). Prior to setting the drilling rig at location for piezometer installation, the field leader will determine the distance to electrical transmission lines. If the voltage of electrical transmission lines is unknown, a distance of 20 ft. will be maintained. If the voltage is known, the equipment will not be operated when any part enters a minimum radial distance of 10 ft. to electrical transmission lines as specified in 29 CFR 1910.181.

_Other Physical Hazards_ Other physical hazards may be present. These hazards may include buried water lines; equipment movement; and equipment malfunctions. Utility locator surveys will be conducted for each area where piezometer installation will be conducted. In addition, routine hoisting and rigging will be necessary for lifts associated with the drilling activities. Improper lifts will be avoided. Tripping, slipping and falling hazards and specific hazards pertaining to the operation of the drilling equipment will be evaluated. Equipment guards will be used on any mechanical gears, belts, and drive shafts where applicable, as mandated by Occupational Safety and Health Administration (OSHA) regulations, to minimize personnel exposure to moving parts during piezometer installation. OSHA safety mandates and guidelines will be implemented by personnel that work near potentially dangerous drilling equipment.

The following are general health and safety standard operating procedures.

1) Wear designated PPE and safety equipment at all times while in the work area.

2) Do not eat, drink, chew gum or tobacco, smoke, or apply cosmetics in the work area.

3) Do not work with open wounds, including bandaged wounds, or other injuries that could provide a route of entry for possible microorganisms.

4) Prevent spillage. If a spill occurs, contain wastewater and dispose properly.
5) Practice good housekeeping. Keep everything orderly and out of potentially harmful situations.

6) Be familiar with the physical characteristics of the site, including:
   a. nearest emergency assistance;
   b. accessibility to associates, equipment, and vehicles;
   c. communication facilities at and near the site; and
   d. site access and egress.

7) Keep the number of personnel and equipment in the work area to a minimum but only to the extent consistent with work force requirements of safe site operation.

8) Dispose of all waste generated properly.

9) Report all injuries, no matter how minor, to the field leader.

10) Do not wear loose clothing and jewelry while working with or near drilling equipment.

11) If desired, wear gloves or other equipment for protection against physical hazards in addition to the above-mentioned PPE.

12) Be continually aware of potentially dangerous situations (e.g., presence of strong, irritating, or nauseating odors) and immediately take precautionary measures to ensure the safety of everyone.

4.2. Personal Protection Requirements
During Task C, the primary exposure risk is ingestion through splashes that contaminate food, drinks and/or hands (most common); inhalation of infectious agents or aerosols, and contact with unprotected cuts and abrasions. There is no airborne exposure pathway associated with the microbiological constituents present in residential STE or nitri-
4.0 Health and Safety

fied effluent. To mitigate these exposure routes for workers, eating, drinking or smoking will prohibited in the field during monitoring. Good personal hygiene such as avoiding touching the mouth, frequent hand washing, and use of disposable gloves (latex or nitrile) will be implemented. During routine field activities, personal protection equipment will include long pants, close-toed shoes, and appropriate gloves. Hard hats and safety glasses will be worn when equipment is being set up and when in the proximity of the drilling rig or other overhead hazards.

The primary potential public and environmental exposure risk is the discharge of STE or nitrified effluent to the ground surface or groundwater underlying the site. To mitigate public exposure risk, all STE released to the environment will occur below ground; there will be no surface application of wastewater effluent. In addition, access to the test site will be controlled (fencing, locking caps on monitoring points, etc.).

4.3 Emergency Response

The following procedures will be implemented in the event of an emergency during field activities. In case of emergency dial 911. The location of the nearest medical facility will be made available prior to field activities. Notify the Hazen and Sawyer project manager of any emergencies. Maps consisting of directions to the nearest medical facility and hospital will be posted at the job-site.
Section 5.0
References


Appendix A
GCREC Memo
MEMORANDUM

DATE: May 18, 2009

FOR: Elke Ursin, Florida Department of Health

FROM: Damann L. Anderson, P.E.

