

Objective

To give a clear understanding of the basic concepts of wastewater treatment including wastewater composition, treatment in the tank, pollutants in wastewater, effluent characteristics and advanced treatment units

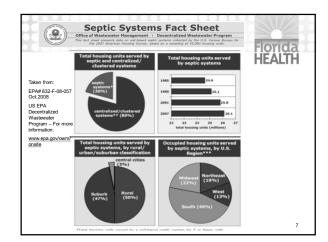
2

Onsite Sewage Treatment and Disposal Systems

Advantages and Importance of Onsite Systems

- Simple and effective
- Minimal moving parts
- Less disruptive to the environment to install and maintain
- Provide wastewater treatment to areas where otherwise it would not be available
- A source of groundwater recharge
- Lower cost compared to central sewer

4


"Public health and environmental protection officials now acknowledge that onsite systems are not just temporary installations that will be replaced eventually by centralized sewage treatment services, but permanent approaches to treating wastewater for release and reuse in the environment". (USEPA, 1997)

5

"Onsite systems are recognized as potentially viable, low-cost, long-term, decentralized approaches to wastewater treatment if they are planned, designed, installed, operated, and maintained properly".

(USEPA, 1997)

Florida's Onsite Wastewater Treatment Systems

- 2.67 million septic systems*
- 8.8 million housing units**
- > 30% served by septic systems
- > 465 million gallons per day of flow (based on 2.51 persons per household and 69.3 gallons per day/person)

*FL Dept of Health, **2008 US Census

Topics in OSTDS Design

- Wastewater Composition
- Pre-treatment
- Wastewater Disposal

Body Wastes from the average person

- 1.25 L (0.33 gallons) urine per day
- 0.25 Kg (0.55 LB.) feces per day

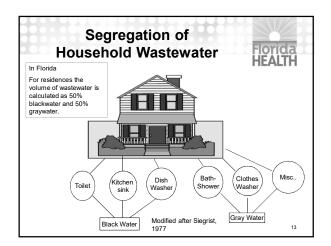
from Guttormsen, 1978

10

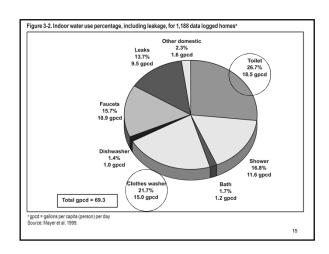
Human Body Wastes (Total volume ~ 1.5 L per day) DRY SOLIDS 150 g made of

Organic material
Nitrogen
Phosphorus
Other
118 g
16 g
2 g
Other
14 g

includes salts and trace elements from Guttormsen, 1978

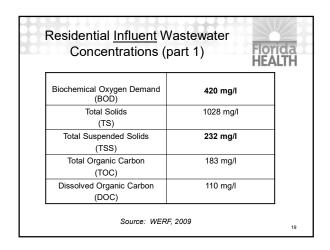

11

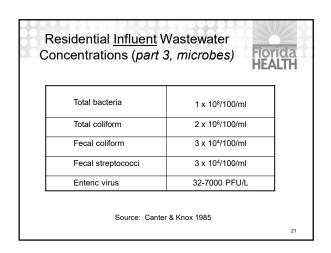
Human Body Wastes organics



- Organic material anaerobic bacteria
- 10¹² bacteria **per gram** of feces
- **1**,000,000,000,000 or 1 trillion

from Guttormsen, 1978


Fixture/use	Gal/use: Average range	Uses/person/day: Average range	Gal/person/ day: Average range ^c	% Total: Average range	Florida - HEALTH
ollet	3.5 2.9–3.9	5.05 4.5-5.6	18.5 15.7–22.9	26.7 22.6–30.6	- HEALIH
Shower	17.2' 14.9–18.6	0.75° 0.6-0.9	11.6 8.3–15.1	16.8 11.8–20.2	<u> </u>
Bath	See shower	See shower	1.2 0.5–1.9	1.7 0.9-2.7	Toilet generates the most water
Clothes washer	40.5	0.37 0.30-0.42	15.0 12.0–17.1	21.7 17.8-28.0	use per day
Dishwasher	10.0 9.3–10.6	0.10 0.06-0.13	1.0 0.6–1.4	1.4 0.9-2.2	·
aucets	1.4"	8.1' 6.7-9.4	10.9 8.7–12.3	15.7 12.4–18.5	Washing machine generates the
eaks	NA	NA	9.5 3.4–17.6	13.7 5.3–21.6	most gallons
Other Domestic	NA	NA	1.6 0.0-6.0	2.3 0.0–8.5	
Total	NA	NA	69.3 57.1-83.5	100	
han private water sources. Le Results are averages over ran	skage rates might be lower for hi ge. Range is the lowest to higher if galfuse multiplied by usesipers	Ran areas. Homes surveyed were s mes on private water supplies. I average for 12 metropolitan areas oniday because of differences in the			


