Florida Morbidity Statistics

1997-2006

Florida Department of Health
Division of Disease Control
Bureau of Epidemiology 4052 Bald Cypress Way, Bin \# A-12
Tallahassee, Florida 32399-1720
850-245-4401

http://www.doh.state.fl.us/
Florida Morbidity Statistics Report 1997-2006:
http://www.doh.state.fl.us/disease_ctrl/epi/Morbidity_Report/amr_1997to2006.pdf

Table of Contents

Acknowledgments v
Introduction. vii
Data Sources vii
Interpreting the Data vii
Report Format viii
List of Reportable Diseases/Conditions in Florida, 2006 viii
Selected Florida Department of Health Contacts x
Map of Florida's Counties x
Florida Population by County, 1997-2006 xi
Florida Population by Age Group xii
Florida Population by Gender. xiii
Florida Population by Race xiii
A History of Disease Reporting in Florida xiii
Section 1: Summary of Selected Notifiable Diseases 17
Table 1.1: Reported Confirmed and Probable Cases and Incidence per 100,000 Population for Selected Notifiable Diseases, 1997-2006 18
Table 1.2: Reported Confirmed and Probable Cases of Selected Notifiable Diseases by Month of Onset, 2006 19
Table 1.3: Reported Confirmed and Probable Cases of Notifiable Diseases of Infrequent Occurrence, 1997-2006. 20
Figure 1.1: Top 10 Reported Confirmed and Probable Cases of Disease by Age Group, 1997-2006 22
Table 1.4: Reported Confirmed and Probable Cases and Incidence per 100,000 Population for Selected Notifiable Diseases by County, 1997-2006 23
Section 2: Selected Notifiable Diseases and Conditions 91
Acquired Immune Deficiency Syndrome/Human Immunodeficiency Virus. 92
Animal Bite, Rabies Post-Exposure Prophylaxis 102
Anthrax 105
Brucellosis 105
California Serogroup Viruses 107
Campylobacteriosis 108
Chlamydia. 111
Cryptosporidiosis 114
Cyclosporiasis 117
Dengue 120
Eastern Equine Encephalitis. 122
Ehrlichiosis/Anaplasmosis 124
Enterohemorrhagic Escherichia coli 0157:H7 126
Escherichia coli shiga toxin positive (non-O157:H7) 129
Giardiasis 131
Gonorrhea 135
Haemophilus influenzae (Invasive Disease). 137
Hantavirus 141
Hepatitis A. 141
Hepatitis B, Acute 145
Hepatitis B (HBsAg + Pregnant Women) 149
Hepatitis C, Acute 152
Lead Poisoning 155
Legionellosis 156
Leptospirosis 159
Listeriosis 160
Lyme Disease 164
Malaria 168
Measles 171
Meningitis, Other (bacterial/mycotic) 172
Meningococcal Disease 175
Mumps 178
Neonatal Infections 180
Pertussis 181
Pesticide-Related Illness/Injury Morbidity Report, 1998-2005 184
Plague 185
Psittacosis 186
Q Fever 187
Rabies 188
Rocky Mountain Spotted Fever 191
Rubella 193
Salmonellosis 194
Shigellosis 197
St. Louis Encephalitis 200
Streptococcal Disease, Invasive, Group A 202
Streptococcus pneumoniae, Drug-Resistant 205
Streptococcus pneumoniae, Drug-Susceptible 210
Syphilis 213
Tetanus 216
Toxoplasmosis 217
Trichinellosis 220
Tuberculosis 220
Tularemia 227
Typhoid Fever 227
Venezuelan Equine Encephalitis 228
Vibriosis 229
West Nile Virus 233
Western Equine Encephalitis 235
Yellow Fever 236
Section 3 Summary of Foodborne Diseases, 1996-2005 Overview 237
Section 4 Summary of Notable Outbreaks and Case Investigations, 1997-2006 245
Section 5 Summary of Cancer Data 277
Section 6 Summary of Revisions to Florida's Notifiable Disease Reporting Law 289(Chapter 64D-3, F.A.C.)

Acknowledgments

This publication is produced through the combined efforts of many within, as well as outside, the Florida Department of Health. Many thanks to the professionals in the Bureau of Epidemiology, Bureau of Immunizations (Charles Alexander, Bureau Chief), Bureau of HIV/AIDS (Tom Liberti, Bureau Chief), Bureau of Sexually Transmitted Diseases (Karla Schmitt, Bureau Chief), Bureau of Tuberculosis Control and Refugee Health (Jim Cobb, Bureau Chief), and the Bureau of Community Environmental Health (Eric Grimm, Bureau Chief) for their important contributions to this publication. Additional appreciation is extended to all physicians, nurses, laboratorians, information systems professionals, and health department staff who participated in reportable disease surveillance during 2006. Tracking these diseases is a cooperative effort involving professionals involved in individual healthcare as well as public health agency staff.

Individual cases are reported so that:

- Public health action can be applied to individual cases;
- Outbreaks can be recognized and controlled;
- Risk factors and areas of high activity for disease can be identified to provide direction for disease control efforts; and,
- Trends in disease over time can be monitored to assess the need for, and effectiveness of, control measures.

We hope readers will find this document useful when setting priorities and directions for action at the individual and community levels to prevent and control disease.

Julia Gill, Ph.D., M.P.H.
Chief, Bureau of Epidemiology

Florida Morbidity Statistics Report Staff

Editors

Aaron Kite-Powell, M.S.
Janet J. Hamilton, M.P.H.
Richard Hopkins, M.D., M.S.P.H.
Kate Goodin, M.P.H.

Contributing Authors

David Atrubin, M.P.H.
Carina Blackmore, D.V.M., Ph.D.
Tracina Bush
Timothy Doyle, M.P.H.
Roberta Hammond, Ph.D., R.S.
Janet J. Hamilton, M.P.H.
Aaron Kite-Powell, M.S.
Richard Hopkins, M.D., M.S.P.H.
Tara Hylton, M.P.H.
Robyn Kay, M.P.H.
Julie Kurlfink
Becky Lazensky, M.P.H.
Ryan M. Lowe, M.P.H.
Yvonne Luster-Harvey, M.P.H.
Kim Quinn
Lorene Maddox, M.P.H.
Catheryn Mellinger, R.N., B.C.
Andre Ourso, M.P.H.
Patricia Ragan, Ph.D., M.P.H.
Aimee Pragle, M.S.
Rebecca Shultz, M.P.H.
Danielle Stanek, D.V.M.
Roger Sanderson, M.A., B.S.N.
Robin Terzagian
Tracy Wade, M.S.
Phyllis Yambor, R.N.
Bureau of Epidemiology
Bureau of Epidemiology
Bureau of Epidemiology
Bureau of Epidemiology

Hillsborough County Health Department
Bureau of Community Environmental Health Bureau of HIV/AIDS
Bureau of Epidemiology
Bureau of Community Environmental Health
Bureau of Epidemiology
Bureau of Community Environmental Health
Bureau of Epidemiology
Bureau of Community Environmental Health Bureau of Tuberculosis and Refugee Health
Bureau of Sexually Transmitted Diseases
Prevention and Control
Bureau of HIV/AIDS
Bureau of Immunization
Volusia County Health Department
Bureau of Epidemiology
Bureau of Epidemiology
Bureau of Community Environmental Health Bureau of Community Environmental Health
Bureau of Epidemiology
Bureau of Community Environmental Health
Bureau of Community Environmental Health
Bureau of Immunization

Introduction

Purpose

The Florida morbidity report is compiled to:

1. Summarize annual morbidity from notifiable acute communicable and environmental diseases, and cancer in Florida;
2. describe patterns of disease as an aid in directing future disease prevention and control efforts; and,
3. provide a resource to medical and public health authorities at county, state and national levels.

Data Sources

Data presented in this report are based on notifiable disease information received by county and state health department staff from physicians, hospitals, and laboratories throughout the state. Data on occurrence of communicable diseases in Florida were obtained through passive, and sometimes active, surveillance. Reporting suspect and confirmed notifiable diseases or conditions in the State of Florida is mandated under Florida Statute 381.0031, Chapter 64D-3, Florida Administrative Code (F.A.C.). Persons in charge of laboratories, practitioners, hospitals, medical facilities, schools, nursing homes, state institutions, or other locations providing health services are required to report diseases or conditions and the associated laboratory test results listed in the Table of Notifiable Diseases or Conditions, Chapter 64D-3 F.A.C. Reporting test results by a laboratory does not nullify the practitioner's obligation to also report the disease or condition. These data are the basis for providing useful information on notifiable diseases and conditions in Florida to healthcare workers and policymakers, and this would not be possible without the cooperation of the extensive network involving both private and public sector participants. Note that Chapter 64D-3 F.A.C. was extensively revised at the end of 2006.

1. Passive surveillance relies on physicians, laboratories, and other healthcare providers to report diseases of their own accord to the Florida Department of Health using a confidential morbidity report form, electronically, by telephone, or by facsimile.
2. Active surveillance entails Florida Department of Health staff regularly contacting hospitals, laboratories, and physicians in an effort to identify all cases of a given disease.

Interpreting the Data

This report should be interpreted in light of the following limitations:

1. Under-reporting

Evaluations of infectious disease reporting systems have, in general, indicated that the completeness of reporting varies by disease: the less common, more severe reportable diseases such as bacterial meningitis, diphtheria, polio, botulism, anthrax, tuberculosis, and congenital syphilis are more completely reported than the more common, but (individually) less severe, diseases such as hepatitis A or campylobacteriosis. Variation in reported disease incidence at the local level most likely reflects both differences in the true incidence of disease and differences in the vigor with which surveillance is performed.

2. Reliability of Rates

All incidence rates in this report are expressed as the number of reported cases of a disease per 100,000 population unless otherwise specified. Animal rabies is only reported as the number of cases, because no reliable denominators exist for animal populations. Rates for diseases with only a few cases reported per year can have unstable rates, and should be interpreted with caution. The observation of zero events is especially hazardous. To account for these instabilities, all rates in the report based on less than 19 events are considered unreliable. This translates into a relative standard error of the rate of 23% or more, which is the cut-off for rate reliability used by the National Center for Health Statistics.

3. Reporting Period

The data in this report are aggregated by the date the case was reported to the Bureau of Epidemiology for each of the years presented, beginning January 1 and ending December 31. Frequency counts included only cases reported during this time. In some cases, diseases reported in 2006 may have onset dates in 2005.
4. Case Definition

For the purposes of this report, confirmed and probable cases have been included for all diseases. No suspected cases have been included. Uniform reporting criteria for the diseases and conditions in this report have been defined in the Surveillance Case Definitions for Select Reportable Diseases in Florida.
5. Place of Acquisition of Disease or Condition

The distribution of cases among Florida counties was determined by the patient's reported county of residence. Cases were allocated to their county of residence regardless of where they became ill or were hospitalized, diagnosed, or exposed. Individuals whose official residence was outside the state of Florida, but who became ill or were hospitalized or diagnosed in Florida, were not included in Florida morbidity. These cases were referred through an interstate reciprocal notification system to the state where the patient resided.
6. Population Estimates

All population estimates are from the Community Health Assessment Resource Tool Set (CHARTS). The CHARTS system receives its estimates from the Florida Legislature's Office of Economic and Demographic Research (EDR). Estimates are updated once per year in the CHARTS system.
7. Incomplete Case Information

Certain analyses depicting specific demographic variables may not include all reportable cases of a specific disease due to incomplete case information. For graphs denoting month of onset, it is important to note that only those cases of disease for which an onset date could be determined are included.

Report Format

This report is divided into six sections:
Section 1: Summary of Selected Notifiable Diseases and Conditions
Section 2: Selected Notifiable Diseases and Conditions
Section 3: Summary of Foodborne Disease
Section 4: Summary of Notable Outbreaks and Case Investigations
Section 5: Summary of Cancer Data
Section 6: Summary of Revisions to Florida's Notifiable Disease Reporting Statute (Chapter 64D-3 F.A.C.).

List of Reportable Diseases/Conditions in Florida, 2006

Section 381.0031 (1,2), Florida Statutes provides that, "Any practitioner licensed in Florida to practice medicine, osteopathic medicine, chiropractic, naturopathy, or veterinary medicine, who diagnoses or suspects the existence of a disease of public health significance shall immediately report the fact to the Department of Health." Local county health departments serve as the Department's representative in this reporting requirement. Furthermore, this Section provides that, "Periodically the Department shall issue a list of diseases determined by it to be of public health significance...and shall furnish a copy of said list to the practitioners..." Note: this list was revised in November 2006; Annual Morbidity Reports for subsequent years will reflect the new list.

Any disease outbreak
Any grouping or clustering of disease
Acquired Immune Deficiency Syndrome (AIDS)
Animal bite to humans
Anthrax
Botulism
Brucellosis
Campylobacteriosis
Cancer (except non-melanoma skin cancer)
Chancroid
Chlamydia trachomatis (diseases caused by)
Ciguatera
Congenital anomalies
Creutzfeldt-Jakob Disease (CJD)
Cryptosporidiosis
Cyclosporiasis
Dengue Fever
Diphtheria
Ehrlichiosis, human
Encephalitis
Eastern Equine
Non-arboviral
Other arboviral
St. Louis
Venezuelan Equine
West Nile
Western Equine
Enteric diseases due to:
Escherichia coli, O157:H7
Escherichia coli, Other (known serotypes)
Epsilon toxin of Clostridium perfringens
Giardiasis (acute)
Glanders
Gonorrhea
Granuloma inguinale
Haemophilus influenzae (invasive disease)
Hansen's Disease (Leprosy)
Hantavirus infection
Hemolytic Uremic Syndrome
Hepatitis (viral)
Hepatitis A
Hepatitis B
Hepatitis C
Hepatitis non-A, non-B
Hepatitis, Other (unspecified)
Hepatitis B surface antigen (HBsAg)
positive in a pregnant woman or a child <= 24 months of age
Herpes Simplex Virus (HSV) [in neonates and
Infants to six months of age]
Human Immunodeficiency Virus (HIV)
Human papillomavirus (HPV) [in neonates and

Children through 12 years of age]
Lead Poisoning
Legionellosis
Leptospirosis
Listeriosis
Lyme Disease
Lymphogranuloma venereum
Malaria
Measles
Melioidosis
Meningitis (bacterial \& mycotic)
Meningococcal Disease (due to Neisseria
meningitidis)
Mercury Poisoning
Mumps
Neurotoxic Shellfish Poisoning
Pertussis
Pesticide-Related Illness and Injury
Plague
Poliomyelitis
Psittacosis
Q Fever
Rabies
Ricin Toxin
Rocky Mountain Spotted Fever
Rubella (including congenital)
Salmonellosis
Saxitoxin Poisoning (paralytic shellfish poisoning)
Shigellosis
Smallpox
Staphylococcus aureus, Vancomycin nonsusceptible
Staphylococcus enterotoxin B
Streptococcal Disease (invasive Group A)
Streptococcus pneumoniae (invasive disease)
Syphilis
Primary
Secondary
Early latent
Congenital syphilis
Late latent
Neurosyphilis
Tetanus
Toxoplasmosis (acute)
Trichinosis
Tuberculosis
Tularemia
Typhoid Fever
Typhus Fever
Vaccinia Disease
Vibrio infections
Viral hemorrhagic Fever
Yellow Fever

Selected Florida Department of Health Contacts

Division of Disease Control

Bureau of Epidemiology	(850) 245-4401
Bureau of Immunization	$(850) 245-4342$
Bureau of HIV/AIDS	$(850) 245-4334$
Bureau of Sexually Transmitted Diseases	
Control and Prevention	(850) 245-4303
Bureau of Tuberculosis and Refugee Health	$(850) 245-4350$
Division of Environmental Health	
Bureau of Community Environmental Health	(850) 245-4277

Florida County Boundaries

Table A. Florida Population by Year and County, 1997-2006. (Source - Florida CHARTS; accessed June 2007)

County	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
State Total	15,011,697	15,309,968	15,679,606	16,074,896	16,412,296	16,772,201	17,164,199	17,613,368	18,018,497	18,422,450
Alachua	205,414	208,156	213,346	219,239	224,397	229,524	232,110	237,374	241,858	246,151
Baker	20,801	20,782	21,498	22,388	22,641	23,105	23,472	24,069	23,980	24,179
Bay	141,889	144,693	147,075	148,692	150,748	152,818	155,414	159,108	162,499	165,520
Bradford	25,368	25,496	25,767	26,110	26,136	26,649	27,084	27,865	28,195	28,562
Brevard	454,738	461,493	469,515	478,541	487,131	497,429	510,622	524,046	534,596	545,113
Broward	1,515,711	1,551,039	1,590,361	1,631,445	1,654,923	1,673,972	1,706,363	1,730,580	1,746,603	1,772,958
Calhoun	12,538	12,611	12,863	13,038	13,101	13,286	13,491	13,636	14,011	14,264
Charlotte	133,308	135,610	139,032	142,357	145,481	149,486	152,865	158,006	153,788	154,513
Citrus	111,629	113,914	116,208	118,689	121,078	123,704	126,475	129,822	133,472	136,707
Clay	128,654	133,044	137,357	141,331	144,161	151,746	157,325	164,868	171,118	177,033
Collier	217,914	229,929	242,408	254,571	267,632	281,148	295,848	309,369	320,859	333,761
Columbia	53,088	54,314	55,446	56,683	57,354	58,537	59,218	60,821	61,744	63,005
Desoto	29,333	30,389	31,436	32,404	32,741	32,959	33,912	34,220	32,391	32,090
Dixie	12,946	13,152	13,559	13,883	14,154	14,530	14,768	15,054	15,482	15,857
Duval	746,515	758,691	767,860	782,691	797,566	813,817	829,937	843,772	865,965	884,004
Escambia	285,819	288,240	292,937	294,911	297,321	300,421	304,165	308,068	303,240	303,578
Flagler	42,474	44,897	47,559	50,620	53,881	58,004	62,511	71,004	80,559	87,384
Franklin	9,626	9,669	9,710	9,871	9,974	10,250	10,530	10,682	10,909	11,260
Gadsden	44,582	45,011	45,312	45,070	45,419	46,073	46,600	46,965	47,883	48,554
Gilchrist	12,937	13,554	13,980	14,533	14,759	15,140	15,637	16,016	16,303	16,727
Glades	9,867	10,090	10,407	10,595	10,624	10,675	10,759	10,763	10,743	10,844
Gulf	13,201	13,204	13,559	14,785	15,101	15,290	15,691	16,235	16,543	16,790
Hamilton	12,187	12,472	12,831	13,457	13,792	13,952	14,039	14,346	14,319	14,405
Hardee	25,601	26,215	26,543	26,952	27,021	27,474	27,434	27,898	27,277	27,260
Hendry	33,687	34,533	35,608	36,300	36,256	36,174	36,739	37,800	38,610	39,558
Hernando	123,377	126,176	128,733	131,298	133,497	137,613	141,574	146,118	152,049	156,683
Highlands	82,484	84,012	85,892	87,676	88,373	89,343	90,770	92,456	93,807	95,342
Hillsborough	934,544	950,947	978,079	1,005,808	1,034,164	1,062,140	1,085,318	1,114,774	1,137,583	1,162,616
Holmes	17,934	18,011	18,371	18,620	18,713	18,746	18,983	19,027	19,189	19,348
Indian River	105,148	107,231	110,142	113,755	116,291	118,884	121,887	127,831	130,849	134,199
Jackson	45,244	45,734	46,050	46,998	47,534	47,963	49,218	48,891	49,883	50,679

Table B. Florida Population by Age Group, 2006

Age Group in Years	Population
<1	220,259
$1-4$	881,034
$5-9$	$1,129,142$
$10-14$	$1,184,737$
$15-19$	$1,206,406$
$20-24$	$1,194,283$
$25-34$	$2,215,347$
$35-44$	$2,582,019$
$45-54$	$2,601,203$
$55-64$	$2,098,654$
$65-74$	$1,498,972$
$75-84$	$1,174,408$
$85+$	435,986
Total	$\mathbf{1 8 , 4 2 2 , 4 5 0}$

Table C. Florida Population by Gender, 2006

Gender	Population
Male	$9,017,194$
Female	$9,405,256$
Total	$\mathbf{1 8 , 4 2 2 , 4 5 0}$

Table D. Florida Population by Race, Aggregated to White and Non-White, 2006

Race	Population
White	$14,855,732$
Non-White	$3,566,718$
Total	$\mathbf{1 8 , 4 2 2 , 4 5 0}$

A History of Disease Reporting in Florida

Florida was in many ways a frontier state far longer than the typical tourist, or even longtime resident, might think. Towns, cities, and the population in general remained relatively small until well after World War II.

Studying the historical record, there is not only a sense of the frontier mentality, but a feeling of impermanence; towns bloom, and then, die. A few towns in the panhandle, a region that once seemed destined for greatness, or at the very least longevity, are today small or nonexistent. These include Magnolia, a city with banks, its own currency, and newspapers in the 1830s, now no more than a small overgrown palmetto cemetery and brick fragments scattered amongst the piney woods south of Tallahassee. Port Leon, also south of Tallahassee, had saloons, newspapers, a hotel, and warehouses all wiped away by a massive storm surge in the early 1800s. Cedar Key, once a large transshipment point with factories and the first cross-state railhead, is now a quaint fishing village and tourist town. Finally, St. Joseph, site of Florida's first constitutional convention in 1838 and a bustling port, is now a small paper mill town. Disasters such as hurricanes, wars, and epidemics of disease can all be blamed.

Due to a small and widely dispersed population (see Table 1), it was difficult for the fledgling understaffed, under-budgeted public health system to track disease. It was also difficult to collect vital statistics. Finally, after placing staff in key areas around the state, the U.S. Census Bureau, in October 1919, recognized Florida as meeting the National Standards for Death Statistics, and birth records were accepted shortly thereafter.

Table 1. Florida Population by Census Year (source of data through 1935: Florida Department of Agriculture 1935).

Year	Population
1830	34,730
1840	54,477
1850	87,445
1860	140,424
1870	187,748
1880	269,493
1890	391,422
1900	528,542
1910	752,619
1920	968,470
1930	$1,468,211$
1935	$1,606,842$
2006	$\mathbf{1 8 , 4 2 2 , 4 5 0}$

State health officers decried the lack of morbidity data from early on and lobbied continually for the collection of such information. The following is quoted from State Health Officer Dr. J.Y. Porter's opening remarks in the 1911 State Board of Health Annual Report which highlights the problem:

General Health Conditions

"It is gratifying to be able to state that on the whole the health of the state for the past twelve months has been good and above the average. This statement, however, cannot be verified by figures and must be accepted in a very general way, because the executive office has no means by which it can glean such information except from the correspondence, which is always apt to be faulty and to deal only in generalities. Almost daily requests come from distant states, principally from the northwest, where companies are organized for the sale of Florida lands, asking about the health conditions of certain sections of Florida; whether malarious, or whether detrimental or advantageous to sufferers from certain chronic ailments. Information of this kind, which should be at the command of the executive office, cannot always be given for the reason that no system of morbidity statistics which have hitherto been devised so far has met with success, although several have been attempted. It may be asked why this necessary information has not been secured for the Board. Most certainly the failure is not due to lack of persistent efforts on the part of the State Health Officer, for the records are in evidence of earnest pleading and in suggesting simple methods for obtaining facts of this nature."

Again in the 1912 report the problem is explained and in yet another dimension:
In the absence of any morbidity reports it is impossible to say just how much sickness there was in the State during the past year. Looking at the subject of sickness from the viewpoint of business it is believed that a full knowledge of the extent and character of sickness occurring each week or each month in the State with a statement of length of time lost as a consequence, would be of very material value, for the reason that every day's sickness means a monetary loss to the individual and to the commonwealth...

Finally in 1917 action was taken:
The recent inauguration of a plan requiring the reporting of communicable disease is going to prove an invaluable aid, the more thorough and the more complete the cases reported, in the control of the communicable disorders throughout the State. As has been repeatedly remarked, "No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring." With this information which is
being gathered constantly, an accurate index is at hand of health conditions and by studying the tabulations of the reported diseases one can see at once the kind of health work demanded and the particular field in which the efforts should be made.

Programs got underway in 1918, but problems occurred, problems that sound very familiar even today:

The value of morbidity reports can hardly be estimated and we are looking forward to the time when every physician in the state will give hearty cooperation. The number of cases and deaths by county has been shown in the "Health Notes" covering a period of nine months. This information is compiled by quarters and according to information received has been used to advantage by many of the health officers and others in the state. In addition to this a morbidity report has been issued each week to all the local health officers and newspapers throughout the state. This weekly report has been watched by many with interest, especially since the so-called influenza became so prevalent.

The morbidity reports for the year were not as complete as we had desired. While a few physicians are reporting cases faithfully, very many are not and for this reason the morbidity tables do not mean so much as a health index in this state as in some others. However, we have every reason to believe that the physicians will cooperate when brought to a full realization of the need of reports so that more complete returns may be expected in the future. The city health officers in a few of our cities have stimulated the reporting of notifiable disease, as the reports to this Bureau will show. The district and local health officers should be commended for work done along this line and they certainly have a warm place in the hearts of those who are trying to put Florida on the map for morbidity. During the year we received reports of 24,884 cases of notifiable diseases...

Morbidity was recorded by hand each month in a ledger. This ledger, begun in 1918, with numbers written in with pencil and pen, became the standard for decades. Data on 32 diseases (Table 2) were collected in that first year.

Table 2. Florida Reportable Diseases and Corresponding Case Totals for the Year 1918 (source: Florida Board of Health).

Typhoid	485	Diphtheria	329	Anthrax	1
Paratyphoid	6	Influenza	11,631	Rabies	0
Typhus	1	Dysentery	264	Tetanus	7
Malaria	931	Leprosy	8	Pellagra	67
Smallpox	59	Mumps	2,133	Tuberculosis	522
Measles	2,197	German Measles	501	Syphilis	1,640
Scarlet Fever	138	Chicken Pox	232	Gonococcus	1,709
Whoop Cough	557	Dengue	12	Cancer	34
Trachoma	181	Pneumonia	982	Epidemic Meningitis	75
Ophthalmia Neonatorum	9	Hookworm	173	Acute Poliomyelitis	6
Trichinosis	4	Chancroid	0		

References

W.H. Cox, M.D., Twenty-ninth Annual Report of the State Board of Health of Florida, Press of Tampa Tribune Publishing Company, Tampa, Florida, 1918, p. 10.
W.H. Cox, M.D., Thirtieth Annual Report of the State Board of Health of Florida, Jacksonville Printing Company, Jacksonville, Florida, 1919, p. 185.

Florida Board of Health, Bureau of Vital Statistics, Morbidity Weekly Current Record, 1918-1925.
Florida Department of Agriculture, The Sixth Census of the State of Florida, The Orange Press, Winter Park, Florida, 1935.

Ralph N. Greene, M.D., Thirty-first Annual Report of the State Board of Health of Florida, 1920, p. 27.
Henry Hanson, M.D., Thirty-third Report 1923-1932 of the State Board of Health of Florida, pp. VII, VIII, 1, 8, 9, and 11.

Joseph Y. Porter, M.D., Twenty-third Annual Report of the State Board of Health of Florida 1911, p. 15.

Joseph Y. Porter, M.D., Twenty-fourth Annual Report of the State Board of Health of Florida 1912, p. 21.

Summary of Selected Notifiable Diseases

Section 1

Table 1.1: Reported Confirmed and Probable Cases and Incidence per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Table 1.2: Reported Confirmed and Probable Cases of Selected Notifiable Diseases by Month of Onset, 2006

Table 1.3: Reported Confirmed and Probable Cases of Notifiable Diseases of Infrequent Occurrence, 1997-2006

Figure 1.1: Top 10 Reported Confirmed and Probable Cases of Disease by Age Group, 1997-2006

Table 1.4: Reported Confirmed and Probable Cases and Incidence per 100,000 Population for Selected Notifiable Diseases by County, 1997-2006
Table 1.1 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{Selected Notifiable Diseases} \& \multicolumn{20}{|l|}{Florida}

\hline \& \multicolumn{2}{|l|}{1997} \& \multicolumn{2}{|l|}{1998} \& \multicolumn{2}{|l|}{1999} \& \multicolumn{2}{|l|}{2000} \& \multicolumn{2}{|l|}{2001} \& \multicolumn{2}{|l|}{2002} \& \multicolumn{2}{|l|}{2003} \& \multicolumn{2}{|l|}{2004} \& \multicolumn{2}{|l|}{2005} \& \multicolumn{2}{|l|}{2006}

\hline \& Number \& Rate \& \multirow[t]{2}{*}{Number} \& Rate \& Number \& Rate

\hline Acquired Immune Deficiency Syndrome (AIDS) \& 5512 \& 36.72 \& \& \multirow[t]{2}{*}{$$
\begin{array}{r}
32.78 \\
\hline
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
4969 \\
155 \\
1034
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
\hline 31.69 \\
0.99 \\
6.59
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
4609 \\
475 \\
1551
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
\hline 28.67 \\
2.95 \\
6.54
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
\hline 4620 \\
1100 \\
895
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
\hline 28.15 \\
6.70 \\
5.45
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r|}
\hline 4675 \\
1082 \\
995
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{|c|}
\hline 27.87 \\
6.45 \\
5.93
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 4429 \\
& 1051 \\
& 1056
\end{aligned}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
25.80 \\
6.12 \\
6.15
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 5421 \\
& 1128 \\
& 1009
\end{aligned}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
30.78 \\
6.40 \\
5.73
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{gathered}
4555 \\
1215 \\
894
\end{gathered}
$$} \& \multirow[t]{3}{*}{26.39
6.74
4.96} \& \& \multirow[t]{3}{*}{$$
\begin{array}{r}
26.92 \\
6.75 \\
5.11
\end{array}
$$}

\hline Animal Bite, post exposure prophylaxis recommended \& \& 0.02 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \multirow[t]{2}{*}{$$
\begin{array}{r}
12644 \\
1244 \\
941
\end{array}
$$} \&

\hline Campylobacteriosis \& 1158 \& 7.71 \& 1006 \& 6.57 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Chlamydia \& 26 \& 178.45 \& 24949 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
162.96 \\
1.34 \\
0.05
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
31410 \\
189 \\
10
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\left.\begin{array}{r}
200.32 \\
1.21 \\
0.06
\end{array} \right\rvert\,
$$} \& \multirow[t]{3}{*}{$$
\left.\begin{array}{r}
33390 \\
241 \\
9
\end{array} \right\rvert\,
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
207.72 \\
1.50 \\
0.06
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
37625 \\
89 \\
48
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
229.25 \\
0.54 \\
0.29
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
42058 \\
106 \\
32
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
250.76 \\
0.63 \\
0.19
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
42381 \\
128 \\
14
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
246.92 \\
0.75 \\
0.08
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
42554 \\
149 \\
9
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
241.60 \\
0.85 \\
0.05
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
43372 \\
350 \\
524
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{|r|}
240.71 \\
1.94 \\
2.91
\end{array}
$$} \& \multirow[t]{3}{*}{48955
717
31} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
265.74 \\
3.89 \\
0.17
\end{array}
$$}

\hline Cryptosporidiosis \& 192 \& 1.28 \& 205 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Cyclosporiasis \& 73 \& 0.49 \& 7 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Enterohemorrhagic Escherichia coli O157:H7 \& 57 \& 0.38 \& 62 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.40 \\
10.95 \\
124.62
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
71 \\
1360 \\
22797
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.45 \\
8.67 \\
145.39
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
98 \\
1532 \\
22781
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.61 \\
9.53 \\
141.72
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
46 \\
1150 \\
21531
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.28 \\
7.01 \\
\text { 131.19 }
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
69 \\
1318 \\
21348
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.41 \\
7.86 \\
127.28
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
48 \\
1132 \\
18974
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{|r}
0.28 \\
6.60 \\
110.54
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
74 \\
1126 \\
18580
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.42 \\
6.39 \\
105.49
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
112 \\
987 \\
20225
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.62 \\
5.48 \\
112.25
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
29 \\
1165 \\
23976
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.16 \\
6.32 \\
130.15
\end{array}
$$}

\hline Giardiasis \& 2003 \& 13.34 \& 1677 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Gonorrhea \& 19079 \& 127.09 \& 19080 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Haemophilus influenzae, invasive ${ }^{1}$ \& 32 \& 0.21 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
41 \\
605
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 0.27 \\
& 3.95
\end{aligned}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
49 \\
854 \\
252
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 0.31 \\
& 5.45 \\
& 7.45
\end{aligned}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
72 \\
657 \\
512
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.45 \\
4.09 \\
14.83
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
70 \\
847 \\
437
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.43 \\
5.16 \\
12.53
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
82 \\
1056 \\
631
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.49 \\
6.30 \\
17.93
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
99 \\
399 \\
555
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.58 \\
2.32 \\
15.39
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
99 \\
295 \\
599
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.56 \\
1.67 \\
16.35
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 117 \\
& 289 \\
& 530
\end{aligned}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.65 \\
1.60 \\
14.16
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 142 \\
& 233 \\
& 448
\end{aligned}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.77 \\
1.26 \\
11.78
\end{array}
$$}

\hline Hepatitis A \& 756 \& 5.04 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Hepatitis $\mathrm{B}(+\mathrm{HBsAg}$ in a pregnant woman) \&

\hline Hepatitis B, acute \& 616 \& 4.10 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
516 \\
6648
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
3.37 \\
\\
43.42
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
551 \\
55 \\
6539
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
3.51 \\
0.35 \\
41.70
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
610 \\
47 \\
5788
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
3.79 \\
0.29 \\
36.01
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
502 \\
43 \\
5917
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
3.06 \\
0.26 \\
36.05
\end{array}
$$} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
3.24 \\
0.45 \\
39.36
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
631 \\
69 \\
6198
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
3.68 \\
0.40 \\
36.11
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
527 \\
53 \\
5987
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
2.99 \\
0.30 \\
33.99
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
510 \\
39 \\
5514
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
2.83 \\
0.22 \\
30.60
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
446 \\
49 \\
5224
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
2.42 \\
0.27 \\
28.36
\end{array}
$$}

\hline Hepatitis C, acute \&

\hline Human Immunodeficiency Virus ${ }^{2}$ (HIV) \& 2112 \& 14.07 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Lead poisoning \& 2220 \& 4.79 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
1820 \\
50 \\
13
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
11.89 \\
0.33 \\
0.08
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
1815 \\
29 \\
50
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
11.58 \\
0.18 \\
0.32
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
1247 \\
54 \\
40
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 7.76 \\
& 0.34 \\
& 0.25
\end{aligned}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
682 \\
97 \\
19
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 4.16 \\
& 0.59 \\
& 0.12
\end{aligned}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
1035 \\
85 \\
28
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 6.17 \\
& 0.51 \\
& 0.17
\end{aligned}
$$} \& \multirow[t]{3}{*}{$$
\begin{gathered}
816 \\
147 \\
37
\end{gathered}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 4.75 \\
& 0.86 \\
& 0.22
\end{aligned}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
643 \\
141 \\
28
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{gathered}
3.65 \\
0.80 \\
0.16
\end{gathered}
$$} \& \multirow[t]{3}{*}{$$
\begin{gathered}
495 \\
119 \\
61
\end{gathered}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 2.75 \\
& 0.66 \\
& 0.34
\end{aligned}
$$} \& \multirow[t]{3}{*}{$$
\begin{gathered}
373 \\
167 \\
47
\end{gathered}
$$} \& \multirow[t]{3}{*}{2.02
0.91
0.26}

\hline Legionellosis \& 38 \& 0.25 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Listeriosis ${ }^{3}$ \& 8 \& 0.05 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Lyme disease \& 40 \& 0.27 \& 77 \& \multirow[t]{3}{*}{0.50
0.63
0.49} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 60 \\
& 97 \\
& 64
\end{aligned}
$$} \& \multirow[t]{3}{*}{$$
\begin{gathered}
0.38 \\
0.62 \\
0.41
\end{gathered}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
57 \\
90 \\
109
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{gathered}
0.35 \\
0.56 \\
0.68
\end{gathered}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
57 \\
61 \\
610
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{gathered}
0.35 \\
0.37 \\
0.67
\end{gathered}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
77 \\
76 \\
131
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 0.46 \\
& 0.45 \\
& 0.78
\end{aligned}
$$} \& \multirow[t]{3}{*}{92

158} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 0.25 \\
& 0.54 \\
& 0.92
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
46 \\
93 \\
938
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
0.26 \\
0.53 \\
0.73
\end{gathered}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
47 \\
68 \\
127
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 0.26 \\
& 0.38 \\
& 0.70
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
34 \\
61 \\
162
\end{array}
$$
\]} \& \multirow[t]{3}{*}{0.18

0.33
0.88}

\hline Malaria \& 102 \& 0.68 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 96 \\
& 75
\end{aligned}
$$} \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Meningitis, other \& 82 \& 0.55 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Meningitis, Streptococcus pneumoniae \& 102 \& 0.68 \& 99 \& 0.65 \& 00 \& 0.64 \& 113 \& 0.70 \& 52 \& 0.32 \& 66 \& 0.39 \& 57 \& 0.33 \& 56 \& 0.32 \& 58 \& 0.32 \& 73 \& \multirow[t]{3}{*}{}

\hline Meningococcal disease ${ }^{4}$ \& 170 \& 1.13 \& 152 \& 0.99 \& 138 \& 0.88 \& 136 \& 0.85 \& 124 \& 0.76 \& 128 \& 0.76 \& 106 \& 0.62 \& 107 \& 0.61 \& 84 \& 0.47 \& $$
79
$$ \&

\hline Pertussis \& 90 \& 0.60 \& 66 \& 0.43 \& 112 \& 0.71 \& 67 \& 0.42 \& 30 \& 0.18 \& 53 \& 0.32 \& 113 \& 0.66 \& 132 \& 0.75 \& 20 \& 1.15 \& 228 \&

\hline Rabies, animal \& 278 \& NA \& \multirow[t]{3}{*}{$$
\begin{array}{r}
215 \\
3108 \\
2527
\end{array}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\mathrm{NA} \\
20.30 \\
16.51
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
186 \\
3144 \\
1709
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\text { NA } \\
20.05 \\
10.90
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
161 \\
2830 \\
1522
\end{gathered}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\text { NA } \\
17.61 \\
9.47
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
157 \\
3104 \\
1052
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\mathrm{NA} \\
18.91 \\
6.41
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
181 \\
4651 \\
2538
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\text { NA } \\
27.73 \\
15.13
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
188 \\
4669 \\
2845
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\text { NA } \\
27.20 \\
16.58
\end{array}
$$
\]} \& 205 \& NA \& 20 \& NA \& 176 \& NA

\hline Salmonellosis \& 2584 \& 17.21 \& \& \& \& \& \& \& \& \& \& \& \& \& 4276 \& 24.28 \& 555 \& 30.8 \& 492 \& 26.75

\hline Shigellosis \& 1946 \& 12.96 \& \& \& \& \& \& \& \& \& \& \& \& \& 965 \& 5.4 \& 127 \& 7.05 \& 164 \& 8.93

\hline Streptococcus pneumoniae, invasive disease, drug-resistant \& 285 \& 1.90 \& 498 \& 3.25 \& 711 \& 4.53 \& 1162 \& 7.23 \& 799 \& 4.87 \& 610 \& 3.6 \& 606 \& 3.53 \& 581 \& 3.30 \& 614 \& 3.4 \& 774 \& 4.20

\hline Streptococcus pneumoniae, invasive disease, drug-susceptible \& NR \& \& 201 \& 1.17 \& 60 \& 3.44 \& 598 \& 3.32 \& 620 \& 3.37

\hline Streptococcal disease, invasive Group A \& 49 \& 0.33 \& 57 \& 0.37 \& 94 \& 0.60 \& 149 \& 0.93 \& 159 \& 0.9 \& 201 \& 1.20 \& 229 \& 1.33 \& 219 \& 1.24 \& 26 \& 1.44 \& 312 \& 1.69

\hline Syphilis \& 2669 \& 17.78 \& 2466 \& 16.11 \& 2660 \& 16.96 \& 2728 \& 16.97 \& 2877 \& . 53 \& 3251 \& 19.38 \& 3256 \& 18.97 \& 2948 \& 16.74 \& 2872 \& 15.9 \& 292 \& 15.87

\hline Toxoplasmosis \& 10 \& 0.07 \& 15 \& 0.10 \& 18 \& 0.11 \& 14 \& 0.09 \& 35 \& . 2 \& 45 \& 0.27 \& 31 \& 0.18 \& 24 \& 0.14 \& 2 \& 0.0 \& \& 0.0

\hline Tuberculosis \& 1400 \& 9.33 \& 1304 \& 8.52 \& 1281 \& 8.17 \& 1171 \& 7.2 \& 1145 \& 6.98 \& 1086 \& 6.47 \& 1046 \& 6.0 \& 1076 \& 6.1 \& 109 \& 6.07 \& 103 \& 5.6

\hline Vibrio infections ${ }^{5}$ \& 63 \& 0.42 \& 126 \& 0.82 \& 85 \& 0.54 \& 61 \& 0.38 \& 55 \& 0.34 \& 87 \& 0.52 \& 15 \& 0.67 \& 107 \& 0.6 \& 103 \& 0.57 \& 99 \& 0.54

\hline West Nile Virus \& NR \& \& NR \& \& NR \& \& NR \& \& 11 \& 0.07 \& 36 \& 0.21 \& 93 \& 0.54 \& 45 \& 0.26 \& 22 \& 0.12 \& 3 \& 0.02

\hline
\end{tabular}

[^0] ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other
NR - Not Reportable
Table 1.2. Reported Cases of Selected Notifiable Diseases by Month of Onset ${ }^{1}$, Florida, 2006

Disease	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Animal Bite, post exposure prophylaxis recommended	74	89	81	99	119	96	116	80	109	105	85	81
Campylobacteriosis	53	50	55	51	97	77	113	58	62	87	58	38
Cryptosporidiosis	15	13	20	15	19	54	59	145	143	93	33	18
Cyclosporiasis	2	0	1	2	4	8	7	0	1	0	0	2
Enterohemorrhagic Escherichia coli O157:H7	3	0	1	5	1	1	4	2	3	5	4	0
Giardiasis	59	45	63	35	66	63	95	125	80	69	59	54
Haemophilus influenzae, invasive ${ }^{2}$	17	11	7	13	11	6	8	5	9	5	5	6
Hepatitis A	19	20	14	15	10	21	25	26	29	19	14	21
Hepatitis B (+HBsAg in a pregnant woman)	4	1	4	8	4	6	7	4	5	5	5	5
Hepatitis B, acute	50	34	39	34	44	31	38	40	32	39	28	37
Hepatitis C, acute	5	5	6	2	7	3	3	2	7	4	3	2
Legionellosis	13	10	15	12	12	8	17	22	15	7	15	8
Listeriosis ${ }^{3}$	4	2	4	2	6	0	4	6	7	2	3	2
Lyme disease	2	1	0	0	0	2	10	7	4	3	0	0
Malaria	2	4	5	6	2	4	10	11	7	4	1	5
Meningitis, other	8	7	13	14	13	13	10	13	7	6	18	13
Meningitis, Streptococcus pneumoniae	13	6	11	4	7	6	2	6	2	2	2	6
Meningococcal disease ${ }^{4}$	5	12	10	9	4	4	4	6	4	6	5	9
Pertussis	21	23	13	11	15	19	20	19	15	13	14	25
Rabies, animal ${ }^{5}$	11	14	21	4	18	19	14	14	15	20	14	12
Salmonellosis	216	140	204	252	329	424	494	475	591	447	298	209
Shigellosis	64	61	57	105	118	94	159	152	238	224	132	94
Streptococcus pneumoniae, invasive disease, drug-resistant	54	60	50	44	44	23	25	16	41	36	43	59
Streptococcus pneumoniae, invasive disease, drug-susceptible	47	50	40	19	26	14	17	20	23	31	37	39
Streptococcal disease, invasive Group A	30	31	17	15	14	23	30	15	21	19	20	26
Toxoplasmosis	0	1	0	0	0	1	1	0	0	0	0	0
Vibrio infections ${ }^{6}$	1	2	5	11	9	9	15	8	8	11	5	0
West Nile Virus	0	0	0	0	0	0	2	1	0	0	0	0
Only cases of diseases with known dates of onset are included ${ }^{2}$ Includes reported cases of H. influenzae presenting as cellulitis ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis ca ${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumon meningococcemia disseminated.	this ta	ble. itis, m Lister d by		, bac cyto a me	eremia enes. ingitidi	, and , me	eptic ngoc	rthritis ccal	sease	and		
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1 parahaemolyticus, V. vulnificus, and V. other.	. fluv	lis, V	hollis	V.	imicu							

Table 1.3 Reported Confirmed and Probable Cases of Notifiable Diseases of Infrequent Occurrence, Florida,

	Year									
	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Anthrax	0	0	0	0	2	0	0	0	0	0
Botulism, foodborne	0	0	4	0	0	0	0	0	0	1
Botulism, infant	0	0	0	0	0	0	0	1	1	0
Botulism, other	0	0	0	0	0	0	0	4	0	0
Botulism, wound	0	0	0	0	0	0	0	0	0	0
Brucellosis	2	3	3	6	5	6	10	8	3	5
California serogroup	0	0	0	0	0	0	0	4	0	1
Chancroid	3	3	2	0	2	7	2	1	1	1
Ciguatera	10	7	2	14	13	7	7	4	10	32
Creutzfeldt-Jakob Disease (CJD)	NR	NR	NR	NR	NR	NR	4	14	17	14
Dengue Fever	17	14	5	13	12	21	16	13	19	20
Diphtheria	0	0	0	0	0	0	0	0	0	0
Escherichia coli shiga toxin + (not serogrouped)	0	0	0	0	0	0	7	6	16	22
Escherichia coli shiga toxin + (serogroup non-0157)	8	14	15	14	20	20	24	4	2	9
Eastern equine encephalitis	3	0	3	0	3	1	2	1	5	0
Ehrlichiosis, human	5	2	8	0	NR	NR	NR	NR	NR	NR
Ehrlichiosis, human granulocytic	NR	NR	NR	NR	0	1	5	3	1	1
Ehrlichiosis, human monocytic	NR	NR	NR	10	8	4	8	4	4	5
Encephalitis, other	38	28	19	19	12	20	10	8	8	5
Epsilon toxin of Clostridium perfringnes	NR	NR	NR	NR	NR	NR	0	0	0	0
Glanders	NR	NR	NR	NR	NR	NR	0	0	0	0
Granuloma inguinale	0	0	0	0	0	0	0	0	0	0
Hantavirus infection	0	0	0	0	0	0	0	0	0	0
Hemolytic Uremic Syndrome	5	12	8	20	5	5	6	6	20	5
Hemorrhagic Fever	0	0	0	0	0	0	0	0	0	0
Hepatitis B, perinatal	0	0	2	2	7	6	2	0	2	6
Hepatitis non-A or B	144	95	12	6	6	8	4	8	5	36
Hepatitis unspecified, acute	8	27	19	7	6	1	3	0	2	2
Leprosy (Hansen's disease)	3	4	3	4	1	4	9	5	2	7
Leptospirosis	1	2	1	3	1	0	1	1	2	2

Table 1.3 Continued

	Year									
	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Lymphogranuloma venereum	1	5	0	1	2	4	2	0	3	0
Measles	27	2	2	2	0	3	0	1	0	4
Melioidosis	NR	NR	NR	NR	NR	NR	0	0	1	1
Meningitis, group B Streptococcus	16	22	14	21	18	19	15	15	23	23
Mumps	29	22	17	7	8	7	7	9	8	15
Neurotoxic shellfish poisoning	0	0	0	0	0	0	0	0	4	16
Plague	0	0	0	0	0	0	0	0	0	0
Poliomyelitis	1	0	0	0	0	0	0	0	0	0
Psittacosis	2	3	1	4	1	3	3	1	0	1
Q fever	0	0	0	0	1	2	6	2	1	8
Rabies, human	0	0	0	0	0	0	0	1	0	0
Ricin toxin	NR	NR	NR	NR	NR	NR	0	0	0	0
Rocky Mountain Spotted Fever	7	3	7	12	8	15	17	22	14	21
Rubella	3	4	1	2	3	5	0	0	0	1
Rubella, congenital	1	0	0	1	0	0	0	0	0	0
Saxitoxin Poisoning	0	0	0	0	0	0	0	1	0	0
Smallpox	0	0	0	0	0	0	0	0	0	0
St. Louis Encephalitis	9	2	4	0	0	1	0	0	0	0
Staphylococcus aureus (GISA/VISA)	NR	NR	0	0	0	0	0	0	0	0
Staphylococcus aureus (GRSA/VRSA)	NR	NR	0	0	0	0	0	0	0	0
Staphylococcus enterotoxin B	NR	NR	NR	NR	NR	NR	0	0	0	0
Tetanus	1	3	3	1	3	3	3	4	3	2
Trichinosis	0	0	1	1	0	0	0	0	1	1
Tularemia	0	0	0	0	0	0	0	0	1	0
Typhoid Fever	19	16	24	12	12	19	15	10	11	16
Typhus Fever	3	1	0	0	0	0	0	1	0	2
Vaccinia Disease	0	0	0	0	0	0	1	0	0	0
Venezuelan Equine Encephalitis	0	0	0	0	0	0	0	0	0	0
Vibrio cholerae type O1	0	0	0	0	0	0	0	0	0	0
Western Equine Encephalitis	0	0	0	0	0	0	0	0	0	0
Yellow Fever	0	0	0	0	0	0	0	0	0	0

Figure 1.1 Top 10 Reported Confirmed and Probable Cases of Disease by Age Group, Florida, 1997-2006

	Age Group												
Rank	<1	1-4	5-9	10-14	15-19	20-24	25-34	35-44	45-54	55-64	65-74	75-84	${ }^{85+}$
1	Salmonellosis	Salmonellosis	$\begin{gathered} \text { Shigelosisis } \\ (4,942) \\ \hline \end{gathered}$	$\underset{(6,693)}{\text { Clamydia }}$	$\begin{gathered} \text { Chlamydia } \\ (137,779) \end{gathered}$	$\underset{(135,343)}{\substack{\text { Chlamydia }}}$	$\underset{(72,841)}{\substack{\text { Chlamydia }}}$	$\begin{gathered} \text { Gonorthea } \\ (22,51) \end{gathered}$	$\underset{\substack{\text { (10, } 1052)}}{ }$	${ }_{(3,652}^{\text {AlD }}$	Salmonellosis	$\begin{aligned} & \text { Salmonellosis } \\ & (1,464) \end{aligned}$	$\underset{(517)}{\text { Salmonellosis }}$
2	Streptococcus pneemoniae invasive disease, drug-resistant (591)	Lead Poisoning $(6,730)$	Salmonellosis $(3,823)$	Gonorrhea $(3,191)$	Gonorrhea $(56,219)$	Gonorrhea $(63,369)$	Gonorrhea $(51,848)$	$\underset{(19,438)}{\mathrm{HIV}}$	$\underset{(9.036)}{\text { Hiv }}$	$\underset{(2,220)}{\mathrm{Hiv}}$	$\underset{(1,042)}{\text { AIDS }}$	$\begin{array}{\|c\|} \hline \text { Streptocococus } \\ \text { pneumoniae, invasive } \\ \text { disease, drag- } \\ \text { resistant } \\ \text { (763) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Streptococcus } \\ \text { Pneumoniee invasive } \\ \text { disease, drugg- } \\ \text { resistant: } \\ \text { (451) } \end{array}$
3	$\underset{\text { (553) }}{\text { Campyobactorisis }}$	Shigellosis $(6,451)$	Giardiasis $(2,004)$	Salmonellosis $(1,740)$	$\left(\begin{array}{c} (1,855) \end{array}\right.$	$(5,1 \mathrm{Hiv})$	$\underset{(16,532)}{\mathrm{Hiv}}$	$\underset{(19,430)}{\text { ADS }}$	Gonorrhea $(7,532)$	Salmonellosis $(1,881)$	$\underset{(819)}{(8, ~}$	$\underset{\substack{\text { (472) }}}{\text { Campyotoricisis }}$	
4	$\underset{\substack{\text { Petussis } \\ \text { (510) }}}{ }$	Giardiasis $(3,890)$	$\begin{aligned} & \text { Lead Poisoning } \\ & (1,863) \end{aligned}$	Shigellosis $(1,096)$	Syphilis (congenital primary, secondary, early latent, late latent) $(1,235)$		$\left.\begin{array}{c} \text { ADS } \\ (11,615) \end{array}\right)$	$\underset{(14,634)}{\text { Chlamydia }}$		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Syphilis (congenital, } \\ \text { primary, secondary, } \\ \text { earry latent, late } \\ \text { latent) } \\ (1,753) \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Syphilis congenital } \\ \text { primar, seocondan, } \\ \text { eary } 1 \text { latent, late } \\ \text { latent } \\ (744) \end{array} \\ \hline \end{array}$	Syphilis (congenital primary, secondary, early latent, lat latent) (294)	Streptococcal disease, invasive group A (138)
5	$\underset{(402)}{\substack{\text { Chlamydia }}}$	$\underset{\substack{\text { Campyobacteriosis } \\(1,673)}}{\substack{\text { and }}}$	$\underset{\substack{\text { Campyoboacteriosis } \\ \text { (786) }}}{\substack{\text { and } \\ \text {. }}}$	Giardiasis (742)	Salmonellosis $(1,034)$	$\underset{(1,695)}{\text { AIDS }}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Syphilis (congenital, } \\ \text { primary, secondary, } \\ \text { earry } \\ \text { latent, late } \\ \text { latent } \\ (7,702) \end{array} \\ \hline \end{array}$	$\begin{aligned} & \hline \begin{array}{l} \text { Syphilis (congenital, } \\ \text { primary, secondary, } \\ \text { earaly latent, late } \\ \text { latent) } \\ (9,448) \end{array} \end{aligned}$	$\underset{\substack{\text { Chlamydia } \\(3.080)}}{\text {. }}$	Gonorrhea $(1,746)$	$\underset{\substack{\text { Campyobacteriosis } \\ \text { (674) }}}{\substack{\text { and }}}$	Animal Bite, post- exposure prophylaxis recommended (253)	$\underset{\text { (125) }}{\text { Camploterisis }}$
6	Shigellosis (393)	Streptococcus pneumoniae, invasive disease, drus- resisant $(1,389)$	$\underset{\text { Hepatitis } \mathrm{A}}{\text { (613) }}$	Animal Bite, post- exposure prophylaxis recommended (630)	Animal Bite, postexposure prophylaxis (545)	Salmonellosis $(1,047)$	Salmonellosis $(2,307)$	Salmonellosis $(2,561)$	Salmonellosis $(2,165)$	$\begin{aligned} & \text { Animal Bite, post- } \\ & \text { exposure prophylaxis } \\ & \text { recommended } \\ & (728) \end{aligned}$		Streptocooccus pneumoniae, invasive disease, druy-sensitive (241)	$\underset{\substack{\text { Heemoohilus } \\ \text { influenzaen invasive } \\ \text { disease } \\ \text { (124) }}}{\text { (12) }}$
7		Cryposponidiosis (519)	$\begin{aligned} & \text { Animal Bite, post- } \\ & \text { exposure prophylaxis } \\ & \text { recommended } \end{aligned}$ (512)	Campylobacteriosis (488)	Shigellosis (463)	Hepatitis B $(+\mathrm{HBsAg}$ in Pregnant Woman) (979)	Hepatitis B(+HBsAg in Pregnant Woman) (2.035) (2,035)	Giardiasis $(1,952)$	$\begin{aligned} & \text { Animal Bite, post- } \\ & \text { exposoure erophylaxis } \\ & \text { recommended } \end{aligned}$ $(1,144)$	$\underset{\substack{\text { Campylobacteriosis } \\(726)}}{\substack{\text { and } \\ \hline}}$	$\begin{aligned} & \text { Animal Bite, post- } \\ & \text { exposure prophylaxis } \\ & \text { recommended } \end{aligned}$ (447)	$\begin{aligned} & \text { Giardiasis } \\ & (234) \end{aligned}$	
8	Lead Poisoning (274)	$\begin{aligned} & \text { Animal Bite, post- } \\ & \text { exposure prophylaxis } \\ & \text { recommended } \\ & (295) \end{aligned}$	Cyplospondidiosis (228)	Lead Poisoning (458)	$\underset{(445)}{\substack{\text { Campyobacterosis }}}$	$\begin{aligned} & \text { Shigellosis } \\ & (717) \end{aligned}$	Shigellosis $(1,720)$	Hepatitis B, acute $(1,484)$	$\begin{gathered} \text { Giardiasis } \\ (1,081) \end{gathered}$	Giardiasis (681)	$\begin{gathered} \text { Gonorrhea } \\ (435) \end{gathered}$	$\begin{gathered} \text { Streptococalal disease, } \\ \text { invasive sispupas } \\ \text { (125) } \end{gathered}$	Animal Bite, post- xposure prophylaxis recommended (62)
9	$\underset{(198)}{\text { Hiv }}$	${ }_{\text {Hepatis }}^{\substack{\text { (25) }}}$		$\begin{gathered} \text { Hepatitis A } \\ (396) \end{gathered}$	$\begin{gathered} \substack{\text { (109 } \\ (399)} \end{gathered}$	Hepatitis B, acute (592)	Hepatitis B, acute $(1,659)$	$\underset{\substack{\text { Campylobacteriosis } \\(1,366)}}{\substack{\text { and }}}$	$\underset{\substack{\text { Campyobacteriosis } \\ \text { (996) }}}{\text { Cor }}$	$\underset{(658)}{C}$	$\begin{gathered} \text { Giardiasis } \\ (432) \end{gathered}$	$\begin{gathered} \text { (108) } \\ (196) \end{gathered}$	$\underset{\substack{\text { Hepaltis } \\(58)}}{\text { A }}$
10	Meningitis, other	Streptocococus Pneemoniae, invasive disease, drug-sensitive (187)	$\begin{gathered} \text { Gonorrhea } \\ (114) \end{gathered}$	$\underset{(187)}{(187)}$	Hepatitis $\mathrm{B}(+\mathrm{HBsAg}$ in Pregnant Woman) (335)	Campylobacteriosis (531)	Giardiasis $(1,494)$	Animal Bite, post- exposure prophylaxis recommended $(1,257)$	Hepatitis B, aute (800)		$\left\|\begin{array}{c\|} \text { Streptocococus } \\ \text { pneemoniae, invasive } \\ \text { disease, drug-sensitive } \\ \text { (238) } \end{array}\right\|$	$\underset{\substack{\text { Legionelosis }}}{\text { (190) }}$	Lead Poisoning (56)

Selected Notifiable Diseases	Alachua County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	29	14.12	83	39.87	61	28.59	61	27.82	34	15.15	33	14.38	46	19.82	54	22.75	37	15.30	58	23.56
Animal Bite, post exposure prophylaxis recommended					6	2.81	4	1.82	22	9.80	27	11.76	28	12.06	26	10.95	38	15.71	23	9.34
Campylobacteriosis	20	9.74	22	10.57	14	6.56	23	10.49	6	2.67	15	6.54	17	7.32	21	8.85	20		19	7.72
Chlamydia	463	225.40	590	283.44	834	390.91	1064	485.32	973	433.61	1058	460.95	1185	510.53	1134	477.73	1263	522.21	1383	561.85
Cryptosporidiosis	3	1.46	1	0.48	1	0.47					1	0.44	1	0.43			1	0.41	14	5.69
Cyclosporiasis						0.47									1	0.42	13	5.38		
Enterohemorrhagic Escherichia coli O157:H7	1	0.49			1	0.47	2	0.91	2	0.89	3	1.31	2	0.86	2	0.84				
Giardiasis	37	18.01	34	16.33	16	7.50	27	12.32	17	7.58	14	6.10	12	5.17	11	4.63	22	9.10	25	10.16
Gonorrhea	260	126.57	374	179.67	529	247.95	712	324.76	601	267.83	447	194.75	547	235.66	534	224.96	592	244.77	711	288.85
Haemophilus influenzae, invasive ${ }^{1}$							1	0.46							1	0.42	2	0.83	1	0.41
Hepatitis A	2	0.97	5	2.40	8	3.75	4	1.82	3	1.34	6	2.61	12	5.17	3	1.26	2	0.83	4	1.63
Hepatitis B (+HBsAg in a pregnant woman)					2	3.27	1	1.59			1	1.53	4	6.05	23	34.58	7	10.26	11	15.90
Hepatitis B, acute	7	3.41	6	2.88	2	0.94	4	1.82	3	1.34	5	2.18	4	1.72			4	1.65	1	0.41
Hepatitis C, acute																				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	5	2.43	49	23.54	45	21.09	36	16.42	49	21.84	55	23.96	45	19.39	54	22.75	42	17.37	44	17.88
Lead poisoning	19	9.25	25	12.01	6	2.81	1	0.46			4	1.74			1	0.42	2	0.83	1	0.41
Legionellosis													1	0.43	1	0.42	2	0.83	3	1.22
Listeriosis ${ }^{3}$							2	0.91												
Lyme disease							1	0.46							6	2.53				
Malaria			2	0.96	4	1.87	5	2.28	1	0.45	1	0.44	2	0.86			1	0.41	1	0.41
Meningitis, other					1	0.47			3	1.34	1	0.44	7	3.02			1	0.41	4	1.63
Meningitis, Streptococcus pneumoniae			1	0.48	1	0.47	2	0.91			1	0.44					2	0.83	2	0.81
Meningococcal disease ${ }^{4}$	4	1.95	1	0.48	2	0.94	1	0.46	2	0.89			2	0.86	3	1.26	1	0.41	1	0.41
Pertussis	1	0.49			2	0.94			1	0.45					2	0.84	25	10.34	1	0.41
Rabies, animal	7	NA	17	NA	7	NA	9	NA		NA	12	NA	14	NA	16	NA	13	NA	14	NA
Salmonellosis	36	17.53	43	20.66	57	26.72	49	22.35	45	20.05	62	27.01	69	29.73	83	34.97	101	41.76	87	35.34
Shigellosis	3	1.46	47	22.58	39	18.28	5	2.28	5	2.23	11	4.79	62	26.71	4	1.69	9	3.72	29	11.78
Streptococcus pneumoniae, invasive disease, drug-resistant	1	0.49	9	4.32	7	3.28	11	5.02	3	1.34	8	3.49	9	3.88	7	2.95	13	5.38	14	5.69
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		4	1.72	12	5.06	14	5.79	6	2.44										
Streptococcal disease, invasive Group A		0.49						1.82		1.34		0.44							5	2.03
Syphilis	32	15.58	26	12.49	24	11.25	26	11.86	20	8.91	17	7.41	6	2.58	8	3.37	31	12.82	28	11.38
Toxoplasmosis																				
Tuberculosis	13	6.33		3.84	9	4.22	8	3.65		3.12	10	4.36	6	2.58	5	2.11	10	4.13	6	2.44
Vibrio infections ${ }^{5}$					2	0.94	1	0.46	1	0.45					2	0.84	2	0.83	3	1.22
West Nile Virus	NR		NR		NR		NR				2	0.87	1	0.43						

${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Baker County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	1	4.81	1	4.81	7	32.56	1	4.47	4	17.67	2	8.66			3	12.46	4	16.68	3	12.41
Animal Bite, post exposure prophylaxis recommended									2	8.83	1	4.33	1	4.26	6	24.93	2	8.34	4	16.54
Campylobacteriosis	3	14.42	2	9.62	4	18.61	7	31.27	2	8.83	5	21.64	6	25.56	6	24.93	3	12.51	3	12.41
Chlamydia	40	192.30	49	235.78	51	237.23	64	285.87	81	357.76	60	259.68	73	311.01	92	382.23	81	337.78	74	306.05
Cryptosporidiosis					3	13.95					2	8.66			1	4.15			8	33.09
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli O157:H7																			1	4.14
Giardiasis	4	19.23	3	14.44	2	9.30	2	8.93	2	8.83	4	17.31	5	21.30	1	4.15	1	4.17	3	12.41
Gonorrhea	25	120.19	26	125.11	44	204.67	41	183.13	31	136.92	18	77.91	20	85.21	19	78.94	33	137.61	24	99.26
Haemophilus influenzae, invasive ${ }^{1}$																				
Hepatitis A	1	4.81							1	4.42					1	4.15				
Hepatitis B (+HBsAg in a pregnant woman)							1	20.37	2	40.56			1	19.64						
Hepatitis B, acute			1	4.81	1	4.65	1	4.47			1	4.33			1	4.15				
Hepatitis C, acute																				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)			4	19.25	6	27.91	2	8.93	6	26.50	2	8.66	6	25.56	1	4.15	4	16.68	3	12.41
Lead poisoning	2	9.61	1	4.81	1	4.65	1	4.47			1	4.33	2	8.52	1	4.15	1	4.17		
Legionellosis	1	4.81									1	4.33								
Listeriosis ${ }^{3}$																				
Lyme disease															1	4.15				
Malaria																				
Meningitis, other							1	4.47							1	4.15	1	4.17		
Meningitis, Streptococcus pneumoniae	1	4.81																		
Meningococcal disease ${ }^{4}$	1																-		1	4.14
Pertussis															1	4.15	1	4.17		
Rabies, animal																				
Salmonellosis	3	14.42	5	24.06	3	13.95	4	17.87	6	26.50	7	30.30	9	38.34	10	41.55	5	20.85	6	24.81
Shigellosis	1	4.81						4.47					16	68.17	2	8.31				
Streptococcus pneumoniae, invasive disease, drug-resistant	3	14.42		-	3	13.95	3	13.40	1	4.42			1	4.26	1	4.15			1	4.14
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR				1	4.15														
Streptococcal disease, invasive Group A						4.65							1	4.26			2	8.34		
Syphilis			1	4.81	5	23.26			5	22.08	3	12.98	1	4.26	2	8.31	2	8.34		
Toxoplasmosis									1	4.42										
Tuberculosis	1	4.81	1	4.81						4.42							1	4.17		
Vibrio infections ${ }^{5}$																				
West Nile Virus	NR		NR		NR		NR				1	4.33					-		-	

${ }_{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other.
NR - Not Reportable NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Bay County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)		6.34	5	3.46	12	8.16	15	10.09	23	15.26	45	29.45	14	9.01	33	20.74	24	14.77	23	13.90
Animal Bite, post exposure prophylaxis recommended							7	4.71	10	6.63	17	11.12	12	7.72	59	37.08	24	14.77	54	32.62
Campylobacteriosis	14	9.87	13	8.98	17	11.56	6	4.04	4	2.65	9	5.89	2	1.29	6	3.77	1	0.62	8	4.83
Chlamydia	146	102.90	132	91.23	99	67.31	53	35.64	245	162.52	339	221.83	319	205.26	362	227.52	359	220.92	331	199.98
Cryptosporidiosis							2	1.35						0.64	6	3.77	5	3.08	29	17.52
Cyclosporiasis																		1.23		
Enterohemorrhagic Escherichia coli 0157:H7				0.69		0.68		0.67						0.64						
Giardiasis	12	8.46	17	11.75	21	14.28	15	10.09		1.33		1.96		3.86		5.03		1.23	7	4.23
Gonorrhea	60	42.29	88	60.82	88	59.83	29	19.50	169	112.11	160	104.70	190	122.25	160	100.56	163	100.31	138	83.37
Haemophilus influenzae, invasive ${ }^{1}$		0.70		0.69																
Hepatitis A	2	1.41			1	0.68			3	1.99				0.64				0.62	2	1.21
Hepatitis B (+HBsAg in a pregnant woman)							10	29.87			2	5.95	5	14.63		11.63	5	14.64		11.66
Hepatitis B, acute		2.11		1.38				0.67		0.66		3.27					4	2.46	2	1.21
Hepatitis C , acute										0.66						0.63				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	2	1.41	11	7.60	19	12.92	15	10.09	27	17.91	24	15.70	16	10.30	22	13.83	25	15.38	27	16.31
Lead poisoning	13	9.16	16	11.06	11	7.48	9	6.05	2	1.33	4	2.62	3	1.93		0.63	2	1.23	5	3.02
Legionellosis							2	1.35							3	1.89	2	1.23	2	1.21
Listeriosis ${ }^{3}$					2	1.36										0.63				
Lyme disease				0.69		0.68						0.65								
Malaria							1	0.67										0.62		
Meningitis, other	2	1.41	2	1.38	1	0.68	1	0.67	1	0.66		0.65			1	0.63	3	1.85	3	1.81
Meningitis, Streptococcus pneumoniae			2	1.38	2	1.36					2	1.31			1	0.63	1	0.62	2	1.21
Meningococcal disease ${ }^{4}$	4	2.82	6	4.15	3	2.04	1	0.67	3	1.99		0.65	3	1.93						
Pertussis																0.63				
Rabies, animal		NA								NA	10	NA								
Salmonellosis	54	38.06	113	78.10	94	63.91	87	58.51	83	55.06	138	90.30	106	68.20	77	48.39	58	35.69	70	42.29
Shigellosis	70	49.33	113	78.10		2.72		1.35		3.32	224	146.58	44	28.31	,	3.77	3	1.85		5.44
Streptococcus pneumoniae, invasive disease, drug-resistant	18	12.69	28	19.35		11.56	9	6.05	6	3.98	7	4.58	6	3.86		1.26	7	4.31	12	7.25
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		1	0.64	4	2.51	7	4.31	10	6.04										
Streptococcal disease, invasive Group A		2.82		1.38		5.44		4.71		1.33		2.62	4	2.57		1.89			11	6.65
Syphilis	24	16.91	35	24.19	26	17.68	25	16.81	22	14.59	9	5.89	11	7.08		4.40	7	4.31		0.60
Toxoplasmosis				0.69				0.67												
Tuberculosis	15	10.57	12	8.29	12	8.16	13	8.74	14	9.29	18	11.78	14	9.01	12	7.54	12	7.38	15	9.06
Vibrio infections ${ }^{5}$		3.52		3.46		2.04		2.02	3	1.99	3	1.96	4	2.57	4	2.51	3	1.85	6	3.62
West Nile Virus	NR		NR		NR		NR							7.72		0.63				

${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Bradford County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	6	23.65	5	19.61	2	7.76	1	3.83	5	19.13	5	18.76	4	14.77	2	7.18	1	3.55	4	14.00
Animal Bite, post exposure prophylaxis recommended									1	3.83	3	11.26	3	11.08	9	32.30	1	3.55		
Campylobacteriosis	3	11.83	3	11.77	4	15.52	4	15.32	2	7.65	4	15.01	2	7.38	4	14.35				
Chlamydia	33	130.09	12	47.07	69	267.78	75	287.25	78	298.44	84	315.21	67	247.38	79	283.51	92	326.30	84	294.10
Cryptosporidiosis			1	3.92																
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli O157:H7																				
Giardiasis	7	27.59	1	3.92	5	19.40	3	11.49			1	3.75	6	22.15	4	14.35	3	10.64	1	3.50
Gonorrhea	19	74.90	7	27.46	25	97.02	66	252.78	50	191.31	45	168.86	26	96.00	59	211.74	43	152.51	42	147.05
Haemophilus influenzae, invasive ${ }^{1}$																				
Hepatitis A									2	7.65					1	3.59				
Hepatitis B (+HBsAg in a pregnant woman)															1	20.33	1	20.63		
Hepatitis B, acute							1	3.83									1	3.55	1	3.50
Hepatitis C, acute													1	3.69						
Human Immunodeficiency Virus ${ }^{2}$ (HIV)			1	3.92	2	7.76	3	11.49	3	11.48	3	11.26	2	7.38	5	17.94	2	7.09	9	31.51
Lead poisoning	1	3.94	1	3.92	1	3.88														
Legionellosis							-													
Listeriosis ${ }^{3}$																	1	3.55		
Lyme disease																				
Malaria											1	3.75								
Meningitis, other													1	3.69	2	7.18	1	3.55		
Meningitis, Streptococcus pneumoniae		-		-	1	3.88	-	-									1	3.55		
Meningococcal disease ${ }^{4}$					2	7.76														
Pertussis											1	3.75					1	3.55		
Rabies, animal	1	NA	3	NA													1	NA	1	NA
Salmonellosis	9	35.48	10	39.22	9	34.93	8	30.64	7	26.78	9	33.77	8	29.54	20	71.77	13	46.11	9	31.51
Shigellosis	11	43.36	5	19.61	3	11.64						3.75	5	18.46	2	7.18				
Streptococcus pneumoniae, invasive disease, drug-resistant			1	3.92	1	3.88					1	3.75								
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		NR		NR		NR	-	NR		NR		-		5	17.94	1	3.55		
Streptococcal disease, invasive Group A														3.69						
Syphilis	5	19.71	2	7.84	5	19.40	4	15.32	1	3.83	1	3.75			1	3.59	2	7.09	1	3.50
Toxoplasmosis													1	3.69	2	7.18				
Tuberculosis				3.92	1	3.88		7.66		3.83			2	7.38		7.18				3.50
Vibrio infections ${ }^{5}$																				
West Nile Virus	NR		NR		NR		NR						-							-

Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Brevard County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	83	18.25	67	14.52	78	16.61	68	14.21	60	12.32	66	13.27	70	13.71	58	11.07	73	13.66	54	9.91
Animal Bite, post exposure prophylaxis recommended							32	6.69	44	9.03	51	10.25	46	9.01	62	11.83	79	14.78	94	17.24
Campylobacteriosis	33	7.26	32	6.93	24	5.11	20	4.18	19	3.90	21	4.22	20	3.92	18	3.43	22	4.12	15	2.75
Chlamydia	635	139.64	683	148.00	881	187.64	716	149.62	935	191.94	1002	201.44	906	177.43	894	170.60	937	175.27	1217	223.26
Cryptosporidiosis		0.22	1	0.22	3	0.64	5	1.04									4	0.75	7	1.28
Cyclosporiasis		0.44										0.20					10	1.87		
Enterohemorrhagic Escherichia coli 0157:H7		0.22		0.22		0.64	9	1.88	6	1.23	3	0.60			3	0.57	1	0.19	2	0.37
Giardiasis	61	13.41	56	12.13	44	9.37	31	6.48	20	4.11	28	5.63	20	3.92	21	4.01	18	3.37	29	5.32
Gonorrhea	379	83.34	397	86.03	394	83.92	374	78.15	586	120.30	485	97.50	390	76.38	432	82.44	495	92.59	616	113.00
Haemophilus influenzae, invasive ${ }^{1}$				0.22			2	0.42			2	0.40	3	0.59	4	0.76	4	0.75	4	0.73
Hepatitis A	9	1.98	1	0.22	15	3.19	6	1.25	14	2.87	14	2.81	6	1.18	7	1.34	7	1.31		0.18
Hepatitis B (+HBsAg in a pregnant woman)													2	1.99	12	12.12	3	2.95		7.80
Hepatitis B, acute	17	3.74	9	1.95	9	1.92	6	1.25		0.82		1.41	4	0.78	4	0.76	7	1.31	11	2.02
Hepatitis C , acute																				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	16	3.52	66	14.30	69	14.70	48	10.03	56	11.50	66	13.27	64	12.53	71	13.55	57	10.66	62	11.37
Lead poisoning	30	6.60	24	5.20	24	5.11	14	2.93	13	2.67	8	1.61	7	1.37		0.19		0.19		0.37
Legionellosis						0.21	2	0.42	3	0.62	3	0.60	2	0.39	5	0.95	3	0.56	2	0.37
Listeriosis ${ }^{3}$					3	0.64		0.21		0.21	1	0.20	3	0.59	1	0.19	3	0.56		0.55
Lyme disease		0.44		0.87	3	0.64	2	0.42		0.21		0.20	1	0.20	2	0.38				
Malaria	7	1.54	4	0.87	2	0.43	2	0.42	3	0.62	3	0.60	3	0.59	4	0.76	1	0.19		
Meningitis, other		0.66									3	0.60		0.20	2	0.38		0.19		
Meningitis, Streptococcus pneumoniae	5	1.10	1	0.22	4	0.85		0.21		0.21	4	0.80			4	0.76	4	0.75	2	
Meningococcal disease ${ }^{4}$	2	0.44	1	0.22	2	0.43	3	0.63	1	0.21	2	0.40	5	0.98	2	0.38	2	0.37	2	0.37
Pertussis		0.88	1	0.22			3	0.63			4	0.80	4	0.78	2	0.38	2	0.37		0.73
Rabies, animal		NA												NA	2	NA	10	NA	8	NA
Salmonellosis	109	23.97	147	31.85	150	31.95	122	25.49	160	32.85	209	42.02	190	37.21	184	35.11	236	44.15	223	40.91
Shigellosis	9	1.98	100	21.67	185	39.40		1.46	28	5.75	55	11.06	59	11.55	20	3.82	7	1.31	40	7.34
Streptococcus pneumoniae, invasive disease, drug-resistant		0.88		0.65		2.13		4.60	13	2.67		3.42	25	4.90		7.44	16	2.99	23	4.22
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		7	1.37	11	2.10	23	4.30	19	3.49										
Streptococcal disease, invasive Group A		1.10		0.87		0.21		1.04		0.21		0.80		1.18		1.53	13	2.43	15	2.75
Syphilis	39	8.58	29	6.28	33	7.03	13	2.72	12	2.46	10	2.01	25	4.90	25	4.77	33	6.17	8	1.47
Toxoplasmosis						0.21														
Tuberculosis	22	4.84	22	4.77	10	2.13	14	2.93	15	3.08	10	2.01	12	2.35	8	1.53	14	2.62	8	1.47
Vibrio infections ${ }^{5}$		0.44	11	2.38	5	1.06		0.21	6	1.23	2	0.40	2	0.39	5	0.95	4	0.75	7	1.28
West Nile Virus	NR		NR		NR		NR				1	0.20	1	0.20	4	0.76				

Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
21997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Broward County																				
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006		
	N Number	Rate	Number	Rate																	
Acquired Immune Deficiency Syndrome (AIDS)			770	49.64	835	52.50	741	45.42	609	36.80	675	40.3	630	36.92	935	54.03	807	$\begin{array}{r} 46.20 \\ 1.43 \\ 4.35 \end{array}$	$\begin{array}{\|} \hline 765 \\ 16 \\ 88 \end{array}$	$\begin{array}{r} 43.15 \\ 0.90 \\ 4.96 \end{array}$	
Animal Bite, post exposure prophylaxis recommended								0.06		0.24	0	0.60			6	0.35	25				
Campylobacteriosis	105	6.93	70	4.51	91	5.72	77	4.72	58	3.50	101	6.03	102	5.98	100	5.78	76				
Chlamydia	2062	136.0	1835	118	2773	$\begin{array}{\|r\|} 174.36 \\ 1.51 \\ 0.06 \end{array}$	$\begin{array}{r} 3286 \\ 31 \\ 2 \end{array}$	$\begin{array}{r} 201.42 \\ 1.90 \\ 0.12 \end{array}$	$\begin{array}{r} 3653 \\ 18 \\ 4 \end{array}$	$\begin{array}{r} 220.74 \\ 1.09 \\ 0.24 \end{array}$	$\begin{array}{r} 4158 \\ 13 \\ 8 \end{array}$	$\begin{array}{r} 248.39 \\ 0.78 \\ 0.48 \end{array}$	$\begin{array}{r} 4363 \\ 31 \\ 3 \end{array}$	$\begin{array}{r} 255.69 \\ 1.82 \\ 0.18 \end{array}$	$\begin{array}{r} 4550 \\ 43 \\ 1 \end{array}$	$\begin{array}{r} 262.92 \\ 2.48 \\ 0.06 \end{array}$	$\begin{array}{r} 4313 \\ 58 \\ 23 \end{array}$	$\begin{array}{r} 246.94 \\ 3.32 \\ 1.32 \end{array}$	$\begin{array}{r} 4870 \\ 50 \\ 5 \end{array}$	$\begin{array}{r} 274.68 \\ 2.82 \\ 0.28 \end{array}$	
Cryptosporidiosis	33	2.18	34	2.19	24																
Cyclosporiasis		0.53	1	0.06	1																
Enterohemorrhagic Escherichia coli 0157:H7	$\begin{array}{r} 6 \\ 97 \\ 1386 \end{array}$	$\begin{array}{r} 0.40 \\ 6.40 \\ 91.44 \end{array}$	$\begin{array}{r} 7 \\ 106 \\ 1206 \end{array}$	$\begin{array}{r} 0.45 \\ 6.83 \\ 77.75 \end{array}$	$\begin{array}{r} 5 \\ 78 \\ 1921 \end{array}$	$\begin{array}{r} 0.31 \\ 4.90 \\ 120.79 \end{array}$	$\begin{array}{r} 7 \\ 91 \\ 2137 \end{array}$	$\begin{array}{r} 0.43 \\ 5.58 \\ 130.99 \end{array}$	$\begin{array}{r} 3 \\ 39 \\ 2010 \end{array}$	$\begin{array}{r} 0.18 \\ 2.36 \\ 121.46 \end{array}$	$\begin{array}{r} 5 \\ 108 \\ 1981 \end{array}$	$\begin{array}{r} 0.30 \\ 6.45 \\ 118.34 \end{array}$	$\begin{array}{r} 4 \\ 81 \\ 1774 \end{array}$	$\begin{array}{r} 0.23 \\ 4.75 \\ 103.96 \end{array}$	$\begin{array}{r} 9 \\ \quad 85 \\ \quad 1911 \end{array}$	$\begin{array}{r} 0.52 \\ 4.91 \\ 110.43 \end{array}$	$\begin{array}{r} 1 \\ 65 \\ 1981 \end{array}$	$\begin{array}{r} 0.06 \\ 3.72 \\ 113.42 \end{array}$	$\begin{array}{r} 3 \\ 70 \\ 2387 \end{array}$	$\begin{array}{r} 0.17 \\ 3.95 \\ 134.63 \end{array}$	
Giardiasis																					
Gonorrhea																					
Haemophilus influenzae, invasive ${ }^{1}$	$\begin{array}{r} 5 \\ 143 \end{array}$	$\begin{gathered} 0.33 \\ 9.43 \end{gathered}$	$\begin{array}{r} 1 \\ 76 \end{array}$		$\begin{array}{r} 3 \\ 61 \\ 53 \end{array}$	$\begin{array}{r} 0.19 \\ 3.84 \\ 14.65 \end{array}$	$\begin{aligned} & 11 \\ & 91 \\ & 60 \end{aligned}$	$\begin{array}{r} 0.67 \\ 5.58 \\ 16.20 \end{array}$	$\begin{array}{r} 15 \\ 117 \\ 53 \end{array}$	$\begin{gathered} 0.91 \\ 7.07 \\ 14.28 \\ 14 \end{gathered}$	$\begin{array}{r} 22 \\ 158 \\ 90 \end{array}$	$\begin{array}{r} 1.31 \\ 9.44 \\ 24.32 \end{array}$	$\begin{aligned} & 14 \\ & 52 \\ & 61 \end{aligned}$	$\begin{array}{r} 0.82 \\ 3.05 \\ 16.14 \end{array}$	$\begin{aligned} & 11 \\ & 34 \\ & 55 \end{aligned}$	$\begin{array}{r} 0.64 \\ 1.96 \\ 14.29 \end{array}$	$\begin{aligned} & 28 \\ & 32 \\ & 51 \end{aligned}$	$\begin{array}{r} 1.60 \\ 1.83 \\ 13.24 \end{array}$	$\begin{aligned} & 24 \\ & 31 \\ & 32 \end{aligned}$	1.351.758.23	
Hepatitis A																					
Hepatitis $\mathrm{B}(+\mathrm{HBsAg}$ in a pregnant woman)																					
Hepatitis B, acute	$\begin{array}{r} 78 \\ 374 \end{array}$	$\begin{array}{r} 5.15 \\ 24.67 \end{array}$	$\begin{array}{r} 68 \\ 1049 \end{array}$	$\begin{array}{r} 4.38 \\ - \\ 67.63 \end{array}$	$\begin{array}{r} 68 \\ 6 \\ 970 \end{array}$	$\begin{array}{r} 4.28 \\ 0.38 \\ 60.99 \end{array}$	$\begin{array}{r} 53 \\ 6 \\ 906 \end{array}$	$\begin{array}{r} 3.25 \\ 0.37 \\ 55.53 \end{array}$	$\begin{array}{r} 26 \\ 904 \end{array}$	$\begin{array}{r} 1.57 \\ - \\ 54.62 \end{array}$	$\begin{array}{r} 35 \\ 1105 \end{array}$	$\begin{array}{r} 2.09 \\ \\ 66.01 \end{array}$	$\begin{array}{r} 89 \\ 1063 \end{array}$	$\begin{array}{r} 5.22 \\ \\ 62.30 \end{array}$	$\begin{gathered} 66 \\ 954 \end{gathered}$	$\begin{array}{r} 3.81 \\ 8.13 \\ \\ 58.1 \end{array}$	$\begin{array}{r} 63 \\ 997 \end{array}$	$\begin{array}{r} 3.61 \\ - \\ 57.08 \end{array}$		$\begin{array}{r} 2.37 \\ - \\ 49.63 \end{array}$	
Hepatitis C, acute																					
Human Immunodeficiency Virus ${ }^{2}$ (HIV)																					
Lead poisoning	$\begin{array}{r} 168 \\ 2 \end{array}$	1.08	$\begin{array}{r} 181 \\ 1 \\ 1 \end{array}$	$\begin{gathered} 11.67 \\ 0.06 \end{gathered}$	$\begin{array}{r} 289 \\ 4 \\ 3 \end{array}$	$\begin{array}{r} 18.17 \\ 0.25 \\ 0.19 \end{array}$	$\begin{array}{r} 105 \\ 3 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & 6.44 \\ & 0.18 \\ & 0.25 \end{aligned}$	$\begin{array}{r} 56 \\ 6 \\ 2 \\ 2 \end{array}$	$\begin{aligned} & 3.38 \\ & 0.36 \\ & 0.12 \end{aligned}$	$\begin{array}{r} 82 \\ 4 \\ 4 \end{array}$	$\begin{aligned} & 4.90 \\ & 0.24 \\ & 0.24 \end{aligned}$	$\begin{array}{r} 70 \\ 8 \\ 7 \end{array}$	$\begin{aligned} & 4.10 \\ & 0.47 \\ & 0.41 \end{aligned}$	$\begin{array}{r} 49 \\ 20 \\ 3 \end{array}$	$\begin{aligned} & 2.83 \\ & 1.16 \\ & 0.17 \end{aligned}$	$\begin{array}{r} 30 \\ 6 \\ 6 \\ 12 \end{array}$	$\begin{aligned} & 1.72 \\ & 0.34 \\ & 0.69 \end{aligned}$	$\begin{aligned} & 22 \\ & 18 \\ & 12 \end{aligned}$	$\begin{aligned} & 1.24 \\ & 1.02 \\ & 0.68 \end{aligned}$	
Legionellosis		0.13																			
Listeriosis ${ }^{3}$		0.07																			
Lyme disease	7	$\begin{aligned} & 1.12 \\ & 0.33 \end{aligned}$		0.06		$\begin{aligned} & 0.13 \\ & 0.82 \\ & 0.31 \end{aligned}$												$\begin{aligned} & 0.06 \\ & 0.29 \\ & 1.32 \end{aligned}$		0.06	
Malaria			$\begin{aligned} & 9 \\ & 7 \end{aligned}$	$\begin{aligned} & 0.58 \\ & 0.45 \end{aligned}$	$\begin{array}{r} 13 \\ 5 \\ \hline \end{array}$		$\begin{aligned} & 15 \\ & 17 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 1.04 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.91 \end{aligned}$		$\begin{aligned} & 0.54 \\ & 1.67 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 1.88 \end{aligned}$		$\begin{aligned} & 0.64 \\ & 1.16 \end{aligned}$					
Meningitis, other																					
Meningitis, Streptococcus pneumoniae		$\begin{gathered} 0.07 \\ 0.66 \\ 0.13 \end{gathered}$		$\begin{gathered} 0.39 \\ 0.77 \\ 0.13 \end{gathered}$		0.50		0.490.980.12	2	0.120.660.06	2	0.120.48		0.060.470.35	671	$\begin{gathered} 0.35 \\ 0.40 \\ 0.06 \end{gathered}$	$\begin{aligned} & 9 \\ & 9 \\ & 7 \end{aligned}$	$\begin{gathered} 0.29 \\ 0.52 \\ 0.40 \end{gathered}$	4 0.23 6 0.34 8 0.45		
Meningococcal disease ${ }^{4}$	10		$\begin{array}{r} 12 \\ 2 \\ 2 \end{array}$		$\left.\begin{array}{r} 12 \\ 1 \end{array} \right\rvert\,$	$\begin{aligned} & 0.75 \\ & 0.06 \end{aligned}$	$\begin{array}{r} 16 \\ 2 \\ 2 \end{array}$		11		8										
Pertussis																					
Rabies, animal		$\begin{array}{r}\mathrm{NA} \\ 11.41 \\ 17.55 \\ \hline\end{array}$	$\begin{aligned} & 230 \\ & 238 \end{aligned}$	NA				NA	12	NA	11	NA	2	NA	4	NA		NA	2	NA	
Salmonellosis	173			14.83	236	14.84	190	11.65	149	9.00	291	17.38	341	19.98	311	17.97	393	22.50	361	20.36	
Shigellosis	266			15.34	57	3.58	106	6.50	58	3.50	126	7.53	233	13.65	170	9.82	86	4.92	71	4.00	
Streptococcus pneumoniae, invasive disease, drug-resistant	16	1.06	44	2.84	50	3.14	113	6.93	67	4.05	87	5.20	45	2.64	70	4.04	51	2.92	62	3.50	
Streptococcus preumoniae, invasive disease, drug-susceptible	NR			0.2	54	3.12	54	3.09	47	2.65											
Streptococcal disease, invasive Group A		0.07		0.39		0.06		0.18	10	0.60	15	0.90	22	1.29	26	1.50	37	2.12	39	2.20	
Syphilis	197	13.00	99	6.38	150	9.43	88	11.52	264	15.9	401	23.96	568	33.29	535	30.91	588	33.67	500	28.20	
Toxoplasmosis		0.13								0.06		0.06									
Tuberculosis	123	8.12	134	8.64	140	8.80	102	6.25	102	6.16	105	6.27	111	6.51	87	5.03	99	5.67	80	4.51	
Vibrio infections ${ }^{5}$		0.13		0.32	7	0.44	2	0. 12			3	0.18	3	0.18	5	9	7	0.40		0.23	
West Nile Virus	NR		NR		NR		NR							0.23	2	0.12					

[^1]${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable

Selected Notifiable Diseases	Calhoun County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	1	7.98							2	15.27	1	7.53			1	7.33				
Animal Bite, post exposure prophylaxis recommended									1	7.63			1	7.41						
Campylobacteriosis	2	15.95	1	7.93	1	7.77	-		1	7.63	2	15.05	1	7.41	2	14.67				
Chlamydia	12	95.71	7	55.51	17	132.16	9	69.03	43	328.22	38	286.02	49	363.21	24	176.00	30	214.12	29	203.31
Cryptosporidiosis	2	15.95																		
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli O157:H7																				
Giardiasis	4	31.90	6	47.58	3	23.32	1	7.67			2	15.05			1	7.33				
Gonorrhea	3	23.93	5	39.65	7	54.42	5	38.35	34	259.52	21	158.06	8	59.30	5	36.67	14	99.92	14	98.15
Haemophilus influenzae, invasive ${ }^{1}$																				
Hepatitis A					4	31.10	-		1	7.63					1	7.33				
Hepatitis B (+HBsAg in a pregnant woman)			-																	
Hepatitis B, acute					1	7.77									1	7.33				
Hepatitis C, acute																	2	14.27		
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	1	7.98	-		1	7.77	-	-	1	7.63			1	7.41	2	14.67	1	7.14	2	14.02
Lead poisoning	1	7.98	2	15.86	1	7.77							2	14.82						
Legionellosis	-						-	-		-									-	
Listeriosis ${ }^{3}$																				
Lyme disease									1	7.63										
Malaria																			-	
Meningitis, other																				
Meningitis, Streptococcus pneumoniae		-					1	7.67												
Meningococcal disease ${ }^{4}$		-					2	15.34		-						-			-	
Pertussis	-	-																	1	7.01
Rabies, animal							2	NA							1	NA			1	NA
Salmonellosis	1	7.98	5	39.65	2	15.55	1	7.67	1	7.63	6	45.16	4	29.65	6	44.00	2	14.27	2	14.02
Shigellosis	2	15.95	2	15.86	1	7.77						7.53	4	29.65				7.14		
Streptococcus pneumoniae, invasive disease, drug-resistant							1	7.67		-										
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		NR		NR		NR		NR	-	NR				-				1	7.01
Streptococcal disease, invasive Group A													1	7.41	1	7.33				
Syphilis					1	7.77	1	7.67	1	7.63	1	7.53	2	14.82	1	7.33			2	14.02
Toxoplasmosis		-																		
Tuberculosis			1	7.93						15.27		15.05				14.67				
Vibrio infections ${ }^{5}$			1	7.93		-		-	1	7.63			-		3	22.00				
West Nile Virus	NR		NR		NR		NR						1	7.41		7.33			-	

[^2]${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Charlotte County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	6	4.50	9	6.64	10	7.19	10	7.02	8	5.50	10	6.69	6	3.93	9	5.70	6	3.90	13	8.41
Animal Bite, post exposure prophylaxis recommended	3	2.25							4	2.75	13	8.70	45	29.44	28	17.72	15	9.75	11	7.12
Campylobacteriosis	8	6.00	6	4.42	1	0.72	5	3.51	1	0.69	2	1.34	5	3.27	3	1.90	9	5.85	3	1.94
Chlamydia	117	87.77	91	67.10	91	65.45	116	81.49	143	98.29	139	92.99	128	83.73	132	83.54	164	106.64	150	97.08
Cryptosporidiosis															1	0.63	1	0.65		
Cyclosporiasis															1	0.63	1	0.65		
Enterohemorrhagic Escherichia coli 0157:H7	1	0.75			4	2.88	1	0.70			3	2.01		0.65			6	3.90	1	0.65
Giardiasis	8	6.00	15	11.06	13	9.35	9	6.32	6	4.12	3	2.01	5	3.27	5	3.16	13	8.45	2	1.29
Gonorrhea	17	12.75	42	30.97	31	22.30	37	25.99	45	30.93	48	32.11	34	22.24	30	18.99	52	33.81	76	49.19
Haemophilus influenzae, invasive ${ }^{1}$	1	0.75													1	0.63	1	0.65		
Hepatitis A	1	0.75	2	1.47					1	0.69	3	2.01								
Hepatitis B (+HBsAg in a pregnant woman)							-				2	9.60	4	18.77	3	14.06	1	4.68	1	4.68
Hepatitis B, acute													1	0.65	3	1.90			1	0.65
Hepatitis C, acute													3	1.96			2	1.30		
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	2	1.50	11	8.11	12	8.63	11	7.73	8	5.50	11	7.36	9	5.89	6	3.80	5	3.25	8	5.18
Lead poisoning	1	0.75	3	2.21	3	2.16	3	2.11												
Legionellosis										-	1	0.67	1	0.65	2	1.27	4	2.60	1	0.65
Listeriosis ${ }^{3}$					1	0.72											1	0.65		
Lyme disease									1	0.69	2	1.34	2	1.31	1	0.63	3	1.95		
Malaria							1	0.70												
Meningitis, other			1	0.74	-		1	0.70			1	0.67			1	0.63				
Meningitis, Streptococcus pneumoniae			-							-										
Meningococcal disease ${ }^{4}$	1	0.75	-	-	3	2.16					1	0.67	1	0.65	3	1.90		-	1	0.65
Pertussis	2	1.50																	2	1.29
Rabies, animal	1	NA	4	NA	2	NA			1	NA	1	NA	5	NA	3	NA				
Salmonellosis	36	27.01	34	25.07	33	23.74	33	23.18	39	26.81	51	34.12	65	42.52	39	24.68	69	44.87	29	18.77
Shigellosis	1	0.75				0.72	2	1.40		1.37			26	17.01	1	0.63	3	1.95	1	0.65
Streptococcus pneumoniae, invasive disease, drug-resistant		-					4	2.81			1	0.67								
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		4	2.53	1	0.65	2	1.29												
Streptococcal disease, invasive Group A				0.74		0.72				0.69										
Syphilis	6	4.50	12	8.85	12	8.63	7	4.92	5	3.44	3	2.01	12	7.85	2	1.27	8	5.20	5	3.24
Toxoplasmosis	1	0.75									1	0.67					1	0.65	-	
Tuberculosis	4	3.00	1	0.74		2.16			3	2.06	3	2.01	1	0.65	1	0.63	6	3.90	3	1.94
Vibrio infections ${ }^{5}$			2	1.47	1	0.72	1	0.70	1	0.69	2	1.34					3	1.95	-	
West Nile Virus	NR		NR		NR		NR													

${ }^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other.
NR - Not Reportable NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Citrus County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	8	7.17	4	3.51	9	7.74	9	7.58		3.30	3	2.43	8	6.33	6	4.62	5	3.75	18	13.17
Animal Bite, post exposure prophylaxis recommended					8	6.88	2	1.69	17	14.04	20	16.17	34	26.88	36	27.73	32	23.98	26	19.02
Campylobacteriosis	7	6.27	2	1.76	1	0.86	3	2.53			4	3.23	1	0.79	3	2.31		3.75		3.66
Chlamydia	42	37.62	18	15.80	144	123.92	132	111.22	106	87.55	164	132.57	158	124.93	144	110.92	131	98.15	213	155.81
Cryptosporidiosis					1	0.86									1	0.77	1	0.75	4	2.93
Cyclosporiasis																		2.25		
Enterohemorrhagic Escherichia coli 0157:H7	4	3.58				0.86	3	2.53							1	0.77				
Giardiasis	7	6.27	12	10.53		3.44	3	2.53		2.48		0.81	5	3.95		0.77	5	3.75	7	5.12
Gonorrhea	6	5.37		0.88	26	22.37	31	26.12	29	23.95	60	48.50	49	38.74	42	32.35	53	39.71	65	47.55
Haemophilus influenzae, invasive ${ }^{1}$												0.81	1	0.79			1	0.75		0.73
Hepatitis A			2	1.76	6	5.16			3	2.48	3	2.43	5	3.95	6	4.62				0.73
Hepatitis B (+HBsAg in a pregnant woman)											3	16.83		10.95		21.37				10.33
Hepatitis B, acute	4	3.58	1	0.88		0.86				0.83	4	3.23	3	2.37	2	1.54	1	0.75	2	1.46
Hepatitis C, acute									3	2.48		0.81				0.77		0.75	1	0.73
Human Immunodeficiency Virus ${ }^{2}$ (HIV)			2	1.76	5	4.30	4	3.37	3	2.48	5	4.04	6	4.74	7	5.39	9	6.74	12	8.78
Lead poisoning	2	1.79	6	5.27	2	1.72				0.83	2	1.62					2	1.50		
Legionellosis			2	1.76	1	0.86	2	1.69	2	1.65			1	0.79					1	0.73
Listeriosis ${ }^{3}$								0.84							1	0.77				
Lyme disease								0.84		0.83	5	4.04	2	1.58				0.75		
Malaria																				
Meningitis, other			1	0.88	1	0.86							2	1.58	1	0.77		0.75		
Meningitis, Streptococcus pneumoniae							1	0.84		0.83		0.81								
Meningococcal disease ${ }^{4}$									1	0.83			1	0.79					1	0.73
Pertussis																	3	2.25		
Rabies, animal	15	NA		NA		NA						NA		NA	8	NA	12	NA	5	NA
Salmonellosis	10	8.96	18	15.80	12	10.33	22	18.54	24	19.82	38	30.72	28	22.14	38	29.27	24	17.98	18	13.17
Shigellosis	4	3.58		0.88	2	1.72				5.78		0.81		0.79		0.77				4.39
Streptococcus pneumoniae, invasive disease, drug-resistant							2	1.69			2	1.62	1	0.79	3	2.31	4	3.00	5	3.66
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		5	3.95	4	3.08	4	3.00	5	3.66										
Streptococcal disease, invasive Group A		0.90						1.69		0.83	2	1.62	6	4.74	2	1.54	2	1.50		1.46
Syphilis	2	1.79	1	0.88				0.84		0.83	3	2.43	6	4.74			2	1.50	3	2.19
Toxoplasmosis						0.86								0.79						
Tuberculosis	1	0.90	5	4.39		0.86	2	1.69		3.30	3	2.43	2	1.58	4	3.08	2	1.50	3	2.19
Vibrio infections ${ }^{5}$		0.90						0.84				0.81	3	2.37	1	0.77			2	1.46
West Nile Virus	NR		NR		NR		NR				1	0.81	2	1.58						

Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other
NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Clay County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	10	7.77	12	9.02	7	5.10	11	7.78			13		9	5.72	12	7.28	7	4.09	17	9.60
Animal Bite, post exposure prophylaxis recommended									2	1.39	1	0.66	9	5.72	22	13.34	13	7.60	25	14.12
Campylobacteriosis	8	6.22	9	6.76	10	7.28	8	5.66	13	9.02	4	2.64	17	10.81	8	4.85	12	7.01	9	5.08
Chlamydia	159	123.59	123	92.45	161	117.21	251	177.60	247	171.34	202	133.12	302	191.96	319	193.49	299	174.73	326	184.15
Cryptosporidiosis	5	3.89	6	4.51	6	4.37	4	2.83	3	2.08	1	0.66	11	6.99	4	2.43	2	1.17	51	28.81
Cyclosporiasis																	1	0.58	2	1.13
Enterohemorrhagic Escherichia coli O157:H7	2	1.55																		
Giardiasis	58	45.08	28	21.05	37	26.94	32	22.64	26	18.04	13	8.57	21	13.35	24	14.56	14	8.18	14	7.91
Gonorrhea	54	41.97	52	39.08	71	51.69	130	91.98	92	63.82	60	39.54	88	55.94	92	55.80	122	71.30	152	85.86
Haemophilus influenzae, invasive ${ }^{1}$							1	0.71	1	0.69									2	1.13
Hepatitis A	1	0.78	6	4.51	1	0.73	1	0.71	2	1.39	2	1.32			1	0.61	1	0.58	1	0.56
Hepatitis B (+HBsAg in a pregnant woman)					1	3.08	2	6.04			4	11.52	7	19.43	6	15.99	5	12.95	2	5.05
Hepatitis B, acute	4	3.11	3	2.25	1	0.73			2	1.39	1	0.66	3	1.91	2	1.21	3	1.75	5	2.82
Hepatitis C, acute									1	0.69	1	0.66							1	0.56
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	6	4.66	7	5.26	8	5.82	8	5.66	10	6.94	11	7.25	16	10.17	10	6.07	9	5.26	15	8.47
Lead poisoning	9	7.00	3	2.25			3	2.12							1	0.61	2	1.17		
Legionellosis	1	0.78											2	1.27	3	1.82	1	0.58	2	1.13
Listeriosis ${ }^{3}$																				
Lyme disease					3	2.18	1	0.71	1	0.69					1	0.61				
Malaria																				
Meningitis, other							1	0.71	2	1.39			10	6.36						
Meningitis, Streptococcus pneumoniae	5	3.89	1	0.75	1	0.73	,	0.71					1	0.64				-	-	
Meningococcal disease ${ }^{4}$			2				1	0.71		-	1	0.66	3	1.91			1	0.58	1	0.56
Pertussis	1	0.78				2.18	2				1	0.66	2				7	4.09	1	0.56
Rabies, animal	3	NA	,	NA	4	NA	1	NA	4	NA			1	NA	3	NA				
Salmonellosis	34	26.43	39	29.31	41	29.85	41	29.01	45	31.22	49	32.29	67	42.59	88	53.38	114	66.62	89	50.27
Shigellosis	4	3.11	61	45.85	13	9.46	11	7.78	8	5.55	4	2.64	65	41.32	3	1.82	2	1.17	20	11.30
Streptococcus pneumoniae, invasive disease, drug-resistant	3	2.33	3	2.25	1	0.73	3	2.12	8	5.55	3	1.98	1	0.64			3	1.75	7	3.95
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR				7	4.25	11	6.43	11	6.21										
Streptococcal disease, invasive Group A		1.55								0.69			2	1.27	2	1.21	5	2.92	7	3.95
Syphilis	3	2.33	3	2.25	1	0.73	7	4.95	7	4.86		2.64	5	3.18	9	5.46			4	2.26
Toxoplasmosis											2	1.32	1	0.64					-	
Tuberculosis	3	2.33	6	4.51	4	2.91	8	5.66	3	2.08	7	4.61	4	2.54	5	3.03	3	1.75	5	2.82
Vibrio infections ${ }^{5}$				-			1	0.71		-									1	0.56
West Nile Virus	NR		NR		NR		NR					0.66								

[^3]${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other.
NR - Not Reportable NA - Not Applicable

Selected Notifiable Diseases	Collier County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	53	24.32	41	17.83	42	17.33	27	10.61	67	25.03	44	15.65	46	15.55	34	10.99	44	13.71	63	18.88
Animal Bite, post exposure prophylaxis recommended							5	1.96	27	10.09	49	17.43	43	14.53	26	8.40	27	8.41	34	10.19
Campylobacteriosis	56	25.70	44	19.14	62	25.58	50	19.64	93	34.75	53	18.85	49	16.56	73	23.60	60	18.70	53	15.88
Chlamydia	396	181.72	434	188.75	402	165.84	526	206.62	551	205.88	574	204.16	524	177.12	570	184.25	585	182.32	665	199.24
Cryptosporidiosis	2	0.92			2	0.83			3	1.12	3	1.07	2	0.68	3	0.97	5	1.56	7	2.10
Cyclosporiasis	3	1.38					-		4	1.49	1	0.36	2	0.68			5	1.56		
Enterohemorrhagic Escherichia coli O157:H7	8	3.67	3	1.30	3	1.24	4	1.57	2	0.75	4	1.42	5	1.69	4	1.29	3	0.93		
Giardiasis	49	22.49	44	19.14	48	19.80	57	22.39	43	16.07	47	16.72	23	7.77	46	14.87	40	12.47	19	5.69
Gonorrhea	112	51.40	164	71.33	89	36.71	158	62.07	125	46.71	133	47.31	103	34.82	110	35.56	108	33.66	153	45.84
Haemophilus influenzae, invasive ${ }^{1}$	1	0.46			1	0.41			1	0.37		0.36	4	1.35	4	1.29	3	0.93	3	0.90
Hepatitis A	12	5.51	5	2.17	5	2.06	6	2.36	3	1.12	2	0.71	5	1.69	19	6.14	13	4.05	9	2.70
Hepatitis B (+HBsAg in a pregnant woman)					4	9.55	9	20.59	16	35.25	19	40.35	13	26.20	11	21.65	8	14.61	12	21.14
Hepatitis B, acute	3	1.38	6	2.61	9	3.71	10	3.93	6	2.24	4	1.42	3	1.01	4	1.29	3	0.93	6	1.80
Hepatitis C, acute																				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	18	8.26	47	20.44	43	17.74	41	16.11	60	22.42	42	14.94	42	14.20	67	21.66	30	9.35	54	16.18
Lead poisoning	25	11.47	21	9.13	12	4.95	19	7.46	54	20.18	50	17.78	44	14.87	16	5.17	10	3.12	4	1.20
Legionellosis			2	0.87	1	0.41	1	0.39	1	0.37	1	0.36	1	0.34	3	0.97	3	0.93	8	2.40
Listeriosis ${ }^{3}$																	3			
Lyme disease	3	1.38	1	0.43			2	0.79	1	0.37	1	0.36	1	0.34			1	0.31		
Malaria	4	1.84	6	2.61	6	2.48	3	1.18	1	0.37	4	1.42			5	1.62	2	0.62	3	0.90
Meningitis, other	2	0.92			1	0.41			1	0.37	2	0.71	2	0.68	1	0.32	1	0.31		
Meningitis, Streptococcus pneumoniae	2	0.92	2	0.87									2	0.68	2	0.65				
Meningococcal disease ${ }^{4}$	3	1.38	2	0.87	5	2.06	3	1.18	2	0.75	2	0.71	2	0.68	1	0.32	2	0.62		
Pertussis	1	0.46			4	1.65	1	0.39	2	0.75			2	0.68	6	1.94	5	1.56	3	0.90
Rabies, animal	5	NA	2	NA	2	NA	4	NA	2	NA	2	NA	4	NA					1	NA
Salmonellosis	51	23.40	49	21.31	52	21.45	55	21.60	103	38.49	88	31.30	52	17.58	78	25.21	119	37.09	82	24.57
Shigellosis	33	15.14	36	15.66	41	16.91	33	12.96	12	4.48	34	12.09	92	31.10	14	4.53	15	4.67	7	2.10
Streptococcus pneumoniae, invasive disease, drug-resistant			2	0.87	2	0.83	14	5.50	16	5.98	9	3.20	8	2.70	13	4.20	16	4.99	13	3.90
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR	-	NR		5	1.69	7	2.26	10	3.12	9	2.70								
Streptococcal disease, invasive Group A			2	0.87	5	2.06	9	3.54	6	2.24	5	1.78	7	2.37	6	1.94	8	2.49	9	2.70
Syphilis	55	25.24	43	18.70	45	18.56	36	14.14	33	12.33	28	9.96	38	12.84	50	16.16	42	13.09	68	20.37
Toxoplasmosis				0.43	1	0.41														
Tuberculosis	20	9.18	18	7.83	23	9.49	14	5.50	30	11.21	25	8.89	20	6.76	21	6.79	24	7.48	17	5.09
Vibrio infections ${ }^{5}$	1	0.46	8	3.48	4	1.65	3	1.18	1	0.37	4	1.42	1	0.34	3	0.97	2	0.62	5	1.50
West Nile Virus	NR		NR		NR		NR					0.36	2	0.68						

Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Columbia County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	5	9.42	16	29.46	10	18.04	7	12.35	12	20.92	9	15.37	11	18.58	6	9.87	8	12.96	9	14.28
Animal Bite, post exposure prophylaxis recommended							1	1.76							2	3.29	1	1.62	-	
Campylobacteriosis	3	5.65	10	18.41	1	1.80	2	3.53					3	5.07	5	8.22	7	11.34	12	19.05
Chlamydia	67	126.21	137	252.24	130	234.46	144	254.04	139	242.35	139	237.46	172	290.45	194	318.97	157	254.28	161	255.54
Cryptosporidiosis	1	1.88			1	1.80													3	4.76
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli 0157:H7													2	3.38						
Giardiasis			2	3.68	2	3.61	1	1.76					3	5.07			8	12.96	2	3.17
Gonorrhea	21	39.56	35	64.44	60	108.21	60	105.85	41	71.49	47	80.29	84	141.85	103	169.35	75	121.47	96	152.37
Haemophilus influenzae, invasive ${ }^{1}$					1	1.80							1	1.69					2	3.17
Hepatitis A							2	3.53							1	1.64				
Hepatitis B (+HBsAg in a pregnant woman)			-								-								1	8.29
Hepatitis B, acute	1	1.88																		
Hepatitis C, acute																				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	1	1.88	4	7.36	11	19.84	14	24.70	8	13.95	8	13.67	13	21.95	6	9.87	4	6.48	12	19.05
Lead poisoning	3	5.65	3	5.52	5	9.02	4	7.06					3	5.07	1	1.64	2	3.24	1	1.59
Legionellosis										-	-		2	3.38					1	1.59
Listeriosis ${ }^{3}$																				
Lyme disease															1	1.64				
Malaria										-										
Meningitis, other	1	1.88	-	-	-					-			1	1.69				-	1	1.59
Meningitis, Streptococcus pneumoniae			-																	
Meningococcal disease ${ }^{4}$	1	1.88													1	1.64		-		
Pertussis	1	1.88																		
Rabies, animal	4	NA	3	NA	1	NA							2	NA	1	NA	3	NA	3	NA
Salmonellosis	10	18.84	22	40.51	21	37.87	8	14.11		-			24	40.53	39	64.12	32	51.83	28	44.44
Shigellosis	2	3.77	32	58.92		1.80								5.07	2	3.29	2	3.24	29	46.03
Streptococcus pneumoniae, invasive disease, drug-resistant	2	3.77	1	1.84				-									2	3.24	4	6.35
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		NR		NR	-	NR		NR	-	NR	-	2	3.38	4	6.58	1	1.62	2	3.17
Streptococcal disease, invasive Group A																		1.62		
Syphilis	15	28.25	7	12.89	3	5.41			3	5.23	6	10.25			2	3.29	4	6.48	3	4.76
Toxoplasmosis																	1	1.62	-	
Tuberculosis	7	13.19	5	9.21	5	9.02	4	7.06	2	3.49	4	6.83				1.64		1.62	2	3.17
Vibrio infections ${ }^{5}$										-							1	1.62	-	
West Nile Virus	NR		NR		NR		NR													

${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals,
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NA - Not Applicable

${ }_{2}^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis. 21997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NA - Not Applicable

Selected Notifiable Diseases	Duval County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	287	38.45	217	28.60	256	33.34	251	32.07	234	29.34	228	28.02	243	29.28	293	34.73	264	30.49	276	31.22
Animal Bite, post exposure prophylaxis recommended							82	10.48	69	8.65	22	2.70			1	0.12				
Campylobacteriosis	83	11.12	73	9.62	53	6.90	75	9.58	48	6.02	68	8.36	80	9.64	49	5.81	57	6.58	65	7.35
Chlamydia	2402	321.76	1913	252.14	2703	352.02	3501	447.30	3551	445.23	3926	482.42	4566	550.16	4396	520.99	4625	534.09	4816	544.79
Cryptosporidiosis	14	1.88	28	3.69	12	1.56	7	0.89	10	1.25	23	2.83	17	2.05	10	1.19	48	5.54	189	21.38
Cyclosporiasis		0.40															12	1.39		
Enterohemorrhagic Escherichia coli O157:H7	2	0.27	2	0.26	16	2.08	7	0.89	3	0.38		0.12	2	0.24	5	0.59	3	0.35		
Giardiasis	222	29.74	159	20.96	112	14.59	110	14.05	93	11.66	83	10.20	84	10.12	65	7.70	33	3.81	44	4.98
Gonorrhea	2089	279.83	2463	324.64	2972	387.05	3640	465.06	2731	342.42	2895	355.73	2371	285.68	2035	241.18	2343	270.57	2632	297.74
Haemophilus influenzae, invasive ${ }^{1}$	1	0.13	1	0.13	2	0.26	3	0.38	9	1.13	5	0.61	5	0.60	12	1.42	10	1.15	13	1.47
Hepatitis A	31	4.15	26	3.43	14	1.82	11	1.41	13	1.63	17	2.09	4	0.48	8	0.95	7	0.81	1	0.11
Hepatitis B (+HBsAg in a pregnant woman)					15	7.86	36	18.62	36	18.44	44	22.30	38	18.87	35	17.41	37	18.03	23	11.07
Hepatitis B, acute	49	6.56	35	4.61	49	6.38	45	5.75	41	5.14	48	5.90	40	4.82	33	3.91	21	2.43	29	3.28
Hepatitis C, acute					3	0.39	1	0.13		0.13	3	0.37	4	0.48			1	0.12		
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	66	8.84	295	38.88	288	37.51	350	44.72	355	44.51	362	44.48	343	41.33	333	39.47	277	31.99	320	36.20
Lead poisoning	239	32.02	160	21.09	152	19.80	45	5.75			86	10.57	18	2.17	3	0.36	64	7.39	16	1.81
Legionellosis	3	0.40	7	0.92	1	0.13	2	0.26			4	0.49	7	0.84	6	0.71	6	0.69	6	0.68
Listeriosis ${ }^{3}$			1	0.13	5	0.65	2	0.26	1	0.13							4	0.46	2	0.23
Lyme disease	2	0.27	1	0.13			1	0.13	1	0.13	3	0.37			2	0.24			,	0.11
Malaria	2	0.27	1	0.13	1	0.13	3	0.38	3	0.38	2	0.25	2	0.24	5	0.59	5	0.58	5	0.57
Meningitis, other	6	0.80	10	1.32	6	0.78	13	1.66	9	1.13	17	2.09	7	0.84	15	1.78	6	0.69	12	1.36
Meningitis, Streptococcus pneumoniae	2	0.27	10	1.32	14	1.82	10	1.28	2	0.25	4	0.49	3	0.36	3	0.36	4	0.46	5	0.57
Meningococcal disease ${ }^{4}$	6	0.80	10	1.32	5	0.65	3	0.38	8	1.00	3	0.37	5	0.60	6	0.71	7	0.81	1	0.11
Pertussis	19	2.55	20	2.64	26	3.39	11	1.41	5	0.63	12	1.47	30	3.61	19	2.25	11	1.27	17	1.92
Rabies, animal	5	NA	5	NA		NA	7	NA	4	NA	3	NA	4	NA	8	NA	2	NA	3	NA
Salmonellosis	222	29.74	250	32.95	248	32.30	216	27.60	230	28.84	302	37.11	367	44.22	359	42.55	362	41.80	347	39.25
Shigellosis	117	15.67	344	45.34	166	21.62	143	18.27	29	3.64	430	52.84	542	65.31	23	2.73	6	0.69	351	39.71
Streptococcus pneumoniae, invasive disease, drug-resistant	13	1.74	40	5.27	56	7.29	53	6.77	25	3.13	26	3.19	30	3.61	37	4.39	22	2.54	38	4.30
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		23	2.77	43	5.10	29	3.35	30	3.39										
Streptococcal disease, invasive Group A	10	1.34	8	1.05	6	0.78	4	0.51	4	0.50	11	1.35	20	2.41	15	1.78	24	2.77	13	1.47
Syphilis	206	27.59	154	20.30	74	9.64	123	15.72	139	17.43	69	8.48	124	14.94	200	23.70	145	16.74	146	16.52
Toxoplasmosis	1	0.13		0.13	3	0.39	1	0.13	2	0.25		0.12	1	0.12						
Tuberculosis	132	17.68	105	13.84	95	12.37	107	13.67	93	11.66	73	8.97	70	8.43	81	9.60	81	9.35	88	9.95
Vibrio infections ${ }^{5}$	6	0.80	6	0.79	6	0.78	4	0.51	6	0.75	4	0.49	5	0.60	8	0.95	6	0.69	5	0.57
West Nile Virus	NR		NR		NR		NR		1	0.13	1	0.12	7	0.84	8	0.95	1	0.12		

${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{Selected Notifiable Diseases} \& \multicolumn{20}{|l|}{Escambia County} \\
\hline \& \multicolumn{2}{|l|}{1997} \& \multicolumn{2}{|l|}{1998} \& \multicolumn{2}{|l|}{1999} \& \multicolumn{2}{|l|}{2000} \& \multicolumn{2}{|l|}{2001} \& \multicolumn{2}{|l|}{2002} \& \multicolumn{2}{|l|}{2003} \& \multicolumn{2}{|l|}{2004} \& \multicolumn{2}{|l|}{2005} \& \multicolumn{2}{|l|}{2006} \\
\hline \& Number \& Rate \& Number \& \multirow[t]{2}{*}{\({ }^{\text {Rate }}\)} \& \multirow[t]{2}{*}{Number} \& \multirow[t]{4}{*}{\begin{tabular}{r|r|}
\hline Rate \\
\hline 24.40 \\
0.66 \\
6.27
\end{tabular}} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{r|r|}
Number \& Rate \\
\hline 61 \& 20.09 \\
67 \& 22.07 \\
10 \& 3.29 \\
\& 4.7
\end{tabular}}} \\
\hline Acquired Immune Deficiency Syndrome (AIDS) \& \& 20.29 \& 57 \& \multirow[t]{3}{*}{\[
\begin{array}{|c|}
\hline 19.78 \\
6.94 \\
\hline
\end{array}
\]} \& \multirow[t]{3}{*}{64
18} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
\hline 21.85 \\
6.14 \\
\hline
\end{array}
\]} \& \multirow[t]{3}{*}{52
7
7} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
17.63 \\
2.37 \\
2
\end{array}
\]} \& \multirow[t]{3}{*}{55
10} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
18.50 \\
\hline 3.36
\end{array}
\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
14.98 \\
\\
\hline 3.66
\end{array}
\]} \& \multirow[t]{3}{*}{69
19} \& \multirow[t]{3}{*}{22.69

6.25} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
62 \\
22 \\
\hline
\end{array}
$$} \& \& \& \& \&

\hline Animal Bite, post exposure prophylaxis recommended \& \multirow[t]{2}{*}{$$
\begin{array}{r}
58 \\
28
\end{array}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
20.29 \\
9.80
\end{array}
$$

\]} \& \& \& \& \& \& \& \& \& \& \& \& \& \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
2.19 \\
7.14 \\
\hline
\end{array}
$$
\]} \& \multirow[t]{2}{*}{} \& \& \&

\hline Campylobacteriosis \& \& \& 20 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Chlamydia \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
297.04 \\
2.10
\end{array}
$$} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
325.42 \\
0.69
\end{array}
$$
\]} \& \multirow[t]{3}{*}{1099

1

2} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
375.17 \\
0.34 \\
0.68
\end{array}
$$} \& \multirow[t]{3}{*}{1222} \& \multirow[t]{3}{*}{414.36} \& \multirow[t]{3}{*}{1072} \& \multirow[t]{3}{*}{360.55} \& \multirow[t]{3}{*}{1296} \& \multirow[t]{3}{*}{431.39} \& \multirow[t]{3}{*}{904} \& \multirow[t]{3}{*}{297.21} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
1077 \\
2
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
349.60 \\
0.65
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
1256 \\
1 \\
2
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
414.19 \\
0.33 \\
0.66
\end{array}
$$
\]} \& \multirow[t]{3}{*}{$\begin{array}{r}1266 \\ 7 \\ \hline\end{array}$} \& \multirow[t]{3}{*}{417.03

2.31}

\hline Cryptosporidiosis \&

\hline Cyclosporiasis \&

\hline Enterohemorrhagic Escherichia coli 0157:H7 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
3 \\
34 \\
703
\end{array}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
1.05 \\
11.90 \\
245.96
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
7 \\
22 \\
510
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
2.43 \\
7.63 \\
176.94
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
26 \\
770
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
8.88 \\
262.86
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
26 \\
826
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
8.82 \\
280.08
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
14 \\
797
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
4.71 \\
268.06
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
9 \\
687
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
3.00 \\
228.68
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
-12 \\
12 \\
502
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
3.95 \\
165.04
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
5 \\
13 \\
532
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
1.62 \\
4.22 \\
172.69
\end{array}
$$

\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
2.64 \\
21.71
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
1 \\
12 \\
928
\end{array}
$$
\]} \& \multirow[t]{3}{*}{0.33

3.95
305.69}

\hline Giardiasis \&

\hline Gonorrhea \&

\hline Haemophilus influenzae, invasive ${ }^{1}$ \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
$$
\begin{aligned}
& 0.35 \\
& 0.35
\end{aligned}
$$

\]}} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
1 \\
13
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 0.35 \\
& 4.51
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 2 \\
& 4 \\
& 2
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 0.68 \\
& 1.37 \\
& 2.99
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
1 \\
2 \\
10
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
0.34 \\
0.68 \\
14.92
\end{gathered}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 4 \\
& 4 \\
& 1
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 0.34 \\
& 1.35 \\
& 1.49
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 3 \\
& 1 \\
& 7
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
1.00 \\
0.33 \\
10.41
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
2 \\
6 \\
6 \\
16
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
0.66 \\
1.97 \\
23.46
\end{gathered}
$$

\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
0.97 \\
19.25
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
1 \\
19
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
0.33 \\
- \\
28.20
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
12 \\
12
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
0.99 \\
\\
17.88
\end{array}
$$
\]}

\hline Hepatitis A \&

\hline Hepatitis B (+HBsAg in a pregnant woman) \&

\hline Hepatitis B, acute \& \multirow[t]{3}{*}{24} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
8.40 \\
7.00
\end{array}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 10 \\
& 82 \\
& 82
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
3.47 \\
28.45 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
7 \\
69
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
2.39 \\
23.55
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
9 \\
3 \\
79
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
3.05 \\
1.02 \\
26.79
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
14 \\
1 \\
75
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
4.71 \\
0.34 \\
25.23
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
8 \\
4 \\
78
\end{gathered}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
2.66 \\
1.33 \\
25.96
\end{array}
$$

\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
2.63 \\
0.33 \\
27.29
\end{array}
$$

\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
0.32 \\
\\
22.40
\end{array}
$$

\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
2.97 \\
\\
16.16
\end{array}
$$
\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{}

\hline Hepatitis C , acute \&

\hline Human Immunodeficiency Virus ${ }^{2}$ (HIV) \&

\hline Lead poisoning \& \multirow[t]{3}{*}{79} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
27.64 \\
0.35
\end{array}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
74 \\
1
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{|}
25.67 \\
0.35 \\
0.35
\end{array}
$$

\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
19.12 \\
- \\
0.34
\end{array}
$$

\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
7.80 \\
- \\
0.34
\end{array}
$$

\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{2.69} \& \multirow[t]{3}{*}{\[

5

\]} \& \multirow[t]{3}{*}{1.66} \& \multirow[t]{3}{*}{14} \& \multirow[t]{3}{*}{4.60} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 5 \\
& 1 \\
& 2
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{1.32} \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[

$$
\begin{array}{l|l|}
\hline 3 & 0.99 \\
1 & 0.33 \\
1 & 0.33
\end{array}
$$
\]}}

\hline Legionellosis \&

\hline Listeriosis ${ }^{3}$ \&

\hline Lyme disease \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{| 2 | 0.70 |
| :--- | :--- |
| | |
| 2 | 0.70 |}} \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[

$$
\begin{array}{l|l}
2 & 0.69 \\
1 & 0.35
\end{array}
$$

\]}} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{0.68} \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
0.34 \\
0.67
\end{gathered}
$$

\]} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 1.00 \\
& 0.33 \\
& 1.33
\end{aligned}
$$
\]} \& \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{1.32} \& \multirow[t]{3}{*}{2

13} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
0.33 \\
4.29
\end{array}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
- \\
15 \\
15
\end{array}
$$
\]} \& \multirow[t]{6}{*}{}

\hline Malaria \&

\hline Meningitis, other \&

\hline Meningitis, Streptococcus preumoniae \& \& 0.35 \& 1 \& 0.35 \& 2 \& 0.68 \& \& 1.36 \& \& \& 2 \& 0.67 \& \& \& 2 \& 0.65 \& \& 0.33 \& \&

\hline Meningococcal disease ${ }^{4}$ \& 6 \& 2.10 \& 2 \& 0.69 \& 6 \& 2.05 \& 3 \& 1.02 \& 2 \& 0.67 \& 2 \& 0.67 \& 2 \& 0.66 \& \& 0.32 \& \& 1.32 \& \&

\hline Pertussis \& \& 0.35 \& \& \& 7 \& 2.3 \& \& \& \& 0.34 \& 2 \& 0.67 \& 2 \& 0.66 \& \& 1.30 \& \& 1.65 \& 13 \&

\hline Rabies, animal \& \& \multirow[t]{3}{*}{$$
\begin{array}{r|r|}
\hline 2 & \mathrm{NA} \\
8 & 13.30 \\
5 & 1.75
\end{array}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 67 \\
& 83
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 23.24 \\
& 28.80
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

\left.$$
\begin{array}{r}
1 \\
51 \\
3
\end{array}
$$ \right\rvert\,

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\mathrm{NA} \\
17.41 \\
1.02
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
3 \\
41 \\
4 \\
1
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\mathrm{NA} \\
13.90 \\
0.34
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
1 \\
49 \\
15
\end{array}
$$
\]} \& NA \& \& \& \& NA \& \& NA \& \& \& \&

\hline Salmonellosis \& $$
38
$$ \& \& \& \& \& \& \& \& \& 16.48 \& 97 \& 32.29 \& 125 \& 41.10 \& 81 \& 26.29 \& 139 \& 45.84 \& 107 \& 35.25

\hline Shigellosis \& \& \& \& \& \& \& \& \& \& 5.05 \& 113 \& 37.61 \& 287 \& 94.36 \& 71 \& 23.05 \& 7 \& 2.31 \& 7 \& 2.31

\hline Streptococcus pneumoniae, invasive disease, drug-resistant \& \& 1.40 \& 21 \& 7.29 \& 25 \& 8.53 \& 13 \& 4.41 \& 14 \& 4.71 \& 11 \& 3.66 \& 11 \& 3.62 \& 10 \& 3.25 \& 17 \& 5.61 \& 22 \& 7.25

\hline Streptococcus pneumoniae, invasive disease, drug-susceptible \& NR \& \& 6 \& 1.97 \& 11 \& 3.57 \& 18 \& 5.94 \& 19 \& 6.26

\hline Streptococcal disease, invasive Group A \& \& 0.70 \& \& 1.39 \& \& 0.34 \& \& 1.70 \& \& 0.67 \& \& \& \& 2.63 \& \& 0.97 \& \& 1.65 \& 16 \& 5.27

\hline Syphilis \& 11 \& 3.85 \& 12 \& 4.16 \& 28 \& 9.56 \& 12 \& 4.07 \& 9 \& 3.03 \& 8 \& 2.66 \& 6 \& 1.97 \& 18 \& 5.84 \& 25 \& 8.2 \& 17 \& 5.60

\hline Toxoplasmosis \& \& 0.35 \& \& 0.69 \& \& 0.34 \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Tuberculosis \& 17 \& 5.95 \& 17 \& 5.90 \& 38 \& 12.97 \& 20 \& 6.78 \& 11 \& 3.70 \& 24 \& 7.99 \& 18 \& 5.92 \& 9 \& 2.92 \& 10 \& 3.30 \& 22 \& 7.25

\hline Vibrio infections ${ }^{5}$ \& \& \& \& 0.35 \& 3 \& 1.02 \& 2 \& 0.68 \& \& 0.34 \& 2 \& 0.67 \& 5 \& 1.64 \& 4 \& 1.30 \& 6 \& 1.98 \& 3 \& 0.99

\hline West Nile Virus \& NR \& \& NR \& \& NR \& \& NR \& \& \& \& \& 2.33 \& 12 \& 3.95 \& \& \& \& \& \& 0.66

\hline
\end{tabular}

[^4]${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other.
NR - Not Reportable
NA - Not Applicable

Selected Notifiable Diseases	Flagler County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	2	4.71	3	6.68	11	23.13	3	5.93		9.28	5	8.62	2	3.20	7	9.86	6	7.45	7	8.01
Animal Bite, post exposure prophylaxis recommended									3	5.57	4	6.90	7	11.20	14	19.72	10	12.41	5	5.72
Campylobacteriosis	1	2.35					1	1.98			2	3.45			1	1.41				
Chlamydia	60	141.26	38	84.64	60	126.16	77	152.11	77	142.91	70	120.68	79	126.38	56	78.87	58	72.00	144	164.79
Cryptosporidiosis					2	4.21				1.86		1.72							2	2.29
Cyclosporiasis																	28	34.76		
Enterohemorrhagic Escherichia coli 0157:H7																				
Giardiasis		2.35		13.36								6.90		1.60		2.82		1.24	5	5.72
Gonorrhea	29	68.28	14	31.18	39	82.00	23	45.44	25	46.40	26	44.82	22	35.19	20	28.17	35	43.45	41	46.92
Haemophilus influenzae, invasive ${ }^{1}$							2	3.95				1.72								1.14
Hepatitis A					2	4.21				5.57						1.41			1	1.14
Hepatitis B (+HBsAg in a pregnant woman)					1	13.18				23.89		11.32	1	10.48	2	18.34	2	15.56		
Hepatitis B, acute		2.35				2.10										1.41	1	1.24	3	3.43
Hepatitis C, acute																				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	1	2.35	5	11.14	6	12.62	3	5.93	5	9.28	3	5.17	1	1.60	4	5.63	14	17.38	3	3.43
Lead poisoning	4	9.42	2	4.45	1	2.10						1.72							2	2.29
Legionellosis					2	4.21									1	1.41				
Listeriosis ${ }^{3}$																				
Lyme disease					2	4.21	1	1.98				1.72								
Malaria															1	1.41				
Meningitis, other			1	2.23		2.10														
Meningitis, Streptococcus preumoniae																				
Meningococcal disease ${ }^{4}$	1	2.35			1	2.10								1.60			1	1.24		
Pertussis																			1	1.14
Rabies, animal		NA				NA	1	NA		NA							1	NA	3	NA
Salmonellosis	10	23.54	10	22.27	12	25.23	5	9.88	5	9.28	13	22.41	10	16.00	15	21.13	20	24.83	14	16.02
Shigellosis	6	14.13	2	4.45												4.23				9.15
Streptococcus pneumoniae, invasive disease, drug-resistant							2	3.95		3.71				1.60						
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		1	1.60	1	1.41	2	2.48	2	2.29										
Streptococcal disease, invasive Group A										3.71			2	3.20	1	1.41				1.14
Syphilis		2.35			4	8.41				1.86		1.72	1	1.60	1	1.41	2	2.48	1	1.14
Toxoplasmosis																			1	1.14
Tuberculosis	2	4.71	2	4.45	2	4.21	1	1.98		5.57		5.17			1	1.41	1	1.24	3	3.43
Vibrio infections ${ }^{5}$													1	1.60					1	1.14
West Nile Virus	NR		NR		NR		NR													

${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals,
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Franklin County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	2	4.71	1	2.23			1	1.98	1	1.86	3	5.17	1	1.60						
Animal Bite, post exposure prophylaxis recommended									3	5.57	1	1.72	1	1.60			1	1.24		
Campylobacteriosis	2	4.71	2	4.45	3	6.31	1	1.98			2	3.45			-		3	3.72	1	1.14
Chlamydia	9	21.19	7	15.59	5	10.51	2	3.95	34	63.10	19	32.76	19	30.39	27	38.03	30	37.24	22	25.18
Cryptosporidiosis							-								2	2.82			2	2.29
Cyclosporiasis																			1	1.14
Enterohemorrhagic Escherichia coli O157:H7																				
Giardiasis	3	7.06	2	4.45	5	10.51	3	5.93	1	1.86	1	1.72	5	8.00	1	1.41			1	1.14
Gonorrhea	2	4.71	1	2.23	2	4.21	2	3.95	33	61.25	13	22.41	12	19.20	11	15.49	9	11.17	10	11.44
Haemophilus influenzae, invasive ${ }^{1}$																				
Hepatitis A															1	1.41				
Hepatitis B (+HBsAg in a pregnant woman)	-				-		1	55.19		-							1	51.05	-	
Hepatitis B, acute			1	2.23									1	1.60					1	1.14
Hepatitis C, acute																				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	-		2	4.45	2	4.21	-	-	2	3.71	2	3.45	1	1.60			2	2.48	-	
Lead poisoning	1	2.35			2	4.21	-	-							1	1.41				
Legionellosis							-	-		-									1	1.14
Listeriosis ${ }^{3}$							-													
Lyme disease					1	2.10														
Malaria							-	-												
Meningitis, other							-												1	1.14
Meningitis, Streptococcus pneumoniae								-								-				
Meningococcal disease ${ }^{4}$								-								-				
Pertussis							-		1	1.86	2	3.45		-		-			-	
Rabies, animal																				
Salmonellosis	1	2.35	3	6.68	2	4.21	1	1.98	1	1.86	3	5.17	5	8.00	2	2.82	2	2.48	1	1.14
Shigellosis	2	4.71	23	51.23																
Streptococcus pneumoniae, invasive disease, drug-resistant			2	4.45				-					1	1.60					1	1.14
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		NR		NR		NR	-	NR		NR					-				
Streptococcal disease, invasive Group A															1	1.41				
Syphilis	2	4.71	1	2.23				-			1	1.72	2	3.20	1	1.41	2	2.48	,	1.14
Toxoplasmosis								-												
Tuberculosis				6.68										1.60						
Vibrio infections ${ }^{5}$		-	,	2.23	1	2.10		-	1	1.86		-	1	1.60		-				
West Nile Virus	NR		NR		NR		NR	-						1.60					-	-

${ }^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NA - Not Applicable

Selected Notifiable Diseases	Gadsden County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	4	8.97	10	22.22	10	22.07	6	${ }^{13.31}$	11	24.22	15	32.56	6	12.88	19	40.46	8	16.71	21	43.25
Animal Bite, post exposure prophylaxis recommended																				
Campylobacteriosis	4	8.97	6	13.33	1	2.21	8	17.75											2	4.12
Chlamydia	195	437.40	83	184.40	138	304.56	152	337.25	365	803.63	298	646.80	411	881.97	271	577.03	264	551.34	265	545.78
Cryptosporidiosis		2.24	2	4.44				2.22											1	2.06
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli O157:H7						2.21														2.06
Giardiasis		1.22	5	11.11	1	2.21		11.09		4.40				2.15						2.06
Gonorrhea	102	228.79	89	197.73	58	128.00	125	277.35	221	486.58	204	442.78	204	437.77	134	285.32	129	269.41	145	298.64
Haemophilus influenzae, invasive ${ }^{1}$														2.15						
Hepatitis A	1	2.24			1	2.21	1	2.22		2.20			2	4.29					1	2.06
Hepatitis B (+HBsAg in a pregnant woman)										9.30		9.22								
Hepatitis B, acute	2	4.49	7	15.55	2	4.41		2.22					2	4.29						2.06
Hepatitis C, acute																				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	2	4.49	11	24.44	9	19.86	12	26.63	7	15.41	13	28.22	12	25.75	22	46.84	33	68.92	22	45.31
Lead poisoning	20	44.86	13	28.88	3	6.62	8	17.75	3	6.61		2.17			2	4.26				2.06
Legionellosis		2.24																		
Listeriosis ${ }^{3}$																				
Lyme disease																				
Malaria																				
Meningitis, other																	1	2.09		
Meningitis, Streptococcus pneumoniae			1	2.22						2.20		2.17								
Meningococcal disease ${ }^{4}$	1	2.24																		
Pertussis												2.17								
Rabies, animal																				
Salmonellosis	4	8.97	4	8.89	10	22.07	7	15.53	2	4.40		2.17	4	8.58	2	4.26	3	6.27	13	26.77
Shigellosis	11	24.67	5	11.11			11	24.41						12.88			3	6.27	2	4.12
Streptococcus pneumoniae, invasive disease, drug-resistant								6.66						2.15					3	6.18
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR									2.06										
Syphilis																				
	27	60.56	48	106.64	32	70.62	36	79.88	28	61.65	8	17.36	12	25.75	10	21.29	7	14.62		14.42
Toxoplasmosis																				
Tuberculosis	6	13.46	4	8.89	6	13.24	6	13.31		6.61	8	17.36		2.15	4	8.52	5	10.44	5	10.30
Vibrio infections ${ }^{5}$	2	4.49		2.22	4	8.83											1	2.09		
West Nile Virus	NR		NR		NR		NR								1	2.13				

${ }_{2}^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis. 21997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Gilchrist County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	1	7.73			2	14.31	1	6.88			1	6.61			2	12.49	2	12.27		
Animal Bite, post exposure prophylaxis recommended							-		5	33.88	4	26.42	4	25.58	2	12.49	1	6.13	1	5.98
Campylobacteriosis	4	30.92	5	36.89	3	21.46	2	13.76	4	27.10	1	6.61	4	25.58	4	24.98			1	5.98
Chlamydia	14	108.22	16	118.05	22	157.37	21	144.50	30	203.27	35	231.18	27	172.67	37	231.02	26	159.48	35	209.24
Cryptosporidiosis					1	7.15	2	13.76	1	6.78										
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli 0157:H7																				
Giardiasis	3	23.19	1	7.38	6	42.92	9	61.93	1	6.78	3	19.82	2	12.79	1	6.24			1	5.98
Gonorrhea	6	46.38	9	66.40	5	35.77	9	61.93	19	128.74	3	19.82	9	57.56	1	6.24	7	42.94	15	89.68
Haemophilus influenzae, invasive ${ }^{1}$							-													
Hepatitis A	1	7.73		-			-							-			1	6.13	-	
Hepatitis B (+HBsAg in a pregnant woman)					-		-				-		-	-			1	31.56	-	
Hepatitis B, acute							2	13.76											1	5.98
Hepatitis C, acute																				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)					-						1	6.61					3	18.40		
Lead poisoning	2	15.46		-		-	2	13.76	1	6.78				-		-				
Legionellosis							-						-	-					-	
Listeriosis ${ }^{3}$																			-	
Lyme disease																				
Malaria			1	7.38															-	
Meningitis, other																			-	
Meningitis, Streptococcus pneumoniae	-	-			1	7.15	-	-											-	
Meningococcal disease ${ }^{4}$					1	7.15	-	-			1	6.61		-	1	6.24			-	-
Pertussis																				
Rabies, animal					1	NA					1	NA	1	NA	4	NA	2	NA	1	NA
Salmonellosis	3	23.19	5	36.89	3	21.46	3	20.64	5	33.88	5	33.03	7	44.77	9	56.19	9	55.20	6	35.87
Shigellosis			1	7.38	2	14.31	8	55.05					8	51.16	3					
Streptococcus pneumoniae, invasive disease, drug-resistant						-			1	6.78			3	19.19					2	11.96
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR	-	NR	-	NR	-	NR	-	NR		NR				2	12.49	3	18.40	2	11.96
Streptococcal disease, invasive Group A																				
Syphilis				-	3	21.46	1	6.88		-							1	6.13	1	5.98
Toxoplasmosis																			-	
Tuberculosis															1	6.24	6	36.80	2	11.96
Vibrio infections ${ }^{5}$				-				-		-		-								
West Nile Virus	NR		NR		NR		NR							-					-	-

${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals,
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NA - Not Applicable
 21997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

[^5]
${ }_{2}^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis. 1997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Hardee County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	10	39.06	6	22.89			2	7.42	4	14.80		10.92	8	29.16	7	25.09	1	3.67	3	11.01
Animal Bite, post exposure prophylaxis recommended											2	7.28	6	21.87	7	25.09	1	3.67	4	14.67
Campylobacteriosis	1	3.91	2	7.63	2	7.53	2	7.42			1	3.64			1	3.58				
Chlamydia	75	292.96	22	83.92	57	214.75	83	307.95	75	277.56	64	232.95	76	277.03	91	326.19	74	271.29	104	381.51
Cryptosporidiosis																				
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli O157:H7							1	3.71												
Giardiasis					2	7.53	7	25.97					1	3.65	1	3.58			1	3.67
Gonorrhea	26	101.56	10	38.15	31	116.79	8	29.68	10	37.01	11	40.04	14	51.03	4	14.34	10	36.66	37	135.73
Haemophilus influenzae, invasive ${ }^{1}$					1	3.77									1	3.58				
Hepatitis A	2	7.81			3	11.30	3	11.13	1	3.70	1	3.64								
Hepatitis B (+HBsAg in a pregnant woman)			-		1	19.45	2	38.56			1	19.19	1	19.26					1	19.43
Hepatitis B, acute	3	11.72	1	3.81			2	7.42			2	7.28	2	7.29						
Hepatitis C, acute																				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)			2	7.63	2	7.53	2	7.42	2	7.40	7	25.48	7	25.52	9	32.26	3	11.00	2	7.34
Lead poisoning	11	42.97	3	11.44	12	45.21	3	11.13	12	44.41	2	7.28	5	18.23	3	10.75			2	7.34
Legionellosis																				
Listeriosis ${ }^{3}$											1	3.64							-	
Lyme disease									1	3.70										
Malaria					-		-												-	
Meningitis, other					-												1	3.67	-	
Meningitis, Streptococcus pneumoniae					-		-													
Meningococcal disease ${ }^{4}$					-							-	-		2	7.17			-	
Pertussis																			-	
Rabies, animal			3	NA			3	NA			1	NA	2	NA						
Salmonellosis	3	11.72	3	11.44	5	18.84	3	11.13	8	29.61	13	47.32	5	18.23	2	7.17				
Shigellosis	3	11.72	5	19.07	6	22.60	25	92.76	3	11.10	16		3						-	
Streptococcus pneumoniae, invasive disease, drug-resistant					1	3.77	1	3.71	2	7.40			1	3.65					-	
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		NR	-	NR		NR		NR		NR	-	-						1	3.67
Streptococcal disease, invasive Group A								3.71						3.65						
Syphilis	3	11.72	5	19.07	5	18.84	4	14.84	3	11.10	4	14.56	3	10.94	1	3.58	4	14.66	1	3.67
Toxoplasmosis																				
Tuberculosis	3	11.72	3	11.44	3	11.30	1	3.71	2	7.40	1	3.64	3	10.94	2	7.17	1	3.67	2	7.34
Vibrio infections ${ }^{5}$																				
West Nile Virus	NR		NR		NR		NR												-	-

${ }^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NA - Not Applicable

Selected Notifiable Diseases	Hendry County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	8	23.75	8	23.17	8	22.47	9	24.79	9	24.82	8	22.12	4	10.89	8	21.16	1	2.59	14	35.39
Animal Bite, post exposure prophylaxis recommended									8	22.07	21	58.05	4	10.89	6	15.87	3	7.77	1	2.53
Campylobacteriosis	7	20.78	6	17.37	6	16.85	7	19.28	6	16.55	5	13.82	5	13.61	1	2.65	6	15.54	6	15.17
Chlamydia	79	234.51	116	335.91	108	303.30	110	303.03	158	435.79	141	389.78	139	378.34	96	253.97	105	271.95	115	290.71
Cryptosporidiosis	1	2.97			1	2.81	1	2.75											1	2.53
Cyclosporiasis											1	2.76					3	7.77		
Enterohemorrhagic Escherichia coli O157:H7																				
Giardiasis	9	26.72	13	37.65	10	28.08	10	27.55	3	8.27	1	2.76	4	10.89			3	7.77	2	5.06
Gonorrhea	38	112.80	59	170.85	62	174.12	34	93.66	35	96.54	42	116.11	32	87.10	36	95.24	28	72.52	56	141.56
Haemophilus influenzae, invasive ${ }^{1}$																			1	2.53
Hepatitis A	3	8.91					3	8.26	2	5.52	2	5.53	4	10.89	2	5.29				
Hepatitis B (+HBsAg in a pregnant woman)			-		-		1	13.82			1	13.87			1	13.28		-	1	11.67
Hepatitis B, acute	1	2.97			2	5.62							1	2.72	2	5.29	3	7.77		
Hepatitis C, acute											3	8.29								
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	1	2.97	7	20.27	12	33.70	9	24.79	4	11.03	7	19.35	5	13.61	15	39.68	1	2.59	5	12.64
Lead poisoning	1	2.97	4	11.58	2	5.62	1	2.75			1	2.76								
Legionellosis	1	2.97									1	2.76		-			1	2.59	-	
Listeriosis ${ }^{3}$											1	2.76								
Lyme disease																				
Malaria																				
Meningitis, other															1	2.65				
Meningitis, Streptococcus pneumoniae									1	2.76										
Meningococcal disease ${ }^{4}$	1	2.97			-			-			2	5.53			1	2.65	1	2.59	-	
Pertussis																	1	2.59		
Rabies, animal	5	NA	1	NA			1	NA	1	NA					1	NA				
Salmonellosis	21	62.34	25	72.39	18	50.55	10	27.55	12	33.10	24	66.35	19	51.72	16	42.33	24	62.16	12	30.34
Shigellosis	24	71.24	15	43.44	8	22.47	5	13.77	10	27.58	22	60.82	24	65.33	3	7.94	2	5.18	2	5.06
Streptococcus pneumoniae, invasive disease, drug-resistant	2	5.94					3	8.26	6	16.55	2	5.53	3	8.17			1	2.59		
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		NR	-	NR		NR		NR		NR				4	10.58	1	2.59	1	2.53
Streptococcal disease, invasive Group A						2.81								2.72				2.59	1	2.53
Syphilis	8	23.75	8	23.17	5	14.04	6	16.53	10	27.58	5	13.82	4	10.89	6	15.87	11	28.49	8	20.22
Toxoplasmosis											1	2.76								
Tuberculosis	13	38.59	11	31.85	7	19.66	5	13.77	3	8.27	3	8.29	2	5.44	9	23.81	5	12.95	12	30.34
Vibrio infections ${ }^{5}$										-							1	2.59		
West Nile Virus	NR		NR		NR		NR				-									