SUBJECT: Evaluation of Test Facility Site

Hazen and Sawyer is conducting the Florida Onsite Sewage Nitrogen Reduction Strategies (FOSNRS) Study under contract CORCL with the Florida Department of Health. Under Task A of this project, we are in the process of identifying test facility sites where multiple assessments of onsite nitrogen reduction technologies and groundwater quality can be conducted in subsequent phases of the study. Two potential sites identified in the response to the ITN were the University of South Florida Lysimeter Facility property and the University of Florida's Gulf Coast Research and Education Center (GCREC) near Wimauma, FL. Salient issues include space availability, site access, wastewater source of sufficient quantity and quality, subsurface hydrology, power supply and security.

After a preliminary assessment of the USF Lysimeter Facility, we feel that the cost of rehabilitating this facility will be beyond the budget allocated for that effort. Also, since space is limited at the USF facility and it is not conducive for identifying test facility sites where multiple assessments of onsite nitrogen reduction technologies and groundwater quality can be conducted, we have concluded that it would be more cost effective to have only one test facility, where the controlled testing portion of the project could be conducted. It is our recommendation that the GCREC be selected as the test facility site. This memorandum summarizes the characteristics of the GCREC facility, as related to establishment of this test facility.

The GCREC facility is located at 14625 County Road 672, Wimauma, Florida. The facility is situated on 475 acres of land that were donated by Hillsborough County government. The facility contains research trials for vegetables, small fruit and ornamental plants. In addition, 16 laboratories are housed onsite, one being a water quality laboratory which is available and can provide many of the analyses of interest for the FOSNRS project. One of the active programmatic areas is soil and water science. A preliminary agreement to participate has been obtained, and the key personnel at the facility are interested in the FOSNRS study. A suitable area for the proposed work has been identified at the facility as depicted in Figure 1.
Figure 2 is the web soil survey for the project area produced by the National Cooperative Soil Survey operated by the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS). As shown, the primary classification of soils on the site are Zolfo and Seffner fine sands.
Soil Map—Hillsborough County, Florida

Map Unit Legend

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Eastridge, Holocene, and Seminole soils, decr.</td>
<td>6.4</td>
<td>8.2%</td>
</tr>
<tr>
<td>19</td>
<td>Myakka fine sand</td>
<td>61.1</td>
<td>45.5%</td>
</tr>
<tr>
<td>13</td>
<td>Osu fine sand</td>
<td>7.1</td>
<td>6.3%</td>
</tr>
<tr>
<td>40</td>
<td>St. Johns fine sand</td>
<td>8.5</td>
<td>7.5%</td>
</tr>
<tr>
<td>17</td>
<td>Sitter fine sand</td>
<td>22.8</td>
<td>19.9%</td>
</tr>
<tr>
<td>51</td>
<td>Hipleasants. clayey</td>
<td>0.8</td>
<td>0.8%</td>
</tr>
<tr>
<td>61</td>
<td>Zulu fine sand</td>
<td>56.9</td>
<td>52.8%</td>
</tr>
</tbody>
</table>

Tables for Area of Interest

| Total Areas of Interest | 113.4 | 100.0% |

Figure 2
Richard Ford, a Resource Soil Scientist with the NRCS, conducted a preliminary soils assessment of the GCREC project area on March 26, 2009. The objective of the soils assessment was to confirm the soil characteristics on the site, obtain soil profile descriptions and morphology, and obtain an estimate of the depth to seasonal high water table at the site. The mapped soils in this area are primarily Seffner fine sand (47) and Zolfo fine sand (61), with a limited area of Myakka fine sand (29). These are soils of the Florida flatwoods land resource area. Seffner and Zolfo fine sands are classified as somewhat poorly drained and Myakka fine sand is classified as poorly drained. A letter from Mr. Ford describing his assessment is included with this memo as an attachment.