28.5 63.2 24.5–38.8 (45%) (100%)
(4370) (10076)
5 17.2 70.7 10.8–22.6 (24%) (100%)
1.9 11.2 8 1.1–2.0 (17%) (100%)
1.0 2.7 (37%) (100%)

N	leasurement of V	Flam	ida LTH
	BOD (Biochemical Oxygen Demand)	The test measures the amount of dissolved oxygen organisms need to degrade wastes in wastewater. Also referred to as CBOD5. (Carbonaceous Biochemical Oxygen Demand). Can clog the soil absorption system.	
	TSS (Total Suspended Solids)	A portion of wastewater that has resisted settling, that is retained when passed through a filter. Also indicates wastewater clarity. Can clog absorption system.	
	TN (Total Nitrogen)	There are 3 forms of nitrogen that are commonly measured: ammonia (NH4), nitratles (NO3) and nitrites (NO2). Total Nitrogen is the sum of total Kjeldahl nitrogen (organic and reduced nitrogen), ammonia and nitrate-nitrite. (TKN)	
	TP (Total Phosphorus)	Occurs in wastewater bound to oxygen to form phosphates. Phosphates are classified as orthophosphates, polyphosphates and organic phosphates.	
	Fecal Coliform	Used as indicator organism for the presence of pathogens and used to determine if wastewater has been adequately treated.	
	FOG (Fats, Oils and Greases)	The combination of fats, oils, and greases and other related constituents in wastewater. Excessive FOG can clog systems, create odors and increase BOD. Can clog absorption system.	17

		Florida HEALTH
garbage disposa		_
Parameter	Reduction in pollutant loading (%)	_
Total suspended solids	25–40	
Biochemical oxygen demand	20–28	
Total nitrogen	3.6	
Total phosphorus	1.7	
Fats, oils, and grease	60–70	
	l.	_

Residential <u>Influent</u> V Concentrations (<i>part i</i>		rida ALTH
Total Nitrogen	60 mg/l	
Organic N	43 mg/l	
Ammonia (NH ₃)	14 mg/l	
Nitrate N (NO ₃ -)	1.9 mg/l	
Total Phosphorus	10.4 mg-P/L	
Source: WER	RF, 2009	20

Waterborne Pathogens found in Human Florida HEALTH Waste and Associated Diseases Type Organism Disease Bacteria Escherichia coli Gastroenteritis (enteropathogenic) Legionella pneumophila Legionellosis Leptospirosis Leptospira Salmonella typhii Typhoid Fever Salmonella Salmonellosis Shigella Shigellosis Vibrio cholera Cholera Yersinia enterolitica Yersinosis Source: USEPA, 1999 Waterborne Pathogens found in Human Waste and Associated Diseases Type Organism Disease Protozoans Balantidium coli Balantidiasis Cryptosporidium Cryptosporidiosis Entamoeba histolytica Amoebic dysentery Naegleria fowleri Amoebic Meningoencephalitis Source: USEPA, 1999 23 Waterborne Pathogens found in Human Waste and Associated Diseases Organism Disease Type Adenovirus (31 types) Viruses Conjunctivitis Enterovirus (67 types) Gastroenteritis Hepatitis A Infectious hepatitis Noroviruses Gastroenteritis

Reovirus

Rotavirus

Source: USEPA, 1999

Gastroenteritis

Gastroenteritis

Forms of viral hepatitis exposure routes

- Hepatitis A
- Hepatitis B
- Hepatitis C
- Delta- Hepatitis
- Hepatitis E
- Transfusions ■ Blood & plasma

■ <u>B</u>lood-borne

Contaminated water (fecal-oral)

SewAge (fecal-oral)

IN: Benenson, 1990 Healthwise, 2015

Pathogen Content of Gray water surprisingly high...