${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Hernando County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	13	10.54	17	13.47		6.99	14	10.66	8	5.99	8	5.81	11	7.77	9	6.16	6	3.95	5	3.19
Animal Bite, post exposure prophylaxis recommended					3	2.33					8	5.81	16	11.30	21	14.37	31	20.39	15	9.57
Campylobacteriosis	4	3.24	1	0.79	2	1.55	2	1.52	2	1.50	2	1.45	3	2.12	2	1.37	5	3.29	4	2.55
Chlamydia	30	24.32	50	39.63	115	89.33	147	111.96	127	95.13	146	106.09	185	130.67	169	115.66	148	97.34	160	102.12
Cryptosporidiosis	1	0.81															3	1.97		
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli O157:H7									1	0.75							4	2.63	2	1.28
Giardiasis	5	4.05	13	10.30	6	4.66	6	4.57	5	3.75	8	5.81	6	4.24	6	4.11	10	6.58	8	5.11
Gonorrhea	23	18.64	19	15.06	50	38.84	63	47.98	35	26.22	74	53.77	64	45.21	64	43.80	64	42.09	78	49.78
Haemophilus influenzae, invasive ${ }^{1}$							1	0.76					3	2.12	1	0.68	1	0.66	1	0.64
Hepatitis A	2	1.62			7	5.44	3	2.28	4	3.00	4	2.91			2	1.37				
Hepatitis B (+HBsAg in a pregnant woman)																	1	4.16	1	4.05
Hepatitis B, acute	2	1.62	1	0.79	1	0.78	4	3.05	1	0.75	1	0.73	3	2.12	2	1.37	6	3.95	4	2.55
Hepatitis C, acute															1	0.68			1	0.64
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	3	2.43	16	12.68	10	7.77	8	6.09	7	5.24	10	7.27	8	5.65	10	6.84	7	4.60	11	7.02
Lead poisoning	5	4.05			2	1.55	1	0.76			3	2.18							1	0.64
Legionellosis					1	0.78			1	0.75			4	2.83	1	0.68			1	0.64
Listeriosis ${ }^{3}$					1	0.78							1		1					
Lyme disease	1	0.81	1	0.79	2	1.55	2	1.52	3	2.25										
Malaria																	1	0.66		
Meningitis, other	1	0.81							3	2.25	1	0.73	1	0.71						
Meningitis, Streptococcus pneumoniae	3	2.43			1	0.78	1	0.76											1	0.64
Meningococcal disease ${ }^{4}$	3	2.43									1	0.73	3	2.12			1	0.66		
Pertussis																				
Rabies, animal	2	NA			7	NA	3	NA	5	NA	2	NA	3	NA	2	NA	7	NA	1	NA
Salmonellosis	13	10.54	15	11.89	18	13.98	30	22.85	28	20.97	33	23.98	36	25.43	29	19.85	32	21.05	45	28.72
Shigellosis	10	8.11					4	3.05	7	5.24	14	10.17	3	2.12	2	1.37			1	0.64
Streptococcus pneumoniae, invasive disease, drug-resistant				-	3	2.33	5	3.81	7	5.24	11	7.99	7	4.94	6	4.11	8	5.26	15	9.57
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		NR	-	NR		NR		NR		NR				4	2.74	3	1.97	4	2.55
Streptococcal disease, invasive Group A							1	0.76							1	0.68	2	1.32	1	0.64
Syphilis	3	2.43	1	0.79	3	2.33	1	0.76					1	0.71	1	0.68	3	1.97	6	3.83
Toxoplasmosis																				
Tuberculosis	5	4.05	8	6.34	2	1.55	1	0.76	3	2.25	2	1.45	3	2.12	2	1.37	1	0.66	4	2.55
Vibrio infections ${ }^{5}$					1	0.78	1	0.76	2	1.50		-	1	0.71	2	1.37	-		3	1.91
West Nile Virus	NR		NR				NR													

Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NA - Not Applicable

Selected Notifiable Diseases	Highlands County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	10	12.12	10	11.90	9	10.48	6	6.84	8	9.05	9	10.07	15	16.53	16	17.31	3	3.20	9	9.44
Animal Bite, post exposure prophylaxis recommended							1	1.14	3	3.39	4	4.48	10	11.02	2	2.16	2	2.13	7	7.34
Campylobacteriosis	1	1.21	1	1.19	3	3.49	5	5.70	6	6.79	2	2.24	1	1.10	2	2.16	1	1.07	2	2.10
Chlamydia	152	184.28	84	99.99	147	171.15	193	220.13	194	219.52	178	199.23	170	187.29	191	206.58	195	207.87	280	293.68
Cryptosporidiosis	1	1.21	1	1.19					1	1.13							1	1.07	1	1.05
Cyclosporiasis																	1	1.07		
Enterohemorrhagic Escherichia coli O157:H7							1	1.14	1	1.13							1	1.07		
Giardiasis	2	2.42	4	4.76	3	3.49	2	2.28	2	2.26					1	1.08	3	3.20	5	5.24
Gonorrhea	111	134.57	79	94.03	159	185.12	103	117.48	91	102.97	81	90.66	56	61.69	77	83.28	67	71.42	48	50.35
Haemophilus influenzae, invasive ${ }^{1}$																	1	1.07		
Hepatitis A	4	4.85	2	2.38	4	4.66	1	1.14	2	2.26	2	2.24			10	10.82	4	4.26	1	1.05
Hepatitis B (+HBsAg in a pregnant woman)							1	7.58	1	7.64	2	15.43	5	37.85	6	43.05	2	14.44	3	21.41
Hepatitis B, acute	6	7.27	3	3.57	4	4.66	3	3.42			1	1.12					1	1.07	2	2.10
Hepatitis C, acute															1	1.08			2	2.10
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	5	6.06	23	27.38	19	22.12	13	14.83	15	16.97	9	10.07	13	14.32	9	9.73	6	6.40	11	11.54
Lead poisoning	35	42.43	21	25.00	9	10.48	45	51.33	5	5.66	1	1.12	4	4.41	9	9.73	5	5.33	4	4.20
Legionellosis									1	1.13			2	2.20	1	1.08	2	2.13	2	2.10
Listeriosis ${ }^{3}$																				
Lyme disease					1	1.16											2	2.13		
Malaria													1	1.10						
Meningitis, other	1	1.21					2	2.28	1	1.13	2	2.24			2	2.16			2	2.10
Meningitis, Streptococcus pneumoniae			1	1.19		-	-	-					1	1.10						
Meningococcal disease ${ }^{4}$	2	2.42																		
Pertussis																			5	5.24
Rabies, animal			2	NA	6	NA	2	NA			2	NA			4	NA			1	NA
Salmonellosis	10	12.12	16	19.04	7	8.15	18	20.53	12	13.58	7	7.83	16	17.63	14	15.14	34	36.24	25	26.22
Shigellosis		9.70		3.57	3	3.49		9.12	3	3.39	9	10.07		1.10	2	2.16			18	18.88
Streptococcus pneumoniae, invasive disease, drug-resistant	1	1.21			2	2.33	5	5.70	2	2.26			1	1.10	1	1.08	3	3.20	4	4.20
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR			-	4	4.33	8	8.53	6	6.29										
Streptococcal disease, invasive Group A								1.14				1.12				2.16				1.05
Syphilis	6	7.27	6	7.14	5	5.82	8	9.12	15	16.97	4	4.48	8	8.81	10	10.82	12	12.79	6	6.29
Toxoplasmosis															1	1.08				
Tuberculosis	6	7.27	5	5.95	3	3.49	7	7.98		6.79		4.48	5	5.51	8	8.65	3	3.20	7	7.34
Vibrio infections ${ }^{5}$	1	1.21		-	1	1.16		-		-	2	2.24	1	1.10					1	1.05
West Nile Virus	NR		NR		NR		NR					1.12								-

${ }^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis. 1997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-01, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other
NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Hillsborough County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate	Number	Rat	Number	Rate	Number ${ }^{\text {Rate }}$													
Acquired Immune Deficiency Syndrome (AIDS)	304	32.53	249	26.18	238	24.33	220	21.87	271	26.20	284	26.74	301	27.73	358	32.11	341	29.98	323	27.78
Animal Bite, post exposure prophylaxis recommended					3	0.31		0.10	33	3.19	37	3.48	24	2.21	17	1.52	30	2.64	38	3.27
Campylobacteriosis	74	7.92	51	5.36	78	7.97	58	5.77	50	4.83	53	4.99	72	6.63	59	5.29	45	3.96	45	3.87
Chlamydia	2836	303.46	2240	235.55	2757	281.88	2714	269.83	2535	245.13	3407	320.77	3071	282.96	2964	265.88	3211	282.27	3835	329.86
Cryptosporidiosis	7	0.75	14	1.47	22	2.25	20	1.99	6	0.58	8	0.75	7	0.64	13	1.17	32	2.81	30	2.58
Cyclosporiasis	1	0.11						0.10		0.10		0.09					40	3.52		
Enterohemorrhagic Escherichia coli O157:H7		0.43		0.63		0.41		0.70		0.58		0.85		0.18		0.36	${ }^{6}$	${ }^{0.53}$	4	0.34
Giardiasis	168	17.98	142	14.93	146	14.93	110	10.94	5	9.19	74	6.97	71	6.54	62	5.56	64	5.63	81	6.97
Gonorrhea	2246	240.33	1696	178.35	1783	182.30	1653	164.35	1517	146.69	1912	180.01	1643	151.38	1197	107.38	1263	111.02	1759	151.30
Haemophilus influenzae, invasive ${ }^{1}$		0.43	8	0.84		0.51		0.30		0.39		0.38	3	0.28	7	0.63	5	0.44	4	0.34
Hepatitis A	55	5.89	40	4.21	118	12.06	91	9.05	76	7.35	78	7.34	40	3.69	27	2.42	14	1.23	20	1.72
Hepatitis $\mathrm{B}(+\mathrm{HBsAg}$ in a pregnant woman)					27	2.76	30	2.98	56	5.42	52	4.90	43	3.96	42	3.77	40	3.52	38	3.27
Hepatitis B, acute	41	4.39	46	4.84	61	6.24	50	4.97	49	4.74	59	5.55	76	7.00	60	5.38	41	3.60	41	3.53
Hepatitis C, acute					2	0.20	5	0.50		0. 10		0.28	10	0.92	9	0.81	3	0.26		0.34
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	157	16.80	340	35.75	396	40.49	339	33.70	382	36.94	396	37.28	394	36.30	357	32.02	326	28.66	333	28.64
Lead poisoning	225	24.08	160	16.83	193	19.73	150	14.91		5.80	103	9.70	49	4.51	37	3.32	28	2.46	28	2.41
Legionellosis	2	0.21	2	0.21	1	0.10	1	0.10	10	0.97			12	1.11	10	0.90	9	0.79	8	0.69
Listeriosis ${ }^{3}$				0.11		0.10		0.50				0.09	2	0.18				0.09	3	0.26
Lyme disease	5	0.54	2	0.21	5	0.51	2	0.20	4	0.39	2	0.19	3	0.28		0.09	7	0.62	2	0.17
Malaria	5	0.54	5	0.53	8	0.82	7	0.70		0.29		0.38		0.37	5	0.45	9	0.79	5	0.43
Meningitis, other		0.43	4	0.42	3	0.31	10	0.99	13	1.26	12	1.13	14	1.29	15	1.35	15	1.32	14	1.20
Meningitis, Streptococcus pneumoniae	8	0.86	14	1.47	12	1.23	11	1.09		0.48		1.41	7	0.64	7	0.63	6	0.53	6	0.52
Meningococcal disease ${ }^{4}$	16	1.71	22	2.31	10	1.02	7	0.70	12	1.16	10	0.94	3	0.28		0.36		0.35		0.09
Pertussis	14	1.50		0.11		0.61	6	0.60		0.29		0.56		0.37	3	0.27	34	2.99	43	3.70
Rabies, animal		NA		NA		NA	10	NA		NA	11	NA	11	NA	8	NA	6	NA	5	NA
Salmonellosis	162	17.33	140	14.72	132	13.50	166	16.50	202	19.53	266	25.04	263	24.23	233	20.90	299	26.28	278	23.91
Shigellosis	168	17.98	96	10.10	139	14.21	169	16.80	237	22.92	362	34.08	31	2.86	49	4.40	251	22.06	140	12.04
Streptococcus pneumoniae, invasive disease, drug-resistant	60	6.42	65	6.84	68	6.95	108	10.74	53	5.12	68	6.40	59	5.44	50	4.49	46	4.04	65	5.59
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		14	1.2	39	3.50	35	3.08	44	3.78										
Streptococcal disease, invasive Group A		0.21		0.95	7	0.72	7	0.70	15	1.45	12	1.13	11	1.01	18	1.61		0.62	14	1.20
Syphilis	199	21.29	173	18.19	107	10.94	131	13.02	142	13.73	220	20.71	262	24.14	196	17.58	16	18.99	263	22.62
Toxoplasmosis		11		0.21								0.19		0.28	2	0.18				0.09
Tuberculosis	97	10.38	80	8.41	98	10.02	80	7.95	80	7.74	49	4.61	78	7.19	73	6.55	90	7.91	83	7.14
Vibrio infections ${ }^{5}$		0.64	6	0.63	7	0.72	5	0.50		0.10	6	0.56	7	0.64	8	0.72	5	0.44	4	0.34
West Nile Virus	NR		NR		NR		NR					0.09	1	0.09	3	0.27				

[^6]${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{5}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
Includes reded cases of V. alginolyticus, V. cholerae non-01, V. fluvialis, V. holisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable

Selected Notifiable Diseases	Holmes County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)												5.33				10.51		5.21		
Animal Bite, post exposure prophylaxis recommended																				
Campylobacteriosis	1	5.58	1	5.55			1	5.37		5.34					1	5.26				
Chlamydia	4	22.30	10	55.52	43	234.06	15	80.56	24	128.25	23	122.69	34	179.11	29	152.41	29	151.13	23	118.88
Cryptosporidiosis										5.34									1	5.17
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli 0157:H7																				
Giardiasis		5.58	3	16.66	2	10.89	1	5.37		5.34		5.33			2	10.51		5.21		
Gonorrhea	2	11.15	5	27.76	5	27.22	2	10.74		5.34	7	37.34	5	26.34	3	15.77	11	57.32	10	51.68
Haemophilus influenzae, invasive ${ }^{1}$																				
Hepatitis A																	1	5.21	1	5.17
Hepatitis B (+HBsAg in a pregnant woman)																				
Hepatitis B, acute																			2	10.34
Hepatitis C, acute														5.27						
Human Immunodeficiency Virus ${ }^{2}$ (HIV)					2	10.89	1	5.37	1	5.34	1	5.33	1	5.27	1	5.26	2	10.42		
Lead poisoning		5.58																		
Legionellosis															1	5.26				
Listeriosis ${ }^{3}$														10.54						
Lyme disease					2	10.89														
Malaria																				
Meningitis, other																				
Meningitis, Streptococcus preumoniae																	1	5.21		
Meningococcal disease ${ }^{4}$																				
Pertussis																				
Rabies, animal		NA	1	NA										NA	1	NA	2	NA	4	NA
Salmonellosis	4	22.30	6	33.31	2	10.89	6	32.22	2	10.69	2	10.67	4	21.07	5	26.28	7	36.48	9	46.52
Shigellosis					1	5.44						5.33								
Streptococcus pneumoniae, invasive disease, drug-resistant																			1	5.17
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR						1	5.21												
Streptococcal disease, invasive Group A																				
Syphilis		5.58	4	22.21	2	10.89			4	21.38					2	10.51	1	5.21		
Toxoplasmosis																				
Tuberculosis		5.58	1	5.55						5.34		5.33	3	15.80	1	5.26	1	5.21	1	5.17
Vibrio infections ${ }^{5}$		5.58	1	5.55															1	5.17
West Nile Virus	NR		NR		NR		NR						1	5.27	1	5.26				

${ }^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
1997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Indian River County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	30	28.53	20	18.65	22	19.97	18	15.82	21	18.06	23	19.35	13	10.67	17	13.30	18	13.76	18	13.41
Animal Bite, post exposure prophylaxis recommended							2	1.76	15	12.90	14	11.78	14	11.49	11	8.61	8	6.11	21	15.65
Campylobacteriosis	4	3.80	3	2.80	4	3.63			1	0.86	4	3.36	1	0.82	3	2.35	2	1.53	8	5.96
Chlamydia	135	128.39	192	179.05	204	185.22	206	181.09	201	172.84	212	178.33	230	188.70	239	186.97	221	168.90	246	183.31
Cryptosporidiosis	7	6.66	5	4.66			5	4.40	1	0.86			5	4.10			2	1.53	1	0.75
Cyclosporiasis													1	0.82			2	1.53	1	0.75
Enterohemorrhagic Escherichia coli O157:H7										0.86							1	0.76		
Giardiasis	7	6.66	10	9.33	16	14.53	12	10.55	10	8.60	8	6.73	8	6.56	2	1.56	8	6.11	14	10.43
Gonorrhea	95	90.35	114	106.31	198	179.77	191	167.90	121	104.05	117	98.42	125	102.55	112	87.62	139	106.23	128	95.38
Haemophilus influenzae, invasive ${ }^{1}$									1	0.86										
Hepatitis A	3	2.85			1	0.91	4	3.52	6	5.16	5	4.21	2	1.64	1	0.78	10	7.64		
Hepatitis B (+HBsAg in a pregnant woman)					1	5.40	1	5.24	4	20.71	1	5.13			2	9.79	5	23.63	1	4.64
Hepatitis B, acute	2	1.90	4	3.73	5	4.54	1	0.88			1	0.84			5	3.91	1	0.76	1	0.75
Hepatitis C, acute																				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	2	1.90	22	20.52	21	19.07	20	17.58	18	15.48	15	12.62	13	10.67	14	10.95	14	10.70	12	8.94
Lead poisoning	6	5.71	13	12.12	15	13.62	5	4.40	6	5.16	7	5.89	3	2.46	5	3.91	3	2.29		
Legionellosis									1	0.86					1	0.78			2	1.49
Listeriosis ${ }^{3}$					1	0.91		0.88												
Lyme disease	1	0.95	8	7.46			3	2.64	1	0.86	2	1.68	1	0.82	4	3.13			1	0.75
Malaria					1	0.91	1	0.88							1	0.78				
Meningitis, other																			1	0.75
Meningitis, Streptococcus pneumoniae	1	0.95					2	1.76												
Meningococcal disease ${ }^{4}$	1	0.95	2	1.87			2	1.76		-		-	-		1	0.78			1	0.75
Pertussis					1	0.91	2								2	1.56				
Rabies, animal			1	NA	2	NA	3	NA	2	NA	2	NA	2	NA					7	NA
Salmonellosis	15	14.27	23	21.45	19	17.25	31	27.25	15	12.90	44	37.01	27	22.15	15	11.73	38	29.04	26	19.37
Shigellosis	3	2.85	2	1.87	2	1.82				0.86	1	0.84	1	0.82	2	1.56			4	2.98
Streptococcus pneumoniae, invasive disease, drug-resistant					4	3.63	6	5.27	5	4.30	1	0.84					3	2.29	10	7.45
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		1	0.82	1	0.78	4	3.06	4	2.98										
Streptococcal disease, invasive Group A								0.88							1	0.78	4	3.06	1	0.75
Syphilis	4	3.80	28	26.11	27	24.51	22	19.34	4	3.44	4	3.36	16	13.13	1	0.78	9	6.88	8	5.96
Toxoplasmosis					1	0.91														
Tuberculosis	5	4.76	14	13.06	5	4.54	16	14.07	9	7.74	12	10.09	6	4.92	8	6.26	4	3.06	4	2.98
Vibrio infections ${ }^{5}$					1	0.91	1	0.88					3	2.46	-		2	1.53	1	0.75
West Nile Virus	NR		NR				NR													

[^7]
Tncludes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Jefferson County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	1	7.66	2	15.11	2	15.03	2	15.54	1	7.63			1	7.34	2	14.17			1	6.93
Animal Bite, post exposure prophylaxis recommended																				
Campylobacteriosis	6	45.93	1	7.55	2	15.03					1	7.50	1	7.34	1	7.09	1	7.01		
Chlamydia	16	122.48	6	45.33	12	90.18	15	116.51	31	236.51	61	457.65	41	301.07	39	276.40	22	154.22	30	207.87
Cryptosporidiosis			1	7.55															1	6.93
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli O157:H7		7.66															2	14.02		
Giardiasis	1	7.66	1	7.55	1	7.51	1	7.77	1	7.63	1	7.50	1	7.34	3	21.26			2	13.86
Gonorrhea	10	76.55	8	60.44	6	45.09	11	85.44	19	144.96	12	90.03	20	146.86	17	120.48	8	56.08	17	117.79
Haemophilus influenzae, invasive ${ }^{1}$																				
Hepatitis A	1	7.66																		
Hepatitis B (+HBsAg in a pregnant woman)							1	38.08					1	37.58	1	37.04				
Hepatitis B, acute	2	15.31					1	7.77					1	7.34						
Hepatitis C, acute							1	7.77												
Human Immunodeficiency Virus ${ }^{2}$ (HIV)			4	30.22	2	15.03	4	31.07	4	30.52	7	52.52	4	29.37	2	14.17	3	21.03	1	6.93
Lead poisoning	1	7.66					1	7.77												
Legionellosis																				
Listeriosis ${ }^{3}$							1	7.77												
Lyme disease																				
Malaria															1	7.09				
Meningitis, other								-												
Meningitis, Streptococcus pneumoniae		-				-	-	-		-		-			1	7.09				
Meningococcal disease ${ }^{4}$							-	-											-	
Pertussis																				
Rabies, animal	1	NA	1	NA															,	NA
Salmonellosis	3	22.97	2	15.11	1	7.51	2	15.54	4	30.52	5	37.51	3	22.03	8	56.70	4	28.04	4	27.72
Shigellosis	1	7.66			1	7.51	1	7.77	1	7.63			3	22.03	2	14.17				
Streptococcus pneumoniae, invasive disease, drug-resistant																				
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		NR		NR	-	NR	-	NR		NR		1	7.34	3	21.26			4	27.72
Streptococcal disease, invasive Group A																7.09				
Syphilis			1	7.55	13	97.69	7	54.37	4	30.52	4	30.01	3	22.03	3	21.26	1	7.01		
Toxoplasmosis													1	7.34						
Tuberculosis	1	7.66			1	7.51								7.34					3	20.79
Vibrio infections ${ }^{5}$								-	1	7.63		-	-		1	7.09				
West Nile Virus	NR		NR		NR		NR			7.63	-								-	

[^8]
${ }_{2}^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
21997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Lake County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	21	11.05	29	14.76	23	11.27	19	8.93	26	11.66	30	12.84	21	8.64	28	11.01	28	10.54	44	15.92
Animal Bite, post exposure prophylaxis recommended									53	23.77	25	10.70	44	18.11	27	10.62	82	30.86	34	12.31
Campylobacteriosis	7	3.68	7	3.56	12	5.88	5	2.35	12	5.38	8	3.42	7	2.88	11	4.33	10	3.76	7	2.53
Chlamydia	126	66.28	109	55.46	237	116.09	291	136.73	302	135.43	344	147.25	471	193.89	418	164.41	491	184.78	547	197.97
Cryptosporidiosis			1	0.51	1	0.49									1	0.39	2	0.75	2	0.72
Cyclosporiasis																			1	0.36
Enterohemorrhagic Escherichia coli O157:H7							1	0.47					2	0.82	4	1.57	2	0.75	2	0.72
Giardiasis	18	9.47	19	9.67	19	9.31	21	9.87	14	6.28	14	5.99	8	3.29	12	4.72	10	3.76	17	6.15
Gonorrhea	73	38.40	93	47.32	234	114.62	211	99.14	157	70.41	150	64.21	186	76.57	210	82.60	269	101.24	303	109.66
Haemophilus influenzae, invasive ${ }^{1}$	2	1.05			1	0.49									2	0.79			3	1.09
Hepatitis A	4	2.10	8	4.07	17	8.33	26	12.22	3	1.35	31	13.27	16	6.59	3	1.18	5	1.88	3	1.09
Hepatitis B (+HBsAg in a pregnant woman)					3	8.37	2	5.37	4	10.44	5	12.71	5	12.19	4	9.14	2	4.40	2	4.27
Hepatitis B, acute	5	2.63	8	4.07	5	2.45	6	2.82	3	1.35		0.43	4	1.65	4	1.57	5	1.88	3	1.09
Hepatitis C, acute											2	0.86		0.41			1	0.38	1	0.36
Human Immunodeficiency Virus ${ }^{2}$ (HIV)			24	12.21	24	11.76	24	11.28	47	21.08	31	13.27	32	13.17	33	12.98	30	11.29	34	12.31
Lead poisoning	34	17.89	5	2.54	10	4.90	5	2.35	2	0.90	2	0.86	2	0.82	3	1.18	3	1.13	4	1.45
Legionellosis	1	0.53	1	0.51	1	0.49			2	0.90			5	2.06	1	0.39	1	0.38	4	1.45
Listeriosis ${ }^{3}$													3	1.23	1	0.39			1	0.36
Lyme disease			5	2.54	-		1	0.47	1	0.45	1	0.43	2	0.82	1	0.39				
Malaria					-		1	0.47					2	0.82					1	0.36
Meningitis, other	2	1.05									2	0.86			2	0.79				
Meningitis, Streptococcus pneumoniae	2	1.05	2	1.02		0.49			,	0.45	2	0.86	1	0.41	1	0.39		-	-	
Meningococcal disease ${ }^{4}$	3	1.58			2	0.98	-	-	1	0.45	2	0.86			3	1.18	2	0.75	3	1.09
Pertussis		0.53	1	0.51						0.45					3	1.18			4	1.45
Rabies, animal	15	NA	11	NA	2	NA	3	NA	5	NA	3	NA	5	NA	7	NA	14	NA	4	NA
Salmonellosis	25	13.15	26	13.23	25	12.25	30	14.10	37	16.59	103	44.09	111	45.69	61	23.99	88	33.12	90	32.57
Shigellosis	2	1.05	41	20.86	23	11.27		18.79	2	0.90	25	10.70	24	9.88	21	8.26	16	6.02	28	10.13
Streptococcus pneumoniae, invasive disease, drug-resistant	4	2.10	1	0.51	3	1.47	6	2.82	3	1.35	8	3.42	10	4.12	9	3.54	14	5.27	12	4.34
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		7	2.88	4	1.57	5	1.88	13	4.70										
Streptococcal disease, invasive Group A											2	0.86	1	0.41	2	0.79			5	1.81
Syphilis	11	5.79	6	3.05	8	3.92	7	3.29	33	14.80	38	16.27	15	6.17	18	7.08	17	6.40	17	6.15
Toxoplasmosis																				
Tuberculosis	10	5.26	10	5.09	22	10.78	4	1.88	7	3.14	5	2.14	8	3.29	8	3.15	6	2.26	10	3.62
Vibrio infections ${ }^{5}$													1	0.41	1	0.39	1	0.38		
West Nile Virus	NR		NR		NR		NR				1	0.43								-

[^9]${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Lee County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	57	14.05	81	19.42	86	19.97	65	14.63	61	13.28	61	12.68	67	13.42	75	14.25	46	8.28	92	15.88
Animal Bite, post exposure prophylaxis recommended								1.35	102	22.21	59	12.27	56	11.21	53	10.07	73	13.13	89	15.36
Campylobacteriosis	30	7.40	28	6.71	37	8.59	40	9.01	52	11.32	29	6.03	47	9.41	49	9.31	51	9.17	41	7.07
Chlamydia	842	207.57	906	217.25	884	205.27	832	187.32	1038	226.01	1108	230.35	1068	213.86	1106	210.20	1287	231.53	1429	246.59
Cryptosporidiosis	3	0.74	6	1.44	8	1.86	2	0.45	4	0.87		0.62	1	0.20	1	0.19	13	2.34	25	4.31
Cyclosporiasis								0.23				0.42						1.80		
Enterohemorrhagic Escherichia coli 0157:H7		0.49		0.48		0.23		0.68		0.22		0.21		0.20			5	0.90		
Giardiasis	62	15.28	55	13.19	53	12.31	41	9.23	34	7.40	54	11.23	34	6.81	28	5.32	44	7.92	41	7.07
Gonorrhea	601	148.16	614	147.23	569	132.13	566	127.43	583	126.94	441	91.68	459	91.91	553	105.10	528	94.99	622	107.33
Haemophilus influenzae, invasive ${ }^{1}$		0.25	3	0.72				0.23				0.42				0.19	2	0.36		
Hepatitis A	18	4.44	10	2.40	12	2.79	2	0.45	14	3.05	25	5.20	14	2.80	7	1.33	5	0.90	3	0.52
Hepatitis $\mathrm{B}(+\mathrm{HBsAg}$ in a pregnant woman)					10	13.17	9	11.55	14	17.52	18	21.79	13	15.12	14	15.97	15	15.71	9	9.07
Hepatitis B, acute		2.22	6	1.44		2.09	17	3.83	21	4.57	9		11	2.20	10	1.90	15	2.70	10	1.73
Hepatitis C, acute						. 23		0.23				0.21		0.40		0.38		0.72	4	0.69
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	11	2.71	102	24.46	125	29.03	89	20.04	133	28.96	108	22.45	89	17.82	81	15.39	53	9.53	105	18.12
Lead poisoning	29	7.15	33	7.91	8	1.86	7	1.58	1	0.22	17	3.53	14	2.80	17	3.23		0.18	9	1.55
Legionellosis		0.25	1	0.24	3	0.70	,	0.23			4	0.83	2	0.40	4	0.76		0.72	11	1.90
Listeriosis ${ }^{3}$					4	0.93		0.23		0.22								0.72	1	0.17
Lyme disease		0.25	5	1.20	2	0.46	3	0.68		0.22		0.21	1	0.20	2	0.38	2	0.36	3	0.52
Malaria			1	0.24	4	0.93			3	0.65	1	0.21	6	1.20	3	0.57	3	0.54	3	0.52
Meningitis, other	2	0.49	4	0.96	1	0.23						0.21	3	0.60	1	0.19	2	0.36		0.17
Meningitis, Streptococcus preumoniae			2	0.48	3	0.70		0.90		0.65		0.42	6	1.20	2	0.38		0.18	,	1.55
Meningococcal disease ${ }^{4}$	3	0.74	3	0.72	3	0.70	7	1.58	13	2.83	26	5.41	8	1.60	4	0.76		0.72	3	0.52
Pertussis		0.99	1	0.24	5	1.16	7	1.58		0.22	2	0.42	2	0.40	2	0.38	2	0.36	5	0.86
Rabies, animal	6	NA		NA				NA		NA		NA		NA						NA
Salmonellosis	85	20.95	98	23.50	102	23.69	109	24.54	101	21.99	167	34.72	138	27.63	175	33.26	237	42.64	174	30.03
Shigellosis	8	1.97	23	5.52	79	18.34	49	11.03	22	4.79	74	15.38	145	29.04	31	5.89	15	2.70	21	3.62
Streptococcus pneumoniae, invasive disease, drug-resistant		1.97	26	6.23	20	4.64	30	6.75	22	4.79	12	49		4.41	17	3.23	19	3.42	24	4.14
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		7	1.40	26	4.94	23	4.14	19	3.28										
Streptococcal disease, invasive Group A		0.49		0.24				0.68		0.65		1.04	6	1.20	10	1.90		0.18	2	0.35
Syphilis	71	17.50	78	8.70	99	22.99	51	11.48	40	8.71	52	10.81	58	11.61	59	11.21	65	11.69	36	6.21
Toxoplasmosis																				
Tuberculosis	15	3.70	22	5.28	28	6.50	21	4.73	11	2.40	21	4.37	18	3.60	21	3.99	16	2.88	19	3.28
Vibrio infections ${ }^{5}$		0.49		2.16		0.93		0.23	3	0.65	3	0.62	6	1.20	3	0.57	4	0.72	2	0.35
West Nile Virus	NR		NR		NR		NR					0.21	4	0.80						

Includes reported cases of 1997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Leon County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	33	14.50	43	18.50	30	12.68	31	12.88	28	11.43	47	18.82	43	16.74	75	28.27	45	16.50	60	21.52
Animal Bite, post exposure prophylaxis recommended														0.39	3	1.13			1	0.36
Campylobacteriosis	46	20.21	32	13.76	19	8.03	14	5.82	12	4.90	23	9.21	10	3.89	8	3.02	4	1.47	18	6.46
Chlamydia	1001	439.78	463	199.16	780	329.59	607	252.25	1426	581.87	1901	761.18	1958	762.10	1701	641.26	1626	596.15	1536	550.95
Cryptosporidiosis	8	3.51	12	5.16	7	2.96	3	1.25	5	2.04		0.40			2	0.75	4	1.47	5	1.79
Cyclosporiasis	37	16.26		0.43														1.83		
Enterohemorrhagic Escherichia coli 0157:H7	2	0.88	3	1.29				0.83		0.41		0.40			4	1.51			1	0.36
Giardiasis	59	25.92	61	26.24	29	12.25	36	14.96	24	9.79	14	5.61	20	7.78	29	10.93	15	5.50	19	6.82
Gonorrhea	524	230.22	277	119.15	481	203.25	376	156.26	810	330.52	860	344.35	798	310.60	639	240.90	648	237.58	677	242.84
Haemophilus influenzae, invasive ${ }^{1}$				0.86						0.41				0.39			2	0.73	5	1.79
Hepatitis A	5	2.20	9	3.87	5	2.11		0.42	7	2.86	2	0.80	20	7.78	5	1.88				0.36
Hepatitis B (+HBsAg in a pregnant woman)					6	8.57	6	8.45	8	11.15	7	9.68	3	4.03	17	22.43	10	12.65	6	7.47
Hepatitis B, acute	19	8.35	14	6.02	4	1.69	12	4.99		1.63	5	2.00	7	2.72	13	4.90	10	3.67	10	3.59
Hepatitis C, acute																0.38				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	9	3.95	38	16.35	52	21.97	38	15.79	43	17.55	38	15.22	49	19.07	83	31.29	69	25.30	60	21.52
Lead poisoning	21	9.23	22	9.46	13	5.49	12	4.99	2	0.82	2	0.80	4	1.56	3	1.13	2	0.73	3	1.08
Legionellosis	2	0.88	2	0.86	1	0.42	3	1.25				0.40	2	0.78			2	0.73		
Listeriosis ${ }^{3}$						0.42													2	0.72
Lyme disease			2	0.86	2	0.85					3	1.20								
Malaria			1	0.43	2	0.85	2	0.83	1	0.41			3	1.17	3	1.13	1	0.37	1	0.36
Meningitis, other	6	2.64	2	0.86	2	0.85	3	1.25		0.41			2	0.78	1	0.38			1	0.36
Meningitis, Streptococcus pneumoniae	3	1.32	1	0.43	2	0.85	4	1.66		1.22					1	0.38		0.37		
Meningococcal disease ${ }^{4}$	1	0.44					3	1.25	2	0.82	3	1.20	5	1.95	1	0.38	3	1.10	3	1.08
Pertussis															2	0.75	3	1.10	6	2.15
Rabies, animal		NA		NA		NA				NA				NA	5	NA			6	NA
Salmonellosis	41	18.01	58	24.95	86	36.34	48	19.95	68	27.75	114	45.65	76	29.58	69	26.01	71	26.03	77	27.62
Shigellosis	73	32.07	8	3.4	62	26.20	60	24.93		3.67	17	6.81	50	19.46	15	5.65	2	0.73	18	6.46
Streptococcus pneumoniae, invasive disease, drug-resistant		0.44			10	4.23	18	7.48		2.45	2	0.80	${ }^{6}$	2.34	11	4.15	-	2.93	12	4.30
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR				NR		NR		NR		NR		2	0.78	16	6.03	12	4.40	7	2.51
Streptococcal disease, invasive Group A			1	0.43						0.41					1	0.38		1.47		1.43
Syphilis	20	8.79	27	11.61	39	16.48	26	10.80	44	17.95	37	14.82	35	13.62	31	11.69	25	9.17	24	8.61
Toxoplasmosis								0.42												
Tuberculosis	23	10.10	15	6.45	16	6.76	18	7.48	13	5.30	19	7.61	10	3.89	9	3.39	15	5.50	4	1.43
Vibrio infections ${ }^{5}$	6	2.64	2	0.86	5	2.11				0.41		0.40	4	1.56	2	0.75	2	0.73	5	1.79
West Nile Virus	NR		NR		NR		NR			0.41										

[^10]${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other.
NR - Not Reportable NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Liberty County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	1	14.69							1	14.00	1	13.96			1	13.56			1	12.87
Animal Bite, post exposure prophylaxis recommended									1	14.00										
Campylobacteriosis	2	29.39	1	14.77	1	14.35			2	27.99			2	27.59						
Chlamydia	9	132.24	5	73.83	5	71.77	3	42.58	18	251.92	15	209.35	14	193.16	8	108.52	9	118.06	17	218.76
Cryptosporidiosis							-						1	13.80	1	13.56				
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli O157:H7																				
Giardiasis	2	29.39	3	44.30	1	14.35	1	14.19												
Gonorrhea	2	29.39	3	44.30	2	28.71	4	56.78	19	265.92	3	41.87	1	13.80	2	27.13	1	13.12	3	38.61
Haemophilus influenzae, invasive ${ }^{1}$																				
Hepatitis A							-													
Hepatitis B (+HBsAg in a pregnant woman)					-		-													
Hepatitis B, acute																				
Hepatitis C, acute																				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)					1	14.35	-		2	27.99	2	27.91	1	13.80	1	13.56	1	13.12	2	25.74
Lead poisoning	1	14.69	2	29.53	1	14.35			1	14.00										
Legionellosis							2	28.39												
Listeriosis ${ }^{3}$																				
Lyme disease																				
Malaria														-						
Meningitis, other																				
Meningitis, Streptococcus pneumoniae				-		-	-	-										-		
Meningococcal disease ${ }^{4}$	1	14.69		-			-	-												
Pertussis	2	29.39			-			-												
Rabies, animal																				
Salmonellosis			3	44.30	2	28.71	1	14.19	4	55.98	2	27.91	2	27.59			1	13.12		
Shigellosis				88.60						14.00				13.80						
Streptococcus pneumoniae, invasive disease, drug-resistant									1	14.00										
Streptococcus pneumoniae, invasive disease, drug-susceptible Streptococcal disease, invasive Group A	NR									-										
Syphilis			1	14.77	1	14.35				-					1	13.56				
Toxoplasmosis																				
Tuberculosis	1	14.69						14.19						13.80						
Vibrio infections ${ }^{5}$																				
West Nile Virus	NR		NR		NR		NR										-		-	-

${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable

${ }_{2}^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
1997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

[^11]${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other.
NR - Not Reportable NA - Not Applicable

Selected Notifiable Diseases	Marion County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	26	10.89	34	13.88	43	16.98	50	19.20	39	14.68	33	12.06	32	11.26	40	13.53	46	14.95	47	14.78
Animal Bite, post exposure prophylaxis recommended							15	5.76	31	11.67	39	14.25	31	10.91	36	12.18	51	16.58	55	17.30
Campylobacteriosis	16	6.70	8	3.27	10	3.95	9	3.46	12	4.52	9	3.29	6	2.11	5	1.69	8	2.60	7	2.20
Chlamydia	259	108.49	387	158.01	551	217.58	668	256.52	753	283.48	719	262.79	843	296.59	661	223.65	676	219.73	996	313.23
Cryptosporidiosis			2	0.82	7	2.76	3	1.15			1	0.37			1	0.34	3	0.98		
Cyclosporiasis																	7	2.28		
Enterohemorrhagic Escherichia coli O157:H7					3	1.18	2	0.77	2	0.75		1.46	2	0.70	1	0.34	2	0.65	1	0.31
Giardiasis	40	16.75	45	18.37	33	13.03	46	17.66	15	5.65	26	9.50	9	3.17	17	5.75	9	2.93	17	5.35
Gonorrhea	130	54.45	190	77.58	367	144.92	453	173.96	285	107.29	348	127.19	388	136.51	326	110.30	367	119.29	484	152.21
Haemophilus influenzae, invasive ${ }^{1}$					3	1.18	2	0.77			2	0.73	1	0.35			2	0.65	1	0.31
Hepatitis A	4	1.68			4	1.58	4	1.54	6	2.26	3	1.10	3	1.06			4	1.30	2	0.63
Hepatitis B (+HBsAg in a pregnant woman)					8	17.05	12	25.04	2	4.16	16	32.87	11	21.71	7	13.43	8	14.56	3	5.32
Hepatitis B, acute	2	0.84	6	2.45	5	1.97	10	3.84	8	3.01	12	4.39	7	2.46	6	2.03	7	2.28	6	1.89
Hepatitis C, acute											6	2.19	1	0.35					1	0.31
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	8	3.35	35	14.29	28	11.06	34	13.06	30	11.29	54	19.74	47	16.54	37	12.52	45	14.63	43	13.52
Lead poisoning	28	11.73	29	11.84	16	6.32	8	3.07	1	0.38	5	1.83	1	0.35	7	2.37	2	0.65	1	0.31
Legionellosis			1	0.41															5	1.57
Listeriosis ${ }^{3}$	1	0.42					1	0.38				0.37		0.35			2	0.65		
Lyme disease	1	0.42	1	0.41					1	0.38	1	0.37	1	0.35			2	0.65		
Malaria											2	0.73	1	0.35						
Meningitis, other	4	1.68			3	1.18	5	1.92	3	1.13	4	1.46	8	2.81	2	0.68			4	1.26
Meningitis, Streptococcus pneumoniae			4	1.63	7	2.76	4	1.54	3	1.13	1	0.37	3	1.06	1	0.34	1	0.33	2	0.63
Meningococcal disease ${ }^{4}$	4	1.68			3	1.18	2	0.77					1	0.35					1	0.31
Pertussis				0.41			2	0.77	1	0.38					3	1.02	2	0.65	3	0.94
Rabies, animal	39	NA	23	NA	36	NA	5	NA	5	NA	12	NA	15	NA	10	NA	10	NA	5	NA
Salmonellosis	20	8.38	38	15.52	51	20.14	32	12.29	42	15.81	73	26.68	59	20.76	60	20.30	80	26.00	60	18.87
Shigellosis	4	1.68	148	60.43	34	13.43	5	1.92			49	17.91	95	33.42	4	1.35	3	0.98	17	5.35
Streptococcus pneumoniae, invasive disease, drug-resistant	4	1.68	16	6.53	17	6.71	22	8.45	14	5.27	3	1.10	7	2.46	16	5.41	15	4.88	8	2.52
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR				9	3.05	14	4.55	11	3.46										
Streptococcal disease, invasive Group A					7	2.76	6	2.30	3	1.13	5	1.83	1	0.35	2	0.68	2	0.65	2	0.63
Syphilis	8	3.35	25	10.21	37	14.61	26	9.98	23	8.66	11	4.02	9	3.17	32	10.83	25	8.13	34	10.69
Toxoplasmosis											1	0.37	1	0.35						
Tuberculosis	13	5.45	13	5.31	15	5.92	11	4.22	11	4.14	7	2.56	8	2.81	10	3.38	7	2.28	10	3.14
Vibrio infections ${ }^{5}$	2	0.84	2	0.82	1	0.39							1	0.35	2	0.68	2	0.65	2	0.63
West Nile Virus	NR		NR		NR		NR		1	0.38	3	1.10	2	0.70				0.33		

Tncludes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthrits.
1997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }_{4}^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

${ }_{2}^{1}$ Includes reported cases of H . influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other
NR - Not Reportable

Selected Notifiable Diseases	Miami-Dade County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	1494	69.40	1475	67.66	1226	55.24	1203	53.16	1132	49.38	1059	45.64	985	41.84	1293	54.14	1194	49.09	1140	46.12
Animal Bite, post exposure prophylaxis recommended							69	3.05	137	5.98	135	5.82	73	3.10	51	2.14	67	2.75	16	0.65
Campylobacteriosis	129	5.99	174	7.98	177	7.98	190	8.40	124	5.41	170	7.33	173	7.35	155	6.49	159	6.54	162	6.55
Chlamydia	3579	166.25	3486	159.91	4010	180.69	3032	133.99	3800	165.77	4711	203.02	4431	188.20	4933	206.56	3892	160.01	5069	205.07
Cryptosporidiosis	13	0.60	35	1.61	35	1.58	42	1.86	12	0.52	21	0.90	22	0.93	19	0.80	37	1.52	43	1.74
Cyclosporiasis	2	0.09	1	0.05							2	0.09	2	0.08	2	0.08	26	1.07	2	0.08
Enterohemorrhagic Escherichia coli O157:H7	3	0.14	6	0.28	9	0.41	7	0.31	2	0.09	9	0.39	2	0.08	5	0.21	1	0.04	2	0.08
Giardiasis	182	8.45	167	7.66	149	6.71	298	13.17	271	11.82	321	13.83	250	10.62	320	13.40	246	10.11	236	9.55
Gonorrhea	2168	100.71	2573	118.03	2775	125.04	1995	88.16	1964	85.68	2047	88.22	1912	81.21	1891	79.18	1661	68.29	1892	76.54
Haemophilus influenzae, invasive ${ }^{1}$	2	0.09	1	0.05	4	0.18	11	0.49	2	0.09	4	0.17	7	0.30	7	0.29	8	0.33	19	0.77
Hepatitis A	187	8.69	143	6.56	115	5.18	141	6.23	192	8.38	183	7.89	66	2.80	51	2.14	69	2.84	49	1.98
Hepatitis B (+HBsAg in a pregnant woman)					35	6.65	104	19.46	60	11.19	118	21.99	67	12.29	64	11.53	53	9.48	46	8.15
Hepatitis B, acute	87	4.04	75	3.44	77	3.47	145	6.41	77	3.36	71	3.06	59	2.51	43	1.80	54	2.22	36	1.46
Hepatitis C, acute						0.05						0.26								
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	799	37.12	2074	95.14	1850	83.36	1632	72.12	1651	72.02	1857	80.03	1595	67.75	1582	66.24	1379	56.70	1203	48.67
Lead poisoning	488	22.67	438	20.09	413	18.61	461	20.37	280	12.21	353	15.21	307	13.04	316	13.23	161	6.62	147	5.95
Legionellosis	2	0.09	2	0.09			3	0.13	3	0.13	2	0.09	11	0.47	15	0.63	12	0.49	11	0.45
Listeriosis ${ }^{3}$	3	0.14	2		9	0.41	2	0.09			7	0.30	6	0.25	2	0.08	6	0.25	4	0.16
Lyme disease	3	0.14			1	0.05	9	0.40	6	0.26	3	0.13	6	0.25	5	0.21	1	0.04		
Malaria	37	1.72	38	1.74	29	1.31	31	1.37	21	0.92	19	0.82	18	0.76	22	0.92	14	0.58	13	0.53
Meningitis, other	13	0.60	8	0.37	4	0.18	17	0.75	12	0.52	9	0.39	13	0.55	11	0.46	12	0.49	12	0.49
Meningitis, Streptococcus pneumoniae	16	0.74	12	0.55	7	0.32	18	0.80	7	0.31	6	0.26	7	0.30	9	0.38	8	0.33	10	0.40
Meningococcal disease ${ }^{4}$	17	0.79	13	0.60	21	0.95	36	1.59	16	0.70	19	0.82	7	0.30	20	0.84	8	0.33	13	0.53
Pertussis	7	0.33	13	0.60	18	0.81	8	0.35	3	0.13	7	0.30	11	0.47	9	0.38	9	0.37	24	0.97
Rabies, animal		NA	1	NA						NA										
Salmonellosis	362	16.82	373	17.11	373	16.81	321	14.19	318	13.87	430	18.53	573	24.34	462	19.35	671	27.59	634	25.65
Shigellosis	302	14.03	345	15.83	231	10.41	256	11.31	152	6.63	287	12.37	307	13.04	182	7.62	266	10.94	157	6.35
Streptococcus pneumoniae, invasive disease, drug-resistant	59	2.74	83	3.81	118	5.32	237	10.47	170	7.42	123	5.30	122	5.18	68	2.85	82	3.37	118	4.77
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		16	0.68	80	3.35	77	3.17	93	3.76										
Streptococcal disease, invasive Group A	10	0.46	12	0.55	11	0.50	19	0.84	19	0.83	17	0.73	23	0.98	25	1.05	22	0.90	30	1.21
Syphilis	843	39.16	736	33.76	785	35.37	811	35.84	1034	45.11	1291	55.64	1158	49.18	989	41.41	710	29.19	861	34.83
Toxoplasmosis	3	0.14	2	0.09	2	0.09	4	0.18	18	0.79	26	1.12	14	0.59	7	0.29				
Tuberculosis	312	14.49	286	13.12	272	12.26	279	12.33	291	12.69	257	11.08	242	10.28	268	11.22	228	9.37	203	8.21
Vibrio infections ${ }^{5}$	3	0.14	3	0.14			5	0.22	2	0.09	9	0.39	7	0.30	3	0.13	2	0.08	1	0.04
West Nile Virus	NR		NR		NR		NR				2	0.09	6	0.25	20	0.84	1	0.04	-	

Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic artas 1997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other.
NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Monroe County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	53	66.37	48	60.20	61	76.37	45	56.45	42	51.95	34	41.96	23	28.58	32	39.34	31	37.52	20	23.99
Animal Bite, post exposure prophylaxis recommended							2	2.51			4	4.94			8	9.84	5	6.05	5	6.00
Campylobacteriosis	3	3.76	2	2.51	3	3.76	1	1.25	1	1.24	3	3.70	2	2.49	3	3.69			1	1.20
Chlamydia	50	62.62	60	75.25	55	68.86	39	48.92	63	77.92	102	125.88	72	89.47	93	114.34	67	81.09	56	67.18
Cryptosporidiosis	1	1.25			1	1.25			1	1.24			1	1.24	3	3.69				
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli O157:H7																				
Giardiasis	9	11.27	2	2.51	5	6.26	8	10.03	6	7.42	7	8.64	4	4.97		4.92				
Gonorrhea	14	17.53	13	16.30	25	31.30	13	16.31	29	35.87	40	49.36	31	38.52	32	39.34	23	27.84	25	29.99
Haemophilus influenzae, invasive ${ }^{1}$			1	1.25																
Hepatitis A	13	16.28	5	6.27	13	16.28	7	8.78	10	12.37	4	4.94			1	1.23	2	2.42	2	2.40
Hepatitis B (+HBsAg in a pregnant woman)													1	6.21					1	6.61
Hepatitis B, acute	2	2.50	3	3.76	3	3.76	3	3.76	3	3.71	3	3.70	4	4.97	7	8.61	4	4.84	4	4.80
Hepatitis C, acute													1	1.24						
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	4	5.01	46	57.69	31	38.81	23	28.85	28	34.63	30	37.02	35	43.49	34	41.80	37	44.78	25	29.99
Lead poisoning	1	1.25	4	5.02	3	3.76	2	2.51	1	1.24	2	2.47	2	2.49					1	1.20
Legionellosis													1	1.24						
Listeriosis ${ }^{3}$																				
Lyme disease					2	2.50			1	1.24	2	2.47					1	1.21		
Malaria	3	3.76	1	1.25	1	1.25			2	2.47	2	2.47	1	1.24						
Meningitis, other					1	1.25									1	1.23	1	1.21		
Meningitis, Streptococcus pneumoniae	3	3.76	2	2.51			1	1.25		-							1	1.21		
Meningococcal disease ${ }^{4}$	2	2.50	1	1.25	2	2.50				-		-				-	1	1.21	1	1.20
Pertussis							1	1.25											1	1.20
Rabies, animal	1	NA					2	NA												
Salmonellosis	10	12.52	10	12.54	13	16.28	14	17.56	17	21.03	21	25.92	15	18.64	20	24.59	32	38.73	28	33.59
Shigellosis			3	3.76	2	2.50	4	5.02	10	12.37	1	1.23	6	7.46	1	1.23	5	6.05	1	1.20
Streptococcus pneumoniae, invasive disease, drug-resistant		-			3	3.76	1	1.25	1	1.24			1	1.24			1	1.21		
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR				1	1.23	2	2.42	2	2.40										
Streptococcal disease, invasive Group A										1.24										
Syphilis			4	5.02	10	12.52	3	3.76	8	9.89	15	18.51	10	12.43	7	8.61	8	9.68	4	4.80
Toxoplasmosis			1	1.25																
Tuberculosis	9	11.27	3	3.76	6	7.51	4	5.02	5	6.18	8	9.87	4	4.97			6	7.26	1	1.20
Vibrio infections ${ }^{5}$		-	4	5.02		-	1	1.25	2	2.47	1	1.23	1	1.24	2	2.46	4	4.84	4	4.80
West Nile Virus	NR		NR		NR		NR			3.71				1.24						

${ }^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NA - Not Applicable

Selected Notifiable Diseases	Nassau County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	2	3.82	2	3.72	7	12.50	5	8.62	9	15.14	5	8.11	2	3.15	5	7.64	2	3.03	4	5.94
Animal Bite, post exposure prophylaxis recommended							1	1.72	4	6.73	2	3.24	10	15.74	9	13.75	4	6.06	4	5.94
Campylobacteriosis	6	11.47	4	7.45	3	5.36	8	13.78	3	5.05	11	17.84	11	17.32	9	13.75	1	1.51	7	10.39
Chlamydia	42	80.29	40	74.45	56	99.96	75	129.23	78	131.20	101	163.85	108	170.02	93	142.03	107	162.07	153	227.07
Cryptosporidiosis	2	3.82	1	1.86			1	1.72	1	1.68	1	1.62	1	1.57	2	3.05			50	74.20
Cyclosporiasis							3	5.17									2	3.03		
Enterohemorrhagic Escherichia coli O157:H7							2	3.45							2	3.05				
Giardiasis	15	28.68	5	9.31	3	5.36	4	6.89	3	5.05	12	19.47	12	18.89	8	12.22	9	13.63	23	34.13
Gonorrhea	33	63.09	36	67.01	38	67.83	83	143.01	26	43.73	42	68.13	37	58.25	26	39.71	42	63.62	71	105.37
Haemophilus influenzae, invasive ${ }^{1}$							1	1.72			1	1.62	1	1.57			1	1.51		
Hepatitis A				-			1	1.72	1	1.68	3	4.87			4	6.11	1	1.51		
Hepatitis B (+HBsAg in a pregnant woman)													3	22.12						
Hepatitis B, acute	2	3.82	2	3.72							4	6.49	5	7.87	6	9.16	3	4.54	1	1.48
Hepatitis C, acute											5	8.11	7	11.02	2	3.05				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	1	1.91	5	9.31	6	10.71	5	8.62	6	10.09	6	9.73	5	7.87	9	13.75	6	9.09	3	4.45
Lead poisoning	4	7.65	2	3.72	-		6	10.34	1	1.68	2	3.24			1	1.53	-		1	1.48
Legionellosis			1	1.86															1	1.48
Listeriosis ${ }^{3}$																				
Lyme disease			2	3.72	1	1.79					2	3.24	3	4.72			1	1.51		
Malaria													1	1.57			1	1.51		
Meningitis, other	1	1.91															2	3.03		
Meningitis, Streptococcus pneumoniae			1	1.86			1	1.72		-			1	1.57						
Meningococcal disease ${ }^{4}$			1	1.86	1	1.79							1	1.57						
Pertussis																	3	4.54		
Rabies, animal					1	NA	1	NA				NA								
Salmonellosis	10	19.12	25	46.53	15	26.78	10	17.23	4	6.73	36	58.40	32	50.38	43	65.67	42	63.62	34	50.46
Shigellosis	7	13.38	7	13.03	2	3.57	3	5.17	1	1.68	4	6.49	50	78.71					12	17.81
Streptococcus pneumoniae, invasive disease, drug-resistant					2	3.57	1	1.72							2	3.05	2	3.03		
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR				1	1.53	2	3.03	1	1.48										
Streptococcal disease, invasive Group A											1	1.62	1	1.57			1	1.51		
Syphilis	2	3.82	5	9.31	4	7.14	1	1.72			3	4.87	1	1.57	1	1.53			3	4.45
Toxoplasmosis																				
Tuberculosis	1	1.91	1	1.86	1	1.79	5	8.62			1	1.62			3	4.58	3	4.54	2	2.97
Vibrio infections ${ }^{5}$										-	1	1.62	2	3.15					-	
West Nile Virus	NR		NR		NR		NR													

${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Okaloosa County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)		8.66	14	8.51	13	7.74	11	6.42	19	10.91	13	7.30	10	5.49	6	3.21	9	4.74	14	$\begin{aligned} & 7.24 \\ & 2.07 \\ & 1.55 \end{aligned}$
Animal Bite, post exposure prophylaxis recommended							3	1.75	4	2.30			27	14.83	39	20.88	36	18.97		
Campylobacteriosis	8	4.95	6	3.65	10	5.96	13	7.59	5	2.87	3	1.69	3	1.65	7	3.75	9	4.74		
Chlamydia	263	162.75	412	250.41	494	294.26	537	313.55	723	414.97	605	339.82	304	167.01	394	210.98	411	216.58	416	215.21
Cryptosporidiosis		0.62												0.55		0.54				0.52
Cyclosporiasis								0.58										0.53		
Enterohemorrhagic Escherichia coli 0157:H7				1.22				0.58								0.54				
Giardiasis	23	14.23		5.47	11	6.55	5	2.92	11	6.31	6	3.37	4	2.20		3.21		2.11	5	2.59
Gonorrhea	365	225.87	199	120.95	293	174.53	290	169.33	211	121.11	149	83.69	175	96.14	147	78.72	174	91.69	187	96.74
Haemophilus influenzae, invasive ${ }^{1}$						0.60		0.58						1.10						0.52
Hepatitis A		2.48	5	3.04	1	0.60			4	2.30		0.56	9	4.94		2.68				0.52
Hepatitis B (+HBsAg in a pregnant woman)					1	2.61	3	7.71			7	17.42	9	21.89	15	36.85	10	23.92	2	4.73
Hepatitis B, acute	7	4.33	3	1.82	5	2.98	3	1.75	14	8.04		3.37	7	3.85	4	2.14	9	4.74	7	3.62
Hepatitis C, acute							2	1.17	13	7.46	2	1.12		2.20						
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	4	2.48	13	7.90	11	6.55	15	8.76	15	8.61	22	12.36	12	6.59	9	4.82	15	7.90	21	10.86
Lead poisoning	13	8.04	13	7.90	24	14.30	2	1.17			2	1.12			2	1.07				
Legionellosis		0.62							2	1.15										
Listeriosis ${ }^{3}$				0.61		0.60	1	0.58				0.56				0.54	2	1.05		
Lyme disease	5	3.09	2	1.22			1	0.58		0.57					1	. 54		0.53	1	0.52
Malaria	2	1.24	2	1.22							1	0.56	1	0.55	2	1.07			1	0.52
Meningitis, other		0.62		0.61						0.57										
Meningitis, Streptococcus pneumoniae			1	0.61	1	0.60	1	0.58										0.53		
Meningococcal disease ${ }^{4}$	4	2.48	2	1.22	3	1.79	1	0.58								0.54		0.53	1	0.52
Pertussis			2	1.22				0.58								0.54		0.53	1	0.52
Rabies, animal		NA		NA			3	NA	2	NA	3	NA		NA			5	NA	1	NA
Salmonellosis	40	24.75	44	26.74	50	29.78	45	26.28	44	25.25	72	40.44	65	35.71	63	33.74	99	52.17	67	34.66
Shigellosis	71	43.94	2	1.22	2	1.19		0.58		1.72		3.93		1.10		3.21				0.52
Streptococcus pneumoniae, invasive disease, drug-resistant		0.62	6	3.65		2.98	12	7.01	14	8.04	3	1.69	5	2.75		3.21	3	1.58	6	3.10
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR				1	0.54	3	1.58	5	2.59										
Streptococcal disease, invasive Group A		0.62		0.61				0.58		1.15		0.56	5	2.75		2.14		0.53	2	1.03
Syphilis	2	1.24		0.61		2.98		2.92	2	1.15	3	1.69	6	3.30	6	3.21	3	1.58	5	2.59
Toxoplasmosis					1	0.60														
Tuberculosis	6	3.71	5	3.04		2.98	6	3.50	5	2.87	10	5.62		2.75		3.75		3.69	7	3.62
Vibrio infections ${ }^{5}$		1.24		1.82					2	1.15	3	1.69			5	2.68	3	1.58	1	0.52
West Nile Virus	NR		NR		NR		NR							4.40						

[^12]Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Okeechobee County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	7	20.25	5	14.31	13	36.67	2	5.56	12	33.14	5	13.62	9	24.08	5	13.11	3	7.95	5	13.21
Animal Bite, post exposure prophylaxis recommended										2.76					1	2.62			1	2.64
Campylobacteriosis	1	2.89	5	14.31	1	2.82			6	16.57	6	16.34	5	13.38	3	7.86	4	10.60	2	5.28
Chlamydia	76	219.89	58	166.04	75	211.55	86	238.90	82	226.45	85	231.51	79	211.36	118	309.28	114	301.97	107	282.69
Cryptosporidiosis	2	5.79			1	2.82											1	2.65	3	7.93
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli 0157:H7																				
Giardiasis	17	49.19	5	14.31	5	14.10	10	27.78		11.05		5.45						2.65	7	18.49
Gonorrhea	29	83.91	12	34.35	19	53.59	10	27.78	15	41.42	13	35.41	15	40.13	13	34.07	25	66.22	20	52.84
Haemophilus influenzae, invasive ${ }^{1}$													2	5.35	1	2.62				2.64
Hepatitis A	2	5.79			36	101.55	1	2.78		2.76			2	5.35					2	5.28
Hepatitis B (+HBsAg in a pregnant woman)																				
Hepatitis B, acute	1	2.89	2	5.73	1	2.82	1	2.78	2	5.52							1	2.65		
Hepatitis C, acute					1	2.82														
Human Immunodeficiency Virus ${ }^{2}$ (HIV)		2.89	11	31.49	5	14.10		16.67		2.76	3	8.17	7	18.73	3	7.86	3	7.95		13.21
Lead poisoning	7	20.25	5	14.31	2	5.64	10	27.78	4	11.05										
Legionellosis																				
Listeriosis ${ }^{3}$																				
Lyme disease																				
Malaria														2.68						
Meningitis, other																				
Meningitis, Streptococcus pneumoniae																				
Meningococcal disease ${ }^{4}$	1	2.89										2.72						2.65		
Pertussis																		10.60		
Rabies, animal		NA		NA	2	NA				NA		NA			1	NA		NA		NA
Salmonellosis	16	46.29	7	20.04	18	50.77	12	33.34	13	35.90	6	16.34	12	32.11	4	10.48	11	29.14	11	29.06
Shigellosis			7		17			16.67						5.35						
Streptococcus pneumoniae, invasive disease, drug-resistant							2	5.56		2.76										
Streptococcus pneumoniae, invasive disease, drug-susceptible Streptococcal disease, invasive Group A	NR																			
Syphilis																				
Tuberculosis	3	8.68	3	8.59	5	14.10		8.33		5.52				5.35		15.73		10.60		2.64
Vibrio infections ${ }^{5}$																				
West Nile Virus	NR		NR		NR		NR													

Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
21997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Orange County																					
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006			
	Number	Rate	Number 388 89 26	Rate	Number	Rate																
Acquired Immune Deficiency Syndrome (AIDS)	365	44.73	313	37.48	292	33.	245	27	321	34.2	341	35.43	348	35.15	357	$\begin{array}{\|c\|} \hline 34.96 \\ 11.46 \\ 2.74 \end{array}$		$\begin{array}{r} 32.16 \\ 8.47 \\ 2.47 \end{array}$		$\begin{array}{r} \hline 31.90 \\ 11.28 \\ 3.79 \end{array}$		
Animal Bite, post exposure prophylaxis recommended					60	94	107	11.81	120	12.81	107	11.12	108	10.91	117							
Campylobacteriosis	49	6.00	43	5.15	52	6.02	64	7.06	43	4.59	58	6.03	36	3.64	28							
Chlamydia	2185	267.74	1796	$\begin{array}{r} 215.06 \\ 0.24 \end{array}$		$\begin{array}{\|r\|} \hline 281.30 \\ 0.46 \\ \hline \end{array}$		$\begin{array}{r} 337.42 \\ 0.44 \\ \hline \end{array}$		$\begin{array}{r} 329.97 \\ \\ 0.11 \end{array}$	$\begin{array}{\|r\|r\|} 3054 & 317.29 \\ 2 & 0.21 \\ 1 & 0.10 \end{array}$		$\begin{array}{r} 3187 \\ 3 \end{array}$	$\begin{array}{r} 321.93 \\ 0.30 \end{array}$	3407 33.62 5 0.49		$\begin{array}{\|r\|r\|} 4160 & 395.84 \\ 13 & 1.24 \\ 12 & 1.14 \end{array}$		$\begin{array}{r} 4593 \\ 55 \\ 1 \end{array}$	424.735.090.09		
Cryptosporidiosis		0.86	2																			
Cyclosporiasis		0.12																				
Enterohemorrhagic Escherichia coli 0157:H7		0.37		$\begin{array}{r} 1.08 \\ 12.69 \\ 220.57 \end{array}$	$\begin{array}{r} 3 \\ 85 \\ 1895 \end{array}$	$\begin{array}{r} 0.35 \\ 9.84 \\ 219.28 \end{array}$	$\begin{array}{r} 6 \\ 98 \\ \quad 1936 \end{array}$	$\begin{array}{r} 0.66 \\ 10.82 \\ 213.69 \end{array}$	$\begin{array}{r} 1 \\ 63 \\ 2034 \end{array}$	$\begin{array}{r} 0.11 \\ 6.73 \\ 217.13 \end{array}$	$\begin{array}{r} 5 \\ 69 \\ 1891 \end{array}$	$\begin{array}{r} 0.52 \\ 7.17 \\ 196.46 \end{array}$	$\begin{array}{r} 1 \\ 63 \\ 1512 \end{array}$	$\begin{array}{r} 0.10 \\ 6.36 \\ 152.73 \end{array}$	$\begin{array}{r} 1 \\ 56 \\ 1622 \end{array}$	$\begin{array}{r} 0.10 \\ 5.48 \\ 158.83 \end{array}$	$\begin{array}{r} 25 \\ 52 \\ 1990 \end{array}$	$\begin{array}{r} 2.38 \\ 4.95 \\ 189.35 \end{array}$	$\begin{array}{r} 2 \\ 123 \\ 2450 \end{array}$	$\begin{array}{\|r\|} 0.18 \\ 11.37 \\ 226.56 \end{array}$		
Giardiasis	127	. 56	06																			
Gonorrhea	1943	238.09	1842																			
Haemophilus influenzae, invasive ${ }^{1}$		0.12	169	$\begin{gathered} 0.12 \\ 8.26 \end{gathered}$	$\begin{array}{r} 3 \\ 108 \\ 27 \end{array}$	$\begin{array}{r} 0.35 \\ 12.50 \\ 12.31 \end{array}$	$\begin{array}{r} 3 \\ 35 \\ 66 \end{array}$	$\begin{array}{r} 0.33 \\ 3.86 \\ 28.79 \end{array}$	$\begin{array}{r} 8 \\ 39 \\ 49 \end{array}$	$\begin{array}{r} 0.85 \\ 4.16 \\ 20.87 \end{array}$	$\begin{array}{r} 4 \\ 83 \\ 49 \end{array}$	$\begin{array}{r} 0.42 \\ 8.62 \\ 20.54 \end{array}$	$\begin{array}{r} 6 \\ 20 \\ 58 \end{array}$	$\begin{array}{r} 0.61 \\ 2.02 \\ 23.61 \end{array}$	$\begin{array}{r} 8 \\ 16 \\ 64 \end{array}$	$\begin{array}{r} 0.78 \\ 1.57 \\ 25.54 \end{array}$	$\begin{array}{r} 3 \\ 17 \\ 65 \end{array}$	$\begin{array}{r} 0.29 \\ 1.62 \\ 25.16 \end{array}$	$\begin{array}{r} 7 \\ 7 \\ 42 \end{array}$	0.650.6515.88		
Hepatitis A	48	5.88																				
Hepatitis B (+HBsAg in a pregnant woman)																						
Hepatitis B, acute	48	5.88	32	$\begin{array}{r} 3.83 \\ 61.19 \end{array}$	$\begin{array}{r} 45 \\ 2 \\ 443 \end{array}$	$\begin{gathered} 5.21 \\ 0.23 \\ 51.26 \end{gathered}$	$\begin{array}{r} 43 \\ 2 \\ 507 \end{array}$	$\begin{array}{r} 4.75 \\ 0.22 \\ 55.96 \end{array}$	$\begin{array}{r} 48 \\ 5 \\ 569 \end{array}$	$\begin{array}{r} 5.12 \\ 0.53 \\ 50.07 \end{array}$	$\begin{array}{r} 46 \\ 9 \\ 453 \end{array}$	$\begin{array}{r} 4.78 \\ 0.94 \\ 47.06 \end{array}$	$\begin{array}{r} 50 \\ 6 \\ 410 \end{array}$	$\begin{array}{r} 5.05 \\ 0.61 \\ 41.42 \end{array}$	$\begin{array}{r} 47 \\ 5 \\ 397 \end{array}$	$\begin{array}{r} 4.60 \\ 0.49 \\ 38.88 \end{array}$	$\begin{array}{r} 56 \\ 3 \\ 421 \end{array}$	$\begin{array}{r} 5.33 \\ 0.29 \\ 40.06 \end{array}$		3.880.7435.60		
Hepatitis C, acute																						
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	97	11.89	511																			
Lead poisoning	35	4.29		$\begin{aligned} & 6.35 \\ & 0.12 \\ & 0.12 \end{aligned}$	$\begin{array}{r} 62 \\ 2 \end{array}$	$\begin{aligned} & 7.17 \\ & 0.23 \end{aligned}$	$\begin{array}{r} 28 \\ 4 \end{array}$	$\begin{aligned} & 3.09 \\ & 0.44 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 19 \\ & 17 \end{aligned}$	$\begin{aligned} & 2.03 \\ & 1.81 \end{aligned}$	$\begin{array}{r} 24 \\ 27 \\ 3 \\ 3 \end{array}$	$\begin{aligned} & 2.49 \\ & 2.81 \\ & 0.31 \end{aligned}$	$\begin{array}{r} 35 \\ 12 \end{array}$	$\begin{aligned} & 3.54 \\ & 1.21 \\ & 0.10 \end{aligned}$	$\begin{array}{r} 25 \\ 3 \\ 1 \\ 1 \end{array}$	$\begin{gathered} 2.45 \\ 0.29 \\ 0.10 \end{gathered}$	$\begin{aligned} & 32 \\ & 10 \\ & 10 \end{aligned}$	3.040.95	$\begin{array}{r} 17 \\ 8 \end{array}$	$\begin{aligned} & 1.57 \\ & 0.74 \\ & \end{aligned}$		
Legionellosis																						
Listeriosis ${ }^{3}$																						
Lyme disease		0.25		1 0.12 0.12 1.08		0.93			$\begin{array}{r} 3 \\ 3 \\ 10 \end{array}$	$\begin{aligned} & 0.32 \\ & 0.32 \\ & 1.07 \end{aligned}$		$\begin{aligned} & 0.52 \\ & 0.31 \\ & 0.83 \end{aligned}$	2	$\begin{aligned} & 0.10 \\ & 0.20 \\ & 0.61 \end{aligned}$	$\begin{array}{l\|l\|} 3 & 0.29 \\ 2 & 0.20 \\ 4 & 0.39 \end{array}$				$\begin{array}{r} 2 \\ 2 \\ 13 \end{array}$	$\begin{aligned} & 0.18 \\ & 0.18 \\ & 1.20 \end{aligned}$		
Malaria		0.25																				
Meningitis, other		0.25																				
Meningitis, Streptococcus pneumoniae		0.86	11	$\begin{aligned} & 1.32 \\ & 1.56 \\ & \\ & 0.24 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 0.93 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \\ & 6 \end{aligned}$	$\begin{gathered} 0.66 \\ 0.77 \\ 0.66 \end{gathered}$	$\begin{aligned} & 4 \\ & 8 \\ & 1 \end{aligned}$	$\begin{gathered} 0.43 \\ 0.85 \\ 0.11 \end{gathered}$		$\begin{aligned} & 0.42 \\ & 0.42 \\ & 0.42 \end{aligned}$	596	$\begin{aligned} & 0.51 \\ & 0.91 \\ & 0.61 \end{aligned}$	376	$\begin{gathered} 0.29 \\ 0.69 \\ 0.59 \end{gathered}$	$\begin{array}{r} 4 \\ 5 \\ 14 \end{array}$	$\begin{gathered} 0.38 \\ 0.48 \\ 1.33 \end{gathered}$	$\begin{aligned} & 5 \\ & 7 \\ & 6 \end{aligned}$	0.460.650.55		
Meningococcal disease ${ }^{4}$	12	1.47	13																			
Pertussis	3	0.37	2																			
Rabies, animal	16	NA	8	$\begin{array}{r\|r} 8 & \text { NA } \\ 6 & 17.48 \\ \hline 9 & 13.05 \end{array}$	$\begin{array}{r} 8 \\ 187 \\ 174 \end{array}$	$\begin{array}{r} \text { NA } \\ 21.64 \\ 20.13 \end{array}$	$\begin{array}{r} 11 \\ 148 \\ 86 \end{array}$	$\begin{array}{r} \mathrm{NA} \\ 16.34 \\ 9.49 \end{array}$	$\begin{aligned} & 210 \\ & 210 \\ & 122 \end{aligned}$	$\begin{array}{r} \mathrm{NA} \\ 22.42 \\ 13.02 \end{array}$	$\begin{aligned} & 303 \\ & 134 \end{aligned}$	$\begin{array}{r} \mathrm{NA} \\ 31.48 \\ 13.92 \end{array}$	$\begin{array}{r} 10 \\ 200 \\ 132 \end{array}$	$\begin{array}{r} \mathrm{NA} \\ 20.20 \\ 13.33 \end{array}$	$\begin{array}{r} 11 \\ 176 \\ 64 \end{array}$		$\begin{aligned} & 273 \\ & 2780 \end{aligned}$,	$\begin{array}{r} \text { NA } \\ 23.12 \\ 17.48 \end{array}$		
Salmonellosis	136	16.67	146													17.23		25.98	250			
Shigellosis	149	18.26	109																			
Streptococcus pneumoniae, invasive disease, drug-resistant	9	1.10		2.99 3 0.36	$\begin{array}{r} 39 \\ \mathrm{NR} \\ 2 \end{array}$	$\begin{array}{r} 4.51 \\ 0.23 \\ 0.23 \end{array}$	$\begin{array}{r} 83 \\ \mathrm{NR} \\ 14 \end{array}$	9.16	55	5.87	27	2.81	53	5.35	41	4.01	36	3.4	57	5.27		
Streetococcus pneumoniae, invasive disease, drug-susceptible Streptococcal disease, invasive Group A	NR		$N R$						NR		NR		21	2.12	42	4.11	29	2.76	49	4.53		
Streptococcal disease, invasive Group A								1.55	12	1.28	6	1.66	15	1.52	11	1.08	16	1.52	23	2.13		
Syphilis	257	31.49	294	35.20	328	37.95	424	46.80	347	37.04	295	30.65	245	24.75	210	20.56	355	33.7	325	30.05		
Toxoplasmosis						0.12										0.10						
Tuberculosis	133	16.30	125	14.97	108	12.50	96	10.60	109	11.64	97	10.08	83	8.38	98	9.60	90	8.56	103	9.52		
Vibrio infections ${ }^{5}$		0.25		0.84	3	35		11	2	0.21		0.10			2	0.2	4	0.38	6	0.55		
West Nile Virus	NR		NR		NR		NR					0.10										