Figure 3 indicates the approximate locations where five soil borings were augered on site to a depth of eighty inches.
Soil boring 1 was identified as Zolfo fine sand. This profile had a well developed spodic horizon at about 58 inches. There was also evidence of some sand fill noted at the surface. It was estimated at approximately 10 inches thick. The soil profile at SB-2 was also identified as Zolfo fine sand. The well developed spodic horizon was at approximately 54 inches. There was about 10 inches of fill on the surface. The seasonal high water table was determined to be 30 inches plus or minus 6 inches. Soil boring 3 was mapped and identified in the field as Zolfo fine sand. The seasonal high water table indicators were found between 24 and 39 inches. The location of SB-4 is in or near an area mapped as Myakka fine sand based on the Soil Survey of Hillsborough County, Florida. However, the soil identified on site more closely resembled Seffner fine sand. This soil differs from Myakka fine sand by being somewhat poorly drained rather than poorly drained. The seasonal high water table was determined to be 30 inches plus or minus 6 inches. Soil boring 5 was identified as Zolfo fine sand. The seasonal high water table was also determined to be 30 inches plus or minus 6 inches. Seffner and Zolfo fine sands are both deep, somewhat poorly drained soils formed in sandy marine sediment. They are found on low-lying ridges on the flatwoods.

Based on the soils found on site, the soil mapping is representative. Water table depths determined on site were within the range of the mapped soils with only one exception. This occurred at soil boring 4 where Seffner fine sand was identified rather than Myakka fine sand. In addition, the area identified as Haplaquents in the Soil Survey of Hillsborough County was not encountered in the area investigated. If present, this area must exist south of the drainage ditch that forms the southern boundary of the study area, which was not investigated.

Another salient issue regarding the project site is a wastewater source of sufficient quantity and representative quality. The existing onsite wastewater treatment system consists of a pressure dosed mound system designed for 2,850 gallons per day. The septic tank receives flow from the research facility offices and approximately 11 graduate students that live in onsite dormitories. The laboratory liquid waste flow is not sent to the onsite wastewater system. Table 1 provides a summary of the system based on design drawings located at the GCREC.

| Primary Treatment – two precast septic tanks in series | -One 2,500 gallon precast septic tank- Category 4 without baffle  
-One 1,250 gallon precast septic tank- Category 4 with outlet screen |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosing Tank</td>
<td>3,000 gallon precast pump/dosing tank- Category 4</td>
</tr>
<tr>
<td>Mound System Drainfield</td>
<td>4,351 ft² infiltrative area (0.65 gpd/ft²)</td>
</tr>
</tbody>
</table>
A grab sample was collected at the outlet of the second septic tank on March 26, 2009. Results of laboratory analyses of this sample are summarized in Table 2.

Table 2. Septic Tank Effluent Field & Laboratory Analyses

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (measured in field)</td>
<td>6.51</td>
</tr>
<tr>
<td>Temperature (°C, in field)</td>
<td>25.4</td>
</tr>
<tr>
<td>Dissolved Oxygen (mg/L, in field)</td>
<td>0.13</td>
</tr>
<tr>
<td>Alkalinity (mg/L)</td>
<td>220</td>
</tr>
<tr>
<td>TKN (mg/L)</td>
<td>52</td>
</tr>
<tr>
<td>Ammonia (mg/L)</td>
<td>39</td>
</tr>
<tr>
<td>Nitrate (mg/L)</td>
<td>0.24</td>
</tr>
<tr>
<td>Nitrite (mg/L)</td>
<td>0.022</td>
</tr>
<tr>
<td>CBOD₅ (mg/L)</td>
<td>300</td>
</tr>
<tr>
<td>COD (mg/L)</td>
<td>680</td>
</tr>
<tr>
<td>Fecal Coliform (Col/100 mL)</td>
<td>10E6</td>
</tr>
<tr>
<td>Phosphorus (Total) (mg/L)</td>
<td>8.5</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td>590</td>
</tr>
<tr>
<td>Total Suspended Solids (mg/L)</td>
<td>80</td>
</tr>
</tbody>
</table>
Six piezometers were installed at the facility on March 17, 2009 to determine subsurface hydrol-
ogy. Figure 3 depicts the approximate piezometer locations and the water table elevations measured on March 26, 2009.