Possible sources are:

- sputum & vomitus bathroom sink
- contaminated garments clothes washer
- normal skin flora (rectal area) shower/ bath

Source: Plews, 1977

Typical Septic Tank effluent bacterial count (mean#/100 ml)

- Total bact. 3.4 x 10⁸
- Total colif. 3.4 x 10⁶
- Fecal colif. 4.2 x 10⁵
- Fecal strep. 4.0 x 10⁴
- Pseudomonas 8.6 x10³ aeruginosa

Siegrist, 1977 Univ. of Wisconsin, 1978

Bacterial Characteristics of Gray Water

EVENT	ORGANISM	Mean(#100 ml)
Bath/Shower	Fecal strep.	44
	Fecal colif.	220
	Total colif.	1,100
Clothes Wash	Fecal strep.	210
	Fecal colif.	1,400
	Total colif.	18,000
Clothes Rinse	Fecal strep.	75
	Fecal colif.	320
	Total colif.	5,300

28

Nitrogen

- septic tank effluent 27 119 mg-N/L (60 mg-N/L median)*
- Very little removal in tank*
- as much as 10 50% removed in drainfield (based on soil permeability) *
- each person generates 9 lbs./year**
- need to determine risks of nitrogen build up in groundwater

* Water Environment Research Foundation (WERF), Project Number 04-DEC-1, Influent Constituent Characteristics of the Modern Waste Stream from Single Sources, 2009

** Wekiva Study Florida, Feb 2006 by D. L. Anderson et al, the researchers determined that the average amount of nitrogen in untreated domestic sewage contributed by each person in a home was 11.2 grams per person per day or around 22 pounds per year per each household of 2.5 people.

Total Nitrogen in Effluent

■ ~ 45 mg-N/L

SEPTIC TANK

■ ~ 40 mg-N/L

AEROBIC UNIT

Source: 1993 Florida OSTDS Study

Nitrogen		orida EALTH
	Nitrogen Primarily in the form of:	
Septic Tank Effluent	Ammonia (NH ₃)	
Aerobic Treatment Unit Effluent	Nitrate N (NO ₃ -)	

31

Nitrate

- Not Retained In Soil
- Moves With Groundwater
- Created By Unsaturated Soils and Aerobic Treatment Units

32

Nitrogen Contamination Public Health Concerns

- High concentrations of nitrate (greater than 10 mg/L) can cause METHEMOGLOBINEMIA or "Blue Baby Syndrome" a disease in infants that reduces the blood's ability to carry oxygen
- MCL for N is 10 mg/l EPA Groundwater Standard
- Septic tanks are ineffective in removing nitrogen
- Nitrogen contamination of ground water below infiltrative fields has been documented by many investigators

Source: EPA, 2002

Limiting Nitrate Effects

- Control System Density
- Maximum Sewage Flow Applied Per Acre
- Reduce Amount Of Nitrogen In Effluent

34

Phosphorus

- Sources: soaps & detergents (lowered), feces
- Average person generates 3 lb./yr
- 5-20% retention in tank
- Plant uptake in root zone
- Soils with organic content will absorb P
- 85 95% removed as measured in the vadose zone (aerated or unsaturated zone below the drainfield)
- Chemical precipitation, ion exchange canisters
- Fate: lake and tropical marine degradation

Source: EPA, 2002

35

Volatile Organic Compounds (VOCs)

- Sources: cleansers, dyes, solvents used in home, pesticides, organic chemicals
- Removal efficiency: high in coarse aggregate drainfield material (presumably vaporize into air voids)
- Most prevalent toxic organics in wastewater: toluene, xylenes, acetone.

Source: EPA, 2002

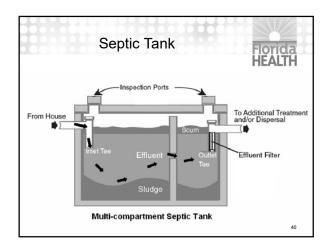
Volatile Organic Compounds (VOCs)

- Concentrations in septic tank effluent $9-75 \mu/L$
- toluene found in all effluent samples
- chloroform & methylene chloride found in some effluent samples
- no positive samples immediately beneath drain fields

Source: Florida's OSTDS Research Project

37

Pretreatment


- occurs in treatment tanks
- septic tanks provide *primary* treatment
- aerobic units provide <u>secondary</u> treatment

38

Functions of a Septic Tank

- Sedimentation in scum & sludge layers
- Storage of layers
- <u>Digestion</u> of solids without oxygen

Sedimentation Function

- quiescent conditions
- settleable solids sink to bottom sludge
- floatables rise to form scum layer
- remove / reduce particles suspended in wastewater
- partition tanks (baffled) or tanks in series prevent short circuiting

41

Storage Function

- Adequate volume
- Scum and sludge stored without disturbing other functions
- Protects drainfield absorption area

Digestion Function

- Without oxygen (anaerobic)
- Reduce organic molecules to soluble compounds and gases
- Gas bubbles produced in sludge rise to surface and seed the clear zone
- Can interfere with sedimentation
- Reason for compartmentalized tanks and outlet and filter devices

43

Anaerobic Digestion

The purpose of the anaerobic process is to convert sludge to end products of liquids and gases while producing as little biomass as possible