${ }^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable

Selected Notifiable Diseases	Osceola County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	36	24.23	33	21.43	29	17.47	27	15.51	27	14.82	41	20.72	44	20.59	56	24.48	39	16.41	55	22.15
Animal Bite, post exposure prophylaxis recommended							2	1.15	8	4.39	5	2.53	5	2.34			16	6.73	29	11.68
Campylobacteriosis	7	4.71	10	6.49	9	5.42	9	5.17	7	3.84	3	1.52	5	2.34	6	2.62	3	1.26	12	4.83
Chlamydia	106	71.33	144	93.49	175	105.41	185	106.26	279	153.13	294	148.56	286	133.82	326	142.51	463	194.82	636	256.17
Cryptosporidiosis							3	1.72											4	1.61
Cyclosporiasis																	4	1.68		
Enterohemorrhagic Escherichia coli O157:H7							1	0.57			2	1.01								
Giardiasis	17	11.44	18	11.69	3	1.81	4	2.30	7	3.84	14	7.07	8	3.74	9	3.93	11	4.63	27	10.88
Gonorrhea	50	33.65	79	51.29	50	30.12	70	40.21	88	48.30	68	34.36	76	35.56	65	28.41	145	61.01	191	76.93
Haemophilus influenzae, invasive ${ }^{1}$					1	0.60			2	1.10			1	0.47	1	0.44	1	0.42		
Hepatitis A	1	0.67	1	0.65	13	7.83	4	2.30	3	1.65	8	4.04	4	1.87	2	0.87	1	0.42	7	2.82
Hepatitis B (+HBsAg in a pregnant woman)					3	7.60	6	14.54	4	9.42	1	2.20			1	1.85	5	9.08	9	15.71
Hepatitis B, acute	2	1.35	3	1.95	3	1.81	2	1.15	1	0.55	2	1.01	1	0.47			3	1.26	10	4.03
Hepatitis C, acute																				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	7	4.71	53	34.41	40	24.09	41	23.55	40	21.95	48	24.25	41	19.18	40	17.49	41	17.25	53	21.35
Lead poisoning	4	2.69	4	2.60	5	3.01	4	2.30			1	0.51							5	2.01
Legionellosis							-		1	0.55			1	0.47	2	0.87	5	2.10	1	0.40
Listeriosis ${ }^{3}$					1	0.60											1	0.42		
Lyme disease			3	1.95								0.51					1	0.42	3	1.21
Malaria			2	1.30	3	1.81			2	1.10	1	0.51	2	0.94						
Meningitis, other			1	0.65					1	0.55	1	0.51								
Meningitis, Streptococcus pneumoniae	2	1.35	1	0.65					1	0.55	1	0.51	1	0.47					-	
Meningococcal disease ${ }^{4}$	1	0.67	5	3.25	1	0.60	-	-			1	0.51	1	0.47					2	0.81
Pertussis					1	0.60	-	-					1	0.47	3	1.31			1	0.40
Rabies, animal	3	NA	5	NA	2	NA	3	NA					1	NA	3	NA	6	NA	4	NA
Salmonellosis	21	14.13	31	20.13	30	18.07	15	8.62	18	9.88	56	28.30	39	18.25	35	15.30	55	23.14	48	19.33
Shigellosis	13	8.75	9	5.84	6	3.61	1	0.57	6	3.29	3	1.52	8	3.74	3	1.31	4	1.68	8	3.22
Streptococcus pneumoniae, invasive disease, drug-resistant	1	0.67	4	2.60	7	4.22	6	3.45	9	4.94	4	2.02	6	2.81	1	0.44			5	2.01
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR								3	1.21										
Streptococcal disease, invasive Group A		0.67				0.60		1.72		1.10									4	1.61
Syphilis	22	14.80	19	12.34	21	12.65	28	16.08	27	14.82	31	15.66	16	7.49	16	6.99	16	6.73	16	6.44
Toxoplasmosis																				
Tuberculosis	5	3.36	6	3.90	6	3.61	9	5.17	5	2.74	7	3.54	5	2.34	6	2.62	10	4.21	7	2.82
Vibrio infections ${ }^{5}$													-	-			1	0.42		
West Nile Virus	NR		NR		NR		NR													

Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
1997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals,
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Palm Beach County																						
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006				
	Number	Rate																					
Acquired Immune Deficiency Syndrome (AIDS)		53.06	477	44.2	430	38.84	502	44.13	453	39.02	507	42.58	436	35.78	428	34.25	357	$\begin{array}{r} \hline 28.06 \\ 7.78 \\ 4.79 \end{array}$	$\begin{array}{\|} 370 \\ 91 \\ 83 \end{array}$	$\begin{array}{r} \hline 28.46 \\ 7.00 \\ 6.39 \end{array}$			
Animal Bite, post exposure prophylaxis recommended						0.72	74	6.51	91	7.84	101	8.48	110	9.03	104	8.32	99						
Campylobacteriosis	113	10.75	79	7.33	93	8.40	96	8.44	98	8.44	72	6.05	111	9.11	71	5.68	61						
Chlamydia	1380	$\begin{array}{\|r\|} 131.23 \\ 1.90 \\ 1.24 \end{array}$	$\begin{array}{r} 1421 \\ 7 \\ 4 \end{array}$	$\begin{array}{r} 131.89 \\ 0.65 \\ 0.37 \end{array}$	$\begin{array}{r} 1700 \\ 16 \\ 3 \end{array}$	$\begin{array}{r} 153.56 \\ 1.45 \\ 0.27 \end{array}$	166391	$\begin{array}{r} 146.19 \\ 0.79 \\ 0.09 \end{array}$	$\begin{array}{r} 2030 \\ 8 \\ 88 \\ \hline 8 \end{array}$	$\begin{array}{r} 174.85 \\ 0.69 \\ 3.27 \end{array}$	$\begin{array}{r} 1998 \\ 5 \\ 10 \end{array}$	$\begin{array}{r} 167.81 \\ 0.42 \\ 0.84 \end{array}$	$\begin{array}{r} 2230 \\ 9 \\ 3 \end{array}$	$\begin{array}{r} 183.01 \\ 0.74 \\ 0.25 \end{array}$	229833	$\begin{array}{r} 183.90 \\ 0.24 \\ 0.24 \end{array}$	$\begin{array}{r} 2198 \\ 22 \\ 31 \end{array}$	$\begin{array}{r} 172.75 \\ 1.73 \\ 2.44 \end{array}$	$\begin{array}{r} 2203 \\ 19 \\ 10 \end{array}$	$\begin{array}{r} 169.48 \\ 1.46 \\ 0.77 \end{array}$			
Cryptosporidiosis	20																						
Cyclosporiasis	13																						
Enterohemorrhagic Escherichia coli 0157:H7		$\begin{array}{r} 0.29 \\ 12.46 \\ 88.44 \end{array}$	$\begin{array}{r} 4 \\ 80 \\ 982 \end{array}$	$\begin{array}{r} 0.37 \\ 7.43 \\ 91.14 \end{array}$	$\begin{array}{r} 4 \\ 68 \\ 946 \end{array}$	$\begin{array}{r} 0.36 \\ 6.14 \\ 85.45 \end{array}$	$\begin{array}{r} 6 \\ 77 \\ 993 \end{array}$	$\begin{gathered} 0.53 \\ 6.77 \\ 87.29 \end{gathered}$	$\begin{array}{r} 7 \\ 77 \\ 915 \end{array}$	$\begin{gathered} 0.60 \\ 6.63 \\ 78.81 \end{gathered}$	$\begin{array}{r} 3 \\ 74 \\ 788 \end{array}$	$\begin{gathered} 0.25 \\ 6.22 \\ 66.18 \end{gathered}$	$\begin{array}{r} 5 \\ 77 \\ 769 \end{array}$	$\begin{array}{r} 0.41 \\ 6.32 \\ 63.11 \end{array}$	$\begin{array}{r} 6 \\ 52 \\ 820 \end{array}$	$\begin{array}{r} 0.48 \\ 4.16 \\ 65.62 \end{array}$	$\begin{array}{r} 5 \\ 73 \\ 856 \end{array}$	$\begin{array}{r} 0.39 \\ 5.74 \\ 67.28 \end{array}$	$\begin{array}{r} - \\ 78 \\ 1077 \end{array}$				
Giardiasis	131																						
Gonorrhea	930																						
Haemophilus influenzae, invasive ${ }^{1}$	9 ${ }_{5}$	$\begin{aligned} & 0.86 \\ & 4.94 \end{aligned}$	$\begin{array}{r} 3 \\ 38 \end{array}$	$\begin{aligned} & 0.28 \\ & 3.53 \end{aligned}$	$\begin{array}{r} 4 \\ 35 \\ 13 \end{array}$	$\begin{aligned} & 0.36 \\ & 3.16 \\ & 5.98 \end{aligned}$	$\begin{aligned} & 12 \\ & 84 \\ & 70 \end{aligned}$	$\begin{array}{r} 1.05 \\ 7.38 \\ 31.43 \end{array}$	$\begin{array}{r} 9 \\ 55 \\ 60 \end{array}$	$\begin{array}{r} 0.78 \\ 4.74 \\ 26.63 \end{array}$	$\begin{aligned} & 13 \\ & 38 \\ & 88 \end{aligned}$	$\begin{array}{r} 1.09 \\ 3.19 \\ 38.56 \end{array}$	$\left.\begin{aligned} & 15 \\ & 21 \\ & 71 \end{aligned} \right\rvert\,$	$\begin{array}{r} 1.23 \\ 1.72 \\ 30.34 \end{array}$	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	$\begin{array}{r} 1.44 \\ 1.52 \\ 29.89 \end{array}$	$\begin{aligned} & 17 \\ & 21 \\ & 70 \end{aligned}$	$\begin{array}{r} 1.34 \\ 1.65 \\ 28.91 \end{array}$	$\begin{aligned} & 17 \\ & 36 \\ & 69 \end{aligned}$	1.312.7728.02			
Hepatitis A																							
Hepatitis B (+HBsAg in a pregnant woman)																							
Hepatitis B, acute	32176		$\begin{array}{r} 24 \\ 547 \end{array}$	$\begin{gathered} 2.23 \\ \\ 50.77 \end{gathered}$	$\begin{array}{r} 28 \\ 687 \end{array}$	$\begin{array}{r} 2.53 \\ - \\ 62.06 \end{array}$	$\begin{array}{r} 25 \\ 1 \\ 463 \end{array}$	$\begin{array}{r} 2.20 \\ 0.09 \\ 40.70 \end{array}$	43455	$\begin{array}{r} 3.70 \\ \\ 39.19 \end{array}$	$\begin{array}{r} 31 \\ 567 \\ 567 \end{array}$	$\begin{array}{r} 2.60 \\ - \\ 47.62 \end{array}$	$\begin{array}{r} 51 \\ 533 \\ \\ \hline \end{array}$	$\begin{array}{r} 4.19 \\ 43.74 \end{array}$	$\begin{array}{r} 49 \\ 445 \end{array}$	$\begin{array}{r} 3.92 \\ \\ 35.61 \end{array}$	$\begin{array}{r} 45 \\ 1 \\ 394 \end{array}$	$\begin{array}{r} 3.54 \\ 0.08 \\ 30.97 \end{array}$		$\begin{gathered} 2.00 \\ \hline \\ \hline 27.77 \end{gathered}$			
Hepatitis C, acute																							
Human Immunodeficiency Virus ${ }^{2}$ (HIV)																							
Lead poisoning	15	$\begin{array}{r\|} 10.94 \\ 0.67 \\ 0.19 \end{array}$	$\begin{array}{r} 101 \\ 5 \\ 2 \\ 2 \end{array}$	$\begin{gathered} 9.37 \\ 0.46 \\ 0.19 \end{gathered}$	$\begin{array}{r} 83 \\ 2 \\ 8 \end{array}$	$\begin{aligned} & 7.50 \\ & 0.18 \\ & 0.72 \end{aligned}$	$\begin{array}{r} 45 \\ 6 \\ 8 \end{array}$	$\begin{aligned} & 3.96 \\ & 0.53 \\ & 0.70 \end{aligned}$	$\begin{array}{r} 20 \\ 5 \\ 8 \end{array}$	$\begin{aligned} & 1.72 \\ & 0.43 \\ & 0.69 \end{aligned}$	$\begin{gathered} 69 \\ 10 \\ 4 \end{gathered}$	$\begin{aligned} & 5.80 \\ & 0.84 \\ & 0.34 \end{aligned}$	$\begin{array}{r} 68 \\ 19 \\ 6 \end{array}$	$\begin{aligned} & 5.58 \\ & 1.56 \\ & 0.49 \end{aligned}$	$\begin{array}{r} 37 \\ 8 \\ 8 \\ 6 \end{array}$	$\begin{aligned} & 2.96 \\ & 0.64 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 19 \\ & 18 \\ & 13 \end{aligned}$	$\begin{aligned} & 1.49 \\ & 1.41 \\ & 1.02 \end{aligned}$	$\begin{array}{r} 21 \\ 21 \\ 6 \end{array}$	$\begin{aligned} & 1.62 \\ & 1.62 \\ & 0.46 \end{aligned}$			
Legionellosis																							
Listeriosis ${ }^{3}$	2																						
Lyme disease	2	$\begin{aligned} & 0.38 \\ & 1.14 \\ & 0.76 \end{aligned}$	$\begin{array}{r} 5 \\ 13 \\ 4 \end{array}$	$\begin{aligned} & 0.46 \\ & 1.21 \\ & 0.37 \end{aligned}$	$\begin{array}{r} 5 \\ 11 \\ 10 \end{array}$	$\begin{aligned} & 0.45 \\ & 0.99 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 2 \\ & 8 \\ & 9 \end{aligned}$	$\begin{gathered} 0.18 \\ 0.70 \\ 0.79 \end{gathered}$	$\begin{aligned} & 6 \\ & 9 \end{aligned}$	$\begin{gathered} 0.69 \\ 0.52 \\ 0.78 \end{gathered}$	$\begin{array}{r} 7 \\ 8 \\ 8 \\ 10 \end{array}$	$\begin{gathered} 0.59 \\ 0.67 \\ 0.84 \end{gathered}$	$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & 0.41 \\ & 1.23 \\ & 1.31 \end{aligned}$	$\begin{array}{r} 3 \\ 12 \\ 10 \end{array}$	$\begin{aligned} & 0.24 \\ & 0.96 \\ & 0.80 \end{aligned}$	$\begin{array}{r} 5 \\ 8 \\ 12 \end{array}$		$\begin{aligned} & 5 \\ & 6 \\ & 9 \end{aligned}$	$\begin{gathered} 0.38 \\ 0.46 \\ 0.69 \end{gathered}$			
Malaria																		$\begin{gathered} 0.39 \\ 0.63 \\ 0.94 \end{gathered}$					
Meningitis, other																							
Meningitis, Streptococcus pneumoniae	14	$\begin{array}{ll} 4 & 1.33 \\ 3 & 1.24 \\ 2 & 0.19 \end{array}$	$\begin{aligned} & 6 \\ & 5 \\ & 7 \end{aligned}$	0.560.460.65	$\begin{aligned} & 5 \\ & 8 \\ & 6 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.72 \\ & 0.54 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 3 \end{aligned}$	$\begin{gathered} 0.79 \\ 0.79 \\ 0.26 \end{gathered}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{gathered} 0.17 \\ 0.34 \end{gathered}$	$\begin{array}{r} 10 \\ 2 \end{array}$	$\begin{gathered} 0.50 \\ 0.84 \\ 0.17 \end{gathered}$	$\begin{array}{l\|l} 3 & 0.25 \\ 4 & 0.33 \\ 5 & 0.41 \end{array}$		$\begin{array}{ll} 1 & 0.08 \\ 4 & 0.32 \\ 4 & 0.32 \end{array}$		$\begin{array}{l\|l} 2 & 0.16 \\ 4 & 0.31 \\ 7 & 0.55 \end{array}$		$\begin{array}{r} 5 \\ 7 \\ 10 \end{array}$	0.380.540.77			
Meningococcal disease ${ }^{4}$	13																						
Pertussis																							
Rabies, animal		$\begin{array}{r} \mathrm{NA} \\ 15.88 \\ 12.93 \end{array}$	$\begin{array}{r} 8 \\ 223 \\ 210 \end{array}$	$\begin{array}{r} \text { NA } \\ 20.70 \\ 19.49 \end{array}$	$\begin{array}{r} 6 \\ 206 \\ 101 \end{array}$	NA		NA	12	NA	26	NA	3	NA	17	NA	10	NA		NA			
Salmonellosis	167					18.61	187	16.44	192	16.54	288	24.19	260	21.34	275	22.01	371	29.16	345	26.54			
Shigellosis	136					9.12	30	2.64	38	3.27	74	6.22	149	12.23	75	6.00	79	6.21	54	4.15			
Streptococcus pneumoniae, invasive disease, drug-resistant	23	2.19	31	2.88	38	3.43	89	7.82	56	4.82	51	4.28	37	3.04	43	3.44	54	4.24	56	4.31			
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		10	0.82	36	2.88	42	3.30	32	2.46													
Streptococcal disease, invasive Group A				0.09	12	1.08		0.79	10	0.86	19	1.60	16	1.31	15	1.20	27	2.12	25	1.92			
Syphilis	181	17.21	74	16.15	269	24.30	255	22.42	224	19.29	226	18.98	170	13.95	156	12.48	141	11.08	85	6.54			
Toxoplasmosis								0.18		0.17		0.25		0.16		0.16							
Tuberculosis	115	10.94	84	7.80	107	9.67	76	6.68	79	6.80					99	7.92	92	7.23	82	6.31			
Vibrio infections ${ }^{5}$		0.29	13	1.21		0.36	9	0.79	3	0.26	7	0.59	12	0.98	10	0.80	9	0.71	8	0.6			
West Nile Virus	NR		NR		NR		NR				3	0.25	2	0.16						0.08			

[^13] ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Pasco County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate	Number	Rate	Number	Rate	Number	0	Number	Rate										
Acquired Immune Deficiency Syndrome (AIDS)	22	6.82	39	11.85	31	9.19	31	8.94	32	9.03	35	9.59	34	8.99	52	13.25	29	7.06	51	12.01
Animal Bite, post exposure prophylaxis recommended					53	15.71	18	5.19	55	15.53	51	13.98	57	15.08	50	12.74	43	10.47	44	10.36
Campylobacteriosis	35	10.85	13	3.95	18	5.34	28	8.07	16	4.52	20	5.48	23	6.08	33	8.41	21	5.11	20	4.71
Chlamydia	279	86.46	240	72.91	376	111.46	367	105.80	409	115.47	475	130.17	421	111.35	438	111.59	461	112.23	521	122.67
Cryptosporidiosis			1	0.30		0.30	2	0.58				0.27	2	0.53	5	1.27	8	1.95	11	2.59
Cyclosporiasis																	7	1.70		0.24
Enterohemorrhagic Escherichia coli 0157:H7		0.31		0.30				0.86		0.28		0.27	2	0.53	1	0.25	5	1.22		
Giardiasis	61	18.90	35	10.63	21	6.23	17	4.90	17	4.80	23	6.30	19	5.03	15	3.82	19	4.63	21	4.94
Gonorrhea	158	48.96	141	42.83	226	66.99	200	57.66	146	41.22	166	45.49	141	37.29	158	40.25	160	38.95	187	44.03
Haemophilus influenzae, invasive ${ }^{1}$						0.30		0.29		0.56		0.27			1	0.25				0.24
Hepatitis A	16	4.96	5	1.52	16	4.74	6	1.73	7	1.98	10	2.74	6	1.59	5	1.27	5	1.22	1	0.24
Hepatitis B (+HBsAg in a pregnant woman)						9.99	2	3.24		1.61		3.20	4	6.16	2	2.88	1	1.39	6	8.06
Hepatitis B, acute	10	3.10		2.13		1.48	4	1.15		1.41	6	1.64	11	2.91		1.78	3	0.73	3	0.71
Hepatitis C, acute						0.89				0.56		0.27		0.26						0.24
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	6	1.86	36	10.94	35	10.38	38	10.95	34	9.60	28	7.67	37	9.79	52	13.25	58	14.12	39	9.18
Lead poisoning	53	16.42	29	8.81	32	9.49	13	3.75	12	3.39	15	4.11	15	3.97	7	1.78	13	3.16	3	0.71
Legionellosis			2	0.61			1	0.29		0.56	4	1.10	5	1.32	8	2.04	3	0.73	7	1.65
Listeriosis ${ }^{3}$						0.30				0.56		0.27			1	0.25				0.24
Lyme disease			1	0.30						0.28	8	2.19				0.51				
Malaria					1	0.30				0.28			1	0.26						0.24
Meningitis, other			1	0.30			1	0.29		0.28					2	0.51	1	0.24	4	0.94
Meningitis, Streptococcus preumoniae		0.93			1	0.30	2	0.58			1	0.27	2	0.53	1	0.25			4	0.94
Meningococcal disease ${ }^{4}$	3	0.93	5	1.52	4	1.19	1	0.29	2	0.56	1	0.27	4	1.06	7	1.78			4	0.94
Pertussis	2	0.62				0.30				0.28	2	0.55			3	0.76	8	1.95	7	1.65
Rabies, animal		NA	13	NA		NA				NA	11	NA		NA		NA	6	N	4	NA
Salmonellosis	37	11.47	44	13.37	55	16.30	58	16.72	97	27.39	134	36.72	114	30.15	103	26.24	107	26.05	102	24.02
Shigellosis	22	6.82	3	0.91	21	6.23	31	8.94	21	5.93	33	9.04	12	3.17	5	1.27	9	2.19	14	3.30
Streptococcus pneumoniae, invasive disease, drug-resistant	6	1.86	14	4.25	19	5.63	36	10.38	26	7.34	12	3.29	10	2.64	15	3.82	14	3.41	14	3.30
Streptococcus preumoniae, invasive disease, drug-susceptible	NR		6	1.59	17	4.33	15	3.65	17	4.00										
Streptococcal disease, invasive Group A						0.30		1.15		0.85		1.92		1.06	4	1.02	6	1.46		1.65
Syphilis	13	4.03		1.52	13	3.85	7	2.02	10	2.82	13	${ }^{3.56}$	13	3.44	8	2.04	11	2.68	17	4.00
Toxoplasmosis										0.28	1	0.27		0.26	1	0.25				
Tuberculosis	17	5.27	12	3.65	14	4.15	11	3.17		1.98		1.92	9	2.38	13	3.31	8	1.95	6	1.41
Vibrio infections ${ }^{5}$		0.93		0.30		0.30		0.58		0.28	2	0.55	3	0.79	2	0.51	3	0.73	2	0.47
West Nile Virus	NR		NR		NR		NR					0.27					1	0.24		

Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Pinellas County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate	Number	Rat	Number	Ra	Number	Rate												
Acquired Immune Deficiency Syndrome (AIDS)	197	21.84	176	19.35	203	22.13	181	19.60	217	23.32	159	17.00	168	17.85	199	21.06	150	15.81	221	23.16
Animal Bite, post exposure prophylaxis recommended						11		0. 43	33	3.55	42	4.49	62	6.59	59	6.24	48	5.06	38	3.98
Campylobacteriosis	46	10	36	3.96	35	3.82	27	2.92	31	3.33	43	4.60	48	5.10	46	4.87	39	4.11	28	2.93
Chlamydia	1789	198.36	1692	186.05	1760	191.86	1834	198.63	1884	202.45	2294	245.28	2325	246.96	2425	256.62	2495	262.93	2959	310.11
Cryptosporidiosis	7	0.78	7	0.77	5	0.55	3	0.32				0.53	3	0.32	7	0.74	15	1.58	9	0.94
Cyclosporiasis	2	0.22				0.22						0.11				0.11	57	6.01		
Enterohemorrhagic Escherichia coli 0157:H7		0.22				0.44		0.54		0.11		0.64		0.42		0.21		0.32	2	0.21
Giardiasis	73	8.09	64	7.04	53	5.78	49	5.31	38	4.08	55	5.88	39	4.14	28	2.96	30	3.16	37	3.88
Gonorrhea	1201	133.16	1468	161.42	1835	20.04	1542	167.01	1391	149.47	1527	163.27	1312	139.36	1382	146.25	1423	149.96	1643	172.19
Haemophilus influenzae, invasive ${ }^{1}$				0.44		0.55		0.22		0.21		0.43		0.21		0.63	6	0.63		0.52
Hepatitis A	20	2.22	19	2.09	87	9.48	51	5.52	33	3.55	25	2.67	22	2.34	12	1.27		0.95	5	0.52
Hepatitis B (+HBsAg in a pregnant woman)						1.65	17	9.31	9	4.95	35	19.43	37	20.37	26	14.52	33	18.31	27	15.01
Hepatitis B, acute	41	4.55	40	4.40	33	3.60	59	6.39	49	5.27	62	6.63	47	4.99	48	5.08	36	3.79	24	2.52
Hepatitis C, acute					22	2.40	8	0.87		0.54	13	1.39	11	1.17	14	1.48		0.74	9	0.94
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	58	6.43	207	22.76	253	27.58	164	17.76	180	19.34	228	24.38	269	28.57	233	24.66	234	24.66	185	19.39
Lead poisoning	225	24.95	142	15.61	180	19.62	91	9.86	55	5.91	50	5.35		6.59	22	2.33	49	5.16	22	2.31
Legionellosis		. 11	10	1.10	3	0.33	12	1.30	15	1.61	9	0.96	17	1.81	15	1.59	8	0.84	13	1.36
Listeriosis ${ }^{3}$		0.11				0.11	5	0.54	2	0.21		0.11	3	0.32			2	0.2	3	0.31
Lyme disease	4	0.44	12	1.32	5	0.55	10	1.08	8	0.86	10	1.07	6	0.64	4	0.42	4	0.42	3	0.31
Malaria			1	0.11	1	0.11	3	0.32		0.11		0.43	4	0.42		0.42		0.11	3	0.31
Meningitis, other	5	0.55	6	0.66	3	0.33		0.32	5	0.54	13	1.39	9	0.96	2	21	5	0.53	10	1.05
Meningitis, Streptococcus pneumoniae	5	0.55	1	0.11	3	0.33	4	0.43		0.32	4	0.43		0.11		0.11	6	0.63	2	0.21
Meningococcal disease ${ }^{4}$	7	0.78	6	0.66	1	0.11	5	0.54	10	1.07	9	0.96	4	0.42		0.42	7	0.74	7	0.73
Pertussis	7	0.78		0.11	2	22				0.43		0.11	23	2.44	15	1.59	13	1.37	21	2.20
Rabies, animal		NA	2	NA		NA	5	NA												
Salmonellosis	90	9.98	99	10.89	117	12.75	126	13.65	136	14.61	175	18.71	207	21.99	170	17.99	212	22.34	175	18.34
Shigellosis	65	7.21	44	84	67	7.30	65	7.04	30	3.22	72	7.70	46	4.89	19	2.01	169	17.81	19	1.99
Streptococcus pneumoniae, invasive disease, drug-resistant		0.11	17	1.87	46	5.01	69	7.47	36	3.87	27	2.89	29	3.08	22	2.33	27	2.85	18	1.89
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		12	1.27	21	2.22	29	3.06	25	2.62										
Streptococcal disease, invasive Group A		0.11			17	1.85	18	1.95	19	2.04	22	2.35		0.74		0.74	11	1.16	16	1.68
Syphilis	79	8.76	56	6.16	37	4.03	64	6.93	40	4.30	81	8.66	128	13.60	97	10.26	95	10.01	141	14.78
Toxoplasmosis			2	0.22		0.33	1	0. 11		0.43	4	0.43		0.11		0.32				
Tuberculosis	45	4.99	52	5.72	40	4.36	32	3.47	30	3.22	40	28	52	5.52	32	3.39	26	2.74	30	3.14
Vibrio infections ${ }^{5}$		0.33		0.77		0.76		0.43	3	0.32	4	0.43	13	1.38	10	1.06			${ }^{6}$	0.63
West Nile Virus	NR		NR		NR		NR											1.90		

${ }^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other
NR - Not Reportable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Polk County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate	Number	Ra	Number	Rate														
Acquired Immune Deficiency Syndrome (AIDS)	100	21.93	103	22.19	84	17.67	88	18.06	67	13.45	90	17.84	101	19.64	127	23.90	102	18.71	107	19.19
Animal Bite, post exposure prophylaxis recommended																0.19				0.54
Campylobacteriosis	33	7.24	28	6.03	29	6.10	54	11.08	41	8.23	38	7.53	44	8.56	40	7.53	41	7.52	38	6.82
Chlamydia	995	218.24	1274	274.45	1080	227.24	1199	246.11	1350	271.08	1534	304.14	1420	276.13	1526	287.13	1551	284.55	1708	306.39
Cryptosporidiosis	9	. 97	13	2.80	7	1.47	6	1.23		1.00	3	0.59	3	0.58	1	0.19	14	2.57	11	1.97
Cyclosporiasis																	16	2.94		0.18
Enterohemorrhagic Escherichia coli O157:H7				22				21				20	2	39		19		0.92		
Giardiasis	67	14.70	69	14.86	26	5.47	41	8.42	34	6.83	38	7.53	38	7.39	44	8.28	23	4.22	18	3.23
Gonorrhea	1043	228.76	1089	234.59	903	190.00	875	179.60	762	153.01	643	127.48	489	95.09	628	118.16	797	146.22	941	168.80
Haemophilus influenzae, invasive ${ }^{1}$			4	0.86		21	1	0.21		0.60		1.19	16	3.11		0.38	10	1.83	8	1.44
Hepatitis A	29	6.36	15	3.23	44	9.26	15	3.08	152	30.52	277	54.92	10	1.94	15	2.82	23	4.22	2	0.36
Hepatitis B (+HBsAg in a pregnant woman)							2	2.00	22	21.82	15	14.88	20	19.44	28	26.43	17	15.75	18	16.42
Hepatitis B, acute	18	3.95	20	4.31	27	5.68	16	3.28	26	5.22	50	91	48	33	30	5.64	25	4.5	23	4.13
Hepatitis C, acute						0.21	1	0.21	2	0.40	3	0.59	2	0.39	11	2.07		0.18		0.18
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	10	2.19	112	. 13	87	18.31	103	21.14	109	21.89	76	15.07	69	13.42	104	19.57	93	17.06	99	17.76
Lead poisoning	48	10.53	52	20	53	15	39	8.01	21	4.22		6.54	29	5.64	22	14	15	2.75	9	1.61
Legionellosis		0.22	4	0.86	1	0.21	2	0.41		0.20		0.20	4	0.78		0.38	-	0.18	3	0.54
Listeriosis ${ }^{3}$												0.20				0.38				0.36
Lyme disease												20		0.19						
Malaria	2	0.44			2	0.42				0.20		0.20				0.19		0.18	2	0.36
Meningitis, other	2	0.44	4	0.86	3	0.63	7	1.44	6	1.20	3	0.59	6	1.17	4	0.75		0.73	5	0.90
Meningitis, Streptococcus pneumoniae	3	0.66	2	0.43	2	0.42	3	0.62			3	0.59	5	0.97	2	0.38	2	0.37		0.72
Meningococcal disease ${ }^{4}$	13	2.85	1	0.22	6	1.26	4	0.82	7	1.41	1	0.20	5	0.97	8	1.51	2	0.37	2	0.36
Pertussis	6	. 32	2	0.43	5	1.05		1.03			2	0.40	2	0.39		0.38	28	5.14	9	1.61
Rabies, animal										NA	14	NA	10	NA	12	NA	6	NA	5	NA
Salmonellosis	86	18.86	103	22.19	82	17.25	77	15.81	101	20.28	186	36.88	156	30.34	136	25.59	188	34.49	173	31.03
Shigellosis	33	7.24	36	7.76	48	10.10	98	20.12	142	28.51	92	18.24	13	2.53	13	2.45	41	7.52	179	32.11
Streptococcus pneumoniae, invasive disease, drug-resistant	15	3.29	16	3.45	54	11.36	65	13.34		7.03	22	36		5.44	25	4.70	33	6.05	45	8.07
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		10	94	33	6.21	16	2.94	32	5.74										
Streptococcal disease, invasive Group A		0.22						1.44		1.00	15	2.97	15	2.92	12	2.26	12	2.20	13	2.33
Syphilis	55	12.06	61	13.14	78	16.41	85	17.45	108	21.69	100	19.83	52	10.11	50	9.41	66	12.1	67	12.02
Toxoplasmosis							2	0.41		0.20										0.18
Tuberculosis	40	8.77	37	7.97	28	5.89	33	6.77	31	6.22	28	5.55	29	5.64	27	5.08	54	9.91	31	5.56
Vibrio infections ${ }^{5}$				1.51					3	0.60	4				2	0.38		0.18		0.18
West Nile Virus	NR		NR		NR		NR					0.20								

Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Putnam County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	16	23.16	14	20.14	20	28.56	16	22.68	13	18.33	15	20.98	10	13.87	15	20.43	10	13.53	10	13.42
Animal Bite, post exposure prophylaxis recommended					2	2.86			13	18.33	14	19.59	9	12.48	5	6.81	15	20.30	7	9.40
Campylobacteriosis	9	13.03	4	5.75	3	4.28	11	15.60	5	7.05	2	2.80	8	11.09	3	4.09	2	2.71		
Chlamydia	80	115.79	87	125.13	162	231.33	171	242.44	180	253.77	210	293.78	156	216.32	190	258.73	226	305.83	232	311.38
Cryptosporidiosis					1	1.43											1	1.35		
Cyclosporiasis																	1	1.35	1	1.34
Enterohemorrhagic Escherichia coli O157:H7								1.42												
Giardiasis	9	13.03	7	10.07	3	4.28	5	7.09	8	11.28	3	4.20	8	11.09	5	6.81	6	8.12	6	8.05
Gonorrhea	51	73.82	66	94.93	159	227.05	157	222.59	145	204.43	92	128.71	76	105.39	131	178.39	182	246.29	148	198.64
Haemophilus influenzae, invasive ${ }^{1}$							1	1.42					2	2.77	2	2.72	1	1.35		
Hepatitis A	1	1.45	1	1.44			2	2.84	1	1.41			1	1.39	1	1.36				
Hepatitis B (+HBsAg in a pregnant woman)							2	14.58	2	14.63			5	36.38	2	14.39	3	21.77	1	7.27
Hepatitis B, acute	2	2.89	1	1.44	5	7.14	4	5.67	3	4.23	2	2.80	2	2.77	12	16.34	2	2.71	3	4.03
Hepatitis C, acute																			1	1.34
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	4	5.79	12	17.26	18	25.70	11	15.60	17	23.97	17	23.78	14	19.41	16	21.79	15	20.30	13	17.45
Lead poisoning	16	23.16	2	2.88	7	10.00	8	11.34	4	5.64	4	5.60	7	9.71	1	1.36	2	2.71	4	5.37
Legionellosis									2	2.82					1	1.36				
Listeriosis ${ }^{3}$																				
Lyme disease			1	1.44	1	1.43			1	1.41					1	1.36	1	1.35		
Malaria											1	1.40								
Meningitis, other	1	1.45							1	1.41	1	1.40	2	2.77	2	2.72		1.35		
Meningitis, Streptococcus pneumoniae									1	1.41	1	1.40	1	1.39	2	2.72	1	1.35		
Meningococcal disease ${ }^{4}$	1	1.45	13	18.70	5	7.14	2	2.84	1	1.41	2	2.80	5	6.93	1	1.36				
Pertussis					9	12.85		1.42					5	6.93			3	4.06	1	1.34
Rabies, animal	3	NA	,	NA	1	NA					2	NA	1	NA	1	NA	2	NA	7	NA
Salmonellosis	12	17.37	19	27.33	23	32.84	6	8.51	21	29.61	29	40.57	25	34.67	33	44.94	44	59.54	34	45.63
Shigellosis	9	13.03	22	31.64			25	35.44	7	9.87			52	72.11	10	13.62	1	1.35	2	2.68
Streptococcus pneumoniae, invasive disease, drug-resistant	1	1.45	1	1.44	5	7.14	6	8.51	7	9.87	4	5.60	2	2.77	1	1.36	3	4.06	3	4.03
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		7	9.71	8	10.89	3	4.06	3	4.03										
Streptococcal disease, invasive Group A											2	2.80	2	2.77	1	1.36			2	2.68
Syphilis	22	31.84	29	41.71	21	29.99	8	11.34	2	2.82	2	2.80					5	6.77	9	12.08
Toxoplasmosis					1	1.43							1	1.39	1	1.36				
Tuberculosis	7	10.13	3	4.31	6	8.57	3	4.25	2	2.82	3	4.20	3	4.16	3	4.09	3	4.06	2	2.68
Vibrio infections ${ }^{5}$				-	1	1.43							1	1.39					-	
West Nile Virus	NR		NR		NR		NR			1.41							-			

[^14]| Selected Notifiable Diseases | St. Johns County | | | | | | | | | | | | | | | | | | | |
| :---: |
| | 1997 | | 1998 | | 1999 | | 2000 | | 2001 | | 2002 | | 2003 | | 2004 | | 2005 | | 2006 | |
| | Number | Rate |
| Acquired Immune Deficiency Syndrome (AIDS) | 21 | 19.26 | 12 | 10.61 | 22 | 18.60 | 10 | 8.02 | 12 | 9.24 | 13 | 9.60 | 12 | 8.50 | 21 | 13.90 | 9 | 5.65 | 17 | 10.21 |
| Animal Bite, post exposure prophylaxis recommended | | | | | | | | | 13 | 10.01 | 9 | 6.64 | 7 | 4.96 | 21 | 13.90 | 22 | 13.82 | 20 | 12.01 |
| Campylobacteriosis | 7 | 6.42 | 6 | 5.31 | 7 | 5.92 | 8 | 6.42 | 6 | 4.62 | 5 | 3.69 | 6 | 4.25 | 9 | 5.96 | 14 | 8.80 | 15 | 9.01 |
| Chlamydia | 87 | 79.78 | 40 | 35.37 | 92 | 77.80 | 57 | 45.74 | 110 | 84.69 | 141 | 104.08 | 151 | 106.93 | 117 | 77.42 | 134 | 84.19 | 213 | 127.95 |
| Cryptosporidiosis | | | 3 | 2.65 | | | 5 | 4.01 | | | 2 | 1.48 | | | 1 | 0.66 | 20 | 12.57 | 17 | 10.21 |
| Cyclosporiasis | | | | | 1 | 0.85 | - | | | | | | | | | | 2 | 1.26 | | |
| Enterohemorrhagic Escherichia coli O157:H7 | | | 1 | 0.88 | | | | | | | | | | | 2 | 1.32 | | | 1 | 0.60 |
| Giardiasis | 10 | 9.17 | 14 | 12.38 | 19 | 16.07 | 15 | 12.04 | 9 | 6.93 | 15 | 11.07 | 10 | 7.08 | 8 | 5.29 | 10 | 6.28 | 8 | 4.81 |
| Gonorrhea | 79 | 72.44 | 21 | 18.57 | 74 | 62.58 | 44 | 35.31 | 32 | 24.64 | 63 | 46.51 | 58 | 41.07 | 25 | 16.54 | 38 | 23.87 | 75 | 45.05 |
| Haemophilus influenzae, invasive ${ }^{1}$ | | | 1 | 0.88 | | | | | 1 | 0.77 | | | | | | | | | | |
| Hepatitis A | 4 | 3.67 | 3 | 2.65 | 4 | 3.38 | | | 1 | 0.77 | 10 | 7.38 | 1 | 0.71 | 1 | 0.66 | 1 | 0.63 | 2 | 1.20 |
| Hepatitis B (+HBsAg in a pregnant woman) | | | | | 1 | 3.96 | | | 1 | 3.68 | | | 2 | 6.85 | 3 | 9.76 | 2 | 6.12 | 1 | 2.95 |
| Hepatitis B, acute | 4 | 3.67 | 2 | 1.77 | 3 | 2.54 | 2 | 1.60 | 2 | 1.54 | 3 | 2.21 | 2 | 1.42 | 4 | 2.65 | | | 3 | 1.80 |
| Hepatitis C, acute | | | | | | | | | | | 1 | 0.74 | | | | | | | - | |
| Human Immunodeficiency Virus ${ }^{2}$ (HIV) | 2 | 1.83 | 7 | 6.19 | 18 | 15.22 | 13 | 10.43 | 7 | 5.39 | 13 | 9.60 | 14 | 9.91 | 19 | 12.57 | 17 | 10.68 | 14 | 8.41 |
| Lead poisoning | 18 | 16.51 | 10 | 8.84 | 11 | 9.30 | 4 | 3.21 | 2 | 1.54 | 6 | 4.43 | 3 | 2.12 | 2 | 1.32 | 1 | 0.63 | 1 | 0.60 |
| Legionellosis | 1 | 0.92 | | | | | | | 3 | 2.31 | | | 2 | 1.42 | 1 | 0.66 | 2 | 1.26 | 2 | 1.20 |
| Listeriosis ${ }^{3}$ | | | | | | | | | | | 1 | 0.74 | | | | | | | | |
| Lyme disease | 1 | 0.92 | 1 | 0.88 | 3 | 2.54 | | | 1 | 0.77 | 1 | 0.74 | | | | | | | | |
| Malaria | | | 1 | 0.88 | | | | | | | | | | | | | | | - | |
| Meningitis, other | | | 1 | | | | | | 1 | 0.77 | | | | | 1 | 0.66 | | | | |
| Meningitis, Streptococcus pneumoniae | | | 2 | 1.77 | 1 | 0.85 | | | | | | - | | | | | | | 1 | 0.60 |
| Meningococcal disease ${ }^{4}$ | 3 | 2.75 | | | | | | | 1 | 0.77 | 1 | 0.74 | | | 1 | 0.66 | 2 | 1.26 | - | |
| Pertussis | | | | | | 2.54 | 1 | 0.80 | | | 1 | 0.74 | | | 5 | 3.31 | | | 4 | 2.40 |
| Rabies, animal | 3 | NA | 2 | NA | | | 1 | NA | 1 | NA | 2 | NA | 1 | NA | 3 | NA | 5 | NA | 7 | NA |
| Salmonellosis | 22 | 20.17 | 34 | 30.06 | 43 | 36.36 | 28 | 22.47 | 31 | 23.87 | 45 | 33.22 | 38 | 26.91 | 46 | 30.44 | 76 | 47.75 | 55 | 33.04 |
| Shigellosis | 35 | 32.09 | 44 | 38.90 | 3 | 2.54 | 7 | 5.62 | 1 | 0.77 | 11 | 8.12 | 28 | 19.83 | 23 | 15.22 | 1 | 0.63 | 8 | 4.81 |
| Streptococcus pneumoniae, invasive disease, drug-resistant | | | | | 1 | 0.85 | 4 | 3.21 | 4 | 3.08 | 2 | 1.48 | 1 | 0.71 | 1 | 0.66 | 4 | 2.51 | 3 | 1.80 |
| Streptococcus pneumoniae, invasive disease, drug-susceptible | NR | - | NR | - | NR | | NR | | NR | | NR | | 1 | 0.71 | 2 | 1.32 | 6 | 3.77 | 3 | 1.80 |
| Streptococcal disease, invasive Group A | | | | | | | | | | 1.54 | | | 1 | 0.71 | 1 | 0.66 | 1 | 0.63 | 1 | 0.60 |
| Syphilis | 2 | 1.83 | 1 | 0.88 | 4 | 3.38 | 1 | 0.80 | 1 | 0.77 | 2 | 1.48 | 3 | 2.12 | 5 | 3.31 | | | 7 | 4.20 |
| Toxoplasmosis | | | 1 | 0.88 | | | | | | | | | | | | | | | - | |
| Tuberculosis | 6 | 5.50 | 5 | 4.42 | 5 | 4.23 | 4 | 3.21 | 3 | 2.31 | 5 | 3.69 | 8 | 5.67 | 1 | 0.66 | 5 | 3.14 | 1 | 0.60 |
| Vibrio infections ${ }^{5}$ | | 0.92 | | | 1 | 0.85 | | - | | - | | | 1 | 0.71 | - | | 2 | 1.26 | 2 | 1.20 |
| West Nile Virus | NR | | NR | | NR | | NR | | | | | | | 0.71 | | | | | - | |

Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
21997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

bined totals
${ }^{3} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable

Selected Notifiable Diseases	Santa Rosa County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)		0.94	9	8.11	8	6.94	5	4.22		5.73	8	6.35	12	9.24	12	8.90	9	6.56	7	4.96
Animal Bite, post exposure prophylaxis recommended					4	3.47			6	4.91	9	7.15	7	5.39	10	7.42	8	5.83	5	3.55
Campylobacteriosis	7	6.55	5	4.50	3	2.60	3	2.53	6	4.91	6	4.76	3	2.31	8	5.94	1	0.73	6	4.26
Chlamydia	68	63.67	125	112.59	141	122.25	170	143.33	185	151.33	188	149.27	126	97.04	134	99.44	182	132.61	171	121.29
Cryptosporidiosis			1	0.90				0.84						1.54					5	3.55
Cyclosporiasis																		0.73		
Enterohemorrhagic Escherichia coli 0157:H7			4	3.60	2	1.73		0.84												
Giardiasis	12	11.24	6	5.40	7	6.07		3.37		4.09		5.56		6.93		5.19		2.91	3	2.13
Gonorrhea	33	30.90	44	39.63	70	60.69	58	48.90	55	44.99	40	31.76	37	28.50	24	17.81	44	32.06	75	53.20
Haemophilus influenzae, invasive ${ }^{1}$							2	1.69		0.82		0.79								
Hepatitis A	2	1.87	1	0.90			9	7.59		0.82		0.79			1	0.74				
Hepatitis B (+HBsAg in a pregnant woman)					2	7.59								3.46						
Hepatitis B, acute	7	6.55		2.70				5.90		3.27		0.79	2	1.54		0.74	3	2.19	2	1.42
Hepatitis C, acute							1	0.84				0.79					1	0.73		
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	3	2.81	10	9.01	11	9.54	11	9.27	8	6.54	13	10.32	11	8.47	9	6.68	5	3.64	6	4.26
Lead poisoning	12	11.24	13	11.71	9	7.80	4	3.37	3	2.45	6	4.76	6	4.62	2	1.48	2	1.46	2	1.42
Legionellosis																				
Listeriosis ${ }^{3}$																	1	0.73		
Lyme disease		0.94	2	1.80	1	0.87														
Malaria	1	0.94					1	0.84						0.77		0.74				
Meningitis, other	1	0.94					1	0.84					2	1.54		0.74	2	1.46	1	0.71
Meningitis, Streptococcus pneumoniae									2	1.64		0.79				0.74				
Meningococcal disease ${ }^{4}$	1	0.94	2	1.80	-		1	0.84		0.82		0.79	1	0.77		1.48	1	0.73		
Pertussis												0.79			23				1	0.71
Rabies, animal		NA		NA		NA	5	NA				NA				NA				
Salmonellosis	15	14.04	21	18.91	23	19.94	25	21.08	15	12.27	31	24.61	63	48.52	55	40.81	34	24.77	36	25.53
Shigellosis	8	7.49		3.60	1	0.87				0.82		3.97	18	13.86	19	14.10				0.71
Streptococcus pneumoniae, invasive disease, drug-resistant		0.94		2.70		6.07		5.90		3.27		0.79			6	4.45	6	4.37	2	1.42
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		2	1.54	4	2.97	6	4.37	1	0.71										
Streptococcal disease, invasive Group A		0.94			2	1.73		2.53						3.08		1.48		0.73		
Syphilis	2	1.87			1	0.87	3	2.53	2	1.64		3.18	4	3.08		0.74	6	4.37	6	4.26
Toxoplasmosis								0.84												
Tuberculosis	7	6.55	7	6.30	3	2.60	4	3.37		4.91				1.54	3	2.23			2	1.42
Vibrio infections ${ }^{5}$		0.94		0.90		1.73		0.84				0.79		2.31	4	2.97	2	1.46	2	1.42
West Nile Virus	NR		NR		NR		NR				1	0.79	10	7.70						

Tncludes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Sarasota County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	36	11.64	19	6.04	46	14.38	59	17.98	65	19.38	40	11.70	55		47	13.05	45	12.16 3.78 5.67	541312	$\begin{array}{\|r\|} \hline 14.26 \\ 3.43 \\ 3.17 \\ \hline \end{array}$
Animal Bite, post exposure prophylaxis recommended						2.19						0.29	6	1.71	10	2.78	14			
Campylobacteriosis	8	2.59	15	4.77	23	7.19	13	3.96	16	4.77	20	5.85	15	4.28	16	4.44	21			
Chlamydia	35918	$\begin{array}{r} 116.06 \\ 5.82 \end{array}$		$\begin{array}{r} 161.89 \\ 0.32 \end{array}$		$\begin{array}{r} 133.76 \\ 0.31 \end{array}$	$\begin{gathered} 465 \\ 63 \end{gathered}$	$\begin{array}{r} 141.71 \\ 19.20 \end{array}$		$\begin{array}{r} 151.15 \\ 0.30 \end{array}$	$\begin{array}{r} 521 \\ 1 \\ 1 \\ 3 \end{array}$	$\begin{array}{r} 152.44 \\ 0.29 \\ 0.88 \end{array}$	$\begin{array}{r} 522 \\ 3 \\ 3 \end{array}$	$\begin{array}{r} 148.86 \\ \\ 0.86 \end{array}$	484	134.36	$\begin{array}{r} 489 \\ 2 \\ 128 \end{array}$	$\begin{array}{r} 132.12 \\ 0.54 \\ 34.58 \end{array}$	$\begin{array}{r} 380 \\ 4 \\ \hline \end{array}$	$\begin{array}{r} 100.33 \\ 1.06 \end{array}$
Cryptosporidiosis																				
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli 0157:H7	39259	$\begin{gathered} 0.32 \\ 12.61 \\ 83.73 \end{gathered}$	$\begin{array}{r} 1 \\ 34 \\ 498 \end{array}$	$\begin{array}{r} 0.32 \\ 10.81 \\ 158.39 \end{array}$	$\begin{array}{r} 4 \\ 17 \\ 374 \end{array}$	$\begin{array}{r} 1.25 \\ 5.31 \\ 116.88 \end{array}$	$\begin{array}{r} 6 \\ 27 \\ 334 \end{array}$	$\begin{array}{r} 1.83 \\ 8.23 \\ 101.79 \end{array}$	$\begin{array}{r} 2 \\ 26 \\ 290 \end{array}$	$\begin{array}{r} 0.60 \\ 7.75 \\ 86.46 \end{array}$	$\begin{array}{r} 2 \\ 27 \\ 273 \end{array}$	$\begin{array}{r} 0.59 \\ 7.90 \\ 79.88 \end{array}$	$\begin{array}{r} 3 \\ 29 \\ 285 \end{array}$	$\begin{array}{r} 0.86 \\ 8.27 \\ 81.27 \end{array}$	$\begin{array}{r} 3 \\ 20 \\ 274 \end{array}$	$\begin{array}{r} 0.83 \\ 5.55 \\ 76.07 \end{array}$	$\begin{array}{r} 1 \\ 24 \\ 281 \end{array}$	$\begin{array}{r} 0.27 \\ 6.48 \\ 75.92 \end{array}$	$\begin{array}{r} 17 \\ 17 \\ 233 \end{array}$	$\begin{array}{r} 4.49 \\ 61.52 \end{array}$
Giardiasis																				
Gonorrhea																				
Haemophilus influenzae, invasive ${ }^{1}$	13	$\begin{aligned} & 0.32 \\ & 4.20 \end{aligned}$	$\begin{array}{r} 4 \\ 11 \end{array}$		141	$\begin{aligned} & 4.38 \\ & 1.96 \end{aligned}$	$\begin{aligned} & 2 \\ & 7 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 2.13 \\ & 5.79 \end{aligned}$		$\begin{aligned} & 0.89 \\ & 1.79 \\ & 5.74 \end{aligned}$	$\begin{array}{r} 3 \\ 15 \\ 3 \end{array}$	$\begin{aligned} & 0.88 \\ & 4.39 \\ & 5.74 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 1.14 \\ & 1.43 \\ & 1.86 \end{aligned}$	$\begin{aligned} & 6 \\ & 2 \\ & 9 \end{aligned}$	$\begin{array}{r} 1.67 \\ 0.56 \\ 16.60 \end{array}$		$\begin{aligned} & 0.27 \\ & 1.62 \\ & 5.50 \end{aligned}$	$\begin{array}{r} 6 \\ 2 \\ 10 \end{array}$	$\begin{array}{r} 1.58 \\ 0.53 \\ 18.14 \end{array}$
Hepatitis A																				
Hepatitis B (+HBsAg in a pregnant woman)																				
Hepatitis B, acute		$\begin{array}{r} 1.62 \\ 1.29 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ 14 \\ 14 \end{array}$		$\begin{array}{r} 9 \\ 2 \\ 46 \end{array}$	$\begin{array}{r} 2.81 \\ 0.63 \\ 14.38 \end{array}$	$\begin{array}{r} 8 \\ 2 \\ 38 \end{array}$	$\begin{array}{r} 2.44 \\ 0.61 \\ 11.58 \end{array}$	$\begin{array}{r} 9 \\ 3 \\ 39 \end{array}$	$\begin{gathered} 2.68 \\ 0.89 \\ 11.63 \end{gathered}$	$\begin{array}{r} 5 \\ 1 \\ 43 \end{array}$	$\begin{array}{r} 1.46 \\ 0.29 \\ 12.58 \end{array}$	$\begin{array}{r} 10 \\ 1 \\ 1 \\ 55 \end{array}$	$\begin{gathered} 2.85 \\ 0.29 \\ 15.68 \end{gathered}$	$\begin{aligned} & 1 \\ & 38 \end{aligned}$	$\begin{array}{r} 1.39 \\ 10.55 \end{array}$		$\begin{gathered} 4.86 \\ 0.54 \\ 8.11 \end{gathered}$	$\begin{array}{r} 16 \\ 2 \\ 49 \end{array}$	$\begin{array}{r} 4.22 \\ 0.53 \\ 12.94 \end{array}$
Hepatitis C , acute																				
Human Immunodeficiency Virus ${ }^{2}$ (HIV)																				
Lead poisoning	34	10.99	$\left.\begin{array}{r} 36 \\ 1 \end{array} \right\rvert\,$		$\begin{aligned} & 18 \\ & \\ & 2 \end{aligned}$	$\begin{gathered} 5.63 \\ 0.63 \end{gathered}$	3	$\begin{aligned} & 2.13 \\ & 0.91 \end{aligned}$	$\begin{aligned} & 6 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.79 \\ & 0.30 \end{aligned}$	$\begin{gathered} 38 \\ 5 \\ \hline \end{gathered}$	$\begin{array}{r} 11.12 \\ 1.46 \end{array}$	$\begin{aligned} & 12 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 3.42 \\ & 2.85 \end{aligned}$	$\begin{array}{r} 12 \\ 4 \\ 4 \end{array}$	$\begin{aligned} & 3.33 \\ & 1.11 \end{aligned}$	$\begin{array}{r} 12 \\ 4 \\ 2 \\ 2 \end{array}$	$\begin{aligned} & 3.24 \\ & 1.08 \\ & 0.54 \end{aligned}$	$\begin{array}{\|} 11 \\ 2 \\ 2 \\ 2 \end{array}$	$\begin{aligned} & 2.90 \\ & 0.53 \\ & 0.53 \end{aligned}$
Legionellosis																				
Listeriosis ${ }^{3}$																				
Lyme disease	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 0.32 \\ 0.65 \end{gathered}$	422	$\begin{aligned} & 1.27 \\ & 0.64 \\ & 0.64 \end{aligned}$	11	$\begin{aligned} & 0.63 \\ & 0.31 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.22 \\ & 0.30 \\ & 0.91 \end{aligned}$		$\begin{array}{r} 1.19 \\ 1.19 \end{array}$		$\begin{array}{r} 0.88 \\ 0.29 \end{array}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.71 \\ & 0.57 \\ & 0.86 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.83 \\ & 0.28 \\ & 0.56 \end{aligned}$	2			0.790.530.26
Malaria																		-		
Meningitis, other																			1	
Meningitis, Streptococcus preumoniae		$\begin{aligned} & 1.62 \\ & 1.62 \\ & 0.32 \end{aligned}$	1	$\begin{gathered} 0.32 \\ 0.64 \end{gathered}$	$\begin{aligned} & 3 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.94 \\ & 1.25 \\ & 0.94 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.61 \end{aligned}$		0.30		$\begin{gathered} 0.29 \\ 0.88 \end{gathered}$		$\begin{gathered} 0.29 \\ 0.29 \\ 0.29 \end{gathered}$	[$\begin{aligned} & 1 \\ & 2 \\ & 1\end{aligned}$	$\begin{gathered} 0.28 \\ 0.56 \\ 0.28 \end{gathered}$	3			0.53
Meningococcal disease ${ }^{4}$									2	0.60	3		1							1.06
Pertussis	1																			0.53
Rabies, animal		NA	1	NA	¢	NA														
Salmonellosis	49	15.84	53	16.86	52	16.25	71	21.64	54	16.10	79	23.11	96	27.38	68	18.88	99	26.75	68	17.95
Shigellosis		1.94	5	1.59	9	2.81	85	25.90		0.89	30	8.78	34	9.70	4	1.11	5	1.35		0.53
Streptococcus pneumoniae, invasive disease, drug-resistant	2	0.65	7	2.23	12	3.75	13	3.96	20	5.96	9	2.63	13	3.71	9	2.50	20	5.40	16	4.22
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		3	0.86	13	3.61	11	2.9	16	4.22										
Streptococcal disease, invasive Group A						0.63		0.91	1	3.28		2.05	5	1.43	7	1.9	10	2.70	11	2.90
Syphilis	20	6.47	32	10.18	14	4.38	31	9.45	27	8.05	48	14.04	37	10.55	47	13.05	37	10.0	23	6.07
Toxoplasmosis				0.32		0.31						0.29								
Tuberculosis	11	3.56	12	3.82	15	4.69	10	3.05	10	2.98	13	3.80	17	4.85	7	1.94	13	3.51	13	3.43
Vibrio infections ${ }^{5}$			4	1.27		0.31	2	0.61	4	1.19	2	0.59	1	0.29	1	0.28	3	0.81	2	0.53
West Nile Virus	NR		NR		NR		NR			0.30	2	0.59	1	0.29		0.83				

${ }^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other
NR - Not Reportable

Selected Notifiable Diseases	Seminole County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	62	18.21	36	10.36	33	9.23	44	11.95	50	13.13	52	13.35	44	11.08	43	10.60	49	11.84	45	10.64
Animal Bite, post exposure prophylaxis recommended							26	7.06	61	16.02	38	9.75	18	4.53	14	3.45	34	8.21	49	11.58
Campylobacteriosis	12	3.52	21	6.04	12	3.35	16	4.35	20	5.25	24	6.16	20	5.04	17	4.19	11	2.66	14	3.31
Chlamydia	600	176.20	353	101.54	411	114.90	565	153.44	578	151.80	631	161.98	729	183.66	737	181.72	748	180.70	803	189.79
Cryptosporidiosis	7	2.06	2	0.58	5	1.40	3	0.81							1	0.25	4	0.97	12	2.84
Cyclosporiasis																	9	2.17	3	0.71
Enterohemorrhagic Escherichia coli O157:H7	2	0.59															7	1.69		
Giardiasis	49	14.39	51	14.67	31	8.67	42	11.41	19	4.99	27	6.93	19	4.79	15	3.70	19	4.59	28	6.62
Gonorrhea	423	124.22	351	100.97	243	67.93	439	119.22	399	104.79	393	100.89	391	98.51	388	95.67	444	107.26	449	106.12
Haemophilus influenzae, invasive ${ }^{1}$	1	0.29									2	0.51			1	0.25				
Hepatitis A	6	1.76	13	3.74	19	5.31	9	2.44	13	3.41	16	4.11	8	2.02	2	0.49	1	0.24	3	0.71
Hepatitis B (+HBsAg in a pregnant woman)					8	9.28	10	11.35	8	8.85	8	8.74	7	7.50	10	10.66	11	11.47	6	6.16
Hepatitis B, acute	8	2.35	9	2.59	11	3.08	7	1.90	5	1.31	11	2.82	16	4.03	9	2.22	13	3.14	10	2.36
Hepatitis C, acute					1	0.28	3	0.81					1	0.25					1	0.24
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	9	2.64	68	19.56	61	17.05	46	12.49	46	12.08	64	16.43	53	13.35	49	12.08	47	11.35	37	8.74
Lead poisoning	8	2.35	4	1.15	2	0.56	3	0.81	1	0.26	3	0.77	2	0.50						
Legionellosis	4	1.17	1	0.29	1	0.28	1	0.27	8	2.10	4	1.03	6	1.51	8	1.97	2	0.48	6	1.42
Listeriosis ${ }^{3}$																			3	0.71
Lyme disease			2	0.58	1	0.28	1	0.27											4	0.95
Malaria									1	0.26			3	0.76	2	0.49	2	0.48	1	0.24
Meningitis, other	2	0.59					1	0.27			1	0.26					2	0.48	6	1.42
Meningitis, Streptococcus pneumoniae	3	0.88	2	0.58	2	0.56	,	0.27					2	0.50	2	0.49				
Meningococcal disease ${ }^{4}$	1	0.29	1	0.29	3	0.84	3	0.81	2	0.53	3	0.77	4	1.01	1	0.25	2	0.48		
Pertussis	6		4	1.15									1						4	0.95
Rabies, animal		NA	4	NA			1	NA	20	NA	8	NA	7	NA	8	NA	19	NA	12	NA
Salmonellosis	57	16.74	81	23.30	78	21.81	50	13.58	103	27.05	115	29.52	108	27.21	79	19.48	111	26.82	105	24.82
Shigellosis	126	37.00	110	31.64	28	7.83	21	5.70	20	5.25	53	13.61	11	2.77	7	1.73	21	5.07	39	9.22
Streptococcus pneumoniae, invasive disease, drug-resistant	5	1.47	7	2.01	14	3.91	21	5.70	13	3.41	11	2.82	11	2.77	11	2.71	8	1.93	19	4.49
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		4	1.01	6	1.48	10	2.42	8	1.89										
Streptococcal disease, invasive Group A				0.29				0.27		0.53	2	0.51	5	1.26	2	0.49	9	2.17	5	1.18
Syphilis	46	13.51	52	14.96	63	17.61	56	15.21	40	10.51	34	8.73	40	10.08	21	5.18	25	6.04	44	10.40
Toxoplasmosis						0.28				0.26					1	0.25				
Tuberculosis	22	6.46	14	4.03	20	5.59	25	6.79	15	3.94	10	2.57	6	1.51	12	2.96	14	3.38	20	4.73
Vibrio infections ${ }^{5}$	1	0.29	1	0.29	2	0.56		-			1	0.26	1	0.25			2	0.48	-	
West Nile Virus	NR		NR		NR		NR							0.50				-	-	

${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Sumter County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	8	17.96	10	20.97	2	3.96	4	7.38	10	17.22	4	6.45	5	7.87	8	11.90	7	9.25	3	3.70
Animal Bite, post exposure prophylaxis recommended									2	3.44	1	1.61					1	1.32	1	1.23
Campylobacteriosis			2	4.19	2	3.96			2	3.44			2	3.15	2	2.98	2	2.64		
Chlamydia	69	154.94	12	25.17	107	211.72	113	208.48	82	141.18	95	153.28	145	228.27	111	165.13	111	146.71	84	103.58
Cryptosporidiosis			1	2.10																
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli O157:H7																				
Giardiasis	5	11.23	6	12.58	2	3.96	2	3.69	2	3.44	8	12.91	9	14.17	3	4.46	1	1.32		
Gonorrhea	34	76.35	9	18.87	85	168.19	102	188.18	70	120.52	39	62.92	63	99.18	63	93.72	83	109.70	80	98.64
Haemophilus influenzae, invasive ${ }^{1}$									1	1.72										
Hepatitis A	1	2.25	7	14.68	13	25.72	4	7.38									1	1.32		
Hepatitis B (+HBsAg in a pregnant woman)																				
Hepatitis B, acute	4	8.98	1	2.10	2	3.96	2	3.69	1	1.72					1	1.49	1	1.32	2	2.47
Hepatitis C, acute					1	1.98	1	1.84							1	1.49	2	2.64		
Human Immunodeficiency Virus ${ }^{2}$ (HIV)			4	8.39	8	15.83	8	14.76	10	17.22	10	16.13	8	12.59	4	5.95	9	11.90	3	3.70
Lead poisoning	6	13.47	6	12.58	2	3.96							1	1.57	1	1.49	1	1.32		
Legionellosis							-		1	1.72					1	1.49	1	1.32	1	1.23
Listeriosis ${ }^{3}$																		1.32		
Lyme disease			2	4.19	1	1.98														
Malaria																			1	1.23
Meningitis, other											3	4.84								
Meningitis, Streptococcus pneumoniae			1	2.10	1	1.98		-												
Meningococcal disease ${ }^{4}$					-		-	-		-			1	1.57			1	1.32		
Pertussis					1	1.98									1	1.49				
Rabies, animal	1	NA	2	NA	2	NA	4	NA	2	NA	1	NA			1	NA			1	NA
Salmonellosis	3	6.74	4	8.39	6	11.87	3	5.53	11	18.94	25	40.34	15	23.61	21	31.24	9	11.90	8	9.86
Shigellosis			3	6.29	2	3.96	2	3.69		1.72			5	7.87	10	14.88				
Streptococcus pneumoniae, invasive disease, drug-resistant		-	1	2.10		-	2	3.69	3	5.17	1	1.61			1	1.49				
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		1	1.57	2	2.98	5	6.61	1	1.23										
Streptococcal disease, invasive Group A								1.84											2	2.47
Syphilis	3	6.74	4	8.39	5	9.89	4	7.38	2	3.44	4	6.45	3	4.72	2	2.98	3	3.97		
Toxoplasmosis							1	1.84												
Tuberculosis			3	6.29	2	3.96	2	3.69	5	8.61	1	1.61	1	1.57			3	3.97	2	2.47
Vibrio infections ${ }^{5}$														-						
West Nile Virus	NR		NR		NR		NR				1	1.61								-

${ }_{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Suwannee County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	3	9.20	15	44.88	7	20.45	4	11.40		5.60	5	13.96	5	13.34		18.49		2.61	6	15.39
Animal Bite, post exposure prophylaxis recommended										2.80	5	13.96	3	8.00						
Campylobacteriosis	10	30.68	9	26.93	6	17.53	1	2.85	3	8.39	4	11.17	3	8.00	9	23.77			6	15.39
Chlamydia	29	88.98	49	146.61	81	236.66	97	276.42	100	279.77	86	240.12	108	288.16	88	232.42	73	190.51	87	223.23
Cryptosporidiosis		3.07																	2	5.13
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli O157:H7																				
Giardiasis		15.34		14.96		2.92		11.40				2.79		5.34		5.28				10.26
Gonorrhea	15	46.02	17	50.86	65	189.91	27	76.94	36	100.72	43	120.06	60	160.09	48	126.77	36	93.95	61	156.51
Haemophilus influenzae, invasive ${ }^{1}$																				
Hepatitis A					1	2.92	1	2.85				2.79			2	5.28	1	2.61		
Hepatitis B (+HBsAg in a pregnant woman)																13.58				
Hepatitis B, acute								2.85								2.64				
Hepatitis C, acute							1	2.85												
Human Immunodeficiency Virus ${ }^{2}$ (HIV)		3.07	6	17.95	6	17.53	4	11.40	6	16.79	4	11.17	5	13.34	7	18.49	6	15.66	7	17.96
Lead poisoning	2	6.14	1	2.99	5	14.61	5	14.25	3	8.39			2	5.34		2.64				
Legionellosis																				
Listeriosis ${ }^{3}$																				
Lyme disease						2.92														
Malaria		3.07													1	2.64				
Meningitis, other																				
Meningitis, Streptococcus preumoniae																				
Meningococcal disease ${ }^{4}$			1	2.99	1	2.92							1	2.67	1	2.64				
Pertussis																				
Rabies, animal		NA	3	NA	2	NA	6	NA		NA										
Salmonellosis	13	39.89	18	53.86	6	17.53	7	19.95	4	11.19	10	27.92	12	32.02	15	39.62	22	57.41	15	38.49
Shigellosis	2	6.14	5	14.96			1	2.85	2	5.60		11.17				2.64				5.13
Streptococcus pneumoniae, invasive disease, drug-resistant					4	11.69		2.85				5.58								2.57
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR					2.64	2	5.22												
Streptococcal disease, invasive Group A												2.79						5.22		
Syphilis	3	9.20			7	20.45	16	45.60	4	11.19	3	8.38	2	5.34	1	2.64			2	5.13
Toxoplasmosis																				
Tuberculosis	5	15.34	5	14.96	${ }^{6}$	17.53	3	8.55	2	5.60	2	5.58	2	5.34	2	5.28	10	26.10		10.26
Vibrio infections ${ }^{5}$																				
West Nile Virus	NR		NR		NR		NR						1	2.67						

Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals,
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Taylor County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	4	21.18							2	10.21	2	10.06	1	4.81	2	9.53	4	18.70	2	9.20
Animal Bite, post exposure prophylaxis recommended									1	5.10			3	14.43	1	4.77	1	4.67	2	9.20
Campylobacteriosis	4	21.18	5	26.18	2	10.38	3	15.55	2	10.21	6	30.18	5	24.05	5	23.84	1	4.67	4	18.40
Chlamydia	25	132.37	7	36.65	16	83.06	13	67.37	60	306.22	76	382.33	82	394.34	45	214.52	57	266.42	56	257.65
Cryptosporidiosis							2	10.36							1	4.77				
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli O157:H7																	9	42.07		
Giardiasis	5	26.47	2	10.47	3	15.57	3	15.55	1	5.10	3	15.09	2	9.62	2	9.53	3	14.02	5	23.00
Gonorrhea	7	37.06	6	31.41	3	15.57	4	20.73	34	173.52	38	191.17	31	149.08	18	85.81	38	177.61	36	165.63
Haemophilus influenzae, invasive ${ }^{1}$																				
Hepatitis A							1	5.18											2	9.20
Hepatitis B (+HBsAg in a pregnant woman)									-								1	24.68		
Hepatitis B, acute	1	5.29											4	19.24	1	4.77	1	4.67	1	4.60
Hepatitis C, acute													1	4.81						
Human Immunodeficiency Virus ${ }^{2}$ (HIV)			1	5.24	4	20.76	3	15.55	2	10.21	2	10.06	1	4.81	2	9.53	4	18.70		
Lead poisoning	5	26.47	3	15.71	1	5.19	1	5.18	1	5.10	13	65.40	3	14.43	2	9.53				
Legionellosis							-						1	4.81						
Listeriosis ${ }^{3}$					1	5.19														
Lyme disease	1	5.29																		
Malaria																				
Meningitis, other	1	5.29					-	-									1	4.67		
Meningitis, Streptococcus pneumoniae							-			-										
Meningococcal disease ${ }^{4}$	2	10.59					-	-		-										
Pertussis																				4.60
Rabies, animal																				
Salmonellosis	3	15.88	3	15.71	7	36.34	3	15.55	3	15.31	5	25.15	5	24.05	8	38.14	1	4.67	8	36.81
Shigellosis														4.81					24	110.42
Streptococcus pneumoniae, invasive disease, drug-resistant					1	5.19	4	20.73	5	25.52					1	4.77	1	4.67		
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		NR	-	NR		NR		NR		NR				3	14.30	1	4.67		
Streptococcal disease, invasive Group A																			1	4.60
Syphilis			18	94.23	18	93.44	7	36.28			2	10.06	4	19.24	1	4.77	2	9.35	1	4.60
Toxoplasmosis																				
Tuberculosis			2	10.47	2	10.38	1	5.18										4.67		
Vibrio infections ${ }^{5}$		-		-	1	5.19	1	5.18	1	5.10	1	5.03	5	24.05	1	4.77	2	9.35		
West Nile Virus	NR		NR		NR		NR												-	

${ }^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable

${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Volusia County																					
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006			
	Number	$\frac{\text { Rate }}{14.27}$	Number	Rate	Number Rate 89 17.54																	
Acquired Immune Deficiency Syndrome (AIDS)	60		35	8.18	122	$\begin{array}{r} \hline 27.97 \\ \hline 5.27 \end{array}$	72117	$\begin{array}{\|c\|} \hline 16.16 \\ 0.22 \\ 3.81 \end{array}$	$\begin{aligned} & \hline 85 \\ & 20 \\ & 13 \end{aligned}$	$\begin{array}{r} \hline 18.73 \\ 4.41 \\ 2.86 \end{array}$	915125	$\begin{array}{r} \hline 19.68 \\ 11.03 \\ 5.41 \\ \hline \end{array}$	$\begin{aligned} & 37 \\ & 57 \\ & 57 \\ & 12 \end{aligned}$	$\begin{array}{r} \hline 7.82 \\ 12.05 \\ 2.54 \end{array}$	1118812	$\begin{array}{r} 22.80 \\ 18.07 \\ 2.46 \end{array}$	629617	12.47				
Animal Bite, post exposure prophylaxis recommended																		$\begin{gathered} 12.47 \\ 19.31 \\ 3.42 \end{gathered}$	9514	18.722.76		
Campylobacteriosis	18	4.28	20	4.67	23																	
Chlamydia	302	71.81	338	79.00	$\begin{array}{r} 643 \\ 5 \end{array}$	$\begin{array}{r} 147.40 \\ 1.15 \end{array}$		$\begin{array}{r\|r\|} 753 & 168.96 \\ 2 & 0.45 \end{array}$	$\left.\begin{array}{r\|r\|} 785 & 172.97 \\ 2 & 0.44 \end{array} \right\rvert\,$		$\begin{array}{\|r\|r\|} 849 & 183.62 \\ 2 & 0.43 \\ \hline \end{array}$			$\begin{array}{r} 176.68 \\ 0.21 \end{array}$	710	$\begin{array}{r} 145.83 \\ 0.21 \end{array}$	$\begin{array}{r} 642 \\ 3 \\ 10 \end{array}$	$\begin{array}{\|r\|} \hline 129.12 \\ 0.60 \\ 2.01 \end{array}$		$\begin{array}{r} 165.31 \\ 1.77 \\ 0.20 \end{array}$		
Cryptosporidiosis																						
Cyclosporiasis																						
Enterohemorrhagic Escherichia coli O157:H7	$\begin{array}{r} 1 \\ 51 \\ 323 \end{array}$	$\begin{array}{r} 0.24 \\ 12.13 \\ 76.80 \end{array}$	$\begin{array}{r} 1 \\ 36 \\ 388 \end{array}$	$\begin{array}{r} 0.23 \\ 8.41 \\ 67.31 \end{array}$	$\begin{array}{r} 40 \\ 632 \end{array}$	$\begin{array}{r} 9.17 \\ 144.88 \end{array}$	$\begin{array}{r} 5 \\ 20 \\ 494 \end{array}$	$\begin{array}{r} 1.12 \\ 4.49 \\ 110.84 \end{array}$	$\begin{array}{r} 29 \\ 462 \end{array}$	$\begin{array}{r} 6.39 \\ 101.80 \end{array}$	$\begin{array}{r} 1 \\ 23 \\ 646 \end{array}$	$\begin{array}{r} 0.22 \\ 4.97 \\ 139.71 \end{array}$	$\begin{array}{r} 15 \\ 433 \end{array}$	$\begin{array}{r} 3.17 \\ 91.51 \end{array}$	$\begin{array}{r} 7 \\ 20 \\ 542 \end{array}$	$\begin{array}{r} 1.44 \\ 4.11 \\ 1111.32 \end{array}$	$\begin{array}{r} 10 \\ 21 \\ 535 \end{array}$	$\begin{array}{r} 2.01 \\ 4.22 \\ 107.60 \end{array}$	$\begin{array}{r} 29 \\ 538 \end{array}$			
Giardiasis																						
Gonorrhea																						
Haemophilus influenzae, invasive ${ }^{1}$	0.95		$\begin{array}{r} 1 \\ 10 \end{array}$	$\begin{aligned} & 0.23 \\ & 2.34 \end{aligned}$	$\begin{aligned} & 8 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.83 \\ & 0.69 \\ & 2.35 \end{aligned}$	$\begin{array}{r} 2 \\ 4 \\ 10 \end{array}$	$\begin{array}{r} 0.45 \\ 0.90 \\ 11.55 \end{array}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 1.32 \\ & 5.71 \end{aligned}$				$\begin{aligned} & 0.21 \\ & 1.06 \\ & 4.42 \end{aligned}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$		$\begin{aligned} & 2 \\ & 7 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 1.41 \\ & 8.49 \end{aligned}$	2510	0.390.9910.46		
Hepatitis A																						
Hepatitis $\mathrm{B}(+\mathrm{HBsAg}$ in a pregnant woman)																						
Hepatitis B, acute	${ }^{13}$		$\begin{gathered} 8 \\ 99 \\ 9 \end{gathered}$	$\begin{array}{r} 1.87 \\ \\ \hline 23.14 \end{array}$	$\begin{array}{r} 10 \\ \\ 104 \\ 104 \end{array}$	$\begin{array}{r} 2.29 \\ 0.92 \\ 23.84 \end{array}$	$\begin{array}{r} 12 \\ 3 \\ 71 \end{array}$	$\begin{array}{r} 2.69 \\ 0.67 \\ 15.93 \end{array}$	$\begin{gathered} 7 \\ 81 \end{gathered}$	$\begin{array}{r} 1.54 \\ \\ 17.85 \end{array}$		$\begin{array}{r} 1.51 \\ 16.87 \end{array}$	$\begin{gathered} 9 \\ 73 \end{gathered}$	$\begin{array}{r} 1.90 \\ 15.43 \end{array}$		$\begin{array}{r} 1.85 \\ 12.12 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ 73 \\ 7 \end{array}$	$\begin{array}{r} 1.41 \\ \hline \\ \hline \end{array}$	$\begin{array}{r} 7 \\ 2 \\ 78 \end{array}$	$\begin{array}{\|r} 1.38 \\ 0.39 \\ 15.37 \end{array}$		
Hepatitis C, acute																						
Human Immunodeficiency Virus ${ }^{2}$ (HIV)																						
Lead poisoning	221	$\begin{aligned} & 5.23 \\ & 0.24 \end{aligned}$	25	5.84	$\begin{aligned} & 17 \\ & 3 \\ & 3 \end{aligned}$	3.900.69	$\begin{aligned} & 10 \\ & \hline \\ & 1 \end{aligned}$	$\begin{array}{r} 2.24 \\ - \\ 0.22 \end{array}$		$\begin{aligned} & 0.22 \\ & 0.44 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.43 \end{aligned}$	$\begin{array}{r} 6 \\ 6 \\ 1 \end{array}$	$\begin{array}{r} 1.27 \\ -2 \\ 0.21 \end{array}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{gathered} 0.82 \\ 0.41 \end{gathered}$	$\begin{aligned} & 4 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.40 \\ & 0.20 \end{aligned}$	56-	$\begin{aligned} & 0.99 \\ & 1.18 \end{aligned}$		
Legionellosis																						
Listeriosis ${ }^{3}$																						
Lyme disease	0.24		$\begin{array}{l\|l} 1 & 0.23 \\ 1 & 0.23 \\ 2 & 0.47 \\ \hline \end{array}$		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 0.23 \\ 0.46 \\ 0.46 \end{gathered}$		$\begin{array}{r} 0.45 \\ 0.22 \\ 0.22 \end{array}$		$\begin{aligned} & 0.88 \\ & 0.22 \\ & 0.22 \end{aligned}$		$\begin{aligned} & 0.87 \\ & 0.22 \\ & 0.22 \end{aligned}$	4	$\begin{aligned} & 0.85 \\ & 0.21 \end{aligned}$		0.41	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		${ }^{2}$	0.200.39		
Malaria																						
Meningitis, other																						
Meningitis, Streptococcus pneumoniae	0.24		$\begin{aligned} & 6 \\ & 1 \\ & \hline \end{aligned}$	0.231.400.23		0.69	32	$\begin{aligned} & 1.80 \\ & 0.67 \\ & 0.45 \end{aligned}$		$\begin{aligned} & 1.54 \\ & 1.32 \\ & 0.22 \end{aligned}$						0.21	4	0.80				
Meningococcal disease ${ }^{4}$			4								0.87			5	1.03			3	0.59			
Pertussis											1	0.21	3	0.62	2	0.40	5	0.99				
Rabies, animal	23	NA			NA	8	NA	13	NA	10	NA	7	NA									
Salmonellosis	94	22.35	99	23.14	109	24.99	75	16.83	81	17.85	134	28.98	144	30.43	137	28.14	199	40.02	141	27.78		
Shigellosis	46	10.94	36	8.41	47	10.77	31	6.96	10	2.20	94	20.33	16	3.38	15	3.08	7	1.41	61	12.02		
Streptococcus pneumoniae, invasive disease, drug-resistant		0.48	4	0.93	16	3.67	23	5.16	18	3.97	11	2.38	16	3.38	13	2.67	18	3.62	17	3.35		
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		,	1.69	20	4.11	21	4.22	13	2.56												
Streptococcal disease, invasive Group A		0.24				0.46		1.12		1.76	19	4.11	16	3.38	13	2.67	13	2.61		0.79		
Syphilis		1.66	20	4.67	23	5.27	5	1.12		0.44	34	7.35	15	3.17	8	1.64	12	2.41	23	4.53		
Toxoplasmosis										0.22												
Tuberculosis	13	3.09	22	5.14	16	3.67	20	4.49	22	4.85	21	4.54	24	5.07	14	2.88	8	1.61	${ }^{8}$	1.58		
Vibrio infections ${ }^{5}$		0.24		0.23	2	0.46		0.22		0.22	5	1.08	5	1.06	4	0.82	2	0.40	6	1.18		
West Nile Virus	NR		NR		NR		NR							0.21								

[^15]${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{5}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
Incted cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other
NR - Not Reportable

Selected Notifiable Diseases	Wakulla County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	4	20.60			2	9.13	2	8.64	4	16.71	1	4.11	2	7.96	4	15.57	4	14.71	1	3.50
Animal Bite, post exposure prophylaxis recommended											2	8.22	4	15.91			1	3.68		
Campylobacteriosis	7	36.05	3	14.43	4	18.25	2	8.64	4	16.71	2	8.22	1	3.98	5	19.46	1	3.68	2	7.00
Chlamydia	15	77.25	10	48.11	18	82.13	20	86.39	46	192.18	56	230.07	48	190.92	34	132.34	46	169.16	43	150.58
Cryptosporidiosis			1	4.81											1	3.89	1	3.68		
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli O157:H7							1	4.32									1	3.68		
Giardiasis	4	20.60	7	33.67	12	54.75	3	12.96	4	16.71	2	8.22	5	19.89	2	7.78	1	3.68		
Gonorrhea	3	15.45	11	52.92	10	45.63	6	25.92	19	79.38	29	119.15	22	87.51	12	46.71	20	73.55	27	94.55
Haemophilus influenzae, invasive ${ }^{1}$													1	3.98			1	3.68		
Hepatitis A			1	4.81					1	4.18										
Hepatitis B (+HBsAg in a pregnant woman)																				
Hepatitis B, acute	1	5.15					2	8.64			1	4.11							1	3.50
Hepatitis C, acute					1	4.56							1	3.98						
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	2	10.30	1	4.81	3	13.69	2	8.64	1	4.18	2	8.22	1	3.98	4	15.57	2	7.35	4	14.01
Lead poisoning	3	15.45	-				2	8.64	2	8.36	2	8.22								
Legionellosis													1	3.98						
Listeriosis ${ }^{3}$																				
Lyme disease	4	20.60					1	4.32												
Malaria																				
Meningitis, other			1	4.81					1	4.18										
Meningitis, Streptococcus pneumoniae																				
Meningococcal disease ${ }^{4}$	1	5.15	-		1	4.56					1	4.11								
Pertussis	2	10.30			1	4.56													3	10.51
Rabies, animal																				
Salmonellosis	7	36.05	4	19.24	1	4.56	9	38.88	12	50.13	8	32.87	17	67.62	4	15.57	6	22.06	9	31.52
Shigellosis					10	45.63	10	43.20			5	20.54	8	31.82					3	10.51
Streptococcus pneumoniae, invasive disease, drug-resistant							1	4.32	1	4.18							2	7.35	1	3.50
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR	-	NR	-	NR		NR		NR		NR				1	3.89	1	3.68	2	7.00
Streptococcal disease, invasive Group A		-				4.56							1	3.98				3.68		
Syphilis	1	5.15			5	22.81	2	8.64					2	7.96	1	3.89	1	3.68		
Toxoplasmosis																				
Tuberculosis			1	4.81	7	31.94			2	8.36	2	8.22	1	3.98				3.68		
Vibrio infections ${ }^{5}$		-	1	4.81				-		-	-		1	3.98			1	3.68	1	3.50
West Nile Virus	NR		NR		NR		NR													

${ }_{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other. NR - Not Reportable
NA - Not Applicable
Cont'd Table 1.4 Reported Confirmed and Probable Cases and Incidence Rate per 100,000 Population for Selected Notifiable Diseases, 1997-2006

Selected Notifiable Diseases	Walton County																			
	1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	
	Number	Rate																		
Acquired Immune Deficiency Syndrome (AIDS)	2	5.58	1	2.68	2	5.08	2	4.88	5	11.56	2	4.34	6	12.64	2	3.91	2	3.69	3	5.27
Animal Bite, post exposure prophylaxis recommended							6	14.64					1	2.11	2	3.91				
Campylobacteriosis							2	4.88					1	2.11	2	3.91	3	5.53	2	3.51
Chlamydia	21	58.61	46	123.41	58	147.26	61	148.82	85	196.44	73	158.52	55	115.86	38	74.27	82	151.24	56	98.42
Cryptosporidiosis																	1	1.84		
Cyclosporiasis																				
Enterohemorrhagic Escherichia coli O157:H7																				
Giardiasis	1	2.79	1	2.68			3	7.32	1	2.31	2	4.34	1	2.11	7	13.68			1	1.76
Gonorrhea	3	8.37	17	45.61	17	43.16	36	87.83	29	67.02	25	54.29	31	65.30	12	23.45	39	71.93	40	70.30
Haemophilus influenzae, invasive ${ }^{1}$																				
Hepatitis A			3	8.05	1	2.54	-		1	2.31	1	2.17								
Hepatitis B (+HBsAg in a pregnant woman)							-							-			1	9.67	-	
Hepatitis B, acute	3	8.37	2	5.37	4	10.16	1	2.44					4	8.43	1	1.95	2	3.69		
Hepatitis C, acute							1	2.44	1	2.31	4	8.69	1	2.11					-	
Human Immunodeficiency Virus ${ }^{2}$ (HIV)	1	2.79	5	13.41	1	2.54	-		3	6.93	2	4.34	6	12.64	3	5.86	3	5.53	3	5.27
Lead poisoning	4	11.16	1	2.68	-	-	-	-									1	1.84		
Legionellosis					-		-	-											-	
Listeriosis ${ }^{3}$							-													
Lyme disease	1	2.79						-					1	2.11						
Malaria	1	2.79															1	1.84	-	
Meningitis, other	1	2.79	1	2.68	1	2.54	-	-					1	2.11	2	3.91			-	-
Meningitis, Streptococcus pneumoniae	1	2.79																	-	
Meningococcal disease ${ }^{4}$	1	2.79					1	2.44							1	1.95			-	-
Pertussis			1	2.68					1	2.31									-	-
Rabies, animal			1	NA			2	NA					,	NA	1	NA	4	NA	1	NA
Salmonellosis	4	11.16	6	16.10	5	12.69	8	19.52	6	13.87	14	30.40	13	27.38	8	15.64	20	36.89	10	17.57
Shigellosis		5.58		2.68								2.17				1.95	2	3.69		
Streptococcus pneumoniae, invasive disease, drug-resistant					1	2.54	2	4.88	1	2.31					1	1.95	1	1.84	-	
Streptococcus pneumoniae, invasive disease, drug-susceptible	NR		NR	-	NR		NR		NR		NR			-			1	1.84	-	-
Streptococcal disease, invasive Group A																				
Syphilis	3	8.37					1	2.44	1	2.31			1	2.11			4	7.38	3	5.27
Toxoplasmosis									1	2.31									-	
Tuberculosis	1	2.79	4	10.73	5	12.69				11.56				2.11	7	13.68	2	3.69	2	3.51
Vibrio infections ${ }^{5}$					1	2.54		-				-								
West Nile Virus	NR		NR		NR		NR						1	2.11					-	-

${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other.
${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NA - Not Applicable

${ }_{2}^{1}$ Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis. 21997 cases are only from July-Dec. HIV data includes those cases that have converted to AIDS.
${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes.
${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated. ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NR - Not Reportable
NA - Not Applicable

2006 Florida Morbidity Statistics

Selected Notifiable Diseases and Conditions

Section 2

List of Notifiable Diseases and Conditions

Acquired Immune Deficiency Syndrome/
Human Immunodeficiency Virus
Animal bite, post-exposure prophylaxis
recommended
Anthrax
Brucellosis
California serogroup
Campylobacteriosis
Chlamydia
Cryptosporidiosis
Cyclosporiasis
Dengue Fever
Eastern Equine Encephalitis
Ehrlichiosis
Enterohemorrhagic Escherichia coli (O157:H7)
Escherichia coli, shiga toxin+ (non-O157:H7)
Giardiasis
Gonorrhea
Haemophilus influenzae, invasive disease
Hantavirus
Hepatitis A
Hepatitis B, acute
Hepatitis B (+HBsAg in Pregnant Women)
Hepatitis C, acute
Lead Poisoning
Legionellosis
Leptospirosis
Listeriosis
Lyme Disease
Malaria
Measles
Meningitis (other bacterial/mycotic)
Meningococcal Disease
Mumps
Neonatal Infections
Pertussis
Pesticide-related illness
Plague
Psittacosis
Q Fever
Rabies
Rocky Mountain Spotted Fever
Rubella
Salmonellosis
Shigellosis
St. Louis Encephalitis
Streptococcal Disease, invasive group A

Streptococcus pneumoniae, invasive disease, drug-resistant
Streptococcus pneumoniae, invasive disease, drug-susceptible
Syphilis
Tetanus
Toxoplasmosis
Trichinellosis
Tuberculosis
Tularemia
Typhoid Fever
Venezuelan Equine Encephalitis
Vibrio Infections
West Nile Virus
Western Equine Encephalitis
Yellow Fever

Acquired Immune Deficiency Syndrome/Human Immunodeficiency Virus

In 2005, Florida ranked second among states in the number of reported acquired immune deficiency syndrome (AIDS) cases. New York reported 6,299 (15\%), followed by Florida with 4,960 cases (12\%), California with 4,088 cases (10\%), and Texas with 3,113 cases (8%). Florida ranked second among the 38 states that reported human immunodeficiency virus (HIV) cases in 2005. New York reported 5,509 cases (16%), followed by Florida with 4,637 cases (14%), Georgia with 3,894 cases (11%), and Texas with 3,682 cases (10\%).

In 2006, Florida reported a higher percentage of AIDS cases among heterosexuals (32\%) compared to reported cases in the U.S. (13\%). Furthermore, Florida reported a lower percentage of AIDS cases among MSM and injection drug users (IDU), compared to reported cases in the U.S. Combined, MSM/ IDU cases accounted for 3\% of total reported cases in Florida and 7\% compared to reported cases in the U.S. A higher proportion of cases with no identified risk (NIR) were reported in Florida (22\%) than in the U.S. as a whole (11%). Florida reported a slightly higher percentage of AIDS cases among blacks (52\%) compared to reported cases in the U.S. (40\%). Florida also reported a higher percentage of cases among women (32\%) compared with the U.S. (19\%) as a whole.

Similar to reported AIDS cases in 2006, Florida reported a higher percentage of HIV heterosexual cases (25\%) compared to reported cases in the U.S. (20\%). Florida reported a lower percentage of IDU than the U.S. as a whole. MSM/IDU cases accounted for (2%) of total reported cases in Florida and (4%) in the U.S. Florida reported a slightly higher percentage of cases with NIR compared with the U.S., 29% versus 28%. The state reported the same percentage of HIV cases among blacks (47\%) compared with the U.S. (47\%). Florida also reported a slightly higher percentage of cases among women (31%) compared with the U.S. (30%).

In 2006, at least one AIDS case was reported in all but six counties in Florida (Figure 1). Although the AIDS epidemic is widespread throughout Florida, the majority of cases were reported from the seven most populous counties: Broward, Duval, Hillsborough, Miami-Dade, Orange, Palm Beach, and Pinellas. These seven counties reported a combined total of 3,440 cases, or 69% of Florida's total reported cases in 2006. The greatest numbers of AIDS cases were reported from three counties located in the southeastern part of the state: Broward, Miami-Dade, and Palm Beach. These three counties reported a combined total of 2,275 cases in 2006 or 46% of the statewide total.

Analysis of county-specific AIDS case rates per 100,000 population for 2006 indicate that Miami-Dade County ranked the highest with a rate of 46.1, followed by Broward (43.1), St. Lucie (37.0), Orange (31.9), Duval (31.2), and Monroe (24.0) Counties.

Figure 1. AIDS cases and rates per 100,000 population, by county of residence, Florida, 2006 (excluding Department of Corrections)

$\mathrm{N}=4,785$

Case Rate per 100,000

Based on 2006 statewide population estimates, the 2006 state rate is 32.0 per 100,000 population.
*County totals exclude Department of Corrections cases ($\mathrm{N}=175$). Numbers on counties are cases reported.

Based on 2006 statewide population estimates, the 2006 state rate is 32.0 per 100,000 population.
 *County totals exclude Department of Corrections cases ($\mathrm{N}=175$). Numbers on counties are cases reported.

In 2006, at least one HIV case was reported in all but five counties (Figure 2). The majority of HIV cases were also reported from the same seven counties. These seven counties reported a combined total of 3,667 cases, or 70% of Florida's total reported cases in 2006. The greatest numbers of HIV cases were reported from Miami-Dade, Broward, and Orange Counties. These three counties reported a combined total of 2,468 cases in 2006, or 47% of the statewide total.

Analysis of county-specific data for 2006 indicate that Miami-Dade County ranked the highest, with 23\% of the HIV cases, followed by Broward (17\%), Palm Beach (7\%), Orange (7\%), and Hillsborough (6\%).

AIDS cases decreased from 1996 to 2000, due to the use of highly active antiretroviral therapy (HAART). Since 2000, AIDS cases have remained fairly level with a slight increase in reported cases observed in 2004 (Figure 3). That slight increase was mostly due to increased CD4 testing of patients in care throughout the state.

Figure 2. HIV cases, by county of residence, Florida, 2006 (excluding Department of Corrections)
$\mathrm{N}=4,931$

Case Rate per 100,000

0
0.1 to 15.0
15.1 to 30.0
> 30.0

Based on 2006 statewide population estimates, the 2006 state rate is 33.5 per 100,000 population.
*County totals exclude Department of Corrections cases ($\mathrm{N}=293$). This map does not reflect HIV incidence. Numbers on counties are cases reported.

Figure 3. AIDS case rates per 100,000 population*, by year of report, Florida, 1997-2006

*Population rates calculated from annual population estimates.
Comment: The advent of HAART was associated with decreases in AIDS cases in the late 1990's. Generally, AIDS cases remained fairly stable in the early 2000's, with an increase in 2004 due to increased CD4 testing statewide. Increasingly, a diagnosis of AIDS reflects late diagnosis of HIV and limited access to treatment.

In 1997, 27\% of the AIDS cases reported in Florida were female (Figure 4). Over the past 10 years, the proportion of AIDS cases among women has increased steadily. This has resulted in a decline of the male-to-female ratio, from 2.7:1 in 1997 to 2.2:1 in 2006. In 2006, the case rate per 100,000 population was 45.1 among adult males and 19.6 among adult females, indicating that AIDS cases in this period were still more likely to be reported among males than females in Florida.

Figure 4. Percent of adult AIDS cases by sex and year of report, Florida, 1997-2006

Comment: AIDS cases tend to represent HIV transmission that occurred many years ago. The relative increases in female cases reflect the changing face of the AIDS epidemic over time.
*The male-to-female ratio is the number or percent of cases among males divided by the number or percent of female cases.

In 1998, 38% of the HIV cases reported in Florida were female (Figure 5). The proportion of HIV cases among women has decreased steadily over the past nine years. The result is an increase of the male-to-female ratio, from 1.6:1 in 1998 to 2.3:1 in 2006. This increase in the male-to-female ratio differs from the pattern seen for the ratio for AIDS cases during the same time period.

Figure 5. Percent of adult HIV cases by sex and year of report, Florida, 1998-2006

Comment: The trend for HIV cases by sex is the opposite of that for AIDS cases. Recent trends in HIV transmission are best described by the HIV case data. The relative increases in male HIV cases might be attributed to proportional increases in HIV transmission among men who have sex with men (MSM), which may influence future AIDS trends. There is additional evidence to support this MSM hypothesis, which we will now examine more closely.

In 2006, a total of 3,390 adult males and 1,559 adult females were reported with AIDS, representing 68% and 32% of cases, respectively (Figure 6). Also in 2006, a total of 3,608 adult males and 1,579 adult females were reported with HIV infection, representing 70% and 30% of cases, respectively.

Figure 6. Percent of adult AIDS cases by sex, Florida, compared with percent of adult HIV cases by sex, Florida, 2006

Total Adult AIDS Cases by Gender 2006, ($N=4,949$)

68\%

Total Adult HIV Cases
by Gender
2006, ($N=5,187$)

Comment: Florida's Adult Population is: 49\% Male and 51\% Female, therefore male cases are disproportionately impact

HIV case reporting, implemented in July 1997, tends to indicate newer infections than are reflected by AIDS case data, although the proportion of diagnosed HIV cases that were recently acquired is not known. HIV case reports augment AIDS case data and provide good information by age, sex, and race/ ethnicity on persons who have been tested confidentially. Overall, HIV infection data represent the minimum of HIV prevalence in Florida, which is estimated at approximately 125,000 persons living with HIV infection.

Thirty-one percent of the adult AIDS cases reported in Florida in 1997 were white, compared with 52% black, and 17% Hispanic (Figure 7). Over the past 10 years the proportion of AIDS cases among whites, blacks, and Hispanics has remained fairly stable.

Twenty-three percent of the adult HIV cases reported in Florida in 1998 were white, compared with 60% black (Figure 8). By 2006, the percentage of HIV cases increased for whites (30\%) and decreased among blacks to 48%. The percentage of HIV cases among Hispanics has realized a slight steady increase since 2000.

Figure 7. Percent of adult AIDS cases by race/ethnicity and year of report, Florida, 1997-2006

Factors Affecting
Disparities
-Late diagnosis of
HIV.
-Access tolacceptance
of care.
-Delayed prevention
messages.
-Stigma.
-Non-HIV STD's in
the community.
-Prevalence of
injection drug use.
-Complex matrix of
factors related to
socioeconomic status

Comment: In 2006, blacks accounted for 52% of reported AIDS cases, but only 15% of the population. Hispanic cases remain stable at 18% in 2006. D isparities are even more evident among women: Annually, more than 70\% of female AIDS cases have been reported among black women since 1988. HIV case reporting, implemented in mid-1997, has shown a very similar distribution of cases by race/ethnicity and sex.
*Other includes American Indian/Alaska Native, Asian/Pacific Islander, and Multi-racial.

Figure 8. Percent of adult HIV cases by race/ethnicity and year of report, Florida, 1998-2006

Comment: In absolute numbers, from 1999-2006, HIV cases among blacks decreased by 31%, while increasing by 13% among whites and 21% among Hispanics. The decreases among blacks may correspond to some extent with recent targeted prevention, while the increases among whites may be associated with recent increases in HIV transmission among white and Hispanic MSM.

Blacks comprise only 15% of the adult population, but represent 53% of the AIDS cases and 49% of the HIV cases reported in 2006 (Figure 9). Hispanics comprise 19\% of Florida's adult population, and account for 18% of the AIDS cases and 20% of the HIV cases.

Figure 9. Percent of adult AIDS cases by race/ethnicity, Florida, compared with percent of adult HIV cases by race/ethnicity,
Florida, 2006

Comment: In 2006, blacks are over-represented among the AIDS and HIV cases, accounting for 53% of adult AIDS cases and 49% of adult HIV cases, but only 15% of the adult population. Hispanics represent 19% of the adult population and account for 18% of the adult AIDS cases and 20% of the adult HIV cases. A group is disproportionately impacted to the extent that the percentage of cases exceeds the percentage of population.
*Other includes Asian/Pacific Islanders, Native Alaskans/American Indians and mixed races.
*2006 Florida Population Estimates, Adults (Ages 13+), DOH, Office of Planning, Evaluation and Data Analysis

Black men and, to an even greater extent, black women are over-represented in the AIDS epidemic in terms of rates per 100,000 population (Figure 10). To a lesser extent, Hispanic males and females are also over-represented, when compared to the percentage of Hispanic population in Florida.

Figure 10. Adult AIDS cases and case rates per 100,000 population by sex and race/ethnicity, Florida, 2006

Comment: Among black males, the AIDS case rate for 2006 is 6 times higher than among white males. Among black females, the AIDS case rate is 17 times higher than among white females. Hispanic male rates are two times higher and Hispanic female rates are three times higher than the rates among their white counterparts. *2005 Florida Population Estimates, DOH, Office of Planning, Evaluation and Data Analysis for ages 13+.

As in previous years, the greatest proportion of AIDS cases reported in 2006 was among persons 4049 years (37%) (Figure 11). The 30-39 age group was second, with 29% of the reported AIDS cases. The 20-29 age group accounted for 12% of these cases, and the $50+$ age group accounted for 21%.

Persons reported with AIDS in the 40-49 age group account for 37% of the cases, but only 16% of the total population. However, because AIDS-defining conditions appear late in the course of HIV disease, AIDS cases represent individuals who may have been infected an average of 10 years earlier.

As with AIDS cases, a greater proportion of HIV cases in 2006 were reported among those aged 30-39 (29\%), aged 20-29 (23\%), and aged 40-49 (29\%). There was a lower proportion among those aged 13$19(4 \%)$ and a higher proportion among those aged 20-29 years, but a lower proportion for those aged $50+(15 \%)$, all of which is consistent with earlier detection of HIV cases.

Figure 11. Age distribution of Florida's adult AIDS cases compared with the age distribution of Florida's adult HIV cases, 2006

AIDS ($\mathrm{N}=4,949$)

HIV ($\mathrm{N}=5,187$)

Comment: HIV cases tent to be younger than AIDS cases. HIV cases tend to reflect more recent transmission than AIDS cases, and thus present a more current picture of the epidemic. 15% of all new HIV cases were under the age of 25.

HIVIAIDS by Mode of Exposure

The dynamics of the HIV epidemic are different in each population; so multiple data sets must be used to compile a representative epidemiologic profile for HIV prevention, planning, and targeting of resources and outreach. The following data represent HIV and AIDS cases by mode of exposure where cases reported with no identified risks (NIRs) have been redistributed into "known" risk categories, based on how people with no initially identified risk have been classified when a risk has become known.

Males

Among the male AIDS and HIV cases reported for 2006, MSM was the most common risk factor (60\% and 67%, respectively) followed by cases with a heterosexual risk (25% for AIDS, and 22% for HIV) (Figure 12). People with a risk of IDU are more common among AIDS cases (10\%) than HIV cases (7\%); this has been a waning risk for HIV infection in Florida over the past 10 years.

Figure 12. Adult male AIDS and HIV cases by mode of exposure, Florida, 2006

Comment: The recent increase among MSM is indicated by the higher percent of MSM among HIV cases compared to AIDS cases, as HIV cases tend to represent a more recent picture of the epidemic.

Females

Among the female AIDS and HIV cases reported for 2005, heterosexual contact was the highest risk followed by IDU (Figure 13).

Figure 13. Adult female AIDS and HIV cases by mode of exposure, Florida, 2005

Comment: The ongoing increase among heterosexual risk compared with IDU is indicated by the higher percent of heterosexuals among HIV cases compared to AIDS cases, as HIV cases tend to represent a more recent picture of the epidemic.

Prevalence of HIVIAIDS

Assessment of the extent of the HIV epidemic is an important step in community planning for HIV prevention and HIVIAIDS patient care. HIV prevalence, the estimated number of persons living with HIV infection, includes those living with a diagnosis of HIV or AIDS and those who may be infected but who are unaware of their serostatus.

Approximately 1,039,000-1,185,000 persons are living with HIV infection in the U.S. (2004). Florida has consistently reported 10-12\% of the national AIDS morbidity and currently accounts for 11% of all persons living with AIDS in the U.S. The Florida Department of Health now estimates that approximately 125,000 persons, or roughly 11.7%, of the national total are currently living with HIV infection in Florida, as of the end of 2006.

Impact of HIV-related Deaths

As of December 31, 2005, a total of 101,013 AIDS cases were known to have been diagnosed in Florida through 2005 (2006 death data is not yet available). Some cases are lost to follow-up, so vital status is unknown. Of these cumulative cases, 53,994 (54%) were known to have died.

HIV/AIDS deaths decreased markedly from 1996 to 1998, associated with the advent of HAART in 1996. Deaths in 2005 were 61\% lower than in the peak year, 1995. A leveling of the trend since 1998 may reflect factors such as viral resistance, late diagnosis of HIV, adherence problems, and lack of access to or acceptance of care (Figure 14). Racial/ethnic disparities are evident in the death rate data.

Figure 14. Resident HIV deaths, by year of death, Florida, 1994-2005

Animal Bite, Rabies Post-Exposure Prophylaxis

Animal Bite, PEP: Crude Data	
Number of cases	1244
2006 incidence rate per	
100,000	6.75
\% change from average 5yr	
(2001-2005) incidence rate	+4.1
Age (yrs)	
Mean	36.6
Median	37
Range	$<1-94$

Figure 1.
Animal Bite PEP Incidence Rate by Year Reported, Florida, 1997-2006

Description

Electronic reporting of animal encounters (bites, scratches, etc.) for which rabies post-exposure prophylaxis (PEP) is recommended was initiated in 2001. Rabies PEP is recommended when an individual is bitten by, or otherwise exposed to the saliva of, a rabid mammal or a mammal that is suspected of being rabid, but is not available for testing. The prophylaxis consists of a series of vaccinations given on day $0,3,7,14$, and 21 or 28 . Human rabies immunoglobulin (HRIG) is also given on day 0 . Persons who have been previously immunized against the disease receive two doses of rabies vaccines on day 0 and 3 after exposure. The series is costly and can cause side effects such as redness, itching, and swelling.

Figure 2. Animal Bite PEP Incidence Rate by Age Group, Florida, 2006

Disease Abstract

The annual incidence of cases for which PEP is recommended has increased from 1997 to 2006 (Figure 1). In 2006, the incidence rate was up 4.1% over the previous 5 -year average. The average age of the victim was 36.6 years, with a range of <1 year to 94 years. In 2006, the highest incidence was
seen in individuals <1 year old (Figure 2), but incidence was similar from ages 5 to 64 . The incidence rate for males is higher than that for females (Figure 3).

Figure 3. Animal Bite PEP Incidence Rates by Gender, Florida 2006

Figure 4. Animal Bite PEP Cases by Month of Onset, Florida, 2006

According to an analysis of data from 2000 to 2006, an annual average of 1,060 individuals was recommended to receive PEP. Of those cases for which the animal type was available, 35% of exposures involved a dog, 31% involved a cat, 18% involved a raccoon, 9% involved a bat, 3% involved a fox, and the remaining 4% of exposures were other animals. Among cases for which exposure type was available, 81% of exposures were bites, 9% were scratches, and 10% were saliva or other nonbite exposures. The most common exposure sites were the hand (46\%), leg (25\%), and arm (13\%). Eleven percent of exposures occurred above the neck. Exposures above the neck were most common in children <9 years, and of those for which animal type was reported, 56% involved a dog. Treatment information was provided for roughly 20% of cases. Of these, 14% declined to receive PEP. Another 5\% were not treated because they were not able to be reached by the county health department, or missed multiple appointments and were lost to follow-up. Two percent began treatment as indicated, but did
not complete the series. PEP is recommended year-round in Florida, though the number of treatment incidents increases during the summer months (Figure 4).

Prevention

Contact with wildlife and unfamiliar domestic animals should be limited. It is especially important that children be educated on appropriate interactions with animals. If bitten, it is important to wash the area thoroughly with soap and water, seek medical attention if necessary, and report the bite to the local county health department.

Animal Bites, post exposure prophylaxis recommended, Incidence Rate* by County, Florida, 2006

Resources

Additional information on animal bites and PEP can be found in the Rabies Prevention and Control in Florida, 2007 Guidebook, online at http://www.doh.state.fl.us/environment/community/arboviral/Zoonoses/Rabiesguide2007.pdf

Dog bite prevention and rabies information can also be found on the Department of Health website at www.MyFloridaEH.com and http://www.doh.state.fl.us/environment/community/rabies/rabies-index.html

Anthrax

From 1997 through 2006, there were only two cases of anthrax in Florida, one fatal. Both cases occurred in 2001. Exposure was through letters contaminated with anthrax spores (please see the outbreak section for more details on these cases). The causative agent of anthrax is Bacillus anthracis, a gram-positive spore-forming rod. The spore is the infective form for the cutaneous and inhalational syndromes of anthrax. Eschar formation is characteristic of the cutaneous syndrome. Viable vegetative organism is believed to cause the gastrointestinal syndrome, which can present as either an intestinal or oropharyngeal form. This zoonotic agent is most frequently associated with hair, wool, hides, carcasses, blood, excreta, and bone meal of naturally infected cattle, sheep, goats, and horses. Human exposure occurs through contact with cuts or abrasions in the skin, inhalation, ingestion of undercooked meat, or via fly bites. Animal, mill, and laboratory workers are at greatest risk for natural infection. Mortality for appropriately treated cutaneous anthrax is $<1 \%$, while mortality for treated gastrointestinal or inhalational anthrax often exceeds 50%. Because of the resilience of the spores, the possibility of aerosol transmission, and the high mortality rate, anthrax is a CDC Select agent and is considered one of the most likely candidates for use as a bioweapon.

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Brucellosis

Description

Brucellosis is an important disease of ruminants, swine, and canids that primarily affects the reproductive tract and fertility. At least four species of this zoonotic gram-negative coccobacillus have been associated with human disease: Brucella melitensis (goats, sheep), B. suis (pigs), B. abortus (cattle, bison, cervids), and rarely, B. canis (dogs, coyotes). Brucella suis is endemic in wild hogs in Florida, and B. canis occurs sporadically in dogs. Brucella spp. have also been identified as potential bioterrorist weapons and are listed as CDC Select Agents.

The organisms are shed in high concentration in the reproductive fluids of infected animals and are also present in animal tissues, milk, blood, and urine. Transmission to humans primarily occurs through contact of infected animal tissues and fluids with breaks in the skin, or ingestion of unpasteurized milk and dairy products. Though less common, aerosol transmission is also possible in areas contaminated with high concentrations of organism such as laboratories, abattoirs, or animal birthing areas. Disease risk is increased for those handling livestock and their tissues, including veterinarians, hunters, ranchers, meat inspectors, abattoir, and laboratory workers. It is estimated that inhalation of only 10100 organisms can cause disease in humans. Accidental percutaneous inoculation with modified live animal vaccine has caused disease in veterinarians.

The incubation period in humans ranges from five days to several months. In most cases, clinical disease develops within two months of exposure. Symptoms in people include fever (intermittent or
continuous), headache, weakness, profuse sweating, chills, arthralgia, depression, weight loss, and generalized aching. Illness can be acute or insidious, and recurrences are common. Suppuration of liver, spleen, and other organs can occur.

Osteoarticular complications are reported in 20-60\% of cases; genitourinary involvement occurs in $2-20 \%$, with orchitis and epididymitis common in males. Appropriate antimicrobial treatment is critical for prevention of relapses. Case fatality is $\leq 2 \%$ and is usually associated with endocarditis caused by B. melitensis.

Disease Abstract

A total of 51 cases of human brucellosis were reported in Florida from 1997 to 2006, of which 42 (82.4%), were classified as confirmed. The incidence rate has increased over the past ten years with an annual average of 3.8 cases reported from 1997 to 2001, compared to 6.4 in 2002-2006. Speciation was provided in 21 cases with 11 B. suis, six B. abortus, and four B. melitensis infections identified. Site of exposure was determined in 49 cases; 35 cases were acquired in Florida, seven imported from outside of the country (including five from Mexico), and two cases imported from other states. Males accounted for 76.5% of the cases. Cases ranged from 9-80 years old. Incidence was highest in those aged $35-44$, representing 20 cases or 39.2% of the total reports. Of the 42 cases with known ethnicity, 60.5% were non-Hispanic whites and 40.5% were Hispanic. Risk factors identified in 14 cases included hunting or handling carcasses (6 cases, 5 specifically mentioned hogs), consuming unpasteurized milk (3, all imported), milking a goat (1, imported), eating meat from wild animals (1), eating goat meat/handling a pet pig (1, imported), vet assistant handling farm animals (1), and no reported animal contact (1).

Prevention

Prevention can best be accomplished through the education of animal workers and hunters on proper handling techniques: wearing gloves and protective clothing, working in properly ventilated areas, proper carcass and tissue disposal, disinfection of contaminated areas, and proper handling of modified live vaccines. Also important is requiring pasteurization of milk. Education should be provided to travelers and the general public on the risks of drinking or eating unpasteurized dairy products, especially products originating in countries where brucellosis is endemic in livestock. Continued surveillance and management programs for Brucella spp. in domestic livestock will keep exposure risk low in Florida. Surveillance is also important because Brucella has the potential for use as a bioterrorist agent.

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, 18 ${ }^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Lt. Col. Jon B. Woods (ed.), USAMRIID, Medical Management of Biological Casualties Handbook. $6^{\text {th }}$ ed., U.S. Army Medical Research Institute of Infectious Diseases, 2005.

American Academy of Pediatrics, Red Book 2003: Report of the Committee on Infectious Diseases, $26^{\text {th }}$ ed., American Academy of Pediatrics Press, Elk Grove Village, Illinois, 2003.

Additional Resources

Information on human Brucellosis in Florida can be obtained at the following websites, Florida Department of Health
http://www.doh.state.fl.us/Environment/community/arboviral/Zoonoses/Zoonotic-brucellosis.html

United States Department of Agriculture, Animal and Plant Health Inspection Services http://www.aphis.usda.gov/animal_health/animal_diseases/brucellosis/
Centers for Disease Control and Prevention
http://www.cdc.gov/ncidod/dbmd/diseaseinfo/brucellosis_g.htm

California Serogroup Viruses

Description

California serogroup refers to a number of closely-related mosquito-borne viruses from the genus Bunyavirus, including LaCrosse, Jamestown Canyon, and snowshoe hare viruses. These viruses are known to cause symptoms ranging from a mild meningioencephalitis (fever, headache, respiratory distress, aseptic meningitis) to encephalitis and coma. Current evidence suggests that adults are more likely to experience mild illness or asymptomatic infection, while children generally present with acute central nervous system (CNS) disease. The transmission cycle for these viruses involves Aedes mosquitoes and a variety of mammals, though the virus can also over-winter in Aedes eggs. Only six cases from the California serogroup of viruses have been reported in Florida from 1997 to 2006, and three of these are thought to have been acquired in other states. Four of the cases are in people <18 years old. Prevention measures for this group of viruses are the same as those for other mosquitoborne viruses.

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, 18 ${ }^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Campylobacteriosis

Campylobacteriosis: Crude Data	
Number of cases	941
2006 incidence rate per	5.11
100,000	
\% change from average 5yr	-9.43
(2001-2005) incidence rate	
Age (yrs)	33
Mean	33
Median	$<1-105$

Figure 1.
Campylobacteriosis Incidence Rate by Year Reported, Florida, 1997-2006

Description

Campylobacteriosis is an acute bacterial gastroenteritis caused by gram-negative bacilli. The natural reservoirs for Campylobacter species are typically poultry and cattle, although puppies, kittens, birds, swine, sheep, and rodents can also carry the organism. The infection is most often transmitted by ingesting undercooked meat, contaminated food and water, or raw milk and from infected pets or farm animals, or from infected people. Cross-contamination of surfaces contaminated by raw meat may also be a source of infection. The incubation period is generally 2-5 days after exposure (range: 1-10 days). Common symptoms include watery or bloody diarrhea, abdominal pain, fever, malaise, and nausea.

Figure 2. Campylobacteriosis Cases by Month of Onset, Florida, 2006

Disease Abstract

The incidence rate for campylobacteriosis has declined gradually over the last 10 years (Figure 1). In 2006, there was a 9.4% decrease in comparison to the average incidence from 2001 to 2005. A total of 941 cases were reported in 2006, of which 97.4% were classified as confirmed cases. The number of cases reported tends to increase in the summer months. In 2006, the number of cases exceeded the
previous 5 year average in May, July, and October (Figure 2). Overall 4.8\% of the campylobacteriosis cases were classified as outbreak-related.

The highest incidence rates continue to occur among infants <1 year old and children aged 1-4 years. In 2006, the incidence rates were lower than the previous 5-year average in all age groups, except in those older than 55 years where the incidence rate was slightly increased (Figure 3). Males continue to have a higher incidence than females (5.8 per 100,000 and 4.4 per 100,000, respectively), and in 2006, the incidence in both genders was lower than the previous 5 year average incidence. As has been the case in the past, incidence rates in whites are greater than those in non-whites (Figure 4).

Figure 3. Campylobacteriosis Incidence Rate by Age Group, Florida, 2006

Figure 4. Campylobacteriosis Incidence Rate by Race and Gender, Florida, 2006

Campylobacteriosis was reported in 53 of the 67 counties in Florida. Counties in north central and southwestern Florida reported the highest incidence rates.

Prevention

The likelihood of contracting campylobacteriosis can be reduced by cooking all meat products thoroughly, particularly poultry. Avoid cross-contamination by making sure utensils, counter tops, cutting boards, and sponges are cleaned or do not come in contact with raw poultry, or other meat. Wash hands thoroughly before, during, and after food preparation. Do not allow fluids from raw poultry or meat to drip on, or touch, other foods. Consume only pasteurized milk, milk products, or juices. Additionally, it is important to wash hands after coming into contact with any animals or their environment.

Campylobacteriosis - Reported Incidence Rate* by County of Residence, Florida, 2006

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) website at http://www.cdc.gov/ncidod/dbmd/diseaseinfo/campylobacter_g.htm

Chlamydia

Chlamydia, caused by the bacterium Chlamydia trachomatis, is the most commonly reported sexually transmitted disease in the United States. In order to infect an individual, the bacteria must invade cells. Chlamydia trachomatis can infect the male and female genital areas, the anus, the urethra, the eye, or the throat.

In 2006, there were 48,955 chlamydia cases reported among both males and females in Florida, or 265.7 cases per 100,000 total population. Over 47% of all cases were reported from five of the most populous counties (Figure 1), although all counties in the state continue to be impacted by this infection.

Figure 1. Reported Cases of Chlamydia in Males and Females by Select Counties, Florida, 2006

Broward
\square Duval
\square Hillsborough
\square Miami-Dade
\square Orange
\square All Others

Under-reporting is common because chlamydia is often asymptomatic. Approximately three-quarters of infected women, and greater than half of infected men, have no symptoms. Case numbers and rates reported include both people with symptoms; usually identified when they seek care for those symptoms, and people without symptoms; usually identified through screening.

If untreated, chlamydia may cause pelvic inflammatory disease in up to 40% of women. Complications and sequelae include a risk of infertility and life-threatening ectopic pregnancy.

The chlamydia rate per 100,000 population among males and females and across all age groups increased from 251.8 in 2002 to 265.7 in 2006. However, this increase came after the rate decreased from 2002 through 2005 (Figure 2). From 2005 to 2006, there was an overall 10.4% increase in the chlamydia rate (240.7 in 2005 to 265.7 in 2006).

The number of cases reported among females increased by 10.6%, from 34,850 in 2005 to 38,535 in 2006. The number of cases reported among males increased by 22.2%, from 8,522 in 2005 to 10,410 in 2006. This upward trend of increase in both males and females is most likely related to the expanded use of highly sensitive urine-based screening and broad community prevalence.

More cases are identified in women than in men. Women have more opportunities to receive screening because they receive reproductive health care and Pap smears. Across all age groups, females represent approximately 80% of reported cases.

Figure 2. Reported Cases of Chlamydia Among Males and Females, Cases and Rate per 100,000 Population,
Years 2002-2006

Closer examination of the disease distribution reveals that 75% of all reported cases of chlamydia are found in the 15-19 and the 20-24 age groups among both males and females (Figure 3). Chlamydia cases in the $15-19$ age group comprised 35.0% of all cases reported in 2006, and chlamydia cases in the 20-24 age group comprised 37.3% of all cases reported in 2006.

Figure 3. Reported Cases of Chlamydia by Gender and Age Group, Florida, 2006

Age Groups

Among males, the highest number of cases was found in the 20-24 age group. Among females, the highest number of cases was found in the 15-19 age group. Although the overall chlamydia case rate among males and females across all age groups was 265.7 in 2006, the rate was dramatically different between males and females among various age groups (Figure 4). The highest rate among males was in the 20-24 age group, with a rate of 659 cases per 100,000 population. The rate among females in the 20-24 age group was 2,440.9. The highest rate among females was in the 15-19 age group, with a rate of 2,508.1 cases per 100,000 population. The rate for males in the 15-19 age group was 371.9.

In 2006, approximately 82% of chlamydia cases in males were in persons between the (inclusive) ages of 18 and 35 . The rate per 100,000 for this group was 404 . Approximately 86% of chlamydia cases in females were in persons between the (inclusive) ages of 16 and 29. The rate per 100,000 for this group was 2,098.8.

Figure 4. Chlamydia Rates Per 100,000 Population By Gender and Age Group, Florida, 2006

A unique characteristic of the bacterium Chlamydia trachomatis is the relationship between physiology and the immune response. With chlamydia, there is an age aspect to cervical physiology that reduces the availability of target cells for infection as a woman matures. Additionally, many strains of chlamydia have been identified. If individuals become infected with different strains, they may develop an effective immune response. Over time, this will reduce their susceptibility to infection when exposed to the bacteria. This may partially explain the lower prevalence of infection after age 35.

Persons who described themselves as non-Hispanic black accounted for 48.6% of the chlamydia cases in 2006 (Figure 5). Persons who described themselves as non-Hispanic white accounted for 24.5% of the cases. Persons who self-reported as Hispanic (white or black) accounted for 12.4% of the cases. Persons who self-reported in other or unidentified racial-ethnic groups accounted for 14.5% of the cases.

Figure 5. Reported Cases of Chlamydia by Race-Ethnicity and Gender, Florida, 2006

Cryptosporidiosis

Cryptosporidiosis: Crude Data	
Number of cases	717
2006 incidence rate per	
100,000	3.89
\% change from average 5yr	+307.1
(2001-2005) incidence rate	
Age (yrs)	29
Mean	29
Median	$<1-91$

Figure 1.
Cryptosporidiosis Incidence Rate by Year Reported, Florida, 1997-2006

Description

Cryptosporidiosis is a parasitic gastroenteritis caused by Cryptosporidium parvum. The natural reservoirs for this parasite include humans, cattle, and other domestic animals. Transmission is by the fecal-oral route and includes person-to-person, animal-to-person, foodborne, and waterborne routes. C. parvum is protected by an outer shell that allows it to survive outside the body for long periods of time, making it resistant to chlorine-based disinfectants. The usual incubation period is 1-12 days with typical symptoms including watery diarrhea, abdominal cramps, and sometimes low-grade fever. Asymptomatic infections are also common and serve as a source of transmission. The disease is of particular concern for persons with AIDS and for other immunocompromised individuals, in whom it can cause life-threatening diarrhea and dehydration.

Figure 2. Cryptosporidiosis Cases by Month of Onset, Florida, 2006

Disease Abstract

The incidence rate for cryptosporidiosis has increased since 2001, with a sharp increase beginning in 2004 (Figure 1). The incidence rate in 2006 was 307.1% higher than the average incidence from

2001 to 2005. This increase in incidence is likely due to a combination of actual increased incidence, increased clinical recognition, and changes in laboratory practice. A total of 717 cases were reported in 2006, of which 80.5% were classified as confirmed cases. The number of cases reported tends to increase in the summer months. In 2006, the number of cases exceeded the previous 5 -year average in all months, though the difference was particularly great in the summer months (Figure 2). Thirty percent of all reported cases were classified as outbreak-related.

Rates are higher among children <9 years old, with the highest rates occurring in the 1-4 age group (16.45 per 100,000) (Figure 3). In 2006, approximately 13% of reported cases attended daycare centers. A second smaller peak among adults 25-44 years old is commonly attributed to family contact with infected children (Figure 3). The 2006 incidence exceeded the previous 5-year average incidence across genders and race. Non-white females had the highest reported incidence, at 3.79 per 100,000 (Figure 4).

Figure 3. Cryptosporidiosis Incidence Rate by Age Group, Florida, 2006

Figure 4. Cryptosporidiosis Incidence Rate by Race and Gender, Florida, 2006

Cases of cryptosporidiosis were reported in 45 of the 67 counties in Florida, 40% of which occurred in three counties in northeastern Florida (Nassau, Duval, and Clay counties). In these counties, a larger percentage of cases were reported as being outbreak-associated and as having attended a daycare facility, 49% and 21%, respectively.

Prevention

To reduce the likelihood of contracting cryptosporidiosis, practice good hand hygiene by washing hands before handling or eating food, and after diaper changing. Also, do not swallow recreational water, do not drink untreated water from shallow wells or surface water, and do not use untreated water when traveling abroad. Outbreaks associated with recreational water, especially water parks and interactive fountains, can be prevented by following established guidelines for management of these facilities.

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) website at

Cyclosporiasis

Cyclosporiasis: Crude Data	
Number of cases	31
2006 incidence rate per	
100,000	0.17
\% change from average 5yr	
(2001-2005) incidence rate	-76.9
Age (yrs)	
Mean	47.2
Median	50
Range	$17-80$

Figure 1.
Cyclosporiasis Incidence Rate by Year Reported, Florida, 1997-2006

Description

Cyclosporiasis is a diarrheal disease caused by a coccidian protozoan parasite called Cyclospora cayetanensis. It infects the small intestine and can cause watery diarrhea, loss of appetite, weight loss (may be substantial), bloating, increased gas, stomach cramps, and fatigue. Humans are reservoirs for C. cayetanensis, which is endemic in many developing countries and has been associated with diarrhea in travelers to Asia, the Caribbean, Mexico, and Peru. It is transmitted by consuming water or food that has been contaminated by human fecal material. Outbreaks, including several in Florida, have previously implicated fresh fruits and vegetables as the source of infection (raspberries, basil, and lettuce).

Figure 2. Cyclosporiasis Cases by Month of Onset, Florida, 2006

Disease Abstract

With the exception of a large outbreak of cyclosporiasis in 2005 (493 cases from Florida; see the notable outbreaks section of this report for more details), the incidence rate for cyclosporiasis has remained stable (Figure 1). In comparison to the median incidence for the last five years, the incidence in 2006 has decreased by 9.6%, with a total of 31 cases reported in 2006. Sixty-one percent of cases
reported in 2006 were considered outbreak-associated. In 2006, the number of cases by month of disease onset exceeded the previous 5-year median during seven months of the year, particularly during the months of May, June, and July (Figure 2). This peak in late spring and early summer may reflect the endemicity of cyclosporiasis in other countries whose fruit and vegetables the U.S. imports.

In 2006, most of the cases were reported in those who were between the ages of 45 and 64 , with the largest increase occurring in the 45-54 age group (Figure 3). Incidence rates are much higher in whites than in non-whites (Figure 4).

Cyclosporiasis was reported in 12 of the 67 counties in Florida, with the largest number of cases occurring in Palm Beach County.

Figure 3. Cyclosporiasis Cases by Age Group, Florida, 2006

Figure 4. Cyclosporiasis Cases by Race and Gender, Florida, 2006

Cyclosporiasis - Reported Incidence Rate* by County of Residence, Florida, 2006

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) website http://www.cdc.gov/ncidod/dpd/parasites/cyclospora/default.htm

Dengue

Dengue Fever: Crude Data	
Number of cases	20
2006 incidence rate per	
100,000	0.11
\% change from average 5yr	
(2001-2005) incidence rate	+15.2
Age (yrs)	
Mean	38
Median	33.5
Range	$7-67$

Figure 1.
Dengue Fever Cases by Year Reported, Florida, 1997-2006

Description

Dengue virus (DENV) is a mosquito-borne virus that has historically plagued Florida, although disease acquired in Florida was last documented since the early 1960's. The syndromes, collectively referred to as "dengue" and dengue hemorrhagic fever (DHF), are caused by any of four closely related virus subtypes. Classical dengue ("break-bone fever") is a painful, debilitating febrile disease that is rarely fatal. This illness is characterized by abnormal vascular permeability, hypovolemia, and abnormal blood clotting mechanisms. Dengue hemorrhagic fever-dengue shock syndrome (DHF-DSS) is a group of severe hemorrhagic symptoms that occur principally in children, but may also occur in adults. In those with severe disease, shock is the predominant sign. The case fatality rate can be as high as $40-50 \%$ untreated, but can be drastically lowered with appropriate fluid therapy. Encephalitis is a rare consequence of dengue infection. The pathogenesis and risk factors associated with DHF-DSS are controversial but appear to be related to more virulent or second infection with another dengue serotype. Humans are the only significant vertebrate hosts of DENV. In past Florida epidemics, the sole vector of the dengue viruses was undoubtedly the native Aedes aegypti mosquito. The arrival of Aedes albopictus to many parts of Florida is a concern, because this species is an important vector of DENV in Asia. DENV has become increasingly common in the Caribbean, Central America, the Pacific, and South America during the past two decades. Puerto Rico and other Caribbean islands experience DENV epidemics annually. Florida's proximity to the Caribbean increases the possibility for DENV to be imported into Florida by inadvertent transport of infected mosquitoes. The virus can also be introduced by viremic travelers returning from the Caribbean or Central America. All cases reported in Florida are among travelers returning from dengue-endemic areas. Florida may be relatively protected against reestablishment of dengue by a lifestyle in which almost all homes have window screens, air conditioning, or both.

Disease Abstract

Prior to 1998, dengue was not often considered among diagnoses for ill travelers. A 1998 study on an active surveillance program for recent dengue infections in Florida led to an increase in awareness as well as enhanced laboratory capacity to test for the viruses. Since 1998, dengue cases have been
reported in Florida each year (Figure 1). The number of cases reported typically ranges from 10-20 annually. Typically, disease onset for travelers returning to Florida peaks during mid-summer and fall, though cases are reported year-round (Figure 2).

Figure 2. Dengue Fever by Month of Onset, Florida, 2006

From 1997 through 2006, 57\% percent of cases were male, and 57\% occurred among those 30-59 years of age. In 2006, 50\% of dengue cases reported a travel history to countries in South or Central America, or to Mexico. Forty-five percent of cases traveled to the Caribbean, and the remaining 5\% traveled to countries in Asia or Africa.

Prevention

There is no vaccine available. Travelers to dengue-endemic countries should be warned of the risk of disease and instructed to avoid mosquito bites. Use insect repellents that contain DEET or other EPAapproved ingredients such as Picaridin or oil of lemon eucalyptus. Avoid spending time outdoors during daytime hours when disease-carrying mosquitoes are most likely to be seeking a blood meal. Dress in long sleeves and long pants to protect skin from mosquitoes. Also, try to remain in well-screened or airconditioned areas.

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, 18 ${ }^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.
J. Gill, L.M. Stark, and C.G. Clark, Dengue Surveillance in Florida, 1997-1998, Emerging Infectious Diseases, Vol. 1, 2000, pp.30-35.

Additional Resources

Additional information on DENV and other mosquito-borne diseases can be found in the Surveillance and Control of Arthropod-borne Diseases in Florida Guidebook, online at
http://www.doh.state.fl.us/environment/community/arboviral/pdf_files/UpdatedArboguide.pdf

Disease information is also available from the Centers for Disease Control and Prevention (CDC) website
http://wwwn.cdc.gov/travel/yellowBookCh4-DengueFever.aspx

Eastern Equine Encephalitis

Figure 1
Eastern Equine Encephalitis Cases by Year Reported, Florida, 1997-2006

Description

Eastern equine encephalitis virus (EEEV) is a mosquito-borne alphavirus that was first identified in the 1930s. EEEV occurs in natural cycles involving birds and Culiseta melanura in freshwater swampy areas, with a peak of activity occurring between May and August. In this usual cycle of transmission (enzootic cycle), the EEEV remains in the swampy areas, as the mosquito involved prefers to feed upon birds, and does not usually bite humans or other mammals. For reasons not fully understood, the virus may spread from enzootic foci carried in birds or bridge vectors (mosquito species that feed on both birds and mammals). EEEV-infected bridge vectors are responsible for transmitting the virus to horses and people. It takes from 3-10 days after the bite of an infected mosquito for a person to develop symptoms of human eastern equine encephalitis (EEE). Symptoms include a sudden onset of fever, general muscle pains, and a headache of increasing severity. Many individuals will progress to more severe symptoms such as seizures and coma. Although the majority of human infections are asymptomatic, approximately one-third of all people with clinical encephalitis caused by EEEV will die from the disease. Of those who recover, many will suffer permanent brain damage requiring long-term medical care.

Disease Abstract

All evidence indicates that EEE does not have epidemic potential in Florida. Continuous surveillance since 1957 has documented only 77 human cases (average 1.5 cases per year, range: $0-5$). The cases reported each year from 1997 to 2006 remains infrequent (Figure 1). The peak illness onset period for human cases is between June and August (Figure 2), though transmission can occur year-round. Unlike some other mosquito-borne diseases, which typically affect the elderly, EEE tends to affect individuals in younger age groups (Figure 3). In fact, of the 77 cases reported since 1957, 53\% are in those <20 years of age. Of the 12 cases reported between 2001 and 2006, four (33\%) resulted in death. This is consistent with the known case fatality rate for EEE. Between 2001 and 2006, 25\% of cases were reported in individuals residing in counties in the northern region of the state. Twenty-five
percent of cases were reported from the central region, and 50% were reported from the panhandle region.

Figure 2. Eastern Equine Encephalitis by Month of Onset, Florida, 2001-2006

-Total \# of Cases 2001-2006

Figure 3. Eastern Equine Encephalitis Cases by Age Group, Florida, 2001-2006

Prevention

Prevention of the disease is a necessity, as there is no cure for EEE; only supportive care is available. Measures can be taken to avoid being bitten by mosquitoes. Drain any areas of standing water from around the home to eliminate mosquito breeding sites. Use insect repellents that contain DEET or other EPA-approved ingredients such as Picaridin or oil of lemon eucalyptus. Avoid spending time outdoors during dusk and dawn, the time when disease-carrying mosquitoes are most likely to be seeking a blood meal. Dress in long sleeves and long pants to protect skin from mosquitoes. Also, inspect screens on doors and windows for holes to make sure mosquitoes cannot enter the home.

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Resources

Additional information on EEE and other mosquito-borne diseases can be found in the Surveillance and Control of Arthropod-borne Diseases in Florida Guidebook, online at http://www.doh.state.fl.us/environment/community/arboviral/pdf_files/UpdatedArboguide.pdf

Disease information is also available from the Centers for Disease Control and Prevention (CDC) website http://www.cdc.gov/ncidod/dvbid/arbor/eeefact.htm

Ehrlichiosis/Anaplasmosis

Ehrlichiosis/Anaplasmosis: Crude Data	
Number of cases	6
2006 incidence rate per	0.03
100,000	
\% change from average 5yr	+50
(2001-2005) incidence rate	
Age (yrs)	55.8
Mean	60
Median	$16-87$
Range	

Figure 1. Ehrlichiosis (all codes combined) Cases by Year Reported, Florida, 1997-2006

Description

Tick-borne bacteria in the genera Ehrlichia and Anaplasma can cause febrile illnesses in humans with a potentially fatal outcome. Ehrlichia chaffeensis, discovered in 1987, causes human monocytic ehrlichiosis (HME). What was originally thought to be a second species of Ehrlichia causing human granulocytic ehrlichiosis (HGE), was recently reclassified as Anaplasma phagocytophilum, with the associated illness renamed to human granulocytic anaplasmosis (HGA). HGA became nationally notifiable in 1999. HME is also nationally notifiable. Nonspecific clinical findings make both diseases difficult to diagnose. They may account for many cases of unexplained tick-associated fevers of unknown origin, for example, some illnesses misdiagnosed as Lyme disease. The most likely tick vector for HME is Amblyomma americanum. The spectrum of illness ranges from asymptomatic to fatal. Most cases have a nonspecific febrile illness without rash, with over 60\% hospitalized. About 15\% have severe disease, including renal failure, disseminated intravascular coagulopathy, seizures, and coma, with $2-3 \%$ mortality. The tick vector for HGA is thought to be Ixodes scapularis. HGA is clinically similar to HME, and usually presents as an undifferentiated fever without rash. Elderly patients are more likely
to have severe disease. Half of the diagnosed patients have been hospitalized, with 9% admitted to intensive care. Mortality is approximately 5%.

Disease Abstract

The total number of combined cases of HME and HGA reported annually ranges from 2 to 13 cases per year (Figure 1). Since HGA was recognized as a separate reportable disease in 1999, there have been slightly more HME cases than HGA cases reported in Florida annually. Based on data collected between 2000 and 2006, slightly more than half of HME cases are male. The majority of cases are white (91%) and non-Hispanic (86%). The average age is 51 years, and 72% of cases are reported as having been acquired in Florida. Of the HGA cases reported between 2000 and 2006, 73% were male. The average age was 52 years, and the majority of cases were white (82%) and non-Hispanic (82\%). Forty-five percent of cases were reported as having been acquired in Florida. Of these, 46\% were reported in residents of counties in the northern region of the state. Twenty-four percent were in residents of the central region, 22% from the panhandle region, and 8% from the southern region. Between 2000 and 2006, two cases of HME resulted in death. No fatalities from HGA were reported during this time. Though cases of both HME and HGA are reported year-round, peak transmission occurs during the late spring and summer months.

Prevention

Both HME and HGA can be treated with doxycycline, though prevention of tick bites is the best way to avoid disease. Wear light-colored clothing so that ticks crawling on clothing are visible. Tuck pant legs into socks to prevent ticks from crawling inside clothing. Apply repellent to discourage tick attachment. Repellents containing permethrin can be sprayed on boots and clothing, and will last for several days. Repellents containing DEET can be applied to the skin, but will last only a few hours before reapplication is necessary. Search the body for ticks upon return from potentially tick-infested areas. If a tick is found, it should be removed as soon as possible. Controlling tick populations in the yard and on pets can also reduce the risk of disease transmission.

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, 18 ${ }^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Resources

Additional information on ehrlichiosis and anaplasmosis, along with other arthropod-borne diseases can be found in the Surveillance and Control of Arthropod-borne Diseases in Florida Guidebook, online
http://www.doh.state.fl.us/environment/community/arboviral/pdf_files/UpdatedArboguide.pdf

Disease information is also available from the Centers for Disease Control and Prevention (CDC) website at
http://www.cdc.gov/ncidod/dvrd/ehrlichia/Index.htm

Enterohemorrhagic Escherichia coli 0157:H7

Enterohemorrhagic Escherichia coli O157:H7: Crude Data	
Number of cases	29
2006 incidence rate per	0.16
100,000	
\% change from average 5yr	
(2001-2005) incidence rate	-61.2
Age (yrs)	
Mean	25.9
Median	15
Range	$<1-68$

Figure 1.
Enterohemorrhagic E. coli O157:H7 Incidence Rate by Year Reported, Florida, 1997-2006

Description

Enterohemorrhagic Escherichia coli O157:H7 is an acute diarrheal disease caused by shigatoxin producing Escherichia coli bacteria. The most important reservoir for E. coli $\mathrm{O} 157: \mathrm{H} 7$ is cattle.
Transmission occurs mainly through ingestion of contaminated food, often due to inadequately cooked ground beef, or fruits and vegetables contaminated with animal feces. E. coli O157:H7 has also been found in un-pasteurized apple juice, un-pasteurized milk, and untreated water. Cross-contamination of surfaces contaminated by raw meat may also be a source of infection. Person-to-person and waterborne transmission also occurs. The incubation period is generally 3-4 days after exposure (range: 2-8 days). Common symptoms include diarrhea (often containing blood), abdominal pain,

Figure 2. Enterohemorrhagic E. coli O157:H7 Cases by Month of Onset, Florida, 2006

fever, malaise, and nausea. Approximately 5% of sick individuals, particularly young children, go on to develop hemolytic uremic syndrome (HUS), which can result in renal failure and death.

Disease Abstract

A total of 29 cases were reported in 2006, all of which were confirmed. All cases were classified as sporadic, and none were considered outbreak-associated. The incidence rate for enterohemorrhagic E. coli $0157: \mathrm{H} 7$ has varied over the last 10 years (Figure 1). One source of variation is large outbreaks involving food products distributed across multiple states or other common source exposures (additional information regarding outbreaks can be found in the outbreaks section of this report). In 2006, there was a 61.2% decrease in comparison to the average incidence from 2001 to 2005, likely due to the absence of outbreaks tied to a common source. No clear seasonal patterns were observed (Figure 2).

In 2006, incidence was greatest among children and teenagers < 20 years old and incidence rates were the same or lower than the previous 5-year average in all age groups (Figure 3). In 2006, the incidence was similar between males and females and incidence in both genders was lower than the previous 5 -year average incidence (Figure 4).

Figure 3. Enterohemorrhagic E. coli O157:H7 Incidence Rate by Age Group, Florida, 2006

Enterohemorrhagic E. coli O157:H7 cases were reported in 18 of the 67 counties in Florida. Counties in northern Florida, along the Georgia border, reported the highest incidence rates.

Prevention

To reduce the likelihood of contracting E. coli O157:H7, all meat products should be thoroughly cooked, particularly ground beef. Cross-contamination may be avoided by making sure utensils, counter tops, cutting boards, and sponges are cleaned, or do not come in contact with raw meat. Hands should be thoroughly washed before, during, and after food preparation, and after toilet use. The fluids from raw meat should not be allowed to come in contact with other foods. Additionally, it is important to wash hands after coming into contact with animals or their environment. Particular care should be taken with young children in the setting of petting zoos or when in contact with farm animals, which harbor the organism.