Figure 3. Piezometer Locations and Water Table Elevations on March 26, 2009
Summary

Based on the cost and time associated with rehabilitating the USF facility, it has become apparent that proceeding with construction of two test facility sites will be costly and time consuming. The current budget in the FOSNRS contract for construction of a test facility at USF does not appear to be sufficient for both the rehabilitation work and the testing facility construction. In addition, the USF Lysimeter station can only be used for pilot tests of treatment technologies and unsaturated zone work, since the water table is extremely deep at the site (>25 ft.) and sufficient area for plume delineation and monitoring is not available. Management of two facilities once operational will also be more difficult and expensive in future phases of the project.

The preliminary soils assessment, wastewater (STE) quality, and preliminary GW assessment appear to be conducive to performing the proposed work. While the flatwoods type soils at the site have a shallow groundwater that may be more likely to support in-situ denitrification, the soils of the Florida flatwoods land resource area make up approximately 55% of the area of the state, over 60% if the Everglades land resource area is excluded. In contrast, soils of the central Florida ridge land resource area make up approximately 17% of the area of the state (Ayres Associates, 1987). Also, a site conducive to in-situ denitrification is desirable from a groundwater modeling perspective. To include denitrification in the models developed in Task D, a study site where denitrification can be measured will be more likely to provide the needed inputs and calibration data for model development. If the mechanisms of in-situ denitrification can be identified at the site, then the models developed should be able to predict whether such denitrification is likely to occur at any given site. Additionally, the individual home field sites for Task C will be chosen to include soils of different types, including well drained fine sands typical of the central Florida ridge recharge areas, and the models developed will be tested at these sites.

Treatment technology pilot testing and both the saturated & unsaturated zone investigations could be performed at the GCREC. Therefore, the Project Team recommendation is to conduct all test facility work at the GCREC. This recommendation would include shifting the funds for test facility design and construction in Task A to the design and construction of the test facility for Task C, or vice versa. We would like to proceed with the GCREC site as the only FOSNRS Study testing facility, and request FDOH direction in this regard.

enc: NRCS letter

c:  E. Roeder  
P. Booher

File 44237-001
April 14, 2009

Hazen and Sawyer, P.C.
10002 Princess Palm Ave.
Suite 200
Tampa, Florida 33619

ATTN: Mr. Anderson
RE: Onsite Wastewater Treatment research

Dear Sir:

An on site soil investigation was conducted March 26, 2009 at the UF Gulf Coast Research and Education Center to determine the seasonal high water table and ascertain whether or not the soils were mapped correctly in the most recent NRCS soil survey documentation for Hillsborough County. The area of concern is located in section 29, T31S, R21E; Hillsborough County, Florida.

Soil borings were made at preselected sites or points to a depth of eighty inches. The mapping units were identified and the seasonal high water table determined. The Soil Survey of Hillsborough County, Florida and the Web based Soil Survey of Hillsborough County were used in this effort.

Five soil borings were made on site to a depth of eighty inches in the area of concern. The mapped soils in this area are Seffner fine sand (47), Zolfo fine sand (61), and Myakka fine sand. These soils are classified as poorly to somewhat poorly drained.

SB#1 was located five feet NW of PZ#1 and was identified as Zolfo fine sand. This profile had a well developed spodic at about 58 inches. There was also evidence of some sand fill noted at the surface. It was estimated at about 10 inches thick.

SB#2 was located 23 feet NW of PZ#1. This profile was identified as Zolfo fine sand. The well developed spodic was at 54 inches. There was about 10 inches of fill on the surface. The seasonal high water table was determined to be 30 inches plus or minus 6 inches.

SB#3 was located 200 feet east of the mound system’s eastern edge. The soil mapped on site and identified in the field was Zolfo fine sand. The seasonal high water table indicators were found between 24 and 39 inches.
SB#4 was located 95 feet east of the field road edge and 95 feet north of the line of trees. This area is mapped Myakka fine sand based on the Soil Survey of Hillsborough County, Florida. The soil identified on site was Seffner fine sand. This soil differs from Myakka fine sand by being somewhat poorly drained rather than poorly drained. The seasonal high was determined to be 30 inches plus or minus 6 inches.