- Hydrolysis large polymers broken down by enzymes
- Fermentation Volatile fatty acids are also produced along with carbon dioxide and hydrogen
- Acetogenesis breakdown of volatile acids to acetate and hydrogen
- Methanogenesis Acetate, formaldehyde, hydrogen and carbon dioxide are converted to methane and water

44

Indigestible materials to avoid:

- coffee grounds
- cooking fats & grease
- wet strength towels
- disposable diapers
- cigarette butts
- plastics
- kitty litter

Onsite W	astewater	Concepts -	Part A.	Basic	Concepts in	Wastewater	Treatment.	201	3
----------	-----------	------------	---------	-------	-------------	------------	------------	-----	---

What is <u>in</u> Septic Tank Effluent?

- oxygen-demanding substances
- disease-causing agents
- small suspended particles
- nutrients and other dissolved substances
- 99.9% water

46

Septic Tank Effluent Characteristics

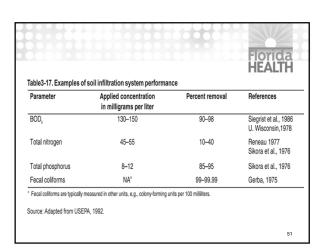
- Remove nearly all the settleable solids
- Fats, greases & floating debris removed
- Can vary widely in characteristics
- Can vary from day to day in same tank, depending on usage, season and climate

47

Septic Tank Effluent

	Influent	Effluent	%
	RAW	(STE)	Reduction
	(mg/l)	(mg/l)	
CBOD ₅	420	216	50%
TSS	232	61	60-80%
Total	60	60	NR
Nitrogen			
Total	10.4	9.8	little
Phosphorus			

Source: WERF, 2009


Closer to the Soil Surface...

- more biological activity
- stimulation natural microbes & macroorganisms
- greater oxygen concentration
- shorter distance for oxygen to diffuse to hiomat

49

Clogging mat, zone, or bio-crust Highly effective in removing bacteria and pathogens Acts as an active biological site for treatment Large portion of BOD removed Adsorption, filtration and purification Predation of sewage microbes by naturally-occurring soil microbes Biomat: The layer of biological growth and inorganic residue that develops at the wastewater-soil interface and extends up to about 1 inch into the soil matrix. The biomat controls the rate at which pretreated wastewater moves through the infiltrative surface/zone.

Conventional vs. Advanced OSTDS Conventional Septic Tank and Drainfield Aerobic Treatment Unit (ATU) Performance Based Treatment System (PBTS)

Aerobic Treatment Unit (ATU)

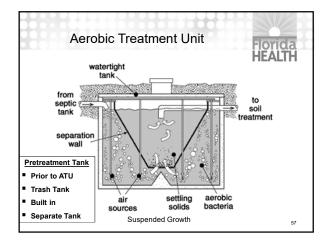
- A sewage treatment unit which introduces air into sewage
- Treatment provided by bacteria adapted to presence of dissolved oxygen

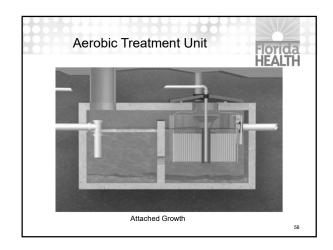
53

Aerobic vs. Anaerobic Bacteria

- Get more energy out of same amount of food
- Reproduce faster when conditions favorable
- Greater proportion of food consumed goes into cell mass

Aerobic Unit Effluent Meets National Secondary Standards – NSF Standard 40


	Conventional STE	ATU NSF 40 STE Standard
BOD ₅	216 mg/L	25 mg/L
TSS	61 mg/L	30 mg/L
Microbe Reduction	loaded	99.9% (not disinfection)


55

Steps in Aerobic Treatment

- <u>Pretreatment</u> using septic tank, trash trap or primary settling compartment (manufacturer specifications/NSF certification)
- Aeration two types
 - suspended growth floating in liquid
 - attached growth attach to surface trickling filter or rotating disks examples

Aerobic Treat	ment Unit
Incentives/ Advantages	Disincentives/ Addn. requirements
Much higher treatment (greater reduction in BOD and TSS) Can extend drainfield life Reduced drainfield Replacement system in areas with chronic failing septic tanks	Operating expense Requires electricity More frequent routine maintenance Subject to upsets under heavy loads Less resilient to long periods of no use (starvation)