Figure 4. Enterohemorrhagic E. coli O157:H7 Incidence Rates by Gender, Florida 2006

Escherichia coli O157:H7 - Reported Incidence Rate* by
County of Residence, Florida, 2006

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Additional Resources

Disease information is also available from the Centers for Disease Control and Prevention (CDC) website http://www.cdc.gov/ncidod/dbmd/diseaseinfo/escherichiacoli_g.htm

Escherichia coli shiga toxin positive (non-0157:H7)

Escherichia coli shiga toxin + (non O157:H7): Crude Data	
Number of cases	31
2006 incidence rate per	0.09
100,000	
\% change from average 5yr	+15.5
(2001-2005) incidence rate	
Age (yrs)	35
Mean	33
Median	$<1-94$

Figure 1.
E. coli shiga toxin + (non-O157) Cases by Year Reported, Florida, 1997-2006

Description

Infection with shiga-toxin producing Escherichia coli can result in an acute diarrheal disease. There are many different serotypes of shiga-toxin producing E. coli. The most common is E. coli O157:H7, which is summarized separately. The data presented here is for shiga-toxin producing E. coli serotypes other than O157. The clinical characteristics and epidemiologic risk factors are similar for all shigatoxin producing E. coli, including O157:H7 serotype. Transmission occurs mainly through ingestion of contaminated food, often due to inadequately cooked ground beef, or fruits and vegetables contaminated with animal feces. Shiga-toxin producing E. coli has also been found in un-pasteurized apple juice, un-pasteurized milk, and untreated water. Cross-contamination of surfaces contaminated by raw meat may also be a source of infection. Person-to-person and waterborne transmission can also occur. Common symptoms are similar to infection with O157 serotype and include frequent diarrhea (often containing blood), abdominal pain, fever, malaise, and nausea.

Disease Abstract

A total of 31 cases were reported in 2006, 29 (90.3\%) of which were confirmed. Two cases were classified as outbreak-associated and 29 were considered sporadic. In 2006, there was a 15.5% increase in comparison to the average incidence from 2001 to 2005 (Figure 1). However, surveillance procedures for non-O157 serotype shiga-toxin producing E. coli have changed over the past 10 years, making surveillance trends difficult to interpret.

Figure 2. E. coli shiga toxin + (non-O157) Cases by Age Group, Florida, 2006

In 2006, incidence was greatest among children 1-4 years old, followed by adults aged 55-64 (Figure 2). In 2006, the incidence was similar between males and females, and incidence in both genders was higher than the previous 5-year average incidence (Figure 3).

Figure 3. E. coli shiga toxin + (non-O157) Cases by Gender, Florida 2006

Prevention

Prevention of shiga-toxin producing E. coli is similar to prevention of E. coli O157:H7. To reduce the likelihood of contracting shiga-toxin producing E. coli, all meat products should be thoroughly cooked, particularly ground beef. Cross-contamination may be avoided by making sure utensils, counter tops, cutting boards, and sponges are cleaned, or do not come in contact with raw meat. Hands should be thoroughly washed before, during, and after food preparation, and after toilet use. The fluids from raw meat should not be allowed to come in contact with other foods. Additionally, it is important to wash hands after coming into contact with animals or their environment. Particular care should be taken with
young children in the setting of petting zoos or when in contact with farm animals, which harbor the organism.

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, 18 ${ }^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Additional Resources

Disease information is also available from the Centers for Disease Control and Prevention (CDC) website http://www.cdc.gov/ncidod/dbmd/diseaseinfo/enterohemecoli_t.htm and http://www.cdc.gov/ncidod/dbmd/diseaseinfo/escherichiacoli_g.htm

Giardiasis

Giardiasis: Crude Data	
Number of cases	1165
2006 incidence rate per	6.32
100,000	
\% change from average 5yr	-4.83
(2001-2005) incidence rate	
Age (yrs)	25.8
Mean	21
Median	$<1-97$

Figure 1.
Giardiasis Incidence Rate by Year Reported, Florida, 1997-2006

Description

Giardiasis is a parasitic diarrheal disease caused by infection from the flagellate protozoan, Giardia intestinalis (also known as Giardia lambia). Only the cyst form is infective, although Giardia parasites live in the intestine of humans and animals. Giardia is found in soil, food, water, or surfaces that have been contaminated with the feces from infected humans or animals.

In Florida, Giardia is mainly transmitted by person-to-person contact, although the parasite can survive outside the body and in the environment for long periods of time. The disease is communicable for as long as the infected person excretes cysts, often months. The incubation period is usually 3-25 days with a median of 7-10 days after becoming infected. Common symptoms include diarrhea, abdominal cramps, bloating, fatigue, malabsorption, and weight loss. The asymptomatic carrier rate is high.

Figure 2. Giardiasis Cases by Month of Onset, Florida, 2006

Disease Abstract

The incidence rate for giardiasis in Florida has declined by about half over the last 10 years (Figure 1). In 2006, there was a 4.83% decrease in comparison to the average incidence from 2001 to 2005. A total of 1,165 cases were reported in 2006, slightly higher than the number reported in 2005 (987 cases). Of the 1,165 cases reported in 2006, 96.2% were classified as confirmed. Although asymptomatic infections are common, in Florida, only acute cases with symptoms are reported. Annually, the number of cases occurring increases in the summer months (Figure 2). The month of July typically has the largest number of cases (2001-2005, 5 -year average 98.22). In 2006, the largest number of cases occurred in August (125 cases). In 2006, the months of August, November, and December exceeded the previous 5 -year average for number of cases. Among the 1,165 giardiasis cases reported in 2006, 156 (13.39\%) were reported as outbreak-associated, and 866 (74.3%) were determined to have been acquired in Florida. There were 203 cases that acquired infection outside of the U.S., with 120 of these cases (59.1\%) indicating infection was acquired in Cuba.

Figure 3. Giardiasis Incidence Rate by Age Group, Florida, 2006

The highest incidence rates continue to occur among in children aged 1-4 years (33.36 per 100,000) and secondarily in those aged 5-9 years (14.43 per 100,000) (Figure 3). There were a total of 294 cases reported among children aged 1-4 years. Approximately one-third of the 294 cases, aged 1-4 years, attended daycare.

Overall, males continue to have a higher incidence than females (7.41 and 5.25 per 100,000, respectively). Following previous annual trends, incidence rates in whites are greater than those in non-whites (Figure 4).

In 2006, giardiasis was reported in 55 of the 67 counties in Florida. The highest incidence rate was in Nassau County, 34.13 cases per 100,000.

Figure 4. Giardiasis Incidence Rate by Race and Gender, Florida, 2006

Prevention

Giardia infection can be avoided or reduced by practicing good hand hygiene. This is particularly important in childcare centers and after toilet use, before handling food, and before eating. Avoid contaminated food and swallowing water that might be contaminated, such as recreational water (ponds, lakes, etc.) and drinking untreated water from shallow wells, lakes, rivers, springs, ponds, streams, or untreated ice or drinking water when traveling in countries where the water may not be adequately filtered and treated. Boiling water is the most reliable way to make water safe for drinking. Filters and chemical disinfection can be effective against Giardia, but chlorine germicidal activity is dependent on several factors, including pH , temperature, and organic content of the water. People with diarrhea caused by Giardia should avoid use of recreational water venues for two weeks after symptoms resolve.

Giardiasis - Reported Incidence Rate* by County of Residence, Florida, 2006

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.
L.K. Pickering, C.J. Baker, S.S. Long, and J.A. McMillan (eds.),Red Book: 2006 Report of the Committee on Infectious Diseases, $27^{\text {th }}$ ed., American Academy of Pediatrics, 2006, pp. 296-301.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) website http://www.cdc.gov/NCIDOD/DPD/PARASITES/giardiasis/default.htm

Gonorrhea

Gonorrhea, caused by the bacterium Neisseria gonorrhoeae, grows and multiplies in the warm, moist areas of the reproductive tract. The bacterium can also grow in the mouth, throat, eyes, and anus. In 2006, there were 23,976 gonorrhea cases reported among both males and females in Florida, or a rate of 130.1 cases per 100,000 population. Counties in north Florida have some of the highest rates of cases reported per 100,000 population (Table 1).

Table 1. Counties with the Highest Rate of Gonorrhea, Florida, 2006

County	Rank	Population	Cases	Rate
Escambia	1	303,578	928	305.7
Gadsden	2	48,554	145	298.6
Duval	3	884,004	2,632	297.7
Alachua	4	246,151	711	288.8
Leon	5	278,789	677	242.8

Over the past five years, the total number of reported gonorrhea cases reached a low of 18,580 cases in 2004, and increased to 23,976 cases in 2006 (Figure 6). The gonorrhea rate per 100,000 population followed this trend, reaching a low of 105.5 in 2004 and increasing to 130.1 in 2006.

The distribution of reported gonorrhea cases by age group from 2002 to 2006 has been fairly consistent, with one exception (Figure 7). The reported cases in the 30-34 age group decreased 0.7%, from 1,990 in 2002 to 1,976 in 2006. The total number of gonorrhea cases increased in all other age groups. The largest increase occurred in the 15-19 age group, which increased 22.4%, from 5,517 reported cases in 2002 to 6,752 reported cases in 2006. Overall, more cases have been reported in the 20-24 age group for gonorrhea consistently since 1998.

Among males, the highest number of cases was found in the 20-24 age group (3,494 cases). Among females, the highest number of cases was found in the 15-19 age group (4,619 cases). The number of cases has increased among both males and females since 2004.

Figure 6. Reported Cases of Gonorrhea among Males and Females by Year, Florida, 2002-2006

The highest rate among males was in the 20-24 age group, with a rate of 571 cases per 100,000 population (Figure 8). The rate among females in the 20-24 age group was 682.5. The highest rate
among females was in the 15-19 age group, with a rate of 782 cases per 100,000 population. The rate for males in the 15-19 age group was 346.3. Among the age groups of 25-29, 30-34, and 35 and over, the rate among males was higher than the rate among females.

Figure 7. Reported Cases of Gonorrhea by Age
Group, Florida, 2002-2006

In 2006, approximately 80% of gonorrhea cases in males were in persons between the (inclusive) ages of 18 and 44 . The rate per 100,000 for this group was 294.8 . Approximately 85% of gonorrhea cases in females were in persons between the (inclusive) ages of 16 and 32. The rate per 100,000 for this group was 458.4.

Figure 8. Gonorrhea Rates By Gender and Age Group, Florida, 2006

It is speculated gonorrhea prevalence is related to the availability of improved test technology, expanded targeted screening, and risk-taking behaviors among those connected within various sexual networks. There is no known immune response with the bacterium Neisseria gonorrhoeae. Overall, the increase in gonorrhea indicates the increased risk for youths to become infected with life-threatening HIV, because an individual with gonorrhea is more likely to become infected with HIV if exposed.

Persons who described themselves as non-Hispanic black accounted for 64.9\% of the gonorrhea cases in 2006 (Figure 9). Persons who self-reported as non-Hispanic white accounted for 18.9% of the cases. Persons who self-reported as Hispanic (white or black) accounted for 6.2% of the cases. Persons who self-reported in other or unidentified racial-ethnic groups accounted for 10.0% of the cases.

Figure 9. Reported Cases of Gonorrhea by Race- Ethnicity and Gender, Florida, 2006

Haemophilus influenzae (Invasive Disease)

Haemophilus influenzae Invasive: Crude Data	
Number of cases	142
2006 incidence rate per	0.77
100,000	
\% change from average 5yr	+41.9
(2001-2005) incidence rate	
Age (yrs)	57.1
Mean	62.5
Median	$<1-101$

Figure 1.
Haemophilus influenzae, invasive disease, Incidence Rate by Year Reported, Florida, 1997-2006

Description

Invasive disease caused by Haemophilus influenzae may cause a variety of clinical syndromes including meningitis, bacteremia (septicemia), epiglottitis, or pneumonia. Widespread use of the Haemophilus conjugate vaccine in infants and children has significantly decreased the incidence of invasive disease due to the serotype b infection.

Disease Abstract

The incidence rate for all invasive diseases caused by Haemophilus influenzae has gradually increased over the past 10 years (Figure 1). In 2006 there was a 41.9% increase compared to the average incidence from 2001-2005.. A total of 142 cases were reported in 2006, of which all but one were classified as confirmed. The number of cases reported is highest in the winter and spring, during the months of December through May (Figure 2). In 2006, the number of cases exceeded the previous 5 year average in all months except March and December. Nearly all cases of invasive disease caused by Haemophilus influenzae are sporadic in nature.

Figure 2. Haemophilus influenzae, invasive disease, by Month of Onset, Florida, 2006

The highest incidence rates occur in those aged <1 year or in those >85 years (Figure 3). In 2006, the incidence rates were higher than the previous 5 year average in all age groups except in those $<1,5-19,20-24$ and 25-34 years. Females continue to have a higher incidence than males (0.58 per 100,000 and 0.50 per 100,000 respectively) and in 2006 the incidence in both genders was higher than the previous 5 year average incidence (0.83 per 100,000 and 0.71 per 100,000) (Figure 4). As in the past, incidence rates in non-whites are greater than those in whites.

Figure 3. Haemophilus influenzae, invasive disease, Incidence Rate by Age Group, Florida, 2006

Invasive disease caused by Haemophilus influenzae was reported in 29 of the 67 counties in Florida. Overall, counties in central and southwestern Florida reported the highest incidence rate.

Invasive disease caused by Haemophilus influenzae b in those under age five:

From 1997 to 2006 there were 21 cases of invasive disease caused by Haemophilus influenzae, serotype b in those under age five. Of these, 20/21 were classified as confirmed cases. Four cases were reported in 2006, three in those <1 year of age and one >1 year of age. Three of these cases were confirmed, one was probable. Two were white, one black and one classified as other. Three of the four cases were male.

Figure 4. Hemophilus influenzae, invasive disease, Incidence Rate by Race and Gender, Florida, 2006

Prevention

Conjugate vaccines against Hemophilus influenzae type b (Hib) for infants and children are recommended by the Advisory Committee on Immunization Practices. Additional information may be found at http://www.cdc.gov/mmwr/preview/mmwrhtml/rr4805a1.htm and http://www.cdc.gov/vaccines/recs/schedules/downloads/child/2007/child-schedule-color-print.pdf

Hemophilus influenzae (invasive disease) Reported Incidence Rate* by County of Residence, Florida, 2006

References

David L. Heyman (Ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed, American Public Health Association Press, Washington, District of Columbia, 2004, p. 366.

Additional Resources

Centers for Disease Control and Prevention
http://www.cdc.gov/ncidod/dbmd/diseaseinfo/haeminfluserob_t.htm

Immunization Recommendations:
Centers for Disease Control and Prevention. "Haemophilus b Conjugate Vaccines for Prevention of Haemophilus influenzae Type b Disease Among Infants and Children Two Months of Age and Older Recommendations of the ACIP." MMWR 1991 / 40(RR01); pp. 1-7. http://www.cdc.gov/mmwr/preview/mmwrhtml/00041736.htm

Hantavirus

There were no cases of hantavirus infection reported from 1997 through 2006. Causative agents are RNA viruses of the Bunyaviridae family. Several different viruses are found throughout the world, with rodents acting as the natural reservoirs. Sin Nombre, Black Creek Canal, Bayou, New York, and Monongahela viruses are found in the U.S. and are associated with specific rodent species. The only report of human infection with hantavirus in Florida thus far is a single case of Black Creek Canal virus that occurred in Miami-Dade County in the early 1990's. Apparent endemic infection in wild cotton rats Sigmodon hispidus was documented in the region during the same time period.

Rodents shed virus in saliva, urine and feces. Transmission to humans occurs through direct contact or inhalation of aerosolized particles from infective materials. In rare instances virus has been transmitted through rodent bites or through contamination of cuts with excreta. Human to human transmission generally does not occur. Two syndromes are seen, hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). Mortality for HPS in adults is $30-40 \%$, more mild disease may be present in children. Mortality for HFRS ranges from <1-15\% depending on which virus is involved. The HFRS syndrome is seen primarily in Europe and Asia.

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, 18 ${ }^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Hepatitis A

Hepatitis A: Crude Data	
Number of cases	233
2006 incidence rate per	1.26
100,000	
\% change from average 5yr	-62.3
(2001-2005) incidence rate	
Age (yrs)	32.9
Mean	26
Median	$2-93$

Figure 1.
Hepatitis A Incidence Rate by Year Reported, Florida, 1997-2006

Description

Hepatitis A is an acute liver disease caused by infection with hepatitis A virus. The virus is transmitted person to person by the fecal-oral route, and poor sanitation is a risk factor for infection. Commonsource outbreaks have been linked to contaminated food or water, including raw or undercooked mollusks harvested from contaminated waters. The incubation period ranges from approximately two to
six weeks after exposure. Symptoms include fever, malaise, nausea, and abdominal discomfort, often followed by jaundice. Infection may be asymptomatic in children.

Figure 2. Hepatitis A by Month of Onset, Florida, 2006

Disease Abstract

A total of 233 cases of hepatitis A were reported in 2006, of which 91.4% were classified as confirmed. At least 39% of hepatitis A cases were hospitalized, and two persons died. Approximately 14% of cases were classified as outbreak-related; 16% reported contact with a person with confirmed or suspected hepatitis A infection in the two to six weeks prior to their illness. Approximately 38% of cases reported a travel history outside the U.S. in the 2-6 weeks prior to their illness. Of those reporting a travel history, approximately 70% reported travel to Latin America or the Caribbean. The incidence rate for hepatitis A in Florida has declined markedly since 2002 (Figure 1), which mirrors a similar decline observed nationally. The annual incidence in Florida from 2004 to 2006 was between 1-2 cases per 100,000. This is a substantial decrease from the annual incidence of 4-6 cases per 100,000 observed from 1997 to 2002. The decrease in Florida and nationally is likely due, at least in part, to increased use of vaccines to protect against hepatitis A virus, which first became commercially available in 1995.

Figure 3. Hepatitis A Incidence Rates by Age Group, Florida, 2006

Hepatitis A occurs throughout the year (Figure 2), and the highest incidence rates continue to occur among children aged 5-9 years (Figure 3). In 2006, incidence rates were lower than the previous 5 -year average in all age groups, except those 75-84 years old. The largest decrease in incidence was observed among adults 20-44 years old. In 2006, the incidence in both males and females was lower than the previous 5 -year average incidence, and the greatest decrease occurred among whites in both genders (Figure 4).

Figure 4. Hepatitis A Incidence Rate by Race and Gender, Florida, 2006

Hepatitis A was reported in 38 of the 67 counties in Florida during 2006. Counties in southern Florida reported the highest incidence rates with approximately half of cases reported from the Southeast.

Prevention

Currently, the single antigen, two-dose, hepatitis A vaccine is recommended as part of the routine immunization schedule for all children starting at age one. However, this is not a requirement for child care or school entry in Florida. The doses should be spaced at least six months apart. A combined hepatitis A and hepatitis B vaccine is available for adults >18 years old, and is administered in three doses. In addition to routine childhood immunization, hepatitis A vaccine is also recommended for those at increased risk of infection, including those traveling to developing counties, men who have sex with men (MSM), injection and non-injection drug users, and persons with clotting factor disorder.

Other efforts to prevent hepatitis A infection should focus on disrupting transmission through good personal hygiene, hand washing, and washing fruits and vegetables before eating. Illness among foodhandlers or persons in a childcare setting should be promptly identified and reported to prevent further spread of the disease in those settings. In outbreak settings, immune-globulin may be administered to at-risk contacts of infected individuals.

Hepatitis A - Reported Incidence Rate* by County of Residence, Florida, 2006

References

Centers for Disease Control and Prevention, "Prevention of Hepatitis A through Active or Passive Immunization: Recommendations of the Advisory Committee on Immunization Practices (ACIP)," MMWR 2006; 55(RR07); pp 1-23.

Centers for Disease Control and Prevention, "Summary of Notifiable Diseases-United States, 2005," MMWR 2005; 55(53).

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) website http://www.cdc.gov/NCIDOD/diseases/hepatitis/a/index.htm

Hepatitis B, Acute

Hepatitis B: Crude Data	
Number of cases	446
2006 incidence rate per 2.42 100,000 \% change from average 5yr -23.3 (2001-2005) incidence rate Age (yrs) 42.5 Mean 41 Median $18-87$${ }^{\text {Range }}$	

Figure 1.
Hepatitis B, acute Incidence Rate by Year Reported, Florida, 1997-2006

Description

Hepatitis B is one of several kinds of acute viral hepatitis. Symptoms may appear up to six months after exposure to the virus. Hepatitis B is transmitted from person to person via infected body fluids. Very small amounts of blood, semen, or other body fluids may contain enough virus to infect a person. Transmission may occur by sexual or similar close contact with an infected person, from mother to infant, through shared injection drug equipment, or by nosocomial exposure. People usually recover from acute hepatitis B, although they may become chronic carriers of the hepatitis B virus. Common symptoms include jaundice, abdominal pain, dark urine, clay-colored stool, weight loss, and nausea.

Disease Abstract

The incidence rate for acute hepatitis B has declined gradually over the last 10 years (Figure 1). The 2006 rate was 23.3% lower than the average from 2001 to 2005 . A total of 446 cases were reported in 2006, of which 94.1% were classified as confirmed. There is no seasonal trend for acute hepatitis B infection (Figure 2). Overall, 1.35% of the acute hepatitis B cases were classified as outbreak-related.

Figure 2. Hepatitis B, acute by Month of Onset, Florida, 2006

The highest incidence rates continue to occur in the 25-34 year age group. In 2006, the incidence rates were lower than the previous 5 -year average in all age groups, except in those older than 55 years where the incidence rate was slightly increased (Figure 3). The incidence of hepatitis B is lowest in people <19 years of age. Rates have always been low in children, and are even lower with widespread immunization. Males continue to have a higher incidence than females (3.1 per 100,000 and 1.8 per 100,000, respectively). The incidence rates in non-whites are greater than those in whites (Figure 4).

Figure 3. Hepatitis B, acute Incidence Rate by Age Group, Florida, 2006

Hepatitis B is a vaccine-preventable disease. Among the 446 people diagnosed with acute hepatitis B, 65.9% never received the vaccine and 29.6% have unknown vaccine status. This demonstrates the importance of vaccination campaigns to eliminate hepatitis B in the U.S. The symptoms of acute viral hepatic illness may prompt individuals to seek immediate medical attention. Approximately 51.8\% of those diagnosed with acute hepatitis B were hospitalized. In 2006, death occurred in 5 of the 446 people with acute hepatitis B infection. Thirty-six of the 446 people with acute hepatitis B reported having known contact with someone confirmed or suspected of having a hepatitis B infection, and of these, 69% reported the type of contact was as a sexual partner. Drug use has been associated with hepatitis B infection. Of the 446 acute hepatitis B cases, 10\% reported injection drug use and 19\% reported using street drugs, but not injection drug use. Hepatitis B infection has also been associated with improper sterilization or sharing of needles to create tattoos. In 2006, 2.5% of those with an acute hepatitis B infection recently received a tattoo.

Sexual behavior may place an individual at risk for hepatitis B infection. However, during case investigation interviews individuals often decline to comment on the frequency of sexual partners and/ or their sexual preferences. For 2006, sexual preference and frequency of sexual partnerships are summarized in Table 1. Risk factor data may change over time or new settings or host behaviors may be identified that increase or decrease the chances of disease or infection.

Acute hepatitis B was reported in 46 of the 67 counties in Florida. A cluster of high-rate counties can be
seen in the center of the state.

Table 1. Distribution of the number of sexual partners in the six months prior to symptoms among four sexual preference groups, for people with acute hepatitis B reported in 2006.

Sexual Behavior Risk Factors	Men having sex with men	Men having sex with women	Women having sex with men	Women having sex with women
1 Sexual partner	7%	21%	32%	2.0%
2-5 Sexual partners	7%	14%	22%	0%
More than 5 sexual partners	4%	7%	5%	1%
Reported no sexual partner	48%	24%	14%	70%
Not Answered	1%	2%	1%	0%
Unknown	33%	10%	26%	100%
Total	100%	42%	59%	2.4%
\% of Cases in each sexual preference group	17%			

*Total number of acute hepatitis b positive males is 279 and females is 167.
**:In, 2006, all 446 acute cases of hepatitis occurred in individuals 18 years of age and older
${ }^{* * *}$ Sexual history is collected by asking about the number of sexual partnership in the last 6 months prior to having symptoms, regardless of gender.

Prevention

Hepatitis B vaccines are available to protect against hepatitis B virus infection. In addition, in healthcare settings, universal precautions should be implemented for individuals in contact with body fluids. High risk groups for infection include drug users who share needles, healthcare workers who have contact with infected blood, MSM, people who have multiple sexual partners, household contacts of infected persons, and infants born to mothers who are hepatitis B carriers.

Figure 4. Hepatitis B, acute Incidence Rate by Race and Gender, Florida, 2006

Hepatitis B, acute - Reported Incidence Rate* by County of Residence, Florida, 2006

References

Centers for Disease Control and Prevention, "A Comprehensive Immunization Strategy to Eliminate Transmission of Hepatitis B Virus Infection in the United States," MMWR 55(RR16); pp. 1-25.

Centers for Disease Control and Prevention, "Incidence of Acute Hepatitis B-United States, 1990-2002," MMWR 2004; 52: pp. 1252-1254.

Centers for Disease Control and Prevention, "Surveillance for Acute Viral Hepatitis-United States, 2005," MMWR 2007;56 (SS03); pp. 1-24.

Centers for Disease Control and Prevention, "Update: Recommendations to Prevent Hepatitis B Virus Transmission-United States," MMWR 1999;48:33-4.

Centers for Disease Control and Prevention, "Hepatitis B vaccination-United States, 19822002," MMWR 2002;51:549-52, 563.
J.T. Redd, J. Baumbach, W. Kohn, et al, "Patient-to-Patient Transmission of Hepatitis B Virus Associated with Oral Surgery," JID 2007;195: pp. 1311-1314.

American Academy of Pediatrics, Red Book 2003: Report of the Committee on Infectious Diseases, 26th ed., American Academy of Pediatrics Press, Elk Grove Village, Illinois, 2003.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) website http://www.cdc.gov/ncidod/diseases/hepatitis/b/index.htm and http://www.cdc.gov/ncidod/diseases/hepatitis/recs/index.htm

Disease information is also available from the World Health Organization (WHO) website http://www.who.int/mediacentre/factsheets/fs204/en/

Hepatitis B (HBsAg + Pregnant Women)

Hepatitis B (HBsAg + Pregnant Women): Crude Data	
Number of cases	448
2006 incidence rate per	
100,000	
\% change from average 5yr	-22.8
(2001-2005) incidence rate	
Age (yrs)	28
Mean	26
Median	$15-52$
Range	

Figure 1.
Hepatitis B (HBsAg + Pregnant Women) Incidence Rate by Year Reported, Florida, 1999-2006

Description

Hepatitis B is caused by infection with the hepatitis B virus (HBV), a double-stranded DNA virus of the family hepadnaviridae. HBV replicates in the liver, and causes both acute and chronic hepatitis. HBV is a bloodborne, sexually transmitted infection that is transmitted by percutaneous and mucosal exposure to infectious body fluids. The incubation period for acute hepatitis B ranges from 45-160 days (average 120 days). When present, clinical symptoms and signs may include anorexia, malaise, nausea, vomiting, abdominal pain, jaundice, dark urine, and clay-colored or light stools. Occasionally, extrahepatic manifestations occur and include skin rashes, arthralgias, and arthritis. Fulminant hepatitis occurs with a case fatality rate of $0.5-1 \%$. Persons with chronic HBV infection are often asymptomatic; however, chronic liver disease develops in two-thirds of these persons, and approximately 15-25\% die prematurely from cirrhosis or liver cancer. Perinatal hepatitis B in the newborn may range from asymptomatic to fulminant hepatitis. Infants infected at birth have a 90% chance of developing chronic infection. Newborns can also become infected due to exposure to HBsAg-positive household members
or community contacts. Populations with the highest rates of these early childhood infections include Alaskan Natives, children of Asian/Pacific Islander parents, and children of first generation immigrants from countries where HBV is of high or intermediate endemicity.

Disease Abstract

The number of cases of HBsAg+ pregnant women was 448 in 2006, which is a decrease from 530 in 2005. Also, an important note for infants/children, there were six cases of perinatal hepatitis B reported in 2006. The disease trend since 1999 has been improved case identification and increasing case numbers. So the decrease in HBsAg+ women for 2006 may indicate fewer cases identified, not necessarily that there was less disease in the Florida population, since Florida has an increasing population of women from countries where hepatitis B virus is endemic. However, overall incidence has declined 75 percent for acute hepatitis B since 1990. The CDC tracks HBsAg+ women by the number of expected births. In 2004, the CDC Florida count of expected births for HBsAg+ women ranged from 605 to 941 births. The reported number for Florida in 2004 was 536 births to HBsAg+ women, reflecting 89% of the expected lower-end limit.

Prevention

Hepatitis B immune globulin (HBIG) is prepared from human plasma known to contain a high titer of antibody to HBsAg (anti-HBs). A regimen combining HBIG and hepatitis B vaccine is $85-95 \%$ effective in preventing HBV infection when administered at birth to infants born to HBsAg+ mothers. HBIG and the first dose of hepatitis B vaccine should be administered within 12 hours of birth. The second dose should be given at one month of age and the third dose at six months of age. Dose three of the hepatitis B vaccine should not be given before six months of age. These infants should have serologic testing at 9-15 months of age to determine if a protective antibody response developed after vaccination. Infants who do not respond to the primary vaccination series should be given three additional doses of hepatitis B vaccine in a 0, 1-2, 4-6 month schedule, and the HBsAg and anti-HBs blood tests repeated to determine response.

Hepatitis B (+HBsAg in a pregnant woman) Reported Incidence Rate* by County of Residence, Florida, 2006

References

Centers for Disease Control and Prevention, Manual for the Surveillance of VaccinePreventable Diseases. $3^{\text {rd }}$ Ed., 2002, Chapter 4, Hepatitis B, http://www.cdc.gov/vaccines/pubs/surv-manual/default.htm.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) website http://www.cdc.gov/NCIDOD/diseases/hepatitis/b/index.htm

Hepatitis C, Acute

Hepatitis C, Acute: Crude Data	
Number of cases	49
2006 incidence rate per	0.27
100,000	
\% change from average 5yr	-18.3
(2001-2005) incidence rate	
Age (yrs)	43
Mean	40
Median	$18-80$

Figure 1.
Hepatitis C, acute Incidence Rate by Year Reported, Florida, 1999-2006

Description

The hepatitis C virus is one of several agents that can cause acute viral hepatitis. Symptoms of acute infection may appear up to six months after exposure to the virus. Transmission may occur by sexual or close contact with an infected person, mother-to-infant contact, injection drug use, or nosocomial exposure. Many infected people become chronic carriers of the virus. Most persons currently ill as a result of hepatitis C infection were first infected many years ago, and are not counted as incident acute cases in the surveillance system. Common symptoms include jaundice, abdominal pain, dark urine, clay-colored stool, weight loss, and nausea.

Disease Abstract

The incidence rate for acute hepatitis C has been variable over the last seven years (Figure 1). In 2006, there was an 18.3% decrease in comparison to the average incidence from 2001 to 2005. A total of 49 acute cases were reported in 2006 , of which 36.7% were classified as confirmed cases. There is no seasonal trend for acute hepatitis C infection (Figure 2). There were no acute hepatitis C cases classified as outbreak-related.

Figure 2. Hepatitis C, acute by Month of Onset, Florida, 2006

The highest incidence rates continue to occur in individuals in the 35-44 age group. In 2006, the incidence rates were lower than the previous 5 -year average in all age groups except in those in the 20-44 age group and in persons older than 55 years where the incidence rate was slightly increased (Figure 3).

Figure 3. Hepatitis C, acute Incidence Rate by Age Group, Florida, 2006

It is important to remember that the passive transfer of maternal HCV antibodies may be present in infants for up to 18 months of age. A positive ANTI-HCV result in an infant <18 months is a not a true indicator of hepatitis C infection in an infant. In 2006, men and women had similar incidence of acute hepatitis C (0.29 per 100,000 and 0.24 per 100,000, respectively). The incidence rate in whites was greater than those in non-whites (Figure 4).

Figure 4. Hepatitis C, acute Incidence Rate by Race and Gender, Florida, 2006

Acute hepatitis C was reported in 19 of the 67 counties in Florida.

Prevention

Universal precautions should be implemented for individuals in contact with body fluids in healthcare settings. High risk groups for infection include drug abusers who share needles, healthcare workers who have contact with infected blood, MSM, people who have multiple sexual partners, household contacts of infected persons, or infants born to mothers who are hepatitis C carriers.

Hepatitis C, acute - Reported Incidence Rate* by County of Residence, Florida, 2006

References

American Academy of Pediatrics, Red Book 2003: Report of the Committee on Infectious
Diseases, $26^{\text {th }}$ ed., American Academy of Pediatrics Press, Elk Grove Village, Illinois, 2003.

Centers for Disease Control and Prevention, "Recommendations for Prevention and Control of Hepatitis C Virus (HCV) Infection and HCV-Related Chronic Disease," MMWR 1998; 47(No. RR-19), pp. 1-39.

Centers for Disease Control and Prevention, "Sexually Transmitted Diseases Treatment Guidelines, 2006," MMWR 2006; 55(No. RR-11), pp. 1-101.

Centers for Disease Control and Prevention, "Guidelines for Laboratory Testing and Result Reporting of Antibody to Hepatitis C Virus," MMWR 2003; 52 (No. RR-03), pp. 1-16.

Centers for Disease Control and Prevention, "Frequently Asked Questions About Hepatitis C," http://www.cdc.gov/ncidod/diseases/hepatitis/c/faq.htm\#1a

J.L. Dienstag, "Sexual and Perinatal Transmission of Hepatitis C," Hepatology 26:66S-70S, 1997.
M.I. Gismondi E.I. Turazza, and S. Grinstein et al., "Hepatitic C Virus Infection in Infants and Children from Argentina," J Clin Micro 2004: 42, pp. 1199-1202.
J.A. Hochman and W.F. Balistreri,"Chronic Viral Hepatitis: Always Be Current!" Pediatrics in Review, 2003; 24: pp. 399-410.
S. Kamili et al., "Infectivity of Hepatitis C Virus in Plasma After Drying and Storage at Room Temperature," Infect Control Hosp Epidemiol 2007;28, pp. 519-524.

Lead Poisoning

Description

Lead poisoning can affect nearly every system in the body. Because lead poisoning often occurs with no obvious symptoms, it frequently goes unrecognized. Lead poisoning can cause learning disabilities, behavioral problems, and, at very high levels, seizures, coma, and even death. Lead poisoning occurs when an individual ingests or inhales lead particles. Children <6 years of age are particularly at-risk because their behaviors, such as mouthing on their hands and toys, act as a pathway for exposure and their bodies absorb lead more readily than adults. The source of most lead poisoning in the U.S. is dust and chips from lead-based paint in older homes. Dust from lead-based paint, and the former use of leaded gasoline, contributes to lead in soil, which can also be hazardous to children. Other sources of lead include some imported ceramics (e.g. lead-glazed pottery), home remedies, hair dyes, toys, and cosmetics.

Disease Abstract

In 2006, there were 373 confirmed cases of lead poisoning reported by County Health Departments in Merlin, the state notifiable disease database. Data from Merlin show a steady decline in the number of lead poisoning cases in Florida annually, from 2,220 cases in 1997 to 373 in 2006. The large majority of these cases were found in children <6 years of age.

According to the CDC, Florida ranks eighth in the nation for number of estimated children with lead poisoning. The CDC further estimates that 7,400 children with elevated blood lead levels live in nine Florida cities with populations of 100,000 or greater. In total, the CDC estimates that 22,000 children may be poisoned in the state (CDC 2003 Program Announcement 03007, Appendix III).

Prevention

Lead poisoning is completely preventable. Prevention efforts of the Childhood Lead Poisoning

Prevention Program include ensuring parents, property owners, healthcare professionals, and those who work with young children, are informed about the risks of lead poisoning and how to prevent it.

Resources

Florida Department of Health website
http://www.doh.state.fl.us/environment/community/lead/index.html

Centers for Disease Control and Prevention website
http://www.cdc.gov/nceh/lead/faq/about.htm

Additional Information

Florida Department of Health Lead Program website also includes additional information and disease statistics
http://www.doh.state.fl.us/environment/community/lead/index.html

Legionellosis

Legionellosis: Crude Data	
Number of cases	167
2006 incidence rate per	
100,000	0.91
\% change from average 5yr	
(2001-2005) incidence rate	+32.3
Age (yrs)	
Mean	64.5
Median	64
Range	$22-92$

Figure 1.
Legionellosis Incidence Rate by Year Reported, Florida, 1997-2006

Description

Legionellosis is an infection caused by the bacterium Legionella pneumophila. The disease has two distinct forms: Legionnaire's disease, the more severe form of infection which includes pneumonia, and Pontiac fever, a milder illness. Found naturally in the environment, Legionella bacteria grow best in warm water. Reservoirs of importance to human infection include hot tubs, cooling towers, hot water tanks, large plumbing systems, and parts of air-conditioning systems of large buildings. The infection is transmitted through the air to the lungs of human beings through aerosilization. The incubation period is generally 2-10 days after exposure, most often $5-6$ days. Common symptoms include a rapidly rising fever ($102^{\circ} \mathrm{F}-105^{\circ} \mathrm{F}$) associated with chills, cough, and shortness of breath.

Disease Abstract

The Florida incidence rate for legionellosis has steadily increased over the last 10 years (Figure 1). In 2006, there was a 32.3% increase in comparison to the average incidence from 2001 to 2005. A total of 167 cases were reported in 2006, of which 81.6% were classified as confirmed cases. The number
of cases reported tends to increase in the summer months. In 2006, the number of cases exceeded the previous 5 -year average for each month of the year, with the exception of October (Figure 2). Overall, 1.2% of the legionellosis cases were classified as outbreak-related.

Figure 2. Legionellosis by Month of Onset, Florida, 2006

The highest incidence rates continue to occur among adults $55+$ years of age, with incidence rates ranging from 2.1 per 100,000 in the 55-64 age group to 3.06 in the $85+$ age group. In 2006, the incidence rates were higher than the previous 5 year average in all age groups with reported cases, except 35-44 year olds. Incidence of disease is minimal in individuals ≤ 19 years of age, with no cases reported in the last 10 years in infants and children ages one to nine (Figure 3). Males continue to have a higher incidence than females (1.13 and 0.65 per 100,000, respectively). In 2006, the incidence of disease increased in white males and decreased in non-white males, compared to 2001-2005. For women, incidence increased regardless of race. As has been the case in the past, incidence rates in whites are greater than those in non-whites (Figure 4).

Figure 3. Legionellosis Incidence Rate by Age Group, Florida, 2006

Legionellosis was reported in 36 of the 67 counties in Florida. Counties in the northeast, central-west, southwestern, and southeastern regions of Florida reported the highest incidence rates.

Figure 4. Legionellosis Incidence Rate by Race and Gender, Florida, 2006

Prevention

Cooling towers should be drained when not in use, and mechanically cleaned periodically to remove scale and sediment. Appropriate biocides should be used to limit the growth of slimeforming organisms. Tap water should not be used in respiratory therapy devices. Maintaining hot water system temperatures at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ or higher may reduce the risk of transmission.

Legionellosis - Reported Incidence Rate* by County of Residence, Florida, 2006

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) website http://www.cdc.gov/ncidod/dbmd/diseaseinfo/legionellosis_g.htm

Leptospirosis

Description

Leptospirosis is caused by the spirochete Leptospira interrogans, with over 200 pathogenic serovars identified. Common serovars found in the U.S. include icterohaemorrhagiae, canicola, autumnalis, pomona, hebdomadis, and australis. The organisms are maintained in the renal tubules of many wild and domestic animal reservoirs, with certain serovars tending to be more prevalent in specific species. However, over time some serovars have crossed over, and emerged in domestic species. Organisms are shed in the urine, amniotic fluid, and placenta and can survive for weeks to months in water or moist environments. At greatest risk are those working with animals, or exposed to wet (freshwater) conditions, such as sewer or sugarcane field workers, military personnel, and outdoor enthusiasts. Disease is more common in males, primarily because of occupational links. The disease appears to be emerging in peri-urban areas, and flood conditions have also led to outbreaks in urban environments.

Exposure occurs through contact of abraded skin or mucosal surfaces with contaminated water, tissues, or soil. Exposure can occasionally occur through ingestion of food or water contaminated with urine, most frequently associated with rats. Person-to- person transmission is rare. The incubation period is $5-14$ days. Clinical disease is acute febrile with symptoms resulting from a generalized vasculitis. Severity of disease ranges from self-limiting in approximately 90% of patients to lifethreatening with jaundice, renal failure, and pneumonitis in the remaining 10\%. Case fatality for those with severe disease is $5-40 \%$. Disease is generally biphasic with an initial febrile phase lasting 4-9 days, sometimes followed by a 1-3 day abatement of fever, before an "immune-mediated" phase begins on day 6-12. Initial symptoms are generally non-specific including fever, chills, headache, nausea, vomiting, and transient rash. More distinctive clinical signs can include conjunctival suffusion without purulent discharge ($30-40 \%$ of cases), and myalgias of the calf and lumbar region (80%). Clinical symptoms for the second phase may include fever, aseptic meningitis, conjunctival suffusion, uveitis, muscle tenderness, adenopathy, and purpuric rash. The entire duration of symptomatic disease may last from one week to several months. Definitive diagnosis can be challenging with the tests currently available.

Disease Abstract

Between 1997 and 2006, there were 14 cases of leptospirosis reported in Florida. Five cases were classified as confirmed, nine as probable. Two cases (14\%) were classified as outbreak-associated. In 2006, there were two probable cases reported, one that occurred in 2005 and was associated with an
adventure race in Hillsborough County. There were 14 confirmed, and 29 probable cases associated with that race, but almost all were in people who were not Florida residents (for more information about this outbreak please see the outbreak section). All but one case reported from 1997 through 2006 were in men (93%), most were white (86%), and the age range was from 20 to 54 years of age, with a median age of 42.6 years.

Prevention

At-risk workers need to be provided with appropriate personal protective equipment including boots, gloves, and aprons. Rodent populations should be controlled in environments as needed. Potentially infectious animal urine, water, and other materials should be avoided.

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed,, American Public Health Association Press, Washington, District of Columbia, 2004.

American Academy of Pediatrics, Red Book 2003: Report of the Committee on Infectious

 Diseases, $26^{\text {th }}$ ed., American Academy of Pediatrics Press, Elk Grove Village, Illinois, 2003.
Additional Resources

Information regarding leptospirosis in Florida can be obtained at the Florida Department of Health website http://www.doh.state.fl.us/Environment/community/arboviral/Zoonoses/Zoonotic-lepto.html

Additional information can be found at the Centers for Disease Control and Prevention website http://www.cdc.gov/ncidod/dbmd/diseaseinfo/leptospirosis_g.htm

Listeriosis

Listeriosis: Crude Data	
Number of cases	47
2006 incidence rate per 100,000 0.26 \% change from average 5yr (2001-2005) incidence rate +26.8 Age (yrs) \quad Mean 68.2 Median 72 Range $20-98$${ }^{2}$	

Figure 1.
Listeriosis Incidence Rate by Year Reported, Florida, 1997-2006

Description

Listeriosis is a disease caused by the gram-positive rod shaped bacterium Listeria monocytogenes.
Listeriosis most commonly manifests as sepsis and/or meningitis. Symptoms can include fever, muscle
aches, headache, stiff neck, confusion, loss of balance, and convulsions. In pregnant women, it can cause fever and abortion. The organism is found naturally in the soil, forage, water, mud, and silage, and can contaminate raw foods (e.g. uncooked meats, raw milk, and vegetables), as well as foods that become contaminated after processing (e.g. soft cheeses, cold cuts). Unlike other foodborne pathogens, Listeria tends to multiply in refrigerated foods that are contaminated. Those at highest risk for infection include neonates, the elderly, immunocompromised individuals, pregnant women, and alcoholic, cirrhotic, or diabetic adults.

Figure 2. Listeriosis by Month of Onset, Florida, 2006

Disease Abstract

The incidence rate for listeriosis has increased over the last 10 years (Figure 1). In 2006, there was a 27% increase in comparison to the average incidence from 2001 to 2005. A total of 47 cases were reported in 2006. All of the 2006 cases were sporadic and not outbreak-related. Historically, the number of cases reported tends to increase slightly in the summer months. In 2006, the number of cases exceeded the previous 5 -year average during eight months of the year, particularly in May (Figure 2).

Figure 3. Listeriosis Incidence Rate by Age Group, Florida, 2006

The very young and the elderly are at increased risk of infection (Figure 3) in comparison to other age groups. In 2006, the incidence rate for those older than 55 years was higher than the previous 5 -year average for that age group. The incidence rate in females was slightly higher than in males (0.27 and 0.24 per 100,000, respectively), and in 2006, the incidence in both genders was higher than the previous 5 -year average incidence. Historically, incidence rates in whites are greater than those in non-whites, but in 2006 non-white females experienced the highest incidence of listeriosis (0.32 per 100,000) (Figure 4).

Figure 4. Listeriosis Incidence Rate by Race and Gender, Florida, 2006

Listeriosis was reported in 16 of the 67 counties in Florida.

Prevention

Generally, listeriosis may be prevented by thoroughly cooking raw food from animal sources, such as beef, pork, or poultry, washing raw vegetables before eating, and keeping uncooked meats separate from vegetables, cooked foods, and ready-to-eat foods. Avoiding unpasteurized milk or foods made from unpasteurized milk, and washing hands, knives, cutting boards after handling uncooked foods, may also prevent listeriosis. Those at high risk for listeriosis (the elderly, those with cancer, HIV, diabetes, pregnant women, or weakened immune systems) should follow additional recommendations: avoid soft cheeses such as feta, brie, camembert, blue-veined, and Mexican-style cheese. Leftover foods or ready-to-eat foods, such as hot dogs or cold cuts, should be cooked until steaming hot before eating.

Listeriosis - Reported Incidence Rate* by County of Residence, Florida, 2006

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed,, American Public Health Association Press, Washington, District of Columbia, 2004.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) website http://www.cdc.gov/ncidod/dbmd/diseaseinfo/listeriosis_g.htm

Lyme Disease

Lyme Disease: Crude Data	
Number of cases	34
2006 incidence rate per	0.18
100,000	
\% change from average 5yr	-41.2
(2001-2005) incidence rate	
Age (yrs)	49.7
\quad Mean	56.5
Median	$6-82$

Figure 1.
Lyme Disease Incidence Rate by Year Reported, Florida, 1997-2006

Description

Lyme Disease is a zoonotic tick-borne disease caused by a Borrelia spirochete. In North America the causative agent is Borrelia burgdorferi. Wild rodents act as the natural reservoir; deer act as a mammalian maintenance host for the lxodes tick vectors. The clinical manifestations have 3 stages: 1) early localized disease, 2) early disseminated disease and 3) late disease. Early localized disease and early disseminated disease may occur within 1-55 days following exposure. Stage three or late disease develops months to years later. Early localized disease is characterized by an erythema migrans (EM) rash at the site of the tick bite in $70-80 \%$ of the cases. The patient may experience fever, malaise, headache, mild neck stiffness, myalgia and arthralgia. Early disseminated disease is characterized by the development of multiple EM lesions away from the site of the tick bite, and usually develops several weeks following the exposure. The general symptoms as reported for early localized disease can recur and patients may also develop palsies of the cranial nerves (especially VII), lymphocytic meningitis, and conjunctivitis. Untreated patients with late disease may develop recurrent arthritis (60\%), chronic neurologic problems (5\%) and cardiac disease. Late disease may occur without history of early disease. In the U.S. most cases of Lyme disease occur between April and October and incidence is highest in children aged 5-9 years old and adults aged 45-54 years old.

Figure 2. Lyme Disease by Month of Onset, Florida, 2006

Disease Abstract

The incidence rate for Lyme disease in Florida has dropped over the past 10 years (Figure 1). In 2006 there was a 41.2% decrease in comparison to the average incidence from 2001-2005. Changes in testing procedures by private laboratories may have contributed to this decline. A positive ELISA test followed by a Western blot is currently required to meet surveillance criteria for case confirmation. A total of 34 cases were reported in 2006, all classified as confirmed cases. In most cases the disease was acquired outside of the state (82% of total 2006 cases) compared with 63% of all cases reported from 1997 through 2005. Highest case incidence was in the summer, with peak incidence in July. In 2006 the number of cases exceeded the previous 5 year average in August, September and October (Figure 2). None of the 2006 cases were classified as outbreak related.

Figure 3. Lyme Disease Incidence Rate by Age Group, Florida, 2006

Figure 4. Lyme Disease Incidence Rate by Race and Gender, Florida, 2006

The highest incidence in 2006 was in the 65-74 year olds. Three of the four highest age group incidences were in older patients (55-64, 65-74 and 75-84 year olds) compared to the nationally reported peak incidence group of 45-54. More consistent with national trends is the peak in children aged 5-9 years old (Figure 3). Incidence rates in whites continue to be higher than in non-whites (Figure 4). Incidence rates in females decreased by 0.17 per 100,000 compared to a smaller decrease
in males (0.8 per 100,000) in 2006 relative to the 5 -year average (Figure 5).

Figure 5. Lyme Disease Incidence Rates by Gender, Florida 2006

Lyme disease was reported in 15 of 67 Florida counties. Most cases were reported from central and south Florida, with a single report from the Panhandle.

Prevention

The most effective prevention is avoiding human and pet exposure to ticks including: avoiding tick infested areas, covering exposed skin as much as possible, wearing light colored clothing to better visualize ticks, tucking in pant legs and buttoning sleeves, appropriate application of permethrin to clothing and DEET to skin (per CDC recommendations), inspecting children, pets and adults for ticks immediately following likely exposure, and using appropriate veterinary products as recommended by a veterinarian to prevent tick exposure. Any ticks found attached to children, adults or pets should be removed promptly. Using fine tweezers or a tissue to protect fingers, grasp ticks close to the skin and gently pull straight out without twisting. Do not use bare fingers to crush ticks. Wash hands following tick removal.

Lyme Disease - Reported Incidence Rate* by County of Residence, Florida, 2006

References

Control of Communicable Diseases Manual. 18 ${ }^{\text {th }}$ ed. Ed. David L. Heymann. American Public Health Association, 2004.

Red Book: 2006 Report of the Committee on Infectious Diseases. $27^{\text {th }}$ ed. Eds. Pickering LK, Baker CJ, Long SS, McMillan JA. American Academy of Pediatrics, 2006.

Additional Resources

Disease information is available from the CDC and the Florida Department of Health at: http://www.cdc.gov/ncidod/dvbid/lyme/
http://www.cdc.gov/healthypets/diseases/lyme.htm
http://www.doh.state.fl.us/Environment/community/arboviral/Tick_Borne_Diseases/Lyme_Disease.htm

Malaria

Malaria: Crude Data	
Number of cases	61
2006 incidence rate per 0.33 100,000 \% change from average 5yr -27 (2001-2005) incidence rate Age (yrs) 34.4 Mean 33 Median $1-63$${ }^{\text {Range }}$	

Figure 1.
Malaria Incidence Rate by Year Reported, Florida, 1997-2006

Description

Malaria is one of the world's greatest public health problems. Approximately 500 million of the world's population are infected each year, and between 2 million and 2.5 million people die annually. Human malaria is caused by four species of protozoan parasites of the genus Plasmodium: P. vivax, P. falciparum, P. malariae, and P. ovale. All four are transmitted from person to person via the bite and blood-feeding behavior of mosquitoes of the genus Anopheles. Malaria was endemic in Florida up until the 1940s. Now, it almost always occurs in travelers returning to the state from endemic malaria regions of the world. Occasionally, locally acquired cases have also been seen in the state. The last documented outbreak was in Palm Beach County in 2003, when eight cases of P. vivax malaria were confirmed (additional information can be found in the outbreak section of this report). Prior to this episode, one locally acquired case was documented in Bay County in 1990, and four locally acquired cases were reported in 1996, including two cases where infection is thought to have resulted from a break in standard precautions in a hospital setting. In Florida, there are 14 Anopheles species, all of which are potentially capable of transmitting malaria. Only two of these, Anopheles quadrimaculatus and A. crucians are, or have been, major malaria vectors in Florida. In the Americas, over 2 million cases occur annually. Approximately 30% of the human population in the Americas resides in areas

Figure 2. Malaria by Month of Onset, Florida, 2006

suitable for malaria transmission. As with yellow fever and dengue, Florida is partially protected from re-establishment of endemic malaria by the fact that almost the entire population lives in housing with window screens, air conditioning, or both.

Symptoms can vary depending on the malaria species, but the initial attack may start with lassitude, headache, anorexia, occasional nausea, and vomiting. The fever is comprised of a cold stage (shivering and a feeling of intense cold), a hot stage (distressing heat, dryness, burning, intense headache, nausea, and vomiting) and finally, a profuse sweating stage. The typical attack often begins in the early afternoon, and lasts from 8-12 hours. Persons experiencing these symptoms, and having been in an area with malaria, should see a doctor immediately.

Figure 3. Malaria Incidence Rate by Age Group, Florida, 2006

Disease Abstract

The incidence rate for malaria in Florida has declined over the last 10 years (Figure 1) with 61 cases reported in 2006. In 2006, there was a 27% decrease in comparison to the average incidence from 2001 to 2005. More cases are reported during the summer months, but cases are reported year-round (Figure 2). The highest incidence rates occur among those in the 20-34 age group (Figure 3). The average age of reported malaria cases in Florida is 34.4 years (range: 1-63). In 2006, 60\% of cases were diagnosed with P. falciparum, 33% were diagnosed with P. vivax, 2% were diagnosed with P. malariae, and in the remaining cases' species was unable to be determined. Seventeen percent of cases were Hispanic, 73% were non-Hispanic, and the remaining 10% were of unknown ethnicity. Thirty-seven percent of cases had recent travel history to countries in Africa, 22\% had traveled to the Caribbean, 22% had traveled to countries in South or Central America, or to Mexico, and the remaining 19% had traveled to countries in Asia.

Prevention

No vaccine is currently available. Travelers to malaria-endemic countries should consult with their doctor to make sure they receive an appropriate chemoprophylactic regimen which helps prevent malaria. A number of factors should be taken into consideration prior to prescribing chemoprophylaxis including, but not limited to, risk, the species of malaria present, drug resistance, and how well the drug
is tolerated. Personal protection measures can also help prevent malaria infection. Avoid contact with mosquitoes by using an insect repellent containing DEET or other EPA-approved ingredient, remaining in well-screened areas, keeping skin covered in clothing, and using insecticide-treated bed nets.

> Malaria - Reported Incidence Rate* by County of Residence, Florida, 2006

References

Centers for Disease Control and Prevention, "Traveler's Health: Yellow Book, Health
Information for International Travel, 2008," 22 June 2007,
http://wwwn.cdc.gov/travel/contentYellowBook.aspx.

Resources

A table containing drugs used in malaria prophylaxis can be found in the CDC Yellow Book, online http://wwwn.cdc.gov/travel/yellowBookCh4-Malaria.aspx\#404

Additional information on malaria and other mosquito-borne diseases can be found in the Surveillance and Control of Arthropod-borne Diseases in Florida Guidebook, online at http://www.doh.state.fl.us/environment/community/arboviral/pdf_files/UpdatedArboguide.pdf

Measles

Description

Measles is an acute viral illness caused by a virus in the family paramyxovirus, genus Morbillivirus. Measles is characterized by a prodrome of fever, malaise, cough, coryza, and conjunctivitis, followed by a maculopapular rash. Measles is usually a mild to moderately severe illness. However, measles can result in residual neurological impairment from encephalitis in approximately 5-10 cases per 10,000 reported cases, and in death in approximately 10-30 cases per 10,000 reported cases. Pneumonia complicates 6% of measles cases in the U.S., and 19% of cases are hospitalized.

Disease Abstract

In 2006, four laboratory-confirmed cases of measles were reported for a statewide incidence rate of 0.02 per 100,000 population. This is a significant increase from the zero cases reported in 2005. All cases were imported. An internationally imported case has its source outside the country, with rash onset within 21 days after entering the country, and is not linked to local transmission.

Of the four reported cases in 2006, one was reported in Polk County in an unimmunized 13-month-old. The infant arrived from England with otitis media and then developed clinical symptoms of measles. Contact investigation included patients from a walk-in clinic and hospital emergency department in Osceola County. Airline contacts included eight in Florida, three in other U.S. states, and one each in England, Ireland, and Venezuela. The probable source was a childcare center in England.

The remaining three cases reported in Florida were adult cases. All worked on a cruise ship, and were confined to the ship. Passengers were notified of possible exposure, and encouraged to contact their healthcare provider. No secondary cases were identified in Florida.

Prevention

Vaccination against measles is recommended for all children after their first birthday. Two doses of measles vaccine (preferably MMR) are required for entry and attendance in kindergarten through twelfth grade. All children attending or entering childcare facilities or family daycare must be ageappropriately vaccinated with one or two doses of measles vaccine. Cruise lines are making every attempt to immunize crew members for measles.

Resources

Centers for Disease Control and Prevention, Manual for the Surveillance of VaccinePreventable Diseases, 3rd ed., 2002, http://www.cdc.gov/vaccines/pubs/surv-manual/downloads/ chpt06_measles.pdf

Meningitis, Other (bacterial/mycotic)

Meningitis, other: Crude Data	
Number of cases	162
2006 incidence rate per	0.88
100,000	
\% change from average 5yr	+15
(2001-2005) incidence rate	
Age (yrs)	38.2
\quad Mean	41.5
Median	$<1-88$

Figure 1.
Meningitis, other Incidence Rate by Year Reported, Florida, 1997-2006

Description

The meningitis, other category includes any meningitis due to any bacterial or fungal species other than Neisseria meningitidis or Hemophilus influenzae, with an isolate from the blood or cerebral spinal fluid. Symptoms may include fever, headache, altered mental status, rash, or stiff neck. In 2006, some common pathogens isolated were Cryptococcus neoformans, Salmonella, Escherichia coli, Staphylococcal species, and Streptococcal species.

Disease Abstract

The incidence rate for meningitis, other has increased gradually over the last 10 years (Figure 1). In 2006, there was a 15% increase in comparison to the average incidence from 2001 to 2005. A total of 162 cases were reported in 2006, all confirmed. The number of cases of meningitis, other shows little difference by season when averaged over several years. In 2006, there were more cases in the spring and summer, and most notably, in November (Figure 2). There were no meningitis, other outbreaks in 2006.

Figure 2. Meningitis, other by Month of Onset, Florida, 2006

Figure 3. Meningitis, other Incidence Rate by Age Group, Florida, 2006

The highest incidence rates continue to occur in infants <1 year of age (Figure 3). Immunosuppressed or immunocompromised individuals in the older age groups may be also be at risk for infection. Males continue to have a higher incidence than females (1.15 per 100,000 and 0.62 per 100,000, respectively). Incidence rates in non-white males are greater than those in white males (Figure 4).

Meningitis, other was reported in 21 of the 67 counties in Florida. Counties with the highest incidence rates were widely scattered.

Figure 4. Meningitis, other Incidence Rate by Race and Gender, Florida, 2006

Prevention

Practicing good personal hygiene, including hand washing, will reduce the chances of a fungal or bacterial infection.

Meningitis, other Infection - Reported Incidence Rate* by County of Residence, Florida, 2006

References

American Academy of Pediatrics, Red Book 2003: Report of the Committee on Infectious Diseases, $26^{\text {th }}$ ed., American Academy of Pediatrics Press, Elk Grove Village, Illinois, 2003.
N. Jabbour, J. Reyes, S. Kusne, M. Martin, and J. Fung, "Cryptococcal Meningitis After Liver Transplantation," Transplantation, Vol. 61, 1996, pp. 146-167.
J.H. Price, J. de Louvois, and M.R. Workman, "Antibiotics for Salmonella Meningitis in Children," Journal of Antimicrobial Chemotherapy, Vol. 46, 2000, pp. 653-655.
A. Varaiya, K. Saraswathi, U. Tendolkar, A. De, S. Shah, and M. Mathur, "Salmonella enteritidis Meningitis-A Case Report," Indian Journal of Medical Microbiology, Vol. 19, 2001, pp. 151-152.
A. Zuger, E. Louie, R.S. Holzman, M.S. Simberkoff, and J.J. Rahal, "Cryptococcal Disease in Patients With the Acquired Immunodeficiency Syndrome. Diagnostic Features and Outcome of Treatment," Annals of Internal Medicine, Vol. 104, 1986, pp. 234-240.

[^16]
Meningococcal Disease

Meningococcal Disease: Crude Data	
Number of cases	79
2006 incidence rate per 100,000 \% change from average 5yr (2001-2005) incidence rate	-32.8
Age (yrs)	
Mean	37.3
Median	30
Range	$<1-89$

Figure 1.
Meningococcal Disease Incidence Rate by Year Reported, Florida, 1997-2006

Description

Meningococcal disease includes both meningitis and septicemia due to the bacteria Neisseria meningitidis. There are many different serogroups of Neisseria meningitidis present around the world. The common ones in the U.S. include A, B, C, W135, and Y. Symptoms may include fever, headache, and stiff neck in meningitis cases, and sepsis and rash in meningococcemia. The incubation period is 3-4 days with a range of 2-10 days. It is mainly transmitted through direct contact with large droplet respiratory secretions from patients or asymptomatic carriers. Although risk in close contacts is increased over the background level, it is still very low. Clusters of cases are rarely seen, and community outbreaks are even more uncommon. Meningitis and septicemia are epidemiologically identical, and present the same risk of secondary cases.

Figure 2. Meningococcal Disease by Month of Onset, Florida, 2006

Disease Abstract

The reported incidence rate for meningococcal disease has declined gradually over the past 10 years (Figure 1), and in 2006, is about one-third of what it was 10 years ago. In 2006, there was a 32.8% decrease in incidence compared to the average incidence from 2001 to 2005. A total of 79 cases were reported in 2006, of which 92.4% were classified as confirmed cases. There is a general increase in
cases in late fall and early winter (Figure 2). This may be due, in part, to social gatherings as well as staying indoors in the fall and winter months. There were no cases reported as outbreak-related. Nine cases resulted in death.

Figure 3. Meningococcal Disease Incidence Rate by Age Group, Florida, 2006

The highest incidence rates continue to occur in infants <1 year of age. There are no vaccines approved for use in those <2 years of age. In 2006, the incidence rates were lower than the previous 5 -year average in all age groups, except those aged 20-24, and in those older than 75 , where the incidence rate was slightly increased (Figure 3). In 2006, the incidence rates in non-white males are greater than those in white males (Figure 4). Sixty-four of the 79 cases had specimens submitted to the Bureau of Laboratories for serogrouping (Table 1).

Table 1 Frequency of Neisseria meningitidis Serogroups
Serogroup Number of Cases Group B 14 Group C 19 Group Y 24 Group Z 1 Group W135 2 Non-Groupable 1 Non-viable 2 No org Isolated. 1 Total 64

Meningococcal disease was reported in 25 of the 67 counties in Florida. Counties in the central region, southern region, and scattered counties in the northwest areas of Florida reported the highest incidence rates.

Prevention

Meningococcal vaccines are available to reduce the likelihood of contracting Neisseria meningitidis. Two vaccines, licensed in 1978 and 2005, each provide protection against four serogroups (A, C, Y,
and W -135). In addition, droplet precautions should be implemented if the individual is hospitalized. Anyone who has close contact with an infected person's oral secretions (i.e. kissing, sharing utensils or drinks, exposure to respiratory secretions during health care or resuscitation, or close household or social contact) should receive antibiotic prophylaxis with an approved regimen (most often used are ciprofloxacin and rifampin).

Meningococcal Disease - Reported Incidence Rate* by County of Residence, Florida, 2006

References

American Academy of Pediatrics, Red Book 2003: Report of the Committee on Infectious
Diseases, $26^{\text {th }}$ ed., American Academy of Pediatrics Press, Elk Grove Village, Illinois, 2003.

Centers for Disease Control and Prevention, "Prevention and Control of Meningococcal Disease," Morbidity and Mortality Weekly Report, Vol. 54, No. RR07, 2005, pp. 1-21.

Centers for Disease Control and Prevention, "Control and Prevention of Meningococcal Disease and Control and Prevention of Serogroup C Meningococcal Disease: Evaluation and Management of Suspected Outbreaks; Recommendations of the Advisory Committee on Immunization Practices (ACIP)," Morbidity and Mortality Weekly Report, Vol. 46, No. RR5, 1997, pp. 1-21.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) website at http://www.cdc.gov/ncidod/dbmd/diseaseinfo/meningococcal_g.htm and http://www.cdc.gov/vaccines/pubs/pinkbook/downloads/mening.pdf

Mumps

Mumps: Crude Data	
Number of cases	15
2006 incidence rate per 100,000 0.08 \% change from average 5yr (2001-2005) incidence rate 76.4 Age (yrs) Mean 17 Median 8 Range $1-68$${ }^{2}$	

Figure 1.
Mumps Cases by Year Reported, Florida, 1997-2006

Description

Mumps is a viral illness caused by a paramyxovirus of the genus Rubulavirus. The classic symptom is parotitis, commonly bilateral, which develops an average of 16-18 days after exposure. Nonspecific symptoms including myalgia, anorexia, malaise, headache, and lowgrade fever may occur days before parotitis. Mumps can cause acquired sensorineural hearing loss in children; incidence is estimated at five per 100,000 cases. In the U.S., mumps-associated encephalitis occurs in <2 per 100,000 cases, and approximately 1% of encephalitis cases are fatal. Adults have a higher risk for mumps meningoencephalitis than children. Orchitis occurs in up to 38% of cases in post-pubertal males, but rarely causes sterility. Mastitis has been reported in 31% of female patients >15 years of age. Other rare complications are oophoritis and pancreatitis. Permanent sequelae and death are rare. Mumps infection in the first trimester of pregnancy may result in fetal loss, but there is no evidence that mumps during pregnancy causes congenital malformations.

Disease Abstract

The statewide incidence rate for laboratory-confirmed and probable cases for all ages was 0.08 per 100,000 population. The ages ranged from 1 to 68 years of age. There were eight laboratory-confirmed cases of mumps reported in 2006, of which three cases were imported from outside the U.S. Of the laboratory-confirmed cases, only one, a 27-year-old, was hospitalized. Two of the cases had received one dose of mumps vaccine; the other six cases had no doses or unknown immunization status. The eight laboratory-confirmed cases represent a slight increase from the six cases in 2005 . The incidence was not significantly changed from 2000 until 2005 . However, in 2006 there was a significant increase
in cases in the U.S., especially in the college-aged population. The State Laboratory expanded testing for mumps, but none of the Florida cases were shown to be directly linked to cases in any other states. Additionally, seven probable cases were reported with no laboratory confirmation, all of whom had a history of one or more doses of mumps vaccine. None of the probable cases were imported from outside the U.S.

Figure 2. Mumps Cases by Age Group, Florida, 2006

Prevention

Vaccination with two doses of mumps (preferably MMR) vaccine is recommended (the first dose for children after their first birthday and the second after the fourth birthday). Proof of MMR is required for entry and attendance in childcare facilities, family daycare homes, and pre-kindergarten through twelfth grade. Many colleges in Florida also require the mumps vaccine for entry. After the 2006 multi-state mumps outbreak in young adults, two doses of mumps vaccine are now recommended for all children and young adults.

References

Centers for Disease Control and Prevention, Manual for the Surveillance of VaccinePreventable Diseases, $3^{\text {rd }}$ ed., 2002, p. 7-1, http://www.cdc.gov/vaccines/pubs/survmanual/ default.htm.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) at http://www.cdc.gov/vaccines/vpd-vac/mumps/default.htm\#clinical

Neonatal Infections

The term "neonatal infections" includes reported cases of chlamydia, gonorrhea, syphilis, herpes simplex virus (HSV), and human papillomavirus (HPV) diagnosed in infants up to six months of age. This age range was used in order to capture delayed identification of chlamydial pneumonia and human papillomavirus. Reporting parameters for neonatal infections were published in November 2006. Additionally, neonatal syphilis includes cases based on the surveillance definition.

Insufficient prenatal care is the primary risk factor associated with neonatal infections. In 2006, there were 63 infants reported with neonatal infections. This number includes infants born in 2006 and was a 5% increase from 2005. Figure 14 shows the total number of neonatal infections from 2002 to 2006.

Figure 14. Reported Neonatal Infections by Year,
Florida, 2002-2006

Figure 15. Reported Neonatal Infections by Disease, Florida, 2006

The 2006 breakdown of neonatal infections by disease is shown in Figure 15. During 2006, there were no cases of HPV reported. Nearly half (49.2\%) of all neonatal infections were caused by chlamydia.

The county with the highest number of neonatal infections in 2006 was Dade County (Table 2), followed by Duval and Hillsborough Counties.

Table 2. Counties with the Most Neonatal Infections, Florida, 2006.

Rank	County	Cases
1	Dade	12
2	Duval	10
3	Hillsborough	7

Non-Hispanic black neonates accounted for 47.6% of the neonatal infections in 2006 (Figure 16). NonHispanic white neonates accounted for 19.0% of the infections. Hispanic (white or black) neonates accounted for 22.2% of the infections. Neonates in other or unidentified racial-ethnic groups accounted for 11.1% of the infections.

Figure 16. Reported Neonatal Infections by Race-Ethnicity and Gender, Florida, 2006

References

Florida Department of State, Florida Administrative Weekly and Florida Administrative Code, Chapter 64D-3, July 30, 2007, https://www.flrules.org/gateway/ChapterHome.asp?Chapter=64D-3.

Pertussis

Pertussis: Crude Data	
Number of cases	228
2006 incidence rate per	
100,000	1.24
\% change from average 5yr	
(2001-2005) incidence rate	+98.5
Age (yrs)	
Mean	14.6
Median	7
Range	$<1-90$

Figure 1.
Pertussis Incidence Rate by Year Reported, Florida, 1997-2006

Description

Pertussis, or whooping cough, is caused by the bacterium Bordetella pertussis. It is characterized by paroxysmal coughing followed by a characteristic inspiratory whoop. Pneumonia is the cause of most pertussis-related deaths. Other complications, though infrequent, can include: neurological complications, such as seizures and encephalopathy; and, secondary bacterial infections, such as otitis media, pneumonia, or sepsis. Conditions resulting from the pressure effects of severe paroxysmal coughing include pneumothorax, epistaxis, subdural hematomas, hernias, and rectal prolapse. Disease rates and risk of serious complications, including death, are highest among young children. Disease in adolescents and adults tends to be less severe, although there have been reports of apnea, rib fractures, and other complications.

Figure 2. Pertussis by Month of Onset, Florida, 2006

Disease Abstract

Disease trends in Florida, and nation-wide, indicate that pertussis cases have increased significantly since 2001 (Figure 1). Case numbers went from 30 cases in 2001 (22 confirmed cases and 8 probable cases) to 228 cases in 2006 (121 confirmed cases and 107 probable cases). In the previous five years, most cases occurred during the summer months, but many of the 2006 cases were identified in January, February, and December (Figure 2). In the previous five years, pertussis cases were consistent between gender and race. In 2006, however, white males and females were identified in significantly greater numbers (Figure 4).

Figure 3. Pertussis Incidence Rate by Age Group, Florida, 2006

As in the previous five years, most pertussis cases were identified in infants and young children. The majority of cases were reported in infants <6 months of age, too young to have completed the vaccine series (Figure 3). In 2006, of the 121 confirmed cases, 87 were in children under seven years of age.

There were two deaths, both in Hispanic infants, one at 23 days old, and one at two months of age. In both cases, adult family members had a history of a cough lasting longer than 14 days.

Figure 4. Pertussis Incidence Rate by Race and Gender, Florida, 2006

Pertussis was reported in 36 of the 67 of the counties in Florida. Counties in the northeast, central-east, southwest, and southeast regions of Florida reported the highest incidence rates.

Prevention

Currently, only acellular pertussis vaccines combined with diphtheria and tetanus toxoids (DTaP and Tdap) are available in the U.S. The five DTaP doses should be administered to children at age $2,4,6$, and 15-18 months, and 4-6 years. The increase in disease in the early teenage years indicates that immunity decreases over time. Vaccine recommendations now include one dose of Tdap vaccine to be given between 10 and 64 years of age. Post-exposure antibiotic and vaccine prophylaxis of close contacts are the major outbreak control measures.

Pertussis - Reported Incidence Rate* by County of Residence, Florida, 2006

References

Centers for Disease Control and Prevention, Manual for the Surveillance of Vaccine-Preventable Diseases, 3rd ed., 2002, p. 8-1, http://www.cdc.gov/vaccines/pubs/survmanual/ default.htm.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) at www.cdc.gov/vaccines/vpd-vac/pertussis/default.htm

Pesticide-Related IIIness/Injury Morbidity Report, 1998-2005

The pesticide poisoning surveillance aggregate report is based on passive ascertainment of pesticide poisoning incidents recorded over a period of eight years, from 1998 to 2005. There were 1,196 cases collected from surveillance partners such as the Florida Poison Information Center Network and County Health Departments. Other reporting sources included exposed persons, public, media, and other nontraditional sources, namely fire departments and Emergency Response Services (EMS). A case was
defined as a person who experienced acute adverse health effects resulting from pesticide exposure. Cases were classified based on the exposure evidence, adverse health effects, and pesticide toxicity per National Institute of Occupational Safety and Health/Sentinel

Event Notification System for Occupational Risk (NIOSH/SENSOR) case definition guidelines. The three categories of cases included in this report were definite, probable, and possible. For definite cases, evidence of the exposure and the health effects are confirmed by medical and/or laboratory evidence. Probable cases are those where the exposure or health effects were verified by medical or laboratory evidence. Possible cases are verified by subjective evidence only which could be derived from the ill/injured person's testimony.

For the years 1998-2005, a majority of the cases were reported from Manatee (147, 12.3\%), MiamiDade (114, 9.5\%), and Palm Beach (75, 6.3\%) counties. A large number of cases (107) were reported from Manatee County in 1999. Of these 107 cases, more than 50% of the cases reported were a result of a single incident due to aerial application of Malathion to control medfly infestation. The fluctuation in the number of cases reported for counties over the period reviewed may have been influence by a lull in surveillance activities. For example, in 2000 and 2004, fewer cases were captured as one of the main surveillance partners was not reporting regularly to the program.