SB#5 was located on the east side of the Farm Manager residence inside the chain link fence. Zolfo fine sand was identified on site. The seasonal high was determined to be 30 inches plus or minus 6 inches.

Based on the soils found on site the soil mapping is representative. Water table depths determined on site were within the range of the mapped soils with only one exception. This occurred at SB#4 where Seffner fine sand was identified not Myakka fine sand.

In addition, the area identified as Haplaquents in the Soil Survey of Hillsborough County was not encountered in the area investigated. If present, this area must exist south of the drainage ditch that forms the southern boundary of the study area, which was not investigated.

Please call if you have any questions. Thank you very much.

Yours truly,

Richard D. Ford
Resource Soil Scientist

cc: Juan Vega, District Conservationist
Appendix B

50% Test Design
## FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY

### 50% DESIGN DOCUMENTS

#### LIST OF DRAWINGS

<table>
<thead>
<tr>
<th>SHEET</th>
<th>SHEET NUMBER</th>
<th>SHEET TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C-1</td>
<td>COVER SHEET AND INDEX OF DRAWINGS</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C-2</td>
<td>EXISTING ONSITE SEPTIC TANK SYSTEM</td>
</tr>
<tr>
<td>4</td>
<td>C-3</td>
<td>PROPOSED OVERALL SITE PLAN</td>
</tr>
<tr>
<td>5</td>
<td>C-4</td>
<td>HYDRAULIC PROFILE PRRS II</td>
</tr>
<tr>
<td>6</td>
<td>C-5</td>
<td>PRRS II DETAILS</td>
</tr>
<tr>
<td>7</td>
<td>C-6</td>
<td>TASK C NITROGEN FATE OF TRANSPORT STUDY DETAILS</td>
</tr>
<tr>
<td>8</td>
<td>C-7</td>
<td>WASTEWATER SOURCE COMPONENTS DETAILS</td>
</tr>
<tr>
<td>9</td>
<td>C-8</td>
<td>MONITORING PLAN</td>
</tr>
<tr>
<td>10</td>
<td>M-1</td>
<td>YARD PIPING PLAN</td>
</tr>
<tr>
<td>11</td>
<td>E-1</td>
<td>ELECTRICAL SITE PLAN</td>
</tr>
</tbody>
</table>

#### LOCATION MAP

**PROJECT LOCATION**

**LOCATION**

- UNIVERSITY OF FLORIDA GULF COAST RESEARCH AND EDUCATION CENTER
- WIMAUMA, FL.

---

**HAZEN AND SAWYER**

Environmental Engineers & Scientists

10002 Princess Palm Ave., Suite 200

Tampa, Florida 33619

Certificate of Authorization Number: 2771
Appendix C
Activity Hazard Analysis
## Appendix C
### Activity Hazard Analysis

**Job:** FOSNRS Task C  
**Occupation:** Drilling Crew and Field Personnel  
**Date:** August 2009

**Specific Work Location:** Controlled Test Site / Home Sites

**Analyzed by:** K. S. Lowe  
**Reviewed by:** D. L. Anderson

**Tools Required:** PPE Required: Gloves, close-toed shoes, and eyewear.

<table>
<thead>
<tr>
<th>Job Activity</th>
<th>Potential Risks/Hazards</th>
<th>Control Measures</th>
</tr>
</thead>
</table>
| General      | Slip, trip, and fall hazards | 1. Work will be performed during daylight hours.  
2. Personnel will visually survey the site and avoid hazardous areas to the degree feasible.  
3. No smoking, eating or drinking at the drilling rig during operation.  
4. Use ground fault circuit interrupts (GFCIs).  
5. Use proper lifting techniques (use legs not back, do not exceed individual physical capability, use lifting devices where appropriate).  
6. First aid kit will be available (access to shower will remain open).  
7. Report all injuries to Damann Anderson (813-630-4498).  
8. In case of emergency call 911. |
| Environmental Sample Collection | Spills/splashes/leaks  
Contact with wastewater  
Electrical | 1. Check and address spills/leaks of wastewater.  
2. Check and address potential contact of water/wastewater with electrical cords.  
3. Decontaminate work areas and cleaned spills using 70% ethanol.  
4. Recognize potential bacterial, virus or blood borne pathogens and eliminate exposure through adequate PPE and work practices.  
PPE: gloves, close-toed shoes, eyewear.  
Waste Management (WM): Clean spills/leaks. Segregate trash. Place contact waste bins. Excess effluent will be returned to the septic tank/holding basin. Excess groundwater will be discharged to the ground surface. |
| Sample Analyses | Spills/splashes  
Contact with wastewater  
and/or reactive chemicals  
(e.g., acids)  
Broken glass  
Hot surfaces | 1. Clean all spills immediately. Ensure proper spill kits are available. Broken glass should be immediately swept.  
2. Properly store incompatible materials and flammables (e.g., separate storage for acids and bases).  
3. Close chemical containers when not in immediate use.  
PPE: lab coat, gloves, close-toed shoes, eyewear.  
WM: Clean spills/leaks. Segregate trash. |