Performance Based Treatment System (PBTS)

a specialized onsite sewage treatment and disposal system designed by a professional engineer with a background in wastewater engineering, licensed in the state of Florida, using appropriate application of sound engineering principles to achieve specified levels of CBOD5 (carbonaceous biochemical oxygen demand), TSS (total suspended solids), TN (total nitrogen), TP (total phosphorus), and fecal coliform found in domestic sewage waste, to a specific and measurable established performance standard. This term also includes innovative systems. Chapter 64E-6.025(10), Florida Adminstrative Code

Performance Based Treatment System (PBTS)

- Engineer Design
- Comparison/Differences to ATU's
- Reduction in Sewage Strength and Nutrients
- Increased Lot Flows
- Reduction in Set backs
- Greater Reduction in Drainfield size than ATU
- Operating Permits
- Maintenance
- Monitoring and Sampling
- CHD Inspection Annually

61

	FLO	RIDA PERFOR	MANCE ST	ANDARDS	mance Based Tre	eatment Systems (I	PBTS)
	BASELINE	BASELINE	AEROBIC		ADVANCED	FLORIDA	ADVANCED
	SYSTEM	SYSTEM	TREAT-		SECONDARY	KEYS	WASTE-
POLLUTANT	STANDARDS	STANDARDS	MENT	STANDARDS	TREATMENT	NUTRIENT	WATER
	Septic tank (effluent)	@ base of 24 inch unsaturated zone	UNIT		STANDARD	REDUCTION	TREATMENT
	(64E-6.025(3))	(64E-6.025(3))	≤1500 gpd	(effluent) (64E-6.025(3))	(effluent) (64E-6.025(1))	TREATMENT	STANDARDS
	(0.10.0.000(0))		(effluent) (NSF-40)	(04E-0.025(3))	(04E-0.025(1))	(effluent) (64E-6.025(8))	(effluent) (64E-6.025(2))
CBOD ₅			(11111111111111111111111111111111111111			(0.12 0.122(0))	(5.00 5.000(0))
(Carbonaceous Biochemical	120-240 mg/l	< 5 mg/l	≤ 25 mg/l	≤ 20 mg/l	≤ 10 mg/l	≤ 10 mg/l	≤ 5 mg/l
Oxygen Demand)				_	_	_	_
TSS	65-176 mg/l	< 5 mg/l	≤ 30 mg/l	< 20 mg/l	< 10 mg/l	≤ 10 mg/l	< 5 mg/l
(Total Suspended Solids)	03-170 Hig/l	< 5 mg/l	≤ 30 mg/r	<u>≤</u> 20 mg/l	≥ 10 mg/r	≤ 10 mg/r	≤ 5 mg/r
TN	36-45 mg/l	15-25 ma/l	not	not	< 20 mg/l	< 10 mg/l	< 3 mg/l
(Total Nitrogen)	30-43 High	10-20 mg/l	applicable	applicable	_ 20 mg/r	2 10 mg/r	_ 3 mg/r
TP	6-10 mg/l	< 5 mg/l	not	not	<_10 mg/l	≤ 1 mg/l	≤ 1 mg/l
(Total Phosphorus)	1E+4 to 1E+7		applicable not	applicable			BDL
Fecal coliform	(WERF 2009)	undetected	applicable	≤ 200 fc col/100 ml	≤ 200 fc col/100 ml	Depends on Disposal	for 100 ml
						Disposai	
DRAINFIELD REDUCTIONS	not applicable	not applicable	25% in slightly limited soil	25% in slightly limited soil	40% in slightly limited soil		40% in slightly limited soil
(cBOD5 and TSS see							
Note 1) REDUCE:							
SETBACKS							
surface water	no change	no change	no change	65 ft	50 ft 10 ft		25 ft 10 ft
groundwater drains	no change	no change	no change	no change	10 ft		10 R
dry retention &	no change	no change	no change	no change	10 ft		10 ft
swales SEPARATIONS	no change	no change	no change	no change	no change		12 in
to SHWT	-				_		
INCREASE AUTHORIZED FLOWS	no change	no change	no change	25%	50%		100%

Additional Reference Materials

- EPA Design Manual Onsite Wastewater Treatment and Disposal Systems October 1980 EPA/625/1-80-012
- http://www.epa.gov/nrmrl/pubs/625180012/625180012total.pdf
- EPA Onsite Wastewater Treatment Systems Manual, February 2002 EPA/625/R-00/008 http://www.epa.gov/nrmrl/pubs/625r00008/html/625R00008.htm
- Florida Department of Health, Onsite Sewage Programs http://www.myfloridaeh.com/ostds/index.html
- Water Environment Research Foundation (WERF), Project Number 04-DEC-1, Influent Constituent Characteristics of the Modern Waste Stream from Single Sources, 2009 http://www.werf.org/