Additional Resources

Information on pesticides can be accessed through the Florida Department of Health at http://www.doh.state.fl.us/environment/community/pesticide/index.html

Plague

There were no cases of plague (Yersinia pestis) infection in Florida from 1997 through 2006. The last outbreak of plague in Florida was in Pensacola early in the 20th century. This gram-negative bacterial zoonosis causes sporadic cases of clinical disease in the western U.S. Human cases can present with bubonic, septicemic, or pneumonic forms. Rodents are the reservoir. Natural transmission can be through direct contact of infectious material, aerosols, or inhalation, but vectoring by fleas is most common. Exposure to infected cats has resulted in pulmonary disease in veterinarians and veterinary staff. Transmission via the pulmonary form between humans poses the greatest risk for caregivers and medical professionals. Mortality in untreated plague cases is 60% for bubonic plague, and virtually 100% for the septicemic and pulmonary forms. Prompt initiation of antibiotic treatment is critical for successful treatment of septicemic and pulmonary forms. The plague bacterium is a CDC Select Agent due to the possibility of aerosol transmission, and its high mortality rate if treatment is delayed.

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004, p. 507.

Psittacosis

Description

Psittacosis is caused by the obligate intracellular bacterial pathogen Chlamydophila (formerly Chlamydia) psittaci. The organism is genetically and antigenically distinct from those in the genus Chlamydia. Birds are the primary reservoir although the disease has been reported in mammals such as cattle, goats, sheep, and cats. Although any avian species can be infected, imported or smuggled birds, psittacines (parrots, love birds, cockatiels, macaws, etc.) are most likely to be infected, less often poultry (turkeys), pigeons, canaries and sea birds. Infected birds can appear clinically normal, and can shed the infectious agent intermittently, particularly when stressed. Organisms are shed in feces and bodily secretions. Transmission is generally through inhalation of infectious fecal dust, secretions, or feather dust. Incubation is usually 1-4 weeks. Many human infections are mild and may go undetected. Clinical symptoms are variable and include fever, headache, rash, myalgia, chills, and upper or lower respiratory disease. Splenomegaly may occur, and encephalitis, myocarditis, and thrombophlebitis are occasional complications. Disease can be severe, particularly in the elderly, and relapses can occur. Outbreaks can occur in pet shops, homes, aviaries, and pigeon lofts. Those who work with or own birds, or who work in a laboratory, are at increased risk.

Disease Abstract

There were 19 cases reported between 1997 and 2006. Nine cases were classified as confirmed, and 10 as probable, including one probable case in 2006. Two cases were classified as outbreakassociated, one in 1997 and one in 2002. The single probable case in 2006 involved a 47-year old white non-Hispanic female who became ill 14 days after purchasing a cockatiel. The cockatiel died four days before the patient became sick. Of the 19 total cases, 15 were female (79%) and 4 were male (21\%). Most were white non-Hispanic (14, 74\%), followed by white Hispanic (2, 11\%), and white unknown ($2,11 \%$). There was one case of unknown ethnicity (5%). Age range was from 15 to 79 years old, with median age 45 years.

Prevention

Education of bird owners, and those working with birds, on mode of transmission, links between stress and shedding, proper cleaning and disinfection, and clinical symptoms in humans is important for prevention. Involving veterinarians and public health personnel when outbreaks in avian species occur will help assure appropriate infection control and disinfection of facilities or homes.

References

David L. Heymann (ed.), Control of Communicable Diseases Manual, 18 ${ }^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.
L.K. Pickering, C.J. Baker, S.S. Long, and J.A. McMillan (eds.), Red Book: 2006 Report of the Committee on Infectious Diseases, 27 ${ }^{\text {th }}$ ed., American Academy of Pediatrics Press, 2006.

Additional Resources

Information on psittacosis in Florida can be obtained at the Florida Department of Health
website at http://www.doh.state.fl.us/Disease_Ctrl/epi/htopics/popups/psi.htm Additional information can be found at the Centers for Disease Control and Prevention website at http://www.cdc.gov/ncidod/dbmd/diseaseinfo/psittacosis_t.htm

Q Fever

Description

Q Fever is a zoonotic disease caused by the rickettsia Coxiella burnetii. It has a global distribution and is resilient in the environment. The most common natural reservoirs are sheep, goats, and cattle, but rodents and other animals can also harbor the agent. Ticks are thought to play a role in maintaining animal reservoirs, but are not believed to be important in transmission to humans. The agent is shed in animal birthing fluids and may be shed in milk. Transmission to humans occurs primarily through aerosols generated during parturition or from contaminated dust, which can carry infectious particles a half-mile or more, making identification of exposure difficult in some cases. Transmission can also occur through direct contact with contaminated material or through ingestion of unpastuerized dairy products. The infectious dose is very low and a single organism may lead to infection. Of those exposed, 60\% can be asymptomatic. Two forms of disease can be seen, acute and chronic. Acute disease generally occurs 2-4 weeks after exposure and is associated with chills, fever, headache, weakness, and other nonspecific signs. Hepatitis is present in $40-60 \%$ of acute cases. The acute form of the disease is rarely fatal and is usually self-limiting. The chronic form occurs in approximately 1% of patients with acute illness, and can occur months to years later. Chronic disease often manifests as endocarditis and can be fatal if untreated. Patients with pre-existing cardiac conditions are at greatest risk for developing chronic disease. Hepatitis can also be seen in chronic infections. Relapses can occur even with treatment of chronic cases. Q Fever is a CDC Select Agent and has potential for use as a bioweapon.

Disease Abstract

From 1997 through 2006 there were 20 cases of Q Fever reported in Florida, 10 probable and 10 confirmed. Eight of these cases (40\%) were reported in 2006, five of which were classified as probable and three as confirmed. Gender distribution was six male (86\%) and one female (14\%) in 2006, compared to a 69% male and 31% female distribution for the previous five years. Six of seven cases (86%) were identified as white, one (14\%) as unknown race in 2006, compared with 77% white, 8% white Hispanic, and 15% unknown for the previous five years. Age distribution for 2006 ranged from 30 to 68 years of age, with a median age of 65 , compared with a range of 18-87 years of age, with a median age of 45 in the previous five years. Place of exposure was described as Florida in five cases and as unknown in two in 2006. Two of the Florida-acquired cases had histories of animal exposure in Kenya or military travel to Iraq and Kuwait. During the previous five years, six cases were designated as originating in Florida, six were of unknown origin, and one was imported from another state. Also of note was a "pseudoepidemic" of Q Fever that occurred in 2003 when a commercial laboratory misinterpreted results for a number of people exposed to an infected animal. Initial seroprevalence of 75% positive actually turned out to be 27% when corrected and in the end only a single individual was found to be actively infected with Q Fever, demonstrating the importance of laboratory quality control in diagnostics.

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004, p. 507.

Rabies

Rabies: Crude Data	
Number of cases	176
2006 incidence rate per 100,000 N/A \% change from average 5yr (2001-2005) incidence rate -5.9 Age (yrs) Mean N/A Median N/A Range N/A l	

Figure 1.
Animal Rabies Cases by Year Reported, Florida, 1997-2006

Description

The rabies virus is a single-stranded RNA virus in the Rhabdoviridae family, and causes an estimated $65,000-87,000$ human deaths worldwide annually. The virus can infect any mammal, but dogs are the primary urban reservoirs worldwide. Wild carnivores and bats are important reservoirs in rural areas. In the U.S., primary reservoirs include raccoons, skunks, foxes, bats, and coyotes. Geographically-specific virus strain variants circulate in these species, occasionally spilling out into other wild and domestic animal species. People are much more likely to be exposed to domestic animals than to rabid wildlife. Because of this, countries lacking an adequate canine vaccination program often have high numbers of associated human deaths.

The rabies virus is primarily transmitted through infective saliva into bites by an infected animal. Nervous tissue and fluid is also infective. Transmission through mucus membranes or a fresh cut in the skin is possible, but rare. Airborne transmission has been reported rarely in bat caves and laboratory settings. Virus can also be shed in milk. In recent years there have been several human cases involving organ transplants. In domestic animals, rabies virus can be shed for only a few days before clinical symptoms develop, but some wild animals, such as raccoons, may appear clinically normal and shed virus for months before developing clinical signs. The virus shedding period and vaccination efficacy is not established for many wild animals.

Incubation period varies from days to months, or possibly years, depending on species, immune status, and dose and route of exposure. Clinical signs are consistent with central nervous system disease and include behavioral changes. Animals may demonstrate furious and dumb forms of the disease before lapsing into a coma and dying. Although the virus is nearly 100\% fatal in unvaccinated humans, timely and appropriately administered prophylaxis is uniformly preventive. Preventive vaccination in domestic
animals is also extremely effective. Unvaccinated animals are at greatest risk for infection, as are people working with or owning unvaccinated animals.

Disease Abstract

From 1997 through 2006 there was one human rabies case in Florida. The person was bitten by a dog in Haiti in 2004 and became ill after returning to Florida. The case was caused by a canine variant strain of rabies then circulating in Haiti. In 2006, post-exposure treatment was recommended for 1,229 individuals in Florida; there were no human cases reported in 2006.

Rabies is endemic in the raccoon and bat populations in Florida, and frequently spills out into other animal populations. Laboratory testing for animal rabies is only done when animals are involved in rabies exposures, and the data do not necessarily correlate the true prevalence of rabies in these animal species. Between 1997 and 2006, a total of 1,948 animals were found to be rabid with an average of 194.8 rabid animals per year. Of the 3,601 animals tested at the state lab in 2006, there were 176 confirmed rabid animals, representing a 5.9% decrease from the previous 5 -year average. The decrease could signify a cyclical trough in virus circulation in the raccoon population, or successful public education to avoid contact with wild animals. No cases were identified as being part of outbreaks. In 2006, rabid animals were found in 44 of 67 counties in Florida. Three counties reported ten or more cases: Alachua (14), Bay (10), and Seminole (12). Cases were reported in each month with peaks in October (19), March (19), and June (18).

Raccoons once again accounted for the majority of cases (111, 63%), followed by foxes ($27,15 \%$), bats (20, 11\%), and cats (10, 18\%). Few cases were reported in other terrestrial wildlife (1 bobcat, 1 skunk, and 1 otter). Since 1997, rabid cats have continued to outnumber rabid dogs, though rabies vaccination is compulsory for both. In 2006, three horses and two dogs were found to be rabid. Testing at the Bureau of Laboratories demonstrates that terrestrial rabies in Florida is all due to the raccoon variant.

Prevention

During 2006, the Florida Rabies Advisory Committee revised the rabies guidebook to provide information for county health departments and others involved in rabies control and prevention. Other preventive measures include vaccination of pets and at-risk livestock, avoiding direct human and domestic animal contact with wild animals, educating the public to reduce incidence of stray and feral animals, supporting animal control in efforts to reduce feral and stray animal populations, bat-proofing homes, and providing pre-exposure prophylaxis for high risk professions, such as animal control and veterinary personnel, laboratory workers, and those working with wildlife. Pre-exposure prophylaxis should also be considered for those traveling extensively where rabies is common in domestic animals. Oral bait vaccination programs for wildlife are possible in some situations. These programs can be effective, but require careful advance planning, and substantial time and financial commitments.

Note: Due to data extraction discrepancies discovered late in 2007, the true number of animal rabies cases in 2006 varies slightly from the tallies provided in the text and the 2007 state rabies guide. The actual number of rabid animals detected in 2006 was 173, with total of rabid bats 21, total of rabid horses 2, and total of rabid raccoons 108. All other tallies are listed correctly.

Animal Rabies Cases by County, Florida, 2006

References

Florida Rabies Advisory Committee, Rabies Prevention and Control in Florida, 2006, Florida Department of Health, Bureau of Community Environmental Health, 2006.

David L. Heymann (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.
L.K. Pickering, C.J. Baker, S.S. Long, and J.A. McMillan (eds.), Red Book: 2006 Report of the Committee on Infectious Diseases, 27h ed., American Academy of Pediatrics Press, 2006.

Additional Resources

Disease information is available from the Florida Department of Health website at http://www.doh.state.fl.us/Environment/community/rabies/rabies-index.html

Disease information is also available from the Centers for Disease Control and Prevention at http://www.cdc.gov/ncidod/dvrd/rabies/introduction/intro.htm

Rocky Mountain Spotted Fever

Rocky Mountain Spotted Fever: Crude Data	
Number of cases	21
2006 incidence rate per $100,000$	0.11
\% change from average 5 yr (2001-2005) incidence rate	+ 25
Age (yrs)	
Mean	51.2
Median	61
Range	9-83

Figure 1.
Rocky Mountain Spotted Fever Cases by Year Reported, Florida, 1997-2006

Description

Rocky Mountain spotted fever (RMSF) is caused by infection with the intracellular coccobacillary bacteria, Rickettsia rickettsii, following tick exposure. An estimated 90% of the thousand rickettsial disease cases that occur annually in the U.S. are RMSF. The principal tick vectors in Florida are the dog tick (Dermacentor variabilis) and the Lone Star tick (Amblyomma americanum). A tick bite may or may not be apparent. Malaise, muscle pain, headache, and chills are common. In most cases a mild febrile illness develops after an incubation period of a few days to two weeks. About one-half of the cases also develop a maculo-papular rash that appears first on the extremities, and spreads to the trunk.

Figure 2. Rocky Mountain Spotted Fever Cases by Age Group, Florida, 2006

Disease Abstract

The number of RMSF cases reported annually has increased since 1997 (Figure 1). The disease tends to affect adults more than young children or the elderly, though in 2006, there were more cases reported in those age 55+ in comparison to the previous 5 -year average (Figure 2). Cases are reported more often in males than in females, both in 2006, and during the previous five years (Figure 3).

Figure 3. Rocky Mountain Spotted Fever Cases by Gender, Florida 2006

In Florida, cases of RMSF are reported year-round, though peak transmission occurs during the summer months. Of the cases reported between 1997 and 2006, 74% acquired the disease in Florida, 17% acquired the disease in another U.S. state, 2% acquired the disease in another country, and travel history for the remaining cases is unknown.

Prevention

Effective antibiotic therapy is available for RMSF, though prevention of tick bites is the best way to avoid disease. Wear light-colored clothing so that ticks crawling on clothing are visible. Tuck pants legs into socks so that ticks cannot crawl inside clothing. Apply repellent to discourage tick attachment. Repellents containing permethrin can be sprayed on boots and clothing, and will last for several days. Repellents containing DEET can be applied to the skin, but will last only a few hours before reapplication is necessary. Search the body for ticks upon return from potentially tick-infested areas. If a tick is found, it should be removed as soon as possible. Controlling tick populations in the yard and on pets can also reduce the risk of disease transmission.

References

David L. Heymann (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Resources

Additional information on RMSF and other arthropod-borne diseases can be found in the Surveillance and Control of Arthropod-borne Diseases in Florida Guidebook, online http://www.doh.state.fl.us/environment/community/arboviral/pdf_files/UpdatedArboguide.pdf

Disease information is also available from the Centers for Disease Control and Prevention (CDC) at http://www.cdc.gov/ncidod/dvrd/rmsf/index.htm

Rubella

Description

Rubella is a viral illness caused by a togavirus of the genus Rubivirus and is characterized by a mild, maculopapular rash. The rubella rash occurs in $50 \%-80 \%$ of rubella-infected persons. A 1-5 day prodrome of low-grade fever, headache, malaise, mild coryza, and conjunctivitis may occur, with adults likely to experience more of the symptoms. Postauricular occipital, and posterior cervical lymphadenopathy is characteristic, and precedes the rash by 5-10 days. Arthralgia or arthritis may occur in up to 70% of adult women with rubella. Rare complications include thrombocytopenic purpura and encephalitis.

Disease Abstract

In 2006, there was one laboratory-confirmed, imported case of rubella. A 36-year-old employee on a foreign cruise line was identified during an investigation of rash illness. The county health department, in partnership with the Bureau of Immunization and Miami Quarantine, provided 1,152 combined measles-mumps-rubella (MMR) doses on the cruise line in order to prevent further spread among the crew. The employee was confined to the ship, and there were no known Florida cases.

Prevention

Live attenuated rubella virus vaccine, given as MMR, is recommended at 12-15 months of age, with dose two recommended at 4-6 years of age, unless contraindicated. Laboratory confirmation of disease is critical, since clinical diagnosis of rubella is unreliable and should not be considered in assessing immune status.

References

Centers for Disease Control and Prevention, Manual for the Surveillance of VaccinePreventable Diseases, 3 rd ed., 2002, p. 8-1, http://www.cdc.gov/vaccines/pubs/survmanual/ default.htm.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) at http://www.cdc.gov/vaccines/vpd-vac/rubella/default.htm

Salmonellosis

Salmonellosis: Crude Data	
Number of cases	4928
2006 incidence rate per	26.75
100,000	
\% change from average 5yr	+3.4
(2001-2005) incidence rate	
Age (yrs)	22
Mean	7
Median	$<1-105$

Figure 1.
Salmonellosis Incidence Rate by Year Reported, Florida, 1997-2006

Description

Salmonellosis is an acute bacterial disease caused by gram-negative bacillus that causes gastroenteritis, and rarely causes systemic disease and other complications. The natural reservoirs for non-typhoid Salmonella species are found in association with both warm and cold-blooded animals, which then result in contamination of the environment. Animal sources of Salmonella include poultry, cattle, swine, rodents, and pet reptiles. The infection is most often transmitted by ingesting undercooked eggs and meat, contaminated food and water, or raw milk, and from infected pets or farm animals. There have also been known exposures through fresh-squeezed juices, sprouts, and tomatoes. Cross-contamination of surfaces contaminated by raw meat may also be a source of infection. The incubation period is generally 12-36 hours after exposure (range: 6-72 hours). Common symptoms include watery or bloody diarrhea, abdominal pain, fever, malaise, and nausea.

Figure 2. Salmonellosis by Month of Onset, Florida, 2006

Disease Abstract

The incidence rate for salmonellosis has increased gradually over the last 10 years (Figure 1). In 2006, the incidence was 26.8 cases per 100,000 population, a decrease from the 2005 peak of 30.8 cases
per 100,000 population. A total of 4,928 cases were reported in 2006, of which 97.1% were classified as confirmed. The number of cases reported increased in the summer months. In 2006, the number of cases exceeded the previous 5 -year average in all months except for October and November (Figure 2). Overall, 7.6% of the salmonellosis cases were classified as outbreak-related in 2006.

Figure 3. Salmonellosis Incidence Rate by Age Group, Florida, 2006

The highest incidence rates continue to occur among infants <1 year old, and children aged 1-4 years. In 2006, the incidence rates were very similar to the previous 5-year average (Figure 3). Males have a higher incidence than females (27.0 and 26.4 per 100,000, respectively), and in 2006, the incidence in both genders was higher than the previous 5 -year average incidence. As has been the case in the past, incidence rates in whites are greater than those in nonwhites (Figure 4).

Salmonellosis was reported in 65 of the 67 counties in Florida. Rates are variable across the state, but appear to be consistently higher in the northeastern portion of the state.

Figure 4. Salmonellosis Incidence Rate by Race and Gender, Florida, 2006

Prevention

To reduce the likelihood of contracting salmonellosis, cook all meat products and eggs, thoroughly, particularly poultry. Avoid cross-contamination by making sure utensils, counter tops, cutting boards, and sponges are cleaned or do not come in contact with raw poultry, or other meat. Wash hands thoroughly before, during, and after food preparation. Do not allow the fluids from raw poultry or meat to drip on other foods. Consume only pasteurized milk, milk products, or juices. Additionally, it is important to wash hands after coming into contact with any animals or their environment.

Salmonellosis - Reported Incidence Rate* by County of Residence, Florida, 2006

References

David L. Heymann (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004, p. 700.

Larry Pickering (ed.), et al., 2006 Red Book: Report of the Committee on Infectious Diseases, 27th ed., Elk Grove Village, Illinois, American Academy of Pediatrics Press, 2006, p. 992.

Florida Department of Health, "Guidelines for Control of Outbreaks of Enteric Disease in Child Care Settings," http://www.doh.state.fl.us/disease_ctrl/epi/surv/enteric.pdf.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) at http://www.cdc.gov/salmonella/

Disease information is also available from the U.S. Food and Drug Administration-Bad Bug book, online at http://www.cfsan.fda.gov/~mow/chap1.html

Centers for Disease Control and Prevention, "Outbreak of Salmonella Serotype Javiana Infections-Orlando, Florida, June 2002," Morbidity and Mortality Weekly Report, Vol. 51, No. MM31, p. 683.

Shigellosis

Shigellosis: Crude Data	
Number of cases	1646
2006 incidence rate per	8.93
100,000	
\% change from average 5yr	-11.4
(2001-2005) incidence rate	
Age (yrs)	12.6
Mean	6
Median	$<1-105$

Figure 1. Shigellosis Incidence Rate by Year Reported, Florida, 1997-2006

Description

Shigellosis is an acute bacterial disease caused by gram-negative rod-shaped bacteria that cause gastroenteritis. The natural reservoir for Shigella species is humans, although other primates may be infected. The infection is most often transmitted by the fecal-oral route either directly from an infected individual or by ingesting contaminated food and water. The incubation period is generally 2-4 days after exposure (range: 1-7 days). Common symptoms include watery or loose stools with or without blood, abdominal pain, and fever.

Disease Abstract

The incidence rate for shigellosis has varied over the last 10 years (Figure 1). Periodic community outbreaks involving childcare centers account for most of the variability. In 2006, there was an 11.9% decrease in comparison to the average incidence from 2001 to 2005. A total of 1,646 cases were reported in 2006, of which 82.1% were classified as confirmed. The number of cases reported increased in late summer and during the fall months. In 2006, the number of cases exceeded the previous 5-year average from July through October (Figure 2). Overall 33.4\% of the shigellosis cases were classified as outbreak-related.

Figure 2. Shigellosis by Month of Onset, Florida, 2006

Figure 3. Shigellosis Incidence Rate by Age Group, Florida, 2006

The highest incidence rates continue to occur among children aged 1-4 years. In 2006, the incidence rates were similar to the previous 5-year average (Figure 3). Incidence rates were higher among females than males (9.1 and 8.7 per 100,000, respectively), and higher in non-whites than whites. The 2006 incidence in both genders was similar to the previous 5 -year average incidence (Figure 4).

Shigellosis was reported in 50 of the 67 counties in Florida. Counties in the Panhandle reported the lowest rates.

Figure 4. Shigellosis Incidence Rate by Race and Gender, Florida, 2006

Race/Gender
-Previous 5yr Avg

Prevention

To reduce the likelihood of contracting shigellosis it is important to practice good hand hygiene. Outbreaks in daycare centers are common and control may be difficult. The Department of Health has published outbreak control measures for childcare settings.

Shigellosis - Reported Incidence Rate* by County of Residence, Florida, 2006

References

David L. Heymann (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Larry Pickering (ed.) et al., 2006 Red Book: Report of the Committee on Infectious Diseases, $27^{\text {th }}$ ed., Elk Grove Village, Illinois, American Academy of Pediatrics Press, 2006, p. 992.

Florida Department of Health, "Guidelines for Control of Outbreaks of Enteric Disease in Child Care Settings," http://www.doh.state.fl.us/disease_ctrl/epi/surv/enteric.pdf.

Additional Resources

Centers for Disease Control and Prevention (CDC) at http://www.cdc.gov/ncidod/dbmd/diseaseinfo/shigellosis_g.htm
U.S Food and Drug Administration-Bad Bug book, online
http://www.cfsan.fda.gov/~mow/chap19.html

Centers for Disease Control and Prevention, "Outbreak of Gastroenteritis Associated with an Interactive Water Fountain at a Beachside Park-Florida, 1999," Morbidity and Mortality Weekly Report, Vol. 49, No. 25, 2000, pp. 565-568, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm4925a3.htm.

St. Louis Encephalitis

Description

St. Louis encephalitis virus (SLEV), a flavivirus, was the most common mosquito-transmitted human pathogen in the U.S. prior to the introduction of West Nile virus (WNV). During the summer season, SLEV is maintained in a mosquito-bird cycle, with periodic amplification by birds and Culex mosquitoes. In Florida, the principal vector is Cx. nigripalpus, a ubiquitous species found throughout Florida. Infection with SLEV results in unapparent infection in a variety of birds and mammals with a resultant period of viremia that lasts a matter of days. Humans represent an incidental, dead-end host. The estimated incubation range is 4-21 days. The clinical spectrum of human SLEV infection includes unapparent infection, mild illness (fever with headache), aseptic meningitis, and encephalitis that can progress to coma and death. Less than 1% of SLEV infections in people are clinically apparent, and the vast majority of infections remain undiagnosed. Encephalitis, especially that progressing to coma and death, is more common in the elderly.

Disease Abstract

A large SLE outbreak occurred in the Tampa Bay area in 1959, 1961, and 1962, resulting in over 315 cases, and 55 deaths. Another outbreak in 1977 involved 20 counties, 110 cases, and 8 deaths. The most recent large outbreak occurred in 1990, with 223 cases and 11 deaths, in 28 counties. The case fatality rate in Florida SLE epidemics has ranged from 4-30\%, with deaths reported almost exclusively
among people age 50+. Since the introduction of WNV to Florida in 2001, only one human case of SLE has been reported (Figure 1). SLE virus and WNV are similar viruses, and are thought to utilize the same bird reservoirs in their respective transmission cycles. WNV transmission peaks slightly earlier in the year than SLEV, and is thus thought to have contributed to the recent decline in SLEV activity seen in Florida.

Figure 1. St. Louis Encephalitis Cases by Year Reported, Florida, 1997-2006

Prevention

There is no specific treatment for SLE, and therapy is supportive for ill persons. Prevention of the disease is a necessity. Measures can be taken to avoid being bitten by mosquitoes. Drain any areas of standing water from around the home to eliminate mosquito breeding sites. Use insect repellents that contain DEET or other EPA-approved ingredients such as Picaridin or oil of lemon eucalyptus. Avoid spending time outdoors during dusk and dawn, the time when disease-carrying mosquitoes are most likely to be seeking a blood meal. Dress in long sleeves and long pants to protect skin from mosquitoes. Also, inspect screens on doors and windows for holes to make sure mosquitoes cannot enter the home.

References

David L. Heymann (ed.), Control of Communicable Diseases Manual, 18 ${ }^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Resources

Additional information on SLE and other mosquito-borne diseases can be found in the Surveillance and Control of Arthropod-borne Diseases in Florida Guidebook, online at http://www.doh.state.fl.us/environment/community/arboviral/pdf_files/UpdatedArboguide.pdf

Disease information is also available from the Centers for Disease Control and Prevention (CDC) at http://www.cdc.gov/ncidod/dvbid/arbor/sle_qa.htm

Streptococcal Disease, Invasive Group A

Streptococcal Disease, Invasive Group A: Crude Data	
Number of cases	312
2006 incidence rate per	
100,000	1.69
\% change from average 5yr	
(2001-2005) incidence rate	+36.4
Age (yrs)	50.3
Mean	51
Median	$<1-101$

Figure 1.
Streptococcal Disease, Invasive Group A, Incidence Rate by Year Reported, Florida, 1997-2006

Description

Invasive Group A streptococcal disease, caused by Group A Streptococcus pyogenes, may manifest as any of several clinical syndromes; including pneumonia and/or bacteremia (septicemia), often in conjunction with cutaneous infections (cellulitis, erysipelas, or wound infections), deep soft tissue infections (myositis or necrotizing fasciitis), meningitis, peritonitis, osteomylitis, septic arthritis, postpartum sepsis (puerperal fever), neonatal sepsis, and toxic shock syndrome. The disease is found worldwide and is spread primarily through direct contact or large respiratory droplets; casual contact rarely leads to infection. Individual carriers are occasionally the source of outbreaks. The incubation period is short, usually 1-3 days. Untreated infections, particularly those with a discharge, may be communicable for days to weeks.

Figure 2. Stretococcal Disease, Invasive Disease Group A, by Month of Onset, Florida, 2006

Disease Abstract

The incidence rate for reported invasive group A streptococcal disease in Florida has gradually increased over the past 10 years (Figure 1), with a more than a four-fold cumulative increase. In 2006, there was a 36.4% increase compared to the average incidence for 2001-2005 (Table 1). A total of 312
cases were reported in 2006, of which 100% were classified as confirmed. Cases occur throughout all months of the year. Compared to 2001-2005, the number of cases reported in 2006 was higher in all months, except for March and April, with the greatest number occurring in January, February, and July (Figure 2). Almost all cases are sporadic.

Figure 3. Streptococcal Disease, Invasive Group A, Incidence Rates by Age Group, Florida, 2006

The highest incidence rates continue to occur in those aged 85+ years, although those <1 year also show an increased rate compared to those in the age groups between 1-44 years (Figure 3). In 2006, incidence increased in every age group except for those aged 1-4, 15-19, and 75-84 and 85+. Males continue to have a higher incidence than females (1.39 and 1.10 per 100,000, respectively) and in 2006, the incidence in both genders was higher than the previous 5 -year average incidence. In 2006, the incidence rate for non-white males surpassed that for white males, and increased in all groups (Figure 4).

Figure 4. Streptococcal Disease, Invasive Group A, Incidence Rate by Race and Gender, Florida, 2006

Invasive group A streptococcal disease cases were reported in 37 of the 67 counties in Florida. The five counties reporting the highest number of cases were distributed throughout the state.

Prevention

Prevention is through education about modes of transmission, prompt and effective treatment of infections, and appropriate drainage and secretion precautions.

Streptococcal Disease, Invasive Group A, Reported Incidence Rate* by County of Residence, Florida, 2006

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004, p. 507.

Additional Resources

Information can be accessed through the Centers for Disease Control and Prevention website at http://www.cdc.gov/ncidod/dbmd/diseaseinfo/groupastreptococcal_g.htm

Streptococcus pneumoniae, Drug-Resistant

Streptococcus pneumoniae, Invasive Disease, Drug Resistant: Crude Data	
Number of cases	774
2006 incidence rate per	4.2
100,000	
\% change from average 5yr	+12.5
(2001-2005) incidence rate	
Age (yrs)	46.9
Mean	52
Median	$<1-100$
Range	

Figure 1. Streptococcus pneumoniae, invasive disease, drug-resistant Incidence Rate by Year Reported, Florida, 1997-2006

Description

Drug-resistant Streptococcus pneumoniae is an acute bacterial disease caused by grampositive diplococci. Pneumococcal infections range from acute otitis media to invasive infections including: community-associated pneumonia, meningitis, and septicemia. Drugresistant S. pneumoniae (DRSP) invasive disease, for reporting purposes, includes cultures obtained from a normally sterile site, such as blood or CSF, which are either intermediate resistant or fully resistant to one or more commonly used antibiotics. S. pneumoniae is a human pathogen, and the reservoir for pneumococci is the nasopharynx of asymptomatic human carriers. There is no animal or insect vector. Transmission of S. pneumoniae is from person to person. The incubation period varies, and can be as short as 1-3 days. Persons who attend or work at childcare centers, and persons who recently used antimicrobial agents, are at increased risk for infection with DRSP.

Figure 2. Streptococcus pneumoniae, invasive disease, drug-resistant by Month of Onset,
Florida, 2006

Disease Abstract

The incidence rate for DRSP peaked in 2000, and gradually declined until 2005 when it started to increase again (Figure 1). There was an increase from 3.4 cases per 100,000 in 2005 to 4.2 cases per 100,000 in 2006. A total of 774 cases were reported in 2006. This is the highest reported incidence since 2001. The number of cases reported tends to increase in the winter months. In 2006, the number of cases exceeded the previous 5-year average in all months, except for January and August (Figure 2).

Figure 3.
Streptococcus pneumoniae, invasive disease, drug- resistant Incidence Rates by Age Group, Florida, 2006

The highest incidence rates continue to occur among infants <1 year old, children aged 1-4 years, and in those 85 years or older. In 2006, the incidence rates were higher than the previous 5-year average in most age groups (Figure 3). Males have a slightly higher incidence than females (4.3 per 100,000 and 4.1 per 100,000, respectively), and in 2006, the incidence in both genders was higher than the previous 5 -year average incidence. As has been the case in the past, incidence rates in non-whites are greater than those in whites (Figure 4).

Figure 4.
Streptococcus pneumoniae, invasive disease, drug-resistant Incidence Rate by Race and Gender, Florida, 2006

Drug-resistant S. pneumoniae was reported in 45 of the 67 counties in Florida.

The data from both the reported drug-resistant and the drug-sensitive S. pneumoniae were used to calculate resistance rates of common antibiotics in 2003 (Table 1). The sensitivity rate varies by the class of antibiotic. In 2003, only 50% of all cultures reported were sensitive to penicillin, while all other antibiotics tested reported had a higher sensitivity rate.

Prevention

The most effective way of preventing pneumococcal infections, including DRSP infections, is to prevent the disease through vaccination. Currently, there are two vaccines available. A conjugate vaccine is recommended for all children <24 months of age, and children age 24-59 months with a high-risk medical condition. The older pneumococcal polysaccharide vaccine should be administered routinely to all adults over 65 years old. The vaccine is also indicated for persons older than 2 years with a normal immune system who have chronic illnesses. Additionally, it is important to practice good hand hygiene, to take antibiotics only when necessary, and to finish the entire course of treatment.

Streptococcus pneumoniae invasive disease, drug-resistant - Reported Incidence Rate* by County of Residence, Florida, 2006

References

David L. Heymann (ed.), Control of Communicable Diseases Manual $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Larry Pickering (ed.) et al., 2006 Red Book: Report of the Committee on Infectious Diseases, $27^{\text {th }}$ ed.,Elk Grove Village, Illinois, American Academy of Pediatrics Press, 2006, pp. 992.

William Atkinson (ed.) et al., Epidemiology and Prevention of Vaccine-Preventable Diseases, $10^{\text {th }}$ ed., Centers for Disease Control and Prevention, Washington, District of Columbia, 2007.

Michael Drennon, "Drug Resistant Patterns of Invasive Streptococcus pneumonia Infections in the State of Florida in 2003," master's thesis, University of South Florida, Tampa, 2006, pp. 86.

The following are reports available on the Florida Department of Health website 1999 Streptococcus Pneumoniae Surveillance Report http://www.doh.state.fl.us/disease_ctrl/epi/htopics/popups/anti_res.htm 2000 Streptococcus Pneumoniae Surveillance Report http://www.doh.state.fl.us/disease_ctrl/epi/htopics/popups/anti_res.htm 1997-1999 Surveillance of SP in Central FL http://www.doh.state.fl.us/disease_ctrl/epi/htopics/popups/anti_res.htm

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) website http://www.cdc.gov//ncidod/dbmd/diseaseinfo/drugresisstreppneum_t.htm

Centers for Disease Control and Prevention, "Preventing Pneumococcal Disease Among Infants and Young Children: Recommendations of the Advisory Committee on Immunization Practices (ACIP)," MMWR, Vol. 49, No. RR-9. October 2000, pp. 1-35, http://www.cdc.gov/MMWR/preview/mmwrhtml/rr4909a1.htm.

Table 1: Reported antibiotic resistance rates of S. pneumoniae, Florida 2003

Class	ANTIBIOTIC	TOTAL NUMBER	\% ofTotalCases	Antibiotic Susceptibility				
				N (\%) S	$\begin{aligned} & \text { N (\%) } \\ & \text { MS } \end{aligned}$	N (\%) I	N (\%) R	$\begin{gathered} \mathrm{N}(\%) \mathrm{I}+ \\ \mathrm{R} \end{gathered}$
Penicillins	Penicillin	882	84\%	$\begin{gathered} 441 \\ (50 \%) \end{gathered}$	15 (2\%)	$\begin{gathered} 252 \\ (29 \%) \end{gathered}$	$\begin{gathered} 174 \\ (20 \%) \end{gathered}$	$\begin{gathered} 452 \\ (49 \%) \end{gathered}$
Macrolides	Erythromycin	626	59\%	$\begin{gathered} 414 \\ (66 \%) \end{gathered}$	0 (0\%)	11 (2\%)	$\begin{gathered} 201 \\ (32 \%) \\ \hline \end{gathered}$	$\begin{gathered} 212 \\ (34 \%) \end{gathered}$
	Azithromycin	174	16\%	$\begin{gathered} 212 \\ (64 \%) \end{gathered}$	0 (0\%)	8 (5\%)	54 (31\%)	62 (36\%)
	Total	698	66\%	$\begin{gathered} 456 \\ (65 \%) \\ \hline \end{gathered}$	0 (0\%)	15 (2\%)	$\begin{gathered} 227 \\ (33 \%) \\ \hline \end{gathered}$	$\begin{gathered} 242 \\ (35 \%) \\ \hline \end{gathered}$
Cephalosporins	Cefotaxime (3rd)	512	48\%	$\begin{gathered} 463 \\ (90 \%) \end{gathered}$	2 (0.4\%)	31 (6\%)	16 (3\%)	47 (9\%)
	Ceftriaxone (3rd)	635	60\%	$\begin{gathered} 599 \\ (94 \%) \\ \hline \end{gathered}$	2 (0.3\%)	24 (4\%)	10 (2\%)	34 (6\%)
	Total (3rd)	792	75\%	$\begin{gathered} 726 \\ (92 \%) \end{gathered}$	4 (0.1\%)	49 (6\%)	17 (2\%)	66 (8\%)
	Cefuroxime (2nd)	177	17\%	$\begin{gathered} 119 \\ (67 \%) \end{gathered}$	0 (0\%)	11 (6\%)	47 (27\%)	58 (33\%)
Lincosamides	Clindamycin	341	32\%	$\begin{gathered} 274 \\ (80 \%) \end{gathered}$	0 (0\%)	32 (9\%)	35 (10\%)	67 (19\%)
Carbapenem	Meropenem	69	7\%	55 (80\%)	0 (0\%)	8 (11\%)	6 (9\%)	14 (20\%)
	Imipenem	123	12\%	96 (78\%)	10 (8\%)	13 (11\%)	4 (3\%)	17 (14\%)
Fluoroquinolones	Ofloxacin	139	13\%	$\begin{gathered} \hline 127 \\ (91 \%) \end{gathered}$	0 (0\%)	10 (7\%)	2 (1\%)	12 (8\%)
	Levofloxacin	342	32\%	$\begin{gathered} 335 \\ (98 \%) \\ \hline \end{gathered}$	0 (0\%)	2 (1\%)	5 (1\%)	7 (2\%)
Tetracycline	Tetracycline	359	34\%	$\begin{gathered} \hline 312 \\ (87 \%) \end{gathered}$	0 (0\%)	6 (2\%)	41 (11\%)	47 (13\%)
Glycopeptide	Vancomycin	797	75\%	$\begin{gathered} 797 \\ (100) \% \end{gathered}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)
Other	Chloramphenicol	292	28\%	$\begin{gathered} 258 \\ (88 \%) \end{gathered}$	0 (0\%)	2 (1\%)	32 (11\%)	72 (12\%)
	TMP/SMX	529	50\%	$\begin{gathered} 331 \\ (63 \%) \\ \hline \end{gathered}$	0 (0\%)	40 (7\%)	$\begin{gathered} 158 \\ (30 \%) \\ \hline \end{gathered}$	$\begin{gathered} 198 \\ (37 \%) \\ \hline \end{gathered}$
	Rifampin	84	8\%	$\begin{gathered} 84 \\ (100 \%) \\ \hline \end{gathered}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)
N=Number 3rd=third generation Percent of total cas	cephalosporins, 2 nd s is out of 1056	second gen S=suscep	ation ce e, MS $=$	losporins susceptibl	I=interme	ate, $R=$ res		

Streptococcus pneumoniae, Drug-Susceptible

Streptococcus pneumoniae, Invasive Disease, Drug Susceptible: Crude Data	
Number of cases	620
2006 incidence rate per	3.4
100,000	
\% change from average 3yr (2001-2005) incidence rate	+23.5
Age (yrs) Mean Median 50.1 Range 53	$<1-100$

Figure 1.

Description

Drug-sensitive Streptococcus pneumoniae is an acute bacterial disease caused by gram-positive diplococci. Pneumococcal infections range from acute otitis media to invasive infections including community-associated pneumonia, meningitis, and septicemia. Drug susceptible S. pneumonia (DSSP) invasive disease, for reporting purposes, includes cultures obtained from a normally sterile site, such as blood or CSF, that are sensitive to all of the commonly used antibiotics. S. pneumoniae is a human pathogen, and the reservoir for pneumococci is the nasopharynx of asymptomatic human carriers. There is no animal or insect vector. Transmission of S. pneumoniae is from person to person. The incubation period varies, and can be as short as 1-3 days. Drug-sensitive and drug-resistant S. pneumoniae, when combined, provide a comprehensive picture of invasive pneumococcal infections.

Figure 2.
Streptococcus pneumoniae, invasive disease, drug susceptible by Month of Onset, Florida, 2006

Month
\square Previous 3yr average
12006

Disease Abstract

Data on drug-susceptible S. pneumoniae has been available for the last four years. Since the second year of reporting in 2004, the incidence rate of DSSP has consistently been around 3.4 per 100,000 (Figure 1). A total of 620 cases were reported in 2006. This is the highest reported incidence since 2001. The number of cases reported tends to increase in the winter months. In 2006, the number of cases exceeded the previous three-year average in all months except April (Figure 2).

Figure 3.
Streptococcus pneumoniae, invasive disease, drug susceptible Incidence Rates by Age Group, Florida, 2006

ロPrevious 3yr average ■2006

The highest incidence rates continue to occur among infants <1 year old, children aged 1-4 years, and in those 85 years or older. In 2006, the incidence rates were higher than the previous three-year average in all age groups, except for those in the 5-9, 10-14, and 55-64 age groups. Males continue to have a higher incidence than females (3.8 and 3.0 per 100,000, respectively), and in 2006, the incidence in both genders was higher than the previous three-year average incidence. As has been the case in the past, incidence rates in non-whites are greater than those in whites (Figure 4).

DSSP was reported in 51 of the 67 counties in Florida.

Prevention

The most effective way of preventing pneumococcal infections, including drug-resistant S. pneumoniae (DRSP), is to prevent the disease through vaccination. Currently, there are two vaccines available. A conjugate vaccine is recommended for all children <24 months of age, and children age 24-59 months with a high-risk medical condition. The older pneumococcal polysaccharide vaccine should be administered routinely to all adults $65+$ years. The vaccine is also indicated for persons \geq two years of age with a normal immune system who have a chronic illnesses. Additionally, it is important to practice good hand hygiene, take antibiotics only when necessary, and finish the entire course of antibiotics.

Figure 4. Streptococcus pneumoniae, invasive disease, drug susceptible: Incidence Rate by Race and Gender, Florida, 2006

Streptococcus pneumoniae invasive disease, drug-susceptible - Reported Incidence Rate* by County of Residence, Florida, 2006

Health Association Press, Washington, District of Columbia, 2004.

Larry Pickering (ed.) et al. 2006 Red Book: Report of the Committee on Infectious Diseases, $27^{\text {th }}$ ed., Elk Grove Village, Illinois, American Academy of Pediatrics Press, 2006, p. 992.

William Atkinson (ed.) et al., Epidemiology and Prevention of Vaccine-Preventable Diseases, $10^{\text {th }}$ ed., Centers for Disease Control and Prevention, Washington, District of Columbia, 2007.

Michael Drennon, "Drug Resistant Patterns of Invasive Streptococcus pneumonia Infections in the State of Florida in 2003," master's thesis, University of South Florida, Tampa, 2006, pp. 86.

The following are reports available on the Department of Health website 1999 Streptococcus Pneumoniae Surveillance Report
http://www.doh.state.fl.us/disease_ctrl/epi/htopics/popups/anti_res.htm
2000 Streptococcus Pneumoniae Surveillance Report
http://www.doh.state.fl.us/disease_ctrl/epi/htopics/popups/anti_res.htm 1997 - 1999 Surveillance of SP in Central FL.
http://www.doh.state.fl.us/disease_ctrl/epi/htopics/popups/anti_res.htm

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) http://www.cdc.gov//ncidod/dbmd/diseaseinfo/drugresisstreppneum_t.htm

Centers for Disease Control and Prevention, "Preventing Pneumococcal Disease Among Infants and Young Children: Recommendations of the Advisory Committee on Immunization Practices (ACIP)," MMWR, Vol. 49, No. RR-9. October 2000, pp. 1-35., http://www.cdc.gov/MMWR/preview/mmwrhtml/rr4909a1.htm.

Syphilis

Description

Syphilis, caused by the bacterium Treponema pallidum, is passed from person to person through direct contact with a syphilis sore. Sores occur mainly on the external genitals, vagina, anus, or in the rectum. Sores also can occur on the lips and in the mouth. Transmission of the organism occurs during vaginal, anal, or oral sex. During pregnancy, the organism can be transferred to a fetus in utero or during delivery (neonatal infections are discussed separately).

Syphilis infection is categorized by the progression to subsequent stages over time: primary, secondary, early latent, and late latent. If untreated, syphilis may progress to neurosyphilis. The data in this report includes cases of primary, secondary, early latent, and late latent syphilis. The epidemiological significance of these disease stages is to focus disease intervention activities, and interrupt the spread
of infection in the community. An effective public health response should identify infections as early as possible in the cycle of progression.

In 2006, there were 2,924 syphilis cases reported among both males and females in Florida, or a rate of 15.9 cases per 100,000 population (Figure 10). This was a 1.8% increase from 2005. Over 66% of Florida's cases of syphilis were reported from four counties in 2006: Broward, Hillsborough, MiamiDade, and Orange. Historically, syphilis has been isolated in specific geographic areas during specific time periods and outbreaks.

Figure 10. Reported Cases of Syphilis among Males and Females By Year, Florida, 2002-2006

Reported Cases \longrightarrow Reported Rates/100,000

Early (primary, secondary, and early latent) syphilis includes all cases where initial infection has occurred within the previous 12 months. Late latent syphilis is when the initial infection has occurred greater than one year previously. Early syphilis accounted for 1,479 cases, or 50.6% of the total syphilis cases among both males and females. Late latent syphilis accounted for 1,445 cases, or 49.4% of the total syphilis cases.

The number of syphilis cases among males in 2006 was 2,080. This was a 1.3% increase from 2005 and a 0.2% decrease from 2002. The number of syphilis cases among females was 844 in 2006. This was a 3.1% increase from 2005, and a 27.7% decrease from 2002. The ratio of male to female cases (2.5:1) suggests that syphilis has a higher incidence among men who have sex with men than among other men who only have sex with women.

Figure 11 shows the distribution of syphilis by gender and age group. Among males, the number of cases in each age group was greater than that in the next younger group. Among females, the number of cases was highest in the 35+ age group, followed by the 20-24 age group. The number of cases was lowest in the 15-19 age group for both males and females.

Unlike chlamydia and gonorrhea, the largest number of syphilis cases among both males and females was reported in persons age 35+. This group comprised 57.2% of reported cases of syphilis in 2006 (Figure 12). Syphilis in the 25-29 and 30-34 age groups comprised 25.2% of reported cases. Altogether, syphilis in persons age $25+$ years comprised 82.4% of the total cases.

Figure 11. Reported Cases of Syphilis by Gender and Age Group, Florida, 2006

Age Groups

In 2006, approximately 81% of all syphilis cases in males were in persons between the (inclusive) ages of 23 and 54. The rate per 100,000 for this group was 42.9 . Approximately 81% of syphilis cases in females were in persons between the (inclusive) ages of 19 and 52. The rate per 100,000 for this group was 16.6.

Figure 12. Reported Cases of Syphilis by Age Group, Florida, 2002-2006

When only early syphilis is considered, approximately 83% of cases in males were reported in persons between the (inclusive) ages of 21 and 50 . The rate per 100,000 for this group was 26.5 . Approximately 81% of early syphilis cases in females were reported in persons between the (inclusive) ages of 18 and 46. The rate per 100,000 for this group was 7.0.

Persons who described themselves as non-Hispanic black accounted for 41.9% of the syphilis cases in 2006 (Figure 13). Persons who self-reported as non-Hispanic white accounted for 27.4% of the cases. Persons who self-reported as Hispanic (white or black) accounted for 24.3% of the cases. Persons who self-reported in other or unidentified racial-ethnic groups accounted for 6.4% of the cases.

Figure 13. Reported Cases of Syphilis by Race-Ethnicity and Gender, Florida, 2006

References

Centers for Disease Control and Prevention, "Syphilis-CDC Fact Sheet," Atlanta, GA:
U.S.Department of Health and Human Services, May 2004.

Tetanus

Tetanus: Crude Data	
Number of cases	2
2006 incidence rate per	
100,000	0.01
\% change from average 5yr	
(2001-2005) incidence rate	-46.3
Age (yrs)	
Mean	40
Median	40
Range	$14-66$

Figure 1.
Tetanus Cases by Year Reported, Florida, 1997-2006

Description

Tetanus is an acute, often fatal disease, which is characterized by descending symptoms of trismus (lockjaw), difficulty swallowing, generalized muscle rigidity, and convulsive spasms of skeletal muscles. Tetanus is caused by the spore-forming bacterium Clostridium tetani. The dormant spores of C. tetani are found in soil and in animal and human feces. Even small breaks in the skin allow entry, and the spores germinate under low oxygen conditions. A potent toxin, tetanospasmin, is excreted, reaches the nervous system, and causes painful and often violent muscular contractions. The rigidity can progress until the respiratory system is compromised, requiring mechanical ventilation and tube feeding.

Disease Abstract

Two confirmed cases of tetanus were reported in Florida in 2006, representing an annual incidence rate of 0.01 per 100,000 population. This is a decrease from the three cases in 2005, and the trend of three cases per year 2001-2003 (Figure 1). The two cases had no recent history of immunization against tetanus disease. No deaths were reported. The first case, with onset in March, was a 14 -year-old male
who was hospitalized with symptoms of muscular contractions following an abrasion from attempting to separate fighting dogs. Within a week, he required ventilator support. However, his recuperation was fast, and he was discharged within three weeks. He continued to improve with physical therapy for his lower extremities, and was "fully recovered" per his mother, at one year post-onset. Immunization history showed four doses of tetanus-containing vaccine, but he did not receive the recommended booster at 12 years of age. The second case, a 66-year-old female, had no known current injury. However, she had chronic lesions on her head. She was hospitalized for trismus, and within 48 hours, required ventilator support. Three months after onset, she remained on a ventilator with a feeding tube and other medical conditions.

Prevention

Vaccination against tetanus is recommended to begin at two months of age, and continue through adulthood at appropriate intervals to maintain protection against the disease. Primary tetanus immunization with diphtheria and tetanus toxoids and acellular pertussis vaccine (DTaP) is recommended for all persons at least six weeks old, but <7 years of age and without contraindications. Routine tetanus booster immunization, combined with diphtheria toxoid, is recommended for all persons >7 every 10 years. A new vaccine Tdap, the adult formulation of tetanus and diphtheria toxoids and pertussis, is the vaccine of choice for at least one dose. The appropriate use of tetanus toxoid and TIG in wound management is also important for the prevention of tetanus. Since herd immunity does not play a role in protecting individuals against tetanus, potentially all persons must be vaccinated.

References

Centers for Disease Control and Prevention, Manual for the Surveillance of Vaccine-Preventable Diseases, $3^{\text {rd }}$ ed., 2002, http://www.cdc.gov/vaccines/pubs/survmanual/default.htm.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) at http://www.cdc.gov/vaccines/vpd-vac/tetanus/default.htm

Toxoplasmosis

Toxoplasmosis: Crude Data	
Number of cases	4
2006 incidence rate per	0.02
100,000	
\% change from average 5yr	-86.4
(2001-2005) incidence rate	
Age (yrs)	59.7
\quad Mean	61.5
Median	$47-69$

Figure 1.
Toxoplasmosis Cases by Year Reported, Florida, 1997-2006

Description

Toxoplasmosis is a systemic protozoan disease caused by Toxoplasma gondii. The disease is frequently asymptomatic, or may present as an acute disease resembling infectious mononucleosis with fever, lymphadenopathy, and increased white blood cell count persisting for days to weeks. In immunodeficient individuals, such as those with HIV infection/AIDS, the disease may include a maculopapular rash, cerebral involvement, pneumonia, myocarditis, and death. A primary infection during early pregnancy can lead to fetal infection with resultant serious complications or death. Cats, who acquire the infection from eating infected rodents and birds, serve as the primary reservoir for human infections. Transmission to humans can occur through ingesting feces contaminated dirt (litterboxes, sandboxes, playgrounds), eating raw or undercooked infected meat, drinking contaminated water, and occasionally via transfusion or organ transplantation. The incubation period is from 10 to 23 days.

Figure 2. Toxoplasmosis by Month of Onset, Florida, 2006

Figure 3. Toxoplasmosis Cases by Age Group, Florida, 2006

Disease Abstract

The number of cases for toxoplasmosis increased between 1997 ($\mathrm{N}=10$) and 2002 ($\mathrm{N}=45$), but since then has declined for an annual incidence rate of 0.02 per 100,000 ($\mathrm{N}=4$ cases) in 2006 (Figure 1).

This represents a decline of 86.4% from the prior 5 -year incidence rate for 2001-2005. Of the cases reported in 2006, three were confirmed, one was probable. No outbreaks of toxoplasmosis have been reported in the past 10 years. During the past five years, the cases reported were distributed throughout all the months of the year. In 2006, cases occurred only in February, June, and July (Figure 2), each from different counties within the state. The average number of cases for the past five years was highest in those aged 25-34 years ($\mathrm{N}=8.5$), while in 2006 all four cases reported were in those >45 years (Figure 3). Over the past five years, females overall had a higher incidence rates than males (0.2 and 0.1 per 100,000, respectively). In 2006, all cases were in males, and the overall rate declined to 0.05 per 100,000 (Figure 4).

Figure 4. Toxoplasmosis Cases by Race and Gender, Florida, 2006

Prevention

Prevention measures should include education of immunocompromised persons and pregnant women: proper hand washing, thorough freezing or cooking of meats, avoidance of cleaning cat litter pans, wearing gloves when gardening, as well as containment of cats as indoor pets, daily disposal of cat feces and litter, thorough hand washing, and covering of sandboxes to prevent access from stray cats.

References

David L. Heymann (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Additional Resources

Centers for Disease Control, "Parasitic Disease Information-Toxoplasmosis," http://www.cdc.gov/ncidod/dpd/parasites/toxoplasmosis/default.htm.

Centers for Disease Control, "Mordity and Mortality Weekly Reports-Toxoplasmosis," http://www.cdc.gov/ncidod/dpd/parasites/toxoplasmosis/moreinfo_toxoplasmosis.htm.

Trichinellosis

From 1997 through 2006, there were four confirmed cases of trichinellosis reported. One case was reported in 2006, and involved a 4-year-old white girl from Duval County; source of exposure was not determined. Cases from previous years include a 5 -year-old female, race other; a 49-year-old white male; and a 24-year-old male. In the case of the 49-year-old male, exposure to undercooked pork or deer sausage was identified as a potential source of infection.

Trichinella spiralis is the most common causative agent of the disease in humans, although other species found around the world can also cause illness in humans. Trichinella spiralis is a roundworm of many wild and domestic animals including hogs, bears, horses, dogs, cats, rats, wolves, foxes, and marine mammals. The parasite larval stage encysts in animal muscle, and is transmitted through ingestion of insufficiently cooked infected meat. Once ingested the parasite migrates through the body, and eventually encysts in muscle. Clinical disease may range from asymptomatic to fatal depending on the infective dose. Successful treatment of encysted larvae can be difficult.

References

David L. Heymann (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Tuberculosis

Description

In 2006, Florida reported 1,038 tuberculosis cases (Figure 1). This represented a 5\% decrease from the 1,094 cases reported in 2005. Florida's case rate decreased for the first time in three years, to 5.6 per 100,000 population from the 6.1 per 100,000 population reported each year from 2003 to 2005 (Figure 2). In $2006,98 \%(1,013 / 1,038)$ of TB cases were alive at diagnosis. Five percent $(53 / 1,038)$ of cases reported previous treatment for tuberculosis disease. The greatest proportion of active TB cases is pulmonary. Eighty-one percent $(844 / 1,038)$ of Florida's TB case were pulmonary, $14 \%(148 / 1,038)$ were extra-pulmonary, and $4 \%(45 / 1,038)$ were both.

Figure 1. TB Morbidity in Florida, 1990-2006

Figure 2. TB Incidence Rates in Florida, 1999-2006

Race and Ethnicity

Medically underserved low-income populations, including high-risk racial and ethnic minorities, such as Blacks, Hispanics, and Asians, have a high rate of TB exposure and infection. These populations disproportionately represent the majority of TB cases in the state of Florida. Non-Hispanic Blacks and Hispanics accounted for $68 \%(709 / 1,038)$ of Florida's total TB morbidity for 2006 (Table 1). In 2006, non-Hispanic Blacks comprised $40 \%(415 / 1,038)$ of Florida's TB morbidity with a case rate of 18.3 per 100,000 population. This rate is eight times higher than that of non-Hispanic Whites. The case rate for non-Hispanic Blacks was twice that of Hispanics (Figure 3). The proportion of TB morbidity among Hispanics has increased from $17 \%(288 / 1,742)$ of TB cases in 1994, to $28 \%(294 / 1,038)$ in 2006. The case-rate for Hispanics in 2006 was 10.9 per 100,000 population (Figure 3). Tuberculosis for nonHispanic Whites declined from 31% of cases $(542 / 1,742)$ in 1994 to $24 \%(242 / 1,038)$ in 2006, which represented an overall 55% decrease since 1994. The case rate for non-Hispanic Whites in 2006 was 2.3 per 100,000 population (Figure 3).

Table 1. Tuberculosis Cases by Race/Ethnicity and Place of Birth Florida, 2006

Race/Ethnicity	U.S. Born	\% of U.S. Born	Foreign Born	\% of Foreign Born	Total	Total \%
Black, Non-Hispanic	294	53	122	25	415	40
Hispanic (all races)	38	7	256	52	294	28
White, Non-Hispanic	214	39	28	6	242	23
Asian Only	3	1	76	16	79	8
Amer. Indian/AK Native	1	<1	0	$\mathrm{~N} / \mathrm{A}$	1	<1
Nat. Hawaiian/P. Islander	0	$\mathrm{~N} / \mathrm{A}$	3	1	3	<1
Multiple Race	0	$\mathrm{~N} / \mathrm{A}$	3	1	3	<1
Unknown	0	$\mathrm{~N} / \mathrm{A}$	0	$\mathrm{~N} / \mathrm{A}$	N / A	N / A
Total	550		488		1,038	

Gender and Age

According to the World Health Organization, differences in exposure, risk of infection, and progression from infection to disease may cause higher tuberculosis case rates among men than women. In Florida, as well as in most of the world, more men than women are diagnosed with tuberculosis. However, the
impact is far from minimal for women. Worldwide, each year more than three-quarters of a million of women die of TB disease, and over 3 million contract the disease. There are studies that indicate that women may have higher rates of progression from infection to disease, and a higher case fatality rate in their early reproductive years due to issues such as gender differentials in reporting and diagnosing TB in women, as well as passive case finding. In 2006, men represented $66 \%(687 / 1,038)$ of Florida's TB cases. In Florida, the TB incidence rate for males was twice that of females for 2006. The gender and age-specific rates were highest for males and females between the ages of 25 and 44 (Table 2). For 2006, TB cases ≤ 14 years comprised 5\% (57/1,038), 15-24 year olds 10\% (105/1,038), 25-44 year olds 36% ($375 / 1,038$), $45-64$ year olds 35% ($358 / 1,038$), and $65+$ years comprised $14 \%(143 / 1,038)$ (Table 3).

Figure 3. TB Incidence Rates by Race/Ethnicity Florida, 2006

Table 2: Age and Gender Specific Incidence Rates, Florida, 2006

Age Groups	Male	Female	Both
$0-4$ years	3.0	3.3	3.2
$5-14$ years	1.0	1.0	1.0
$15-24$ years	5.8	2.9	4.4
$25-44$ years	10.0	6.0	7.8
$45-64$ years	11.3	4.2	7.6
65 and older	7.0	3.0	4.6

Table 3: Tuberculosis by Age Group, Florida, 2005 and 2006

Age Groups	2005 Cases	$\%$ of TB $(\mathrm{n}=1,094)$	2006 Cases	$\%$ of TB $(\mathrm{n}=1,038)$
$0-4$ years	30	3	35	3
$5-14$ years	27	2	22	2
$15-24$ years	115	11	105	10
$25-44$ years	375	34	375	36
$45-64$ years	382	35	358	35
65 and older	165	15	143	14

Substance Abuse and Tuberculosis

The use of alcohol and/or drugs can have a negative impact on effective TB treatment. Clients with substance abuse issues require more intensive case management and follow-up. Only $14 \%(245 / 1,742)$ of TB cases in 1994 reported drinking excessive amounts of alcohol, injecting drugs, or using noninjectable drugs within the year of TB diagnosis. In 2005, that number increased to approximately 35% $(390 / 1,094)$ of cases. However, the percentage of cases citing substance abuse slightly increased to $36 \%(367 / 1,038)$ in 2006 (Figure 4).

Figure 4. Tuberculosis and Substance Abuse Florida, 2005 and 2006

Homelessness and Tuberculosis

The homeless are a marginalized population with issues such as poverty, poor nutrition, and in some cases, substance abuse. These factors, as well as frequenting high-risk settings such as homeless shelters, increase the probability of infection and of progression from TB infection to disease. In 2005, $8 \%(83 / 1,094)$ of Florida's TB cases were reported as homeless (Figure 5). The proportion of people with TB who were homeless remained $8 \%(80 / 1,038)$ in 2006 (Figure 5).

Also, substance abuse is a serious issue for the homeless which increases the level of difficulty when treating this population. In 2006, $65 \%(52 / 80)$ of homeless TB cases self-reported drinking excessively within the year of TB diagnosis. Also, $58 \%(46 / 80)$ admitted to using noninjection drugs, and $10 \%(8 / 80)$ admitted to injection drug use within the year of diagnosis.

Incarceration and Tuberculosis

Effective TB prevention and control within correctional settings are essential elements to protecting the health of inmates, staff, and the community. However, continuity of care must be deferred to the county health department in order to ensure adherence to treatment once inmates are released back into the community with active TB disease or infection. Failure to complete treatment could lead to acquiring multi-drug resistance to TB medications, developing active TB disease, or exposing
the general community to possible TB infection. In 2006, $5 \%(53 / 1,038)$ of Florida's TB cases were incarcerated at the time of diagnosis. Local jails represented 58% (31/53) of TB cases among those incarcerated (Figure 6). Federal and State Prisons accounted for 38\% (20/53) of cases diagnosed during incarceration, $4 \%(2 / 53)$ were assigned to Krome Detention Center (a federal facility that houses both criminal and noncriminal aliens) (Figure 6).

Figure 5. Tuberculosis and Homelessness Florida, 1994-2006

HIV Co-infection (TB/HIV)

Worldwide, TB is the leading cause of death for people with HIV infection. Co-infection with HIV complicates the treatment of TB. Drug interactions and malabsorption are two examples of barriers that must be overcome in case management of co-infected clients.

Figure 6. Tuberculosis in Correctional Facilities Florida, 2006

In Florida, HIV co-infection declined from $20 \%(208 / 1,046)$ in 2003, to $18 \%(184 / 1,038)$ in 2006. From 1994 to 2001, 20\% of Florida's TB cases were reported to be co-infected with HIV (Figure 7).

Country of Origin

In Florida, the percent of foreign-born TB cases has been steadily rising since 1993. The increase in the proportion of cases among the foreign-born is a major contributing factor to the increase in Florida's TB morbidity. Between 1990 and 2000, Florida's foreign-born population grew by 61% from 1.7 million to 2.7 million. In 1994, 15\% (65/430) of cases were from countries where TB is endemic. By 2004, 18\% (96/525) of Florida's foreign-born cases were from countries where tuberculosis is endemic. In 2002 and 2003, the foreign-born represented 44% and 46% of TB cases in Florida, respectively. In 2004, the proportion rose to almost $50 \%(526 / 1,076)$ (Figure 8). The proportion of cases among foreign-born decreased to $45 \%(496 / 1,094)$ in 2005, then increased to represent 47% of cases in 2006 (Figure 8).

Figure 7. Trend of TB/HIV, Florida, 1994-2006

Figure 8. Trends in Foreign-Born TB, Florida 1994-2006

Drug Resistance

Although Florida's TB program has made significant strides in reducing the number of multiple drugresistant (MDR) cases, all drug-resistant cases require additional resources and expert medical consultation in order to ensure completion of therapy. Cases resistant to one or more drugs present significant barriers that local health departments must address, such as complex and expensive
treatment regimens, and extended time on Directly Observed Therapy (DOT). Seven percent $(70 / 1,038)$ of Florida's TB cases in 2006 were resistant to isoniazid (INH) (Figure 27). Less than $1 \%(5 / 1,038)$ of Florida's TB cases in 2005 was multi-drug resistant to both isoniazid (INH) and rifampicin (RIF).

2006 Florida TB Cases

Tularemia

Between 1997 and 2006, there was one probable case of tularemia reported. The case, reported in 2005, was a 64-year-old white male who had just returned from a two month hunting trip in the Northeastern U.S. He reported being bitten by ticks while there. The disease is caused by the gramnegative coccobacillus Francisella tularensis, which is found throughout the temperate Northern hemisphere. The organism is heat-sensitive but can remain viable in the environment for weeks to months in cool climates. Many mammals can be infected with this agent including rabbits, rodents, cats, and domestic livestock. Inhalation or injection of 10-50 organisms can cause disease in humans. Clinical presentation varies with route of exposure which includes direct contact with infected animal blood or tissues, tick or deerfly transmission, or less commonly, inhalation of contaminated aerosols, and ingestion of contaminated food or water. The most common naturally occurring clinical presentation is ulceroglandular or glandular (75-85\%), followed by typhoidal (5-15\%). Less commonly oculoglandular, oropharyngeal, intestinal, and pneumonic syndromes can occur. Untreated pulmonary syndrome can have mortality rates near 60%. At greatest risk are hunters, people handling animals, those exposed to infected arthropod vectors, and laboratory workers. This agent has the potential to be weaponized for aerosol transmission, and is a CDC Select Agent.

References

David L. Heyman (ed.), Control of Communicable Diseases Manual, 18 ${ }^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004, p. 507.

Typhoid Fever

Typhoid Fever: Crude Data	
Number of cases	16
2006 incidence rate per	0.09
100,000	
\% change from average 5yr	15.5
(2001-2005) incidence rate	
Age (yrs)	26
Mean	24
Median	$4-52$

Figure 1.
Typhoid Fever Cases by Year Reported, Florida, 1997-2006

Description

Typhoid fever is a systemic bacterial disease caused by Salmonella typhi (S. enteritica). It is characterized by an insidious onset of sustained fever, headache, malaise, anorexia, nonproductive cough early in the illness, and GI disturbance (constipation more than diarrhea). The illness can range from mild to severe with multiple complications. Severity is influenced by strain virulence, quantity of inoculum, age of patient, and duration of illness prior to treatment. A carrier state can follow
acute illness. The disease occurs worldwide, with the majority of cases in developing countries. It is contracted by ingestion of food and water contaminated by feces or urine of infected persons or carriers. The incubation period ranges from 3-60 days with an average of 8-14 days. Most cases in the U.S. are in persons who have recently spent time in endemic areas.

Disease Abstract

The overall number of confirmed cases annually for the last 10 years has ranged from 11-23, and in 2006 there were 16 cases, representing an incidence rate of 0.09 per 100,000, which was a 15.5% increase from the average number of cases in the prior five years (Table 1, Figure 1). All of the 2006 cases were classified as confirmed, and the median age was 24 . Over the past five years, and consistent with national data, the majority of the cases ($75-90 \%$) were acquired outside the U.S. The counties reporting the greatest number of cases include Broward, Miami-Dade, and Palm Beach. Cases tend to be isolated, rather than clustered, and typically occur more frequently in the summer months, perhaps due to increased travel. Serotype D1 is reported most frequently on laboratory analysis. Only a single outbreak of Typhoid fever $(\mathrm{N}=18,1997)$ has been noted during the past 10 years. This outbreak was traced to frozen shakes made with imported frozen mamey fruit.

Prevention

Prevention is through proper sanitation, safe food handling practices, and appropriate case management. These include proper handwashing, appropriate disposal of human waste products, access to safe and purified water supplies, control of insects, appropriate refrigeration, and cleanliness in preparation of food products in both home and commercial settings. In endemic areas, this includes drinking bottled or carbonated water, cooking foods thoroughly, peeling raw fruits and vegetables, and in general, avoiding food or drink from street vendors. Immunization is recommended only for those with occupational exposure to enteric infections or for those traveling or living in endemic high risk areas.

References

David L. Heymann (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004, p. 577.

Additional Resources

Additional information can be found on the Centers for Disease Control and Prevention website http://www.cdc.gov/ncidod/dbmd/diseaseinfo/typhoidfever_g.htm

Venezuelan Equine Encephalitis

Description

Venezuelan Equine Encephalitis virus (VEEV) is a mosquito-borne alphavirus that causes encephalitis in horses and humans. It is an important veterinary and public health problem in Central and South America. Human infections with VEEV are generally less severe than with Eastern Equine Encephalitis virus, and fatalities are rare. Adults usually develop only an influenza-like illness, and encephalitis is usually confined to children. Effective VEEV vaccines are available for equines. Prevention measures
for this group of viruses are the same as those for other mosquito-borne viruses. VEE is listed, along with other alphaviruses, as a potential bioterrorism agent because of its potential for weaponization in an aerosolized form.

Disease Abstract

No human cases of VEE have been reported in Florida. However, a closely related, but less virulent virus, named Everglades virus, is endemic to south Florida. Three human cases of Everglades virus encephalitis (EVE) have been reported in Florida, the most recent being in 1971. Evidence suggests that the virulent strain of VEEV introduced from South or Central America may be able to amplify in south Florida.

References

David L. Heymann (ed.), Control of Communicable Diseases Manual, 18 ${ }^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Additional Resources

Additional information is available from the Florida Department of Health at http://doh.state.fl.us/Disease_ctrl/epi/htopics/reports/veepres1.pdf

Disease information is also available from the Centers for Disease Control and Prevention (CDC) at http://www.cdc.gov/ncidod/dvbid/arbor/arbdet.htm

Vibriosis

Vibrio infections: Crude Data	
Number of cases	99
2006 incidence rate per	
100,000	0.54
\% change from average 5yr	
(2001-2005) incidence rate	-1.1
Age (yrs)	
Mean	46.2
Median	52
Range	$3-86$

Figure 1. Vibrio infections Incidence Rate by Year Reported, Florida, 1997-2006

Description

The genus Vibrio consists of gram-negative, curved, motile rods, and contains about a dozen species known to cause human illness. Transmission occurs through the foodborne route, and in Florida it is principally from eating raw or undercooked shellfish. Transmission can also occur through contact of broken skin with seawater where Vibrio species are endemic, which includes the coastal areas of the

Gulf of Mexico. The symptoms depend on the infecting Vibrio species. The species of greatest public health concern in Florida are V. vulnificus and V. parahaemolyticus. V. vulnificus typically manifests as septicemia in persons who have chronic liver disease, chronic alcoholism, or are immunocompromised, whereas V. parahaemolyticus is a gastrointestinal disorder with symptoms of diarrhea, abdominal pain, nausea, fever, and headache. Both are commonly associated with consumption of raw oysters.

Figure 2. Vibrio infections by Month of Onset, Florida, 2006

Disease Abstract

This report combines data on Vibrio infections to provide a general measure of disease burden. The reported numbers of species-specific illnesses are as follows: V. alginolyticus ($\mathrm{N}=26$), V. cholerae non-O1 $(\mathrm{N}=4)$, V. cholerae type-O1 $(\mathrm{N}=0)$, V. fluvialis $(\mathrm{N}=6)$, V. hollisae $(\mathrm{N}=6)$, V. mimicus $(\mathrm{N}=1)$, V. parahaemolyticus ($\mathrm{N}=24$), V. vulnificus $(\mathrm{N}=27)$, and other Vibrio species $(\mathrm{N}=5)$. In comparison to the previous average 5-year incidence, the incidence for Vibrio infections in 2006 declined slightly (1.1\%) (Figure 1). A total of 99 cases were reported in 2006, of which 99% were confirmed. All of the cases were considered sporadic, not outbreak-associated. Vibrio infections typically increase during the warmer months. In 2006, 49% of the cases occurred from May to August (Figure 2).

Figure 3. Vibrio Infections Incidence Rate by Age Group, Florida, 2006

The highest incidence rates continue to occur among individuals $45+$ years with the peak incidence occurring in the 65-74 age group (1.21 per 100,000) , which is also the population more likely to have chronic conditions that predispose them to these infections (Figure 3). Historically, white males have the highest incidence rate. In 2006, incidence exceeded the previous 5 -year average incidence for white males (0.96 per 100,000), but decreased among the other gender/race categories (Figure 4).

Figure 4. Vibrio infections Incidence Rate by Race and Gender, Florida, 2006

Race/Gender

ロPrevious 5yr Avg ■2006

Vibrio cases were reported in 32 of the 67 counties in Florida in 2006. The higher-incidence counties appear to be along the coasts. Of the Vibrio sp. reported in 2006, 27 were Vibrio vulnificus, an important Vibrio infection causing serious illness and death in 47% of reported cases. Of the 27 reported Vibrio vulnificus cases, 10 were wound infections (three deaths), five were attributed to oyster consumption (three deaths), one was attributed to crab consumption, and 11 had unknown exposures.