Contact: Damann Anderson, FOSNRS Project Manager: 813-630-4498 office, 813-340-7976 cell phone.  
<table>
<thead>
<tr>
<th>Job Activity</th>
<th>Potential Risks/Hazards</th>
<th>Control Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piezometer Installation and Soil Coring with Direct Push Drilling Rig</td>
<td>General</td>
<td>PPE for all drilling related activities: Hard hat, hard-toed shoes, safety glasses, and work gloves. WM: Soils will be spread on the ground surface.</td>
</tr>
<tr>
<td></td>
<td>Malfunction</td>
<td>1. Equipment will be inspected prior to use.</td>
</tr>
<tr>
<td></td>
<td>Noise</td>
<td>1. Sound levels are expected to reach 95 dBA during hammering. Additional PPE: hearing protection with a minimum NRR of 17 will be used by the drilling operator(s) during operation and personnel within 30 ft of the rig.</td>
</tr>
<tr>
<td></td>
<td>Rotating auger may snag clothing</td>
<td>1. Loose clothing is not to be worn by the drill rig operator or the operator’s assistant. 2. No access within four feet of the rotating auger except to the operator and operator’s assistant. 3. Kill switches shall be demonstrated to be operable prior to the first use.</td>
</tr>
<tr>
<td></td>
<td>Overhead wires</td>
<td>1. Maximum voltage of overhead lines is 13.8 kV. 2. Minimum 10 ft distance to be maintained between the mast and wires. Ten ft plus 0.4-in. per kV over 50kV. 3. Spotter will be used if approaching the minimum distance.</td>
</tr>
<tr>
<td></td>
<td>Underground utilities</td>
<td>1. A utilities locator survey will be preformed and kept on-site during drilling.</td>
</tr>
<tr>
<td>Soil Sample Collection/Handling</td>
<td>Handling heavy equipment and falling equipment</td>
<td>1. Do not exceed personnel physical lifting abilities. WM: Soils will be spread on the ground surface.</td>
</tr>
<tr>
<td>Emergencies</td>
<td>Heat stress</td>
<td>1. Breaks will be taken to minimize potential for heat stress. 2. Drinks and a cool location (i.e., truck) will be available near the work area. 3. The buddy system will be used. PPE: Gloves and other PPE to prevent direct contact with metal equipment and prevent exposure to weather conditions.</td>
</tr>
<tr>
<td></td>
<td>Injuries</td>
<td>1. The fire department will be summoned for all injuries that need more than first aid by calling 911.</td>
</tr>
<tr>
<td></td>
<td>Blood borne pathogens</td>
<td>1. One field member will be trained in first aid and blood borne pathogens, but will not provide first aid unless necessary to stabilize a serious injury. 2. If blood is present, the area will be controlled to prevent exposure to blood and potential blood borne pathogens. 3. All injuries and treatment will be documented as described above under General Field Activities.</td>
</tr>
<tr>
<td></td>
<td>Fire</td>
<td>1. Call the fire department. 2. If personnel are trained in the use of fire extinguishers, and it is safe to do so, incipient stage fires may be extinguished using portable fire extinguishers.</td>
</tr>
</tbody>
</table>