Vibrio Infection - Reported Incidence Rate* by County of Residence, Florida, 2006

References

David L. Heymann (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Additional Resources

Disease information is available from the Centers for Disease Control and Prevention (CDC) at http://www.cdc.gov/ncidod/dbmd/diseaseinfo/default.htm\#V

West Nile Virus

West Nile Virus: Crude Data	
Number of cases	3
2006 incidence rate per	0.02
100,000	
\% change from average 5yr	-93.2
(2001-2005) incidence rate	
Age (yrs)	31.7
Mean	43
Median	$9-43$

Figure 1. West Nile Virus Incidence Rate by Year Reported, Florida, 2001-2006

Description

West Nile virus (WNV) disease is caused by a mosquito-borne flavivirus that was first detected in the U.S. in New York City in 1999. The virus spread quickly and by the end of 2006 it had been detected in 48 states with over 23,000 human cases reported. WNV was first reported in Florida in 2001. The natural transmission cycle of WNV involves Culex mosquitoes and wild birds. Infection can cause high rates of mortality among certain families of birds, especially corvids. WNV is also pathogenic to horses. Over 1,000 equine cases were reported in Florida between 2001 and 2006. Humans and horses are considered incidental dead-end hosts. The clinical spectrum for human WNV infection includes asymptomatic infection, mild illness (fever and headache), aseptic meningitis, and encephalitis that can progress to coma and death. Approximately 80% of those infected show no clinical symptoms. Twenty percent have mild symptoms, and $<1 \%$ experience the most severe form of illness. Typically, symptoms appear between three and 14 days after the bite of an infected mosquito. In Florida, case fatality rates range from 4% for all cases to 7% among those who develop the neuroinvasive form of the disease.

Figure 2. West Nile Virus by Month of Onset, Florida, 2001-2006

Disease Abstract

The incidence rate for WNV disease, including the neuroinvasive and non-neuroinvasive forms, peaked in 2003 (Figure 1). In 2006, there were no locally-acquired human cases, though three Floridians did become ill after being exposed in other states. The level of virus transmission between bird and mosquito populations is dependent on a number of environmental factors. The low levels of activity reported in 2006 were likely a result of the dry conditions experienced by much of the state. The peak transmission period for WNV in Florida occurs in July through September (Figure 2).

Figure 3. West Nile Virus Cases by Age Group, Florida, 2006

The greatest number of cases occur in individuals over the age of 35 (Figure 3), with more cases among males than females (Figure 4). WNV transmission tends to be localized in Florida. In 2001, the epicenter of the WNV outbreak was in the north-central part of the state. The following year, activity was most intense in the northwestern and central counties. The focus in 2003 was the panhandle, while south Florida had the most activity in 2004. In 2005, 86% of the human cases were in Pinellas County.

Figure 4. West Nile Virus Cases by Gender, Florida 2006

Prevention

There is no specific treatment for WNV disease, and therapy is supportive for ill persons. Prevention of
the disease is a necessity. Measures can be taken to avoid being bitten by mosquitoes. Drain any areas of standing water from around the home to eliminate mosquito breeding sites. Use insect repellents that contain DEET or other EPA-approved ingredients such as Picaridin or oil of lemon eucalyptus. Avoid spending time outdoors during dusk and dawn, the time when disease-carrying mosquitoes are most likely to be seeking a blood meal. Dress in long sleeves and long pants to protect skin from mosquitoes. Also, inspect screens on doors and windows for holes to make sure mosquitoes cannot enter the home.

References

David L. Heymann (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Additional Resources

Additional information on WNV and other mosquito-borne diseases can be found in the Surveillance and Control of Arthropod-borne Diseases in Florida Guidebook, online at http://www.doh.state.fl.us/environment/community/arboviral/pdf_files/UpdatedArboguide.pdf Disease information is also available from the Centers for Disease Control and Prevention (CDC) at http://www.cdc.gov/ncidod/dvbid/westnile/index.htm

Western Equine Encephalitis

Description

Western equine encephalitis virus (WEEV) is a mosquito-borne alphavirus that, like the closely related eastern equine encephalitis virus, is capable of causing morbidity in horses, birds, and humans. Symptoms can range from a mild flu-like illness to encephalitis, coma, and death. Survivors may be left with minor to severe neurologic deficits. Prevention measures for this virus are the same as those for other mosquito-borne viruses.

Disease Abstract

WEEV generally circulates in the west and central parts of the U.S. No human cases of WEE have been reported in Florida.

References

David L. Heymann (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Resources

Additional information is available from the Florida Department of Health website at http://www.doh.state.fl.us/ENVIRONMENT/community/arboviral/pdf_files/weepres.pdf Disease information is also available from the Centers for Disease Control and Prevention (CDC) at http://www.cdc.gov/ncidod/dvbid/arbor/weefact.htm

Yellow Fever

Description

Yellow fever virus (YFV) is a mosquito-borne virus of the genus Flavivirus that has historically plagued Florida, although not in almost 80 years. Yellow fever is the result of a single virus species that typically causes profound hemorrhagic disease, which is often fatal. In past Florida epidemics, the sole vector of YFV was Aedes aegypti. The recent arrival of Ae. albopictus to many parts of Florida is disturbing, since this species was found to be a competent vector for YFV in the laboratory. However, there is no documented evidence of YFV transmission in the Americas by this species, possibly because the geographic ranges of YFV and Ae. albopictus have only recently begun to overlap. YFV is present in Africa and South America, and could possibly be imported into Florida through an infected mosquito or viremic traveler. Florida may be partially protected from establishment of yellow fever in the same way that it is against dengue and malaria, by a lifestyle that almost universally includes window screens and air conditioning.

Disease Abstract

Florida experienced a number of yellow fever epidemics in the 1800s. The last case reported in Florida occurred in 1918.

Prevention

A yellow fever vaccine is available, and recommended for travelers to endemic countries. General precautions to avoid mosquito bites should also be followed. Insect repellent that contains DEET or another EPA-approved ingredient such as Picaridin or oil of lemon eucalyptus is recommended. Avoid spending time outdoors during daytime hours when disease carrying mosquitoes are most likely to be seeking a blood meal. Dress in long sleeves and long pants to protect skin from mosquitoes. Use mosquito netting when appropriate, and try to remain in well-screened or air-conditioned areas.

References

David L. Heymann (ed.), Control of Communicable Diseases Manual, $18^{\text {th }}$ ed., American Public Health Association Press, Washington, District of Columbia, 2004.

Resources

Additional information on YFV and other mosquito-borne diseases can be found in the Surveillance and Control of Arthropod-borne Diseases in Florida Guidebook, online at http://www.doh.state.fl.us/environment/community/arboviral/pdf_files/UpdatedArboguide.pdf

Disease information is also available from the Centers for Disease Control and Prevention (CDC) at http://www.cdc.gov/ncidod/dvbid/yellowfever/index.htm

Section 3

1996-2005 Overview

Foodborne Disease Outbreaks

Description

Foodborne disease investigation and surveillance are essential public health activities. Globalization of the food supply, changes in individuals eating habits and behaviors, and newly emerging pathogens has increased the risk of contracting foodborne diseases. The Centers for Disease Control and Prevention (CDC) estimates foodborne diseases account for approximately 76 million illnesses, 325,000 hospitalizations, and 5,000 deaths per year in the U.S.. However, only an estimated 14 million illnesses, 60,000 hospitalizations, and 1,800 deaths are accounted for by confirmed pathogens. Florida has had a unique program in place since 1994 to oversee food and waterborne disease surveillance and investigation for the state, with the intent to better capture and investigate food and waterborne diseases, complaints, and outbreaks, as well as to increase knowledge and prevent illness with regard to this important public health issue.

Foodborne disease outbreaks as defined by the Florida Department of Health Food and Waterborne Disease Program are incidents in which two or more people have the same disease, have similar symptoms, or excrete the same pathogens; and there is a time, place, and/or person association between these people. A single case of suspected botulism, mushroom poisoning, ciguatera or paralytic shellfish poisoning, other rare disease, or a case of a disease that can be definitely related to ingestion of a food, is considered as an incident of foodborne illness, and warrants further investigation.

The Florida Department of Health has criteria established for suspected and confirmed foodborne disease outbreaks. A suspected foodborne outbreak is one for which the sum of the epidemiological evidence is not strong enough to consider it a confirmed outbreak. A confirmed foodborne outbreak is an outbreak that has been thoroughly investigated, and the results include strong epidemiological association of a food item or meal with illness. A thorough investigation is documented by diligent case finding, interviewing of ill cases and well individuals, collecting clinical and food lab samples, where appropriate and available, confirmation of lab samples, where possible, field investigation of the establishment(s) concerned, and statistical analysis of the information collected during the investigation. The summary report of all of the information collected in an investigation in a confirmed outbreak will indicate a strong association with a particular food and/or etiologic agent, and a group of two or more people, or single incidents as described above.

Overview

From 1996 through 2005, Florida had 2,581 reported foodborne disease outbreaks with a total of 20,008 associated cases. The annual number of reported foodborne disease outbreaks and cases ranged from 128 to 425 and 1,450 to 3,251 , respectively. The annual average number of cases per outbreak ranged from 5.37 to 15.19 . The annual proportion of reported foodborne disease outbreaks and cases ranged from 0.71 per 100,000 to 2.83 per 100,000 and 8.65 per 100,000 to 21.23 per 100,000, respectively (Table 1).

Table 1. Summary of Foodborne Disease Outbreaks, Florida 1996-2005

Year	\# Outbreaks	\# Cases	Proportion of Outbreaks per 100,000 Population	Proportion of Cases per 100,000 Population	Cases per Outbreak
1996	299	2215	2.03	15.07	7.41
1997	425	2692	2.83	17.93	6.33
1998	300	3251	1.96	21.23	10.84
1999	273	1465	1.74	9.34	5.37
2000	269	1569	1.67	9.76	5.83
2001	288	1922	1.75	11.71	6.67
2002	240	1450	1.43	8.65	6.04
2003	185	1563	1.08	9.11	8.45
2004	174	1937	0.99	11.00	11.13
2005	128	1944	0.71	10.79	15.19

Foodborne disease outbreaks in Florida are classified by outbreaks status (confirmed or suspected) as well as by pathogen status (confirmed, suspected, or unknown). Among the 2,581 reported foodborne disease outbreaks, 548 (21.23\%) were determined to be confirmed foodborne disease outbreaks, accounting for $11,222(56.09 \%)$ of the 20,008 reported cases. Of the total reported outbreaks, 1,286 (49.83%) had a suspected and/or confirmed etiology accounting for $12,918(64.56 \%)$ of the total cases. Of the total reported outbreaks, 1,295 (50.17\%) had unknown etiologies accounting for 7,090 (35.44\%) of the total cases (Table 2).

Table 2. Total Number and Percentage of Reported Foodborne Outbreaks and Cases by Pathogen Status

	\# Outbreaks	\# Cases	\% Outbreaks	\% Cases
Suspected Outbreaks	$\mathbf{2 , 0 3 3}$	$\mathbf{8 , 7 8 6}$	$\mathbf{7 8 . 7 7 \%}$	$\mathbf{4 3 . 9 1 \%}$
Confirmed Pathogens	62	293	2.40%	1.46%
Suspected Pathogens	759	4,158	29.41%	20.78%
Unknown Pathogens	1212	4,335	46.96%	21.67%
Confirmed Outbreaks	$\mathbf{5 4 8}$	$\mathbf{1 1 , 2 2 2}$	$\mathbf{2 1 . 2 3 \%}$	$\mathbf{5 6 . 0 9 \%}$
Confirmed Pathogens	340	6,340	13.17%	31.69%
Suspected Pathogens	125	2,127	4.84%	10.63%
Unknown Pathogens	83	2,755	3.22%	13.77%

Trends

There is a general decreasing trend in the total number of reported foodborne disease outbreaks and number of reported foodborne disease outbreaks per 100,000 population in Florida between 1996 and 2005 (Figures 1 and 2).

Figure 1.
Total Number of Reported Foodborne Outbreaks, Florida 1996-2005

Year

Figure 2. Number of Reported Foodborne Disease Outbreaks per 100,000 population Florida, 1996-2005

The total number of reported foodborne illness cases, and the number of reported foodborne illness cases per 100,000 population in Florida between 1996 and 2005, have fluctuated over the 10-year period (Figure 3). It appears that the total number of reported foodborne illness cases has been gradually increasing since 2002 despite the negative trend in the total number of reported foodborne disease outbreaks during the same time period. However, when population is taken into account, the number of reported foodborne illness cases per 100,000 population has been fluctuating around ~ 10 cases per 100,000 population per year since 1999 (Figure 4).

Figure 3.
Total Number of Reported Foodborne Disease Outbreak Cases, Florida 1996-2005

Year

Figure 4.
Number of Reported Foodborne Disease Outbreak Cases per 100,000, Florida 1996-2005

Seasonality

Occurrence of reported foodborne illness outbreaks in Florida between 1996 and 2005 were most frequent from March to May (Figure 5).

Agent

Foodborne disease outbreaks caused by bacterial pathogens accounted for most (31\%) of the total reported foodborne disease outbreaks with a known etiology (Figure 6), while foodborne disease outbreaks caused by viral pathogens accounted for the most reported cases (31\%) with a known etiology
(Figure 7). Pathogen type was unknown for 51% of the total reported foodborne disease outbreaks, and 35% of the total reported cases.

Figure 5.
Total Number of Reported Foodborne Disease Outbreaks by Month, Florida 1996-2005

Figure 6.
Percentage of Reported Foodborne Disease by Pathogen Type,
Florida 1996-2005

Figure 7.
Percentage of Reported Foodborne Disease Outbreaks Outbreak Cases by Pathogen Type, Florida 1996-2005

Among foodborne disease outbreaks with a suspected and/or confirmed etiology, Staphylococcus aureus was the most frequently reported etiology for outbreaks in Florida between 1996 and 2005 ac-
counting for 264 (10.23\%) outbreaks followed closely by Norovirus, which accounted for 257 (9.96%) outbreaks. Norovirus accounted for the highest number of cases associated with reported foodborne disease outbreaks with 5,644 (28.21%) cases followed by Salmonella which accounted for 1,741 (8.71%) cases. Since Florida is a coastal state, it should be mentioned that marine toxins accounted for $115(4.46 \%)$ and $406(2.03 \%)$ of the total number of reported outbreaks and cases in Florida between 1996 and 2005. The number and percentage of foodborne disease outbreaks and cases by etiology for the 10-year period 1996-2005 is summarized in Table 3.

Table 3. Number and Frequency of Foodborne Outbreaks and Cases by Etiology, Florida 1996-2005

	Outbreaks		Cases	
Pathogen	\#	\%	\#	\%
Unknown				
Total Unknown	1305	50.56\%	7118	35.58\%
Bacterial				
B. cereus	110	4.26\%	599	2.99\%
C. botulinum	4	0.15\%	6	0.03\%
C. perfringens	89	3.45\%	1023	5.11\%
Campylobacter	14	0.54\%	59	0.29\%
E. coli 0157:H7	11	0.43\%	60	0.30\%
E.coli-enterohemmorhagic	1	0.04\%	21	0.10\%
Listeria	1	0.04\%	24	0.12\%
Salmonella	155	6.01\%	1741	8.70\%
Shigella	22	0.85\%	137	0.68\%
Staphylococcus	264	10.23\%	1009	5.04\%
Typhoid Fever	1	0.04\%	16	0.08\%
Vibrio parahaemolyticus	35	1.36\%	315	1.57\%
Vibrio vulnificus	86	3.33\%	86	0.43\%
Vibrio sp.	5	0.19\%	10	0.05\%
Yersinia enterolitica	1	0.04\%	2	0.01\%
Total Bacterial	799	30.96\%	5108	25.53\%
Viral				
Hepatitis A	12	0.46\%	144	0.72\%
Viral-Non-Norwalk	13	0.50\%	340	1.70\%
Norovirus	257	9.96\%	5644	28.21\%
Total Viral	282	10.93\%	6128	30.63\%
Marine Toxin				
Ciguatera	57	2.21\%	216	1.08\%
NSP	5	0.19\%	12	0.06\%
Saxitoxin (PSP)	5	0.19\%	28	0.14\%
Scombroid	48	1.86\%	150	0.75\%
Total Marine Toxin	115	4.46\%	406	2.03\%
Other				
Mercury Poisoning	1	0.04\%	2	0.01\%
Chemical	46	1.78\%	255	1.27\%
Other	15	0.58\%	92	0.46\%
Copper	1	0.04\%	2	0.01\%
Total Other	63	2.44\%	351	1.75\%
Parasitic				
Cryptosporidium	1	0.04\%	37	0.18\%
Cyclospora	15	0.58\%	852	4.26\%
Giardia	1	0.04\%	8	0.04\%
Total Parasitic	17	0.66\%	897	4.48\%
Total				
Total	2581	100.00\%	20008	100.00\%

Implicated Food Vehicles

Multiple items (22.08\%) and multiple ingredients (16.97\%) were the most frequently reported general vehicles contributing to foodborne disease outbreaks and cases in Florida between 1996 and 2005 (Table 4).

Table 4. Foodborne Illness Outbreaks and Cases by General Vehicle, Florida 1996-2005

General Vehicle	\# Outbreaks	\% Outbreaks	\# Cases	\% Cases
*Multiple Items	570	22.08%	6440	32.19%
**Multiple Ingredients	438	16.97%	2741	13.70%
Poultry	335	12.98%	2053	10.26%
Beef	233	9.03%	989	4.94%
Fish	210	8.14%	733	3.66%
Shellfish-Molluscan	181	7.01%	641	3.20%
Unknown	96	3.72%	1538	7.69%
Other	97	3.76%	705	3.52%
Shellfish-Crustacean	97	3.76%	568	2.84%
Pork	85	3.29%	523	2.61%
Rice	66	2.56%	388	1.94%
Dairy	57	2.21%	248	1.24%
Vegetables	37	1.43%	532	2.66%
Fruit	30	1.16%	422	2.11%
Pizza	25	0.97%	90	0.45%
Ice	15	0.58%	233	1.16%
Pasta	6	0.23%	31	0.15%
Eggs	2	0.08%	541	2.70%
Produce-Vegetable	1	0.04%	592	2.96%
Total	2581	100.00%	20008	100.00%

*Multiple Items are food vehicles in which several foods are individually prepared or cooked and more than one food is suspected or confirmed to be contaminated (e.g. buffet, salad bar, chicken and shrimp, etc.).
**Multiple Ingredients are food vehicles in which several foods are combined during preparation or cooking and the entire food product is suspected or confirmed to be contaminated (e.g. casseroles, soups, sandwiches, salads, etc.).

Outbreak Location

Most of the reported foodborne disease outbreaks (78.96\%) and cases (59.27\%) were associated with restaurants (Table 5).

Table 5. Foodborne Illness Outbreaks and Cases by Site Florida 1996-2005

Site	\# of Outbreaks	\% Outbreaks	\# Cases	\% Cases
Restaurant	2038	78.96%	11859	59.27%
Grocery	150	5.81%	643	3.21%
Home	124	4.80%	794	3.97%
Other	97	3.76%	1679	8.39%
Caterer	83	3.22%	1910	9.55%
School	45	1.74%	1959	9.79%
Prison	18	0.70%	627	3.13%
Nursing Home	11	0.43%	352	1.76%
Picnic	8	0.31%	125	0.62%
Hospital	6	0.23%	54	0.27%
Bakery	1	0.04%	6	0.03%
Total	2581	100.00%	20008	100.00%

Contributing Factors

The current systematic data collection regarding contributing factors associated with reported foodborne disease outbreaks began in 2000. There were several outbreaks (407) for which no information was available. The top contributing factors associated with reported foodborne disease outbreaks in Florida from 2000 to 2005 were time/temperature abuse, poor personal hygiene, and cross contamination (Table 6).

Table 6. Most Common Reported Foodborne Contributing Factors, Florida 2000-2005

Contributing Factor	\# Outbreaks	\# Cases
Unknown/None Reported	407	3149
Inadequate cold-holding temperatures**	318	1559
Bare-handed contact by handler/worker/preparer*	270	2104
Cross contamination from raw ingredient of animal origin*	197	1240
Inadequate cleaning of processing/preparation equipment/utensils*	161	1232
Allowing foods to remain at room or warm outdoor temperature for several hours**	131	688
Slow cooling**	109	586
Raw product/ingredient contaminated by pathogens from animal or environment*	102	1231
Handling by an infected person or carrier of pathogen*	99	1964
Insufficient time and/or temperature during hot holding**	74	607
Other process failures that permit the agent to survive**	70	425

Note: There are 3 categories of contributing factors (contamination factor, proliferation factor, survival factor) and up to three contributing factors per category can be attributed in an outbreak; therefore, the reported numbers may not match the actual number of reported outbreaks and cases.

* Contamination Factor
** Proliferation/Amplification Factor
*** Survival Factor

References

Please view references for specific outbreaks in Section 4: Summary of Notable Outbreaks and Case Investigations, 1997-2006. Case Investigations, 1997-2006.

Summary of Notable Outbreaks and Case Investigations, 1997-2006

Section 4

Selected Notable Outbreaks by Year, 1997-2006

In Florida, any disease outbreak in a community, hospital, or institution, as well as any grouping/ clustering of patients having similar disease, symptoms, syndromes, or etiological agents that may indicate the presence of an outbreak is reportable, as per Florida Administrative Code, 64D-3. Selected outbreaks of public health interest that occurred during the period 1997-2006 are briefly summarized below. Following each outbreak summary are citations or links where additional information can be found about the outbreak or event. This section describes selected outbreaks only, and is more complete for recent years than for earlier years within the time frame described.

Additional Florida outbreak summaries can be found in Epi Update articles, an online publication of the Bureau of Epidemiology, Florida Department of Health. Epi Update articles can be accessed through the Epi Update archive site:
http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/index.html.

Food and waterborne disease outbreaks in Florida are summarized in annual reports produced by the Bureau of Community Environmental Health, Florida Department of Health accessible via the following site: http://www.doh.state.fl.us/environment/community/foodsurveillance/annualreports.htm. Annual food and waterborne reports include overall statewide data as well as summaries of selected outbreaks. In addition, a bibliography of journal and Epi Update articles on food and waterborne diseases can be found at the following site: http://www.doh.state.fl.us/Environment/community/foodsurveillance/index. html under Bibliography.

Acanthamoeba keratitis, Multiple States, 2006

A nationwide investigation of Acanthamoeba keratitis (AK) was undertaken in 2006 after the University of Illinois Department of Ophthalmology and Visual Science reported increasing numbers of cases of AK. Culture confirmed cases have now been reported from 37 states including Florida. The cases have been linked to AMO Complete® Moisture Plus ${ }^{\text {TM }}$ (AMOCMP) contact lens solution. The manufacture has voluntarily recalled this product.

For additional information regarding this investigation please visit:
Centers for Disease Control, "Acanthamoeba Keratitis Multiple States, 2005-2007," MMWR 2007; 56(21); pp. 532-534, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5621a4.htm.

Carrot Juice Associated Botulism, Hillsborough County, Florida, September 2006

The Hillsborough County Health Department Epidemiology Program, the Florida Department of Health Bureau of Epidemiology, and the Centers for Disease Control and Prevention (CDC investigated a confirmed botulism case in a 53-year-old woman. This woman was hospitalized on September 16, 2006 with fatigue, respiratory failure, and descending flaccid paralysis. Laboratory results from the CDC indicate that the patient's serum tested positive for botulinum toxin Type A. The CDC issued antitoxin to be administered to the patient on September 28, 2006. A partially consumed bottle of carrot juice was found in the woman's vacated motel room, and it subsequently tested positive for botulinum toxin Type
A. In the U.S. and Canada, five other cases of botulism were connected to this same brand of carrot juice. Failing to keep carrot juice refrigerated can facilitate the growth of Clostridium botulinum spores, which can survive the flash pasteurization process that was used for this brand of carrot juice.

For additional information regarding this investigation please visit:
Centers for Disease Control, "Botulism Associated with Commercial Carrot Juice-Georgia and Florida, September 2006," MMWR 2006; 55(Dispatch); pp. 1-2, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm55d106a1.htm.
Centers for Disease Control, "Botulism Associated with Commercial Carrot Juice-Georgia and Florida, September 2006," MMWR 2006; 55(40); pp. 1098-1099, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5540a5.htm.

Ciguatera Fish Poisoning Outbreaks from Recreationally-Caught Fish, Broward County, Florida, 2006

Two outbreaks of ciguatera fish poisoning were reported to the Broward County Health Department in 2006. In both outbreaks, the fish was recreationally caught by a fisherman who did not consume the fish, but who gave it as a gift to the cases. The first outbreak occurred in March, and involved eight cases who consumed a black grouper. There was a diagnosis of ciguatera poisoning by a Broward emergency department physician for one of the cases; a similar clinical syndrome consistent with ciguatera fish poisoning was reported among all eight persons who consumed the grouper.

The second outbreak occurred in August, and involved five cases who consumed a barracuda. The outbreak was confirmed through diagnosis of ciguatera poisoning by two separate Broward County emergency department physicians for two of the cases; along with a similar clinical syndrome consistent with ciguatera fish poisoning among all five persons who consumed the barracuda. Barracuda is a type of fish commonly associated with ciguatera fish poisoning.

An average of nine cases of ciguatera are reported to the Florida Department of Health each year, both from recreationally caught fish, and from fish served in restaurants, see for example, http://www.doh. state.fl.us/disease_ctr//epi/Epi_Updates/2001/eu110901.htm . Ciguatera is widely considered to be underreported in Florida, and efforts are underway to educate healthcare providers regarding diagnosis and treatment, as well as consumers and recreational fishermen about prevention.

For additional information regarding this investigation please visit:
R. Lowe, "Ciguatera Outbreak Associated with Consumption of Black Grouper, March 2006," Epi Update; 2006, July 10,
http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Weekly/07-10-06.htm.

Cryptosporidiosis Outbreak in a Travel Group Returning from Ireland, Nassau County, Florida, May 24, 2006-June 4, 2006

The Nassau County Health Department (NCHD) investigated a cryptosporidiosis outbreak in a returning choral group who toured Ireland from March 24 to June 4, 2006. The NCHD administered a telephone questionnaire to $40 / 41$ of the group members to examine possible water exposures, common meals,
and food, travel, and clinical histories (29 persons met the outbreak's case definition). The analysis of survey data showed a strong association between drinking water at a dinner theater/restaurant in Killarney, Ireland, and developing illness. In addition, five stool samples from travelers tested positive for Cryptosporidium parvum and were subtyped llaA16G1R1b, a strain that the CDC's Division of Parasitic Diseases scientists had detected twice in 2006 in human specimens from Northern Ireland.

For additional information regarding this investigation please visit:
R. Lazensky and K. Geib, "Cryptosporidiosis Outbreak in a Nassau County Travel Group

Returning from Ireland, May 24, 2006-June 4, 2006," Epi Update, 2006; October 20, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2006/10-20-2006.pdf.

Fusarium keratitis, U.S., 2005-2006

In 2006, there was a multi-state investigation of Fusarium keratitis. Report of 130 confirmed cases of Fusarium ketatitis infection were received by the CDC with symptom onset between June 1, 2005 and May 18, 2006. Cases were reported from 26 states, including Florida, and one territory. Investigation found an association with Bausch \& Lomb's ReNu with MoistureLoc® contact lens solution. This resulted in a global recall of the contact lens solution.

For additional information regarding this investigation please visit:
Centers for Disease Control, "Fusarium keratitis-Multiple States, 2006," MMWR 2006; 55(14); pp. 400401, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5514a5.htm.

Centers for Disease Control, "Update: Fusarium keratitis-United States, 2005-2006," MMWR 2006; 55(20); pp. 563-564, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5520a5.htm.
D.C. Chang, G.B. Grant, and K. O'Donnell et al. "Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution," JAMA 2006; 296:95363.

Legionelloisis Outbreak, Volusia County, Florida, January 2006

The Volusia County Health Department (VCHD) investigated a cluster of pneumonia cases, and three laboratory confirmed cases of Legionnaires disease, who stayed at Florida Hotel A in January 2006. Eleven cases of pneumonia, with a history of staying or working at Hotel A, were reported to the VCHD. Legionnaires disease was confirmed in three patients by urine antigen test. One death was associated with the outbreak. The median age of cases was 70 years (range: 31-85), 9 of the cases (82%) were male. Seven case patients (64\%) had underlying medical conditions associated with increased risk for Legionnaires' disease. Environmental sampling of the hotel's potable and permitted water and cooling features were negative for bacterial growth.

The VCHD and FDOH initiated a case-control study to determine possible risk factors for pneumonia illness. Of the 11 cases, there was no common travel history or lodging prior staying at Hotel A. There were also no similar or common community exposures among cases other than Hotel A. The indoor spa at Hotel A was the only significant exposure associated with illness, OR=9.82, 95\% Cl (1.57, 69.87) p-vaule= 0.006. Epidemiologic methods, and associations between pneumonia illness and

Hotel A exposures, pointed to a likely source of Legionella transmission. Data from the case-control study indicate the indoor spa as the most likely source for transmission of Legionnaires' disease. The recognition of an outbreak of Legionnaires disease relies heavily on the healthcare providers' ability to recognize the disease etiology, and to quickly communicate with their local health department. About $2-15 \%$ of all community-acquired pneumonia cases are due to infections of Legionella species.

Five Clusters of Neurotoxic Shellfish Poisoning, Lee County, Florida, 2006

During the month of July 2006, the Lee County Health Department (LCHD) received reports of 13 individuals (5 clusters) who experienced neurological symptoms consistent with neurotoxic shellfish poisoning after consuming recreationally harvested clams from an area not open to legal shellfish harvesting on Sanibel Island and Ft. Myers Beach. The 13 individuals were visitors to the area. Diagnoses from emergency department physicians, signs and symptoms of the cases, and laboratory confirmation from the Florida Fish and Wildlife Research Institute and the Federal Department of Agriculture (FDA) Gulf Coast Seafood Lab, confirms this outbreak of neurotoxic shellfish poisoning. The illness is caused by eating shellfish that have accumulated brevetoxin and its derivatives, which are the cause of red tide events. The main symptoms include tingling and/or numbness of the lips, tongue, throat, hands, and feet. Symptoms tend to be mild, and resolve quickly and completely. Onset of this disease occurs within a few minutes to a few hours; duration is fairly short, from a few hours to several days. Recovery is complete with few sequellae; no fatalities have been reported.

For additional information regarding this investigation please visit:
Terzagian, R. "Five Clusters of Neurotoxic Shellfish Poisoning (NSP) in Lee County, July, 2006," Epi Update, 2006; October 20.
http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2006/10-20-2006.pdf

Multistate Outbreak of Salmonella Serotype Tennessee Infections Associated with Peanut Butter, U.S., 2006-2007

In November 2006, public health officials at the CDC and state health departments detected a substantial increase in the reported incidence of isolates of Salmonella serotype Tennessee. In a multi-state case-control study conducted during February 5-13, 2007, illness was strongly associated with consumption of either of two brands (Peter Pan or Great Value) of peanut butter produced at the same plant. Based on these findings, the plant ceased production and recalled both products on February 14, 2007. With diligent surveillance of salmonellosis cases in Florida, 11 cases were found to be associated with this multi-state outbreak. The outbreak strain of S. Tennessee subsequently was isolated from several opened, and unopened, jars of Peter Pan and Great Value peanut butter, and from two environmental samples obtained from the plant. New case reports decreased substantially after the product recall. As of May 22, 2007, a total of 628 persons infected with an outbreak strain of Salmonella serotype Tennessee had been reported from 47 states since August 1, 2006. The source of the peanut butter contamination is unknown. The FDA is investigating the plant operations, including heating temperatures, to determine the mechanism.

For additional information regarding this investigation please visit:
CDC. "Multistate Outbreak of Salmonella Serotype Tennessee Infections Associated with
Peanut Butter --- United States, 2006-2007." MMWR 2007; 56(21); pp. 521-524. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5621a1.htm

Tuberculosis (TB) Outbreak in a Jacksonville Day Care, Jacksonville, Florida, 2006

The Duval County Health Department (DCHD) conducted a contact investigation in a local day care identifying one adult and five pediatric cases. Fifty-two children were skin tested (100\%). There were 24 positives (46\%), 26 negatives (50\%), and two children did not have their skin tests read (4\%). Six children had abnormal chest x-rays, and were started on a three drug treatment regimen. Staff of DCHD placed skin test positive children on Latent TB Infection (LTBI) treatment for nine months. DCHD staff also placed children who were skin test negative on window prophylaxis. DCHD retested 22 children, which identified one child that had converted their skin test; the rest remained skin test negative. Additional information gained in the beginning of 2007 suggests that there may be an epidemiologic link between the 2006 daycare outbreak and a case in a Jacksonville high school.

Tuberculosis (TB) Outbreak, Palm Beach County, Florida, 2006

Palm Beach County Health Department conducted three school investigations during 2006. During the most notable, health department staff screened over 200 individuals for Latent TB Infection (LTBI) and active TB disease. After the second round of skin testing, 70 students were identified to have LTBI. Case managers offered treatment to those infected. The contact investigation expanded, and will continue until the reactive rate falls below expected norms.

Tuberculosis (TB) Outbreak, Manatee County, Florida. 2006

The Manatee County Health Department (MCHD) conducted a TB contact investigation at a school. MCHD staff identified 219 contacts. Twenty eight individuals were skin test positive. Twenty-five of the 28 (89\%) students were identified as having Latent TB infection and started treatment. Although the infection rate (12\%) is not much higher than expected in the community, this investigation is notable due to the high treatment rate.

Tuberculosis (TB) Outbreak, Miami-Dade County, Florida, 2005

American High Contact Investigation:
The index case was a 16-year-old boy from Peru arriving in the U.S. in 2005. He was enrolled in high school during November 2005. He was admitted to the hospital in March 2005, and diagnosed with cavitary smear positive pulmonary TB.

Household contact investigation:

The patient's father was the only contact identified, and he had a negative Mantoux test. The limited amount of contacts in the household made the evidence of transmission in the initial concentric circle inconclusive. Because of this limitation, and the case was highly infectious, the contact investigation was extended to the school.

School Contact Investigation

One hundred and sixteen students, and seven teachers, were identified as potential contacts. Among the students, 91 had a negative PPD, 18 had a positive PPD, and seven were unable to be located. All 18 students with a positive PPD were foreign-born. Base on data collected on the 18 students, 10 had a prior negative PPD. However, there was no documentation of the exact measurement on the prior implanted PPDs. Among the seven teachers, five had a negative PPD, one had a prior positive PPD, and one was absent at the time of the initial evaluation. There were no secondary cases of TB. With the exception of four individuals, all students with positive PPD had a normal chest x-ray, eight had documentation of Latent TB infection (LTBI) treatment with INH. The only teacher with a positive PPD had a normal chest x-ray, and refused LTBI treatment.

In summary

Evaluation was completed on 85 foreign-born students. The infection rate was 18/85 (21\%). Although this rate is high, it is not unusual in a foreign-born population. Furthermore, it could not be concluded that the 10 students with a prior negative PPD were true converters because the documentation of the prior PPDs was inadequate, and the booster effect could not be excluded. Therefore, this investigation did not demonstrate any evidence of transmission of TB in the school from the index case.

In light of the absence of evidence of transmission among the tested students, and because the PPDs were placed eight weeks after the last date of exposure, Mantoux test were not repeated on the individuals with a previous negative PPD. This investigation will end once the information on the seven students is updated as well as the one teacher absent at the time of the different screenings and information is obtained on the 10 students where there was no documentation of LTBI treatment.

Miami Dorsey Contact Investigation

The case is an 18-year-old female from Haiti who immigrated to the U.S. in 2005. She was enrolled in high school in the spring of 2005 . She was diagnosed with cavitary smear positive pulmonary TB in 2006.

Household Contact Investigation:

Nine contacts were identified, all foreign-born. Seven of nine contacts had a positive PPD on initial testing and two of the nine converted their PPDs on repeat testing. All contacts had normal chest x-rays, and were started on Latent TB infection (LTBI) treatment. All household members were placed on LTBI treatment. There was evidence of transmission of TB infection from the index case, and the contact investigation was extended to the school.

School Contact Investigation:

Twenty-five contacts were identified (22 students and 3 teachers). Seventeen individuals had a positive PPD, three had a negative PPD, and five contacts could not be located. All 17 individuals with a positive PPD were foreign-born with no documentation of prior Mantoux test. Fourteen of 17 individuals with a positive PPD were placed on LTBI treatment. Three of 17 refused to have a chest x-ray. There were no secondary cases of TB.

In Summary

Among the 17 individuals who completed the evaluation, the infection rate was $14 / 17$ (82%). This is a very high infection rate, which is also consistent with the epidemiology of TB in Haiti, the country of origin of most of the contacts. In light of the above, this investigation could not confirm any transmission of TB in the school from the index case as identified contacts also could have been infected in their country of origin. The investigation will be closed once the information on eight contacts has been updated.

Tuberculosis (TB) Outbreak in Correctional Institutions

Typically, $5-10 \%$ of Florida's annual TB morbidity comes from correctional settings, with the majority being from local county jails. However, in 2005 and 2006, an outbreak occurred at a state correctional facility.

Secondary cases from a 2005 prison outbreak prompted the Bureau of TB and Refugee Health to send a team to the prison to screen staff and inmates in an effort to halt transmission in the facility. Over 2,700 individuals received a screening and risk assessment. These individuals had skin tests placed and/or chest x-rays done, as indicated by their screening and risk assessment. The outbreak response team identified two additional cases as part of this process. Educational sessions were provided to the staff and inmates on the signs and symptoms of TB, while members of the TB-MD network reviewed case information with the healthcare providers in the facility. As of February 2007, 32 cases have been identified and attributed to this outbreak.

Outbreak of Cryptosporidiosis among Attendees of a Statewide T-Ball Tournament, Duval County, Florida, June 2005

On June 27, 2005 the Duval County Health Department (DCHD) Epidemiology Program received a report from a physician's office of cryptosporidiosis in a 6-year-old male. Two additional cases were reported the following day, among two brothers under the age of six. The investigation revealed that the three individuals developed symptoms after attending a statewide T-ball tournament in Chiefland, Florida held June 1-5. The tournament coordinator provided a list of all 17 teams attending the tournament. A case-control study was conducted to determine the source of this outbreak. Of 124 individuals surveyed, 47 (37.9%) met the case definition. Of the 47 cases, 15 (31.9%) sought medical attention. None required hospitalization. A total of 12 stool samples, all from the Jacksonville team, were collected for testing. Five samples were positive for Cryptosporidium oocysts, six were negative, and one was lost during the testing process. The epidemiological investigation strongly suggests that the individuals affected in this outbreak were exposed to Cryptosporidium oocysts in the swimming pool at Hotel A in Gainesville. The organism was able to survive in the pool because of its resistance to chlorine and filtration. The source of contamination that led to transmission in the pool is unknown. Education about the importance of refraining from recreational water activities while symptomatic is key in preventing future outbreaks.

For additional information regarding this investigation please visit:
S. Traynor, K. Ward, S. Zaheer, and A. Morgan, "Outbreak of Cryptosporidiosis among Attendees of a Statewide T-Ball Tournament, June 2005," Epi Update, 2005; November 18, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Weekly/11-18-05.htm.

Statewide Outbreak of Cyclosporiasis, 2005

In 2005, between March and May, the Food and Waterborne Disease Program conducted an investigation of a statewide outbreak of Cyclosporiasis. A total of 592 cases were identified (385 confirmed, 277 probable). Of these, 493 were Florida residents, with 89 from other states, and 10 from Canada. All cases were exposed in Florida through several restaurants. The vehicle of transmission was fresh basil and fresh basil pesto in dipping oil, as well as fresh basil in salad dressing. The basil came from a single distributor in south Florida, and was imported from a single farm in Peru. This was the single largest Cyclosporiasis outbreak in Florida history.

For additional information regarding this investigation and topic please visit:
"Food and Waterborne Illness Surveillance and Investigation, Annual Report, 2005,"
Florida Department of Health, Bureau of Community Environmental Health, http://www.doh.state.fl.us/environment/community/foodsurveillance/pdfs/annual2005.pdf D. Bodager and R. Hammond, "Surveillance and Investigation of a Large Statewide Cyclospora Foodborne Disease Outbreak Involving an Imported Stealth Product," Institute of Medicine Forum on Microbial Threats Board on Global Health, Addressing Foodborne Threats to Health: Policies, Practices and Global Communication Workshop Summary (2006),The National Academies Press: Washington D.C., pp. 115-124.

Escherichia coli O157:H7 Outbreak Associated with Three Petting Zoos, Florida, 2005.

In March 2005, Florida health officials identified a cluster Escherichia coli O157:H7 infections, including seven HUS cases, related to attendance at three fairs during February 10-21, 2005, and March 3-13, 2005. Interviews indicated that animal exposure (i.e. petting zoo animal contact) was common among cases. The implicated fairs had one common animal vendor, an exhibitor of a farm animal petting zoo. Sixty-three patients (median age: 4 years) were identified who had symptoms of E. coli O157:H7 infection within 10 days or HUS within 21 days after visiting the Central Florida fairs, and who had no alternate diagnosis to explain their symptoms. Of these, $20(32 \%)$ persons had culture-confirmed E. coli O157:H7 infection. Bacterial isolates from human, petting zoo animals, and environmental samples were compared by PFGE. All had identical fingerprints.

For additional information regarding this investigation and the subsequent case control study that was done to determine risk factors for disease see:

Centers for Disease Control, "Outbreaks of Escherichia coli O157:H7 Associated with Petting Zoos-North Carolina, Florida, and Arizona, 2004 and 2005," MMWR 2005; 54(50); pp. 1277-1280, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5450a1.htm.

A Multi-state Hepatitis A Outbreak Associated With Raw Oyster Consumption: A Summary of the Florida Cases, 2005

In September 2005, 20 cases of hepatitis A were reported in Florida; 15 associated with eating raw oysters, along with 5 secondary cases. Of the nine serum samples collected, all matched the DNA sequencing, and also matched cases in Alabama, South Carolina, and Tennessee. The oyster tags collected from four restaurants in Florida showed that the oysters came from the same harvesting area in Louisiana. Further investigation of the Alabama cases also showed the oysters were from the same harvesting area. This multi-state outbreak is the first reported hepatitis A outbreak in 20 years linked to raw oysters.

For additional information regarding this investigation please visit:
Wamnes, J., Hammond, R. "A Multi-state Hepatitis A Outbreak Associated with Raw Oyster Consumption: A Summary of the Florida Cases, 2005," Epi Update, 2005; November 18. http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Weekly/11-18-05.htm

Human Tissue Recall and Public Health, 2005

On October 26, 2005, the FDA notified the public that it was investigating a company in New Jersey that harvested tissue from individuals that did not meet FDA donor eligibility, and may not have been properly screened for infectious diseases. Two Florida tissue processors received implicated tissue, and were involved in the recall of products. The Florida Department of Health worked with the FDA and the CDC by contacting tissue processors in the state, and working with local healthcare institutions and providers. Patients that may have received the recalled products from the New Jersey company were notified by the healthcare institutions, and/or healthcare providers, to seek immediate testing for specific infectious diseases.

For additional information regarding this investigation please visit:
Centers for Disease Control, "Brief Report: Investigation into Recalled Human Tissue for Transplantation-United States, 2005-2006," MMWR 2006; 55(20); pp. 564-566, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5520a6.htm.

FDA News, "FDA Provides Information on Investigation into Human Tissue for Transplantation," P05-77, October 26, 2005, http://www.fda.gov/bbs/topics/NEWS/2005/NEW01249.html.

Leptospirosis at an Adventure Race, Hillsborough County, Florida, November 2005

The Hillsborough County Health Department, in conjunction with the CDC, investigated a leptospirosis outbreak associated with an adventure race held in Tampa, Florida on November 4 and 5, 2005. This race was a national championship event, and featured racers from around the country, who ran, biked, paddled, and orienteered during the competition. Symptoms of leptospirosis include fever, sudden onset headache, chills, sweats, severe myalgia (calves and thighs), and conjunctival suffusion. Complications can include liver damage, kidney failure, pulmonary hemorrhage, and death. A person acquires leptospirosis by coming into contact with animal urine or ingesting food or water that has been contaminated with animal urine.

Of the 200 participants in the race, 43 individuals had an illness clinically compatible with leptospirosis. Of these 43 affected adventure racers, 14 had laboratory tests confirming leptospirosis. Only one of these 43 individuals was a Florida resident. Symptom and risk factor questionnaires were completed for 193 of the 200 racers. Swallowing river water (OR=3.4, 95\% CI 1.6-7.0), swallowing swamp water ($\mathrm{OR}=2.4,95 \% \mathrm{Cl} 1.1-5.2$), and being submerged in any water ($\mathrm{OR}=2.3,95 \% \mathrm{Cl} 1.1-4.7$) were all independently associated with getting leptospirosis. It is hypothesized that wild pigs (or other animals) in the area may have contaminated rivers and swamps that were part of the racecourse. Because leptospirosis outbreaks have also occurred at several adventure races in the past, it is important that participants are aware of the risks of this disease, and discuss pre-event antibiotic usage with their physicians as a means of
preventing this disease.

Multi-state Investigation of Measles Among Adoptees from China, 2005

Florida Department of Health joined with Maryland, New York, Washington, Division of Global Migration and Quarantine, and the CDC to investigate the report of measles in adoptees from China. A group of 11 families traveled to China to adopt 12 children from two orphanages in Hunan Province. The investigation determined that nine of the children had measles-like rash illness, including four (three in Washington, and one in Maryland), who were serologically confirmed to have measles. Three of the children were likely infectious while traveling from China to the U.S. on multiple airline flights. The patients were aged 12-18 months; they had rash onset from March 22 to April 6. The three children who did not develop measles-like rash illness traveled to Washington (a child aged seven years), Alaska (a child aged 13 months), and Florida (a child aged 13 months).

Healthcare providers should consider measles in persons with febrile rash illness that have traveled internationally within the past 7-21 days. Any suspected cases should be reported to the local health department immediately to ensure that appropriate testing and follow-up is done. Continuing cases show that maintaining high levels of vaccination coverage and strong surveillance in the U.S. is critical.

For additional information regarding this investigation please visit:
Centers for Disease Control, "Multistate Investigation of Measles Among Adoptees from ChinaApril 2004," MMWR, 2004; 53(Dispatch);1-2,
http://www.cdc.gov/mmwr/preview/mmwrhtml/mm53d409a1.htm.
Centers for Disease Control, "Brief report: Imported Measles Case Associated with Nonmedical
Vaccine Exemption-lowa, March 2004," MMWR, 2004; 53:244—6,
http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5311a6.htm

Pertussis Outbreak, 2005

Pertussis (whooping cough) cases started increasing in 2002. In 2005 a pertussis outbreak, with 12 confirmed cases, occurred in a religious community with low immunization levels. Three cases were <7 years of age, one case was hospitalized; all recovered. Duration of cough was from 14 to 62 days. Community residents accepted medication for symptoms, but immunization of children was refused.

Imported Melioidosis, Florida, 2005

In 2005, two cases of melioidosis (one in August, one in October) were reported to the Florida DOH, the first cases since reporting the disease became mandatory in Florida in 2003. In one case, Burkholderia pseudomallei was not recognized as the bacterium that causes the disease meliodosis, which led to a delay in reporting the case to the local health department. In both cases, delayed recognition and unsafe laboratory practices resulted in laboratory workers being exposed to B. pseudomallei. This report summarizes the clinical and laboratory aspects of the cases and the epidemiologic study conducted by the Florida DOH. The findings emphasize the need for improved laboratory recognition and reporting of B. pseudomallei, safe laboratory handling of B. pseudomallei, and close adherence to antibiotic regimens for treating and preventing recurrence of melioidosis.

Centers for Disease Control, "Imported Melioidosis-South Florida, 2005," MMWR, 2006;55, pp.
873-876, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5532a1.htm.

Surveillance for IIIness and Injury after Hurricane Katrina, Three Counties, Mississippi, Sept. 5 - Oct 11, 2005

Hurricane Katrina made landfall along the gulf coast of Mississippi on August 29, 2005, causing significant destruction from wind damage and storm surge. In Hancock County, the storm surge was estimated to be 27 feet, and extended 6-12 miles inland. The coastal counties of Hancock, Jackson, and Harrison experienced the greatest damage, including the destruction of public infrastructure (electricity, sanitation systems, water treatment facilities, and roads). Hospitals, medical clinics, and public health facilities were also severely disrupted or destroyed immediately after the hurricane. The Mississippi Department of Health requested assistance from the CDC and the Florida Department of Health to conduct active surveillance at hospital emergency rooms, federal Disaster Medical Assistance Teams (DMAT), and other outpatient clinics. This report describes these surveillance activities and their findings, which determined that no major outbreaks of infectious disease occurred after the hurricane.

Centers for Disease Control, "Surveillance for Illness and Injury After Hurricane Katrina-Three
Counties, Mississippi, Sept 5-Oct 11, 2005," MMWR 2006: 55, pp. 231-234,
http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5509a2.htm.

Botulism in Four Adults Following Cosmetic Injections with an Unlicensed, HighlyConcentrated Botulinum Preparation, Palm Beach County, Florida, November 2005

In 2005, four cases of botulism occurred in residents of Palm Beach County. All four were caused by injections of botulism toxin for cosmetic purposes, using an unlicensed product.

For additional information regarding this investigation please visit:
Chertow, D., et. al. "Botulism in 4 Adults Following Cosmetic Injections with an Unlicensed, Highly Concentrated Botulinum Preparation." JAMA. 2006;296: pp. 2476-2479.
http://jama.ama-assn.org/cgi/content/full/296/20/2476

Carbon Monoxide Poisonings During Hurricane Season, Florida, 2004

Four major hurricanes made landfall in Florida, between August 13 and September 25, 2004, resulting
in electrical power outages to several million homes. The Florida Department of Health and the CDC investigated the occurrence of fatal, and non-fatal, carbon monoxide poisonings during this period. Medical records from 10 hospitals (two with hyperbaric oxygen chambers), medical examiner records, and reports of investigations conducted by the U.S. Consumer Product Safety Commission were reviewed. A total of six fatal poisonings from five incidents, and a total of 167 non-fatal poisonings from 51 incidents, occurred between August 13 and October 15, 2004. Use of portable, gasoline-powered generators was implicated in 47 of 51 (96%) non-fatal incidents, and all fatal poisonings. In incidents in which a generator was known to be involved, most of the generators were located outdoors in close proximity to the home or inside the garage, followed by inside the home. Of the interviewed people involved in nonfatal incidents, 74% did not own a generator before the hurricanes, 86% did not have a CO detector, 69\% revealed concerns about theft and exhaust influenced location of the generator, and 67% reported exposure to CO education messages before the incident. Education about the dangers of generator use and engineering solutions should be the focus of public health activities.

For additional information regarding this investigation please visit:
D. Van Sickle, et al., "Patterns of Carbon Monoxide Poisoning During the Florida 2004 Hurricane Season," American Journal of Preventive Medicine 2007; 32(4): pp. 342-346.

Centers for Disease Control, "Carbon Monoxide Poisoning from Hurricane Associated Use of Portable Generators, Florida 2004," MMWR 2005; 54: pp. 697-699.
A. Ourso, "A Report on Post-Hurricane Carbon Monoxide Poisoning in Volusia County," Epi Update; 2005; January 7, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Weekly/01-07-05.htm.

Clostridium perfringens Foodborne Outbreak at a Local School Board Luncheon, Manatee County, Florida, August 9, 2004

In August 2004, the Manatee County Health Department was contacted by the local school board about members who had attended a luncheon and had subsequently become ill with gastrointestinal symptoms. Early information indicated that 22 of the 24 attendees had become ill approximately six hours after eating. Symptoms reported included diarrhea, nausea, and abdominal pains. The food served at the luncheon had been purchased from a local BBQ restaurant. BBQ pork, coleslaw, baked beans, several desserts, and soft drinks had been served at the luncheon. Pork was implicated in this investigation and tested positive for Clostridium perfringens, both from food samples collected at the restaurant and from leftover foods taken home. A positive stool specimen form one ill attendee also helped to confirm these findings.

For additional information regarding this investigation please visit:
M. Friedman, "Clostridium perfringens Foodborne Outbreak at a Local School Board Luncheon-

Manatee County, August 9, 2004," Epi Update; 2004, September 24,
http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Weekly/09-24-04.htm.

A Hepatitis B Outbreak Associated With Outpatient Chelation Therapy, Miami-Dade County, Florida, 2004

In 2004, as part of standard communicable disease reporting, the Miami-Dade County Health Department (MDCHD) identified two cases of acute hepatitis B among elderly men (age ≥ 70 years) who denied traditional hepatitis risk factors. Interviews linked the men to the same clinical practice, where both had undergone outpatient chelation therapy. In response, the MDCHD and the Florida Department of Health Bureau of Epidemiology initiated an epidemiological investigation.

The MDCHD and the Florida DOH, Bureau of Epidemiology conducted several clinic visits to assess compliance with standard infection control practices. A retrospective cohort study was conducted among clinic patients. Clinical exposures were ascertained through medical record review and patient interviews. Information on hepatitis testing history, vaccination history, and hepatitis risk factors was collected. Patients were screened for hepatitis through serologic survey. Samples from patients with acute (IgM positive) and chronic (HBsAg positive) hepatitis B infections were submitted to the CDC for genotyping and nucleic acid sequencing.

Violations of standard infection control practices included failure to prepare and store intravenous infusions under aseptic conditions, inconsistent hand hygiene, inconsistent use of personal protection (gloves), and inadequate cleaning of multi-dose vials prior to use. Of the estimated 253 clinic patients, 106 (42\%) patients were tested for hepatitis. A total of seven acute and two chronic hepatitis B cases were identified. One of the chronic cases was the clinic physician that administered all therapies. The physician was also positive for the hepatitis B antigen. All cases had received chelation therapy at the clinic, including the physician. Five specimens were tested by the CDC, including one from the physician, and all five were found to be of the same genotype and serotype, which is consistent with a common source or transmission event.

Both epidemiologic and laboratory data support hepatitis B transmission in this clinical practice. The high infectivity of the hepatitis B e antigen positive physician increased the consequences of breaks in infection control. This outbreak is one of the few documented instances linking transmission from a hepatitis B e antigen-positive healthcare professional to patients. Implementation of public health interventions, (including closing the practice) halted the hepatitis B transmission. As a result of this investigation the physician relinquished his license to practice medicine.

Cruise-Ship—Associated Legionnaires Disease, November 2003-May 2004

During a six-month period from November 2003 to May 2004, eight cases of Legionella were reported nationwide. One of the eight cases was a resident of Flagler County. The occurance of Legionella occurring in individuals with cruise ship travel is an event with public health importance in Florida due to the multiple cruise ship departure points in the state.

For additional information regarding this investigation please visit:
CDC. "Cruise-Ship—Associated Legionnaires Disease, November 2003—May 2004." MMWR, 2005; 54(45); pp.1153-1155. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5445a2.htm

Pufferfish Consumption Confirmed as Cause of Saxitoxin Poisoning Cases, Brevard County, Florida, 2002-2004

In 2002, the Brevard County Health Department was notified by the New Jersey State Health Department that a New Jersey resident had experienced neurological symptoms consistent with paralytic shellfish poisoning. Prior to onset, the patient case was reported to have consumed pufferfish caught from an unknown location. In 2002, a total of 21 cases were identified from recreationally caught pufferfish. After an educational campaign about the risks of consumption of Southern Pufferfish caught in the Indian River Lagoon area, and an emergency ban on the harvest of these fish, in 2003, five cases in a single cluster were reported, and in 2004, five cases in three clusters were reported. No other cases have been reported since 2004. These neurological illnesses are compatible with the known symptoms associated with paralytic shellfish poisoning. Each illness onset was preceded by the consumption of pufferfish harvested from the Indian River Lagoon in Brevard County. The presence of saxitoxin in the urine of several patients confirms the agent of this outbreak. The presence of saxitoxin in pufferfish filets confirms pufferfish as the vehicle of transmission. This outbreak is the first documented outbreak of saxitoxin poisoning associated with pufferfish. Saxitoxin is more commonly associated with the consumption of molluscan shellfish, causing paralytic shellfish poisoning.

For additional information regarding this investigation and topic please visit:
Centers for Disease Control, "Neurologic IIIness Associated with Eating Florida Pufferfish, 2002," MMWR, 2002; 51(15); pp. 321-3, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5115a1.htm.

Centers for Disease Control, "Update: Neurologic Illness Associated with Eating Florida Pufferfish, 2002, " MMWR, 2002; 51(19); pp. 414-6, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5119a3.htm.

Pertussis Outbreak Following Hurricane Ivan, 2004

In 2004, after Hurricane Ivan (9/16/04) landed on the panhandle, a high number of pertussis cases were identified by the Epidemiology Team assisting the local county health department. While there was concern that during the sheltering for Hurricane Ivan, susceptible family members and neighbors might have been infected, investigation showed that, of the 23 cases, most case onsets were prior to the close contact that occurred during the hurricane. Of the 15 confirmed cases, 7 had laboratory confirmation and 2 were hospitalized. The age range was 3 months to 67 years, and duration of cough was 19 to 112 days. As an extra precaution against disease transmission, the local county health department and school staff contacted 142 families of eighth graders to screen for symptomatic students or family members. During the telephone interview, family members' immunization histories were reviewed, and appropriate treatment /prophylaxis was provided, as indicated. These measures, and the four-week school closing due to hurricane damage, effectively prevented the further spread of pertussis.

Varicella (Chickenpox) Outbreak at a Local Elementary School, Seminole County, Florida, 2004 From March 10 to April 19, 2004, 28 students in an elementary school were infected with the varicella virus. The students' ages ranged from 5-12 years of age with a mean of 8 years of age. Of the 12
students interviewed, 67% reported fever, 83% reported itching, and 8% reported sore throat. The duration of illness for the unvaccinated students was 10 days. Of the 28 cases, 78.6% (22) of the students were previously vaccinated. The mean duration for illness in vaccinated students was 6.9 days, with a range of 3-14 days. Because the majority of students had received vaccine, most of the cases were less severe, with fewer lesions and a shorter duration of illness.

The parents were notified by phone, letters and fact sheets; immune-compromised children and pregnant staff members were advised to consult their doctors. A multidisciplinary health team provided education that focused on proper hand washing. School nurses were instructed to exclude all infected students from school until all lesions had crusted over.

Note: In school year 2001-2002, one dose of varicella vaccine was required for entry/attendance for pre-kindergarten and kindergarten, with an additional grade added each year. In the 2008-2009 school year, the entry/attendance requirement will be two doses of varicella vaccine, with an additional grade added each year. As of November 2006, all varicella cases are to be reported to the county health departments. Varicella disease occurring >42 days after vaccination, called breakthrough disease, has been well-documented and the Centers for Disease Control and Prevention now recommends a twodose series of varicella vaccine.
K. Larry-Johnson, P. Booth, and K.Catterfeld, "Chickenpox Outbreak at a Local Elementary School, Seminole County," Epi Update, 2004; June, 25, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Update_files/Chickenpox.pdf.
Florida Department of Health, Bureau of Immunization, "Immunization Guidelines Florida Schools, Child Care Facilities and Family Day Care Homes," Effective March 2007, http://www.immunizeflorida.org/schoolguide.pdf.

Centers for Disease Control, "Prevention of Varicella Recommendations of the Advisory Committee on Immunization Practices (ACIP)," MMWR, 2007; 56(RR04); p. 3, http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5604a1.htm

A Study of Florida Panhandle Gulf Drownings, June-July 2003, and the Results from the Beachgoers' Survey, August 2003

Between 1989 and 2003, an average of 19 individuals per year died in rip current related drownings off the coast of Florida, either in the Atlantic Ocean or the Gulf of Mexico. The 2003 season was an especially severe year, as 34 rip current related drownings occurred in the waters surrounding Florida. The Florida Department of Health's Bureau of Epidemiology and Office of Injury Prevention conducted an investigation into 12 drownings that occurred during the period of June 1 to July 31, 2003 in a fivecounty area in the Florida Panhandle. The purpose of the study was two-fold: to provide a descriptive summary of the 12 drowning fatalities that occurred in this area, and to survey beachgoers with respect to their knowledge of beach safety.

The investigation found that the majority of the drowning victims (10 of 12) were from out of state, and all but one (11 of 12) of the drownings occurred during the most severe rip current conditions (red flag days). The survey of beachgoers revealed that many beachgoers (30.6\%) were unaware of the rip current conditions at the time of the survey, and the majority of the survey respondents (59.3\%) lacked knowledge of how to escape from a rip current.

For additional information regarding this investigation please visit:
A. Rowan, D. Atrubin, and L.VanderWerf-Hourigan, "Beach Drowning Study Provides Clues to Panhandle Incidents," Epi Update, 2004; September 24, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Weekly/09-24-04.htm.
A. Rowan, D. Atrubin, and L. VanderWerf-Hourigan, "Panhandle Beach Safety Study," Bureau of Epidemiology and the Office of Injury Prevention, Florida Department of Health, http://www.doh.state.fl.us/disease_ctrl/epi/FLEIS/Report_Beach_Study.pdf.

Locally-acquired Malaria, Palm Beah County, Florida, 2003

In 2003, eight locally-acquired cases of Plasmodium vivax were reported in Palm Beach County. All cases were male, and the average age was 34 years (range: 17-48 years). The cases all lived in the same West Palm Beach area, within 10 miles of the Palm Beach International Airport. Dates of symptom onset ranged from July 12 to September 14, 2003. Seven of the eight cases had the same strain genotypes. All eight cases reported no previous history of malaria, and six of the eight had never traveled to a malaria-endemic country.

During the same period, two individuals were evaluated for malaria in nearby Okeechobee County, raising concerns of a possible link. The subsequent investigation found no association with the Palm Beach County event.

For additional information regarding these investigations please visit:
Centers for Disease Control, "Local transmission of Plasmodium vivax malaria-Palm Beach County, Florida, 2003," MMWR, 2003;52: pp. 908-11, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5238a3.htm.
Centers for Disease Control, "Multifocal Autochthonous Transmission of Malaria-Florida, 2003," MMWR, 2004; 53(19); pp. 412-413, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5319a2.htm.
M. Weems, and S. Kumar, "Locally Acquired Malaria "Probable" in Palm Beach County," Epi Update, 2003; August 8, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Weekly/08-08-03.htm.
F. Arguello, "Multifocal Autochthonous Transmission of Malaria-Florida, 2003," Epi Update, 2004; June 4, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Weekly/06-04-04.htm.

Salmonella Outbreak at a Catered Dinner, Pinellas County, Florida, October 2003

The Pinellas County Health Department was notified on October 8, 2003 that members from a synagogue in Palm Harbor had become ill after attending a dinner on October 6. A local deli had catered this dinner, and leftover food was subsequently donated to a homeless shelter in Pasco County. Thirteen confirmed cases of Salmonella Group-C were identified (11 in Pinellas and 2 in Pasco), and a case-control study identified 47 additional cases (41 in Pinellas and 6 in Pasco). Egg salad was strongly implicated by the study (odds ratio of 35.0 , p-value >0.05). Weaker associations were also seen with other food items served. Whitefish salad, tuna salad, and egg salad collected all tested positive for Salmonella. Investigation results identified significant time/temperature abuse of the various food items served at the synagogue dinner and at the homeless shelter in Pasco County.

For additional information regarding this investigation please visit:

$$
\begin{aligned}
& \text { K. Granger, and C. Mancini, "Salmonella Outbreak Affects } 96 \text { Persons in Pinellas County," Epi } \\
& \text { Update, 2003; December 5, } \\
& \text { http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Weekly/12-05-03.htm. } \\
& \text { R. Hammond, and M. Friedman, "Environmental Aspects of Salmonella Outbreak," Epi Update, } \\
& \text { 2003; December 12, } \\
& \text { http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Weekly/12-12-03.htm. }
\end{aligned}
$$

A Salmonella Outbreak Associated with a BBQ Restaurant and Daycare Facility, Hillsborough County, Florida, 2003

Thirty cases of Salmonella, all linked to a BBQ restaurant in Tampa, FL, were identified during June and July, 2003. Nine of the isolates from this outbreak that underwent PFGE analysis at the DOH Jacksonville Laboratory have indistinguishable patterns. Implicated meals were eaten between June 18 and June 26, 2003. III patrons reported eating a variety of foods, with the only food in common being the BBQ sauce. One restaurant employee was ill, but she reported an onset date several days after some of the patrons were already symptomatic. Additionally, five cases of Salmonella among infants attending a daycare facility were identified. The three isolates from the daycare facility that underwent PFGE analysis were indistinguishable from those seen in the BBQ restaurant patrons. No epidemiologic link between the BBQ restaurant patrons and the day care attendees was discovered during the investigation.

For additional information regarding this investigation please visit:
D. Atrubin, "Salmonella Outbreak Traced to Tampa BBQ Restaurant," Epi Update, 2003; July 18, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Weekly/07-18-03.htm.
D. Atrubin and M. Friedman, "Salmonella Outbreak Traced to Tampa BBQ Restaurant," Epi Update, 2003; July 11, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Weekly/07_11_03.htm.
D. Atrubin, M. Friedman, P. Fiorella, E. Gregos, and J. Kintz, "An Investigation into a Salmonella enterica serotype Typhimurium Outbrea k in a BBQ Restaurant, Hillsborough County, June 18-July 6, 2003,"

> http://www.doh.state.fl.us/disease_ctrl/epi/FLEIS/Investigation_Salmonella_Entericasero .type.pdf

Primary and Secondary Syphilis in MSM Populations, 1999-2003

In October 1999, the CDC, Division of STD Prevention disseminated The National Plan to Eliminate Syphilis from the U.S. after the national syphilis rate had declined to national lows. In 2000, the once common genital ulcerative disease reported the lowest rates of primary, and secondary, syphilis across the nation since reporting began in 1941. However, in Florida, an annual increase in rates of syphilis began in 1999, and data analysis identified that the outbreak was predominately contained in Miami and Ft. Lauderdale. The resurgence of syphilis in these cities mirrored trends in Los Angeles, Chicago, and San Francisco. While control efforts had focused on disenfranchised heterosexuals in concentrated areas, suddenly the risk had expanded to a new group of people known as MSM (men who have sex with men).

In 2001, the reported cases of infectious syphilis among males in Florida increased 28.37\% from 2000 and then increased 30.22% from 2001 to 2002. In 2003, there were 172 cases of primary and secondary syphilis (20.8 per 100,000 population) in Broward County, and 171 cases (15.0 per 100,000 population) in Miami-Dade County, compared to a rate of 6.9 per 100,000 population (585 cases) in the rest of the state. An increase in cases and a shift in demographics occurred simultaneously. Historically, cases of syphilis in Florida were predominately reported in heterosexual black males, yet in 2003, 65\% of primary and secondary syphilis cases were reported in white males identified as MSM, and cases in heterosexual black males and females steadily decreased. The programmatic response from the CDC and the Bureau of STD included social marketing, coalition building, and community outreach; as well as increased awareness around other STDs and HIVIAIDS.

For additional information regarding this investigation and topic please visit: Centers for Disease Control, "Primary and Secondary Syphilis-United States, 2002," MMWR, 2003;52: pp. 1117-1120.
T. Peterman, D. Collins, and S. Aral, "Responding to the Epidemics of Syphilis Among Men Who Have Sex With Men," Journal of the American Sexually Transmitted Disease Association, 2005; pp. 32:1-3.
K. Schmitt, S. Bulecza, D. George, T. Burns, and L. Jordahl, "Florida's Multifaceted Response for Increases in Syphilis Among MSM: The Miami-Ft. Lauderdale Initiative," Journal of the American Sexually Transmitted Disease Association, 2005; 32: pp.19-23.
K. Schmitt, A. Cooksey, and M. Cuervo, "Epidemiology of Syphilis in Florida," Journal of Florida Medical Association, 2005; pp. 89:4-7.

Vibrio Outbreak Associated with the Consumption of Crabs, Duval County, Florida, 2003 In June 2003, the Duval County Health Department was notified that three out of four people became ill with gastrointestinal illness following the consumption of recently purchased garlic crabs from a
local restaurant. A joint investigation between the Division of Business and Professional Regulation and the Florida Department of Health identified the source of pathogen, mechanism of transmission, and exposure. Multiple cross-contamination violations and temperature abuse were observed at the seafood restaurant. Food specimens yielded Vibrio parahaemolyticus, Vibrio alginolyticus, and fecal coliform MPN/gm: 40/gm. Vibrio parahaemolytics is a naturally occurring bacterial organism that inhabits coastal and estuarine water. Infection is most commonly associated with the consumption of raw or undercooked shellfish, resulting in gastrointestinal illness. Educating food handlers on the proper ways to store, prepare, cook, and distribute food is key in preventing foodborne outbreaks.

For additional information regarding this investigation please visit:
Vibrio Outbreak Discovered in Duval County
http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Weekly/08-08-03.htm
R. Kay, "Vibrio Outbreak Discovered in Duval County," Epi Update, 2003; August 8,
http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/Epi_Weekly/08-08-03.htm.
Bureau of Community Environmental Health, Department of Health, "Outbreak of Vibrio
parahaemolyticus Associated with Consumption of Blue Crabs, Duval County, Florida,
June, 2003," Food and Waterborne Illness Surveillance and Investigation Annual Report,
Florida, 2003, pp. 20,
http://www.doh.state.fl.us/environment/community/foodsurveillance/pdfs/annual2003.pdf.

West Nile virus, 2003

In 2003, 94 cases of West Nile virus disease were reported to the Florida Department of Health. This represents the largest number of West Nile virus disease cases reported in Florida since the virus was first detected here in 2001. Sixty-nine percent of cases were the neuroinvasive form of the disease. Cases were reported from 29 counties (55% in the panhandle region), and resulted in six deaths. The majority (69\%) of case onsets occurred during August and September.

For additional information regarding this investigation please visit:
Bureau of Community Environmental Health, Florida Department of Health, "Mosquito-borne Disease Summary, 2003,"
http://www.doh.state.fl.us/environment/community/arboviral/pdfs/2003/Summary_2003.pdf.

Outbreak of Toxic Anterior Segment Syndrome Following Cataract Surgery Associated with Impurities in Autoclave Steam Moisture, Duval County, Florida, 2002

Toxic anterior segment syndrome (TASS), a complication of cataract surgery, is a sterile inflammation of the anterior chamber of the eye. An outbreak of TASS was recognized at an outpatient surgical center, and its affiliated hospital, in Duval County in December 2002. During the outbreak, 8 (38\%) of 21 cataract operations were complicated by TASS, compared with $2(0.07 \%)$ of 2,713 operations performed from January 1996 through November 2002. Results of an initial investigation suggested that cataract surgical equipment may have been contaminated by suboptimal equipment reprocessing or as a result of personnel changes. Further investigation identified the presence of impurities (e.g. sulfates, copper, zinc, nickel, and silica) in autoclave steam moisture, which was attributed to improper maintenance of the autoclave steam generator in the outpatient surgical center.

For additional information regarding this investigation please visit:
W.C. Hellinger, S. Hasan, and L.P. Bacalis, et. al., "Outbreak of Toxic Anterior Segment Syndrome Following Cataract Surgery Associated With Impurities in Autoclave Steam Moisture," Infection Control and Hospital Epidemiology, Vol. 27, No. 3, March 2006, pp 294-298,
http://www.journals.uchicago.edu/ICHE/journal/issues/v27n3/2004320/2004320.web.pdf.

West Nile Virus Associated with Organ Transplant, 2002

In summer 2002, headache and fever cases in Georgia and Florida among patients who had received kidney transplants led to an investigation into the cause of encephalitis. It was determined that the original organ donor had received blood from a person with West Nile virus viremia. Of the two Florida organ recipients, one developed encephalitis, and the other developed a febrile illness; both met the case definition for West Nile virus infection. This and other investigations led to the initiation of blood screening for West Nile virus.

For additional information regarding this investigation please visit:
M. Iwamoto, D.B.Jernigan, and A. Guasch, et al., "Transmission of West Nile Virus from an

Organ Donor to Four Transplant Recipients," N Engl J Med. 2003 May 29; 348 (22): pp. 2196-203.

Centers for Disease Control, "Virus Infection in Organ Donor and Transplant RecipientsGeorgia and Florida, 2002," MMWR, 2002; 51(35): p 790, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5135a5.htm.

Centers for Disease Control, "Public Health Dispatch: Investigation of Blood Transfusion Recipients with West Nile Virus Infections," MMWR, 2002; 51(36): p. 823, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5136a5.htm.
"Second Florida Transplant Recipient Tests Positive for West Nile Virus Infection," Epi Update, 2002; Stepember, 5, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2002/eu090502.htm.

Anthrax, Palm Beach County, Florida, 2001

The multi-state anthrax attack of October, 2001, was first recognized because of a case of inhalation anthrax in a resident of Palm Beach County. A second case was recognized in another employee of the same media company as the index case. This epidemic was extensively documented in the peer-reviewed literature, as well as in the MMWR.

For additional information regarding this investigation please visit:
M.S. Traeger, S.T. Wiersma, N.E. Rosenstein, J.M. Malecki, C.W. Shepard, and P.L. Raghunathan, "First Case of Bioterrorism-Related Inhalational Anthrax in the United States, Palm Beach County, Florida, 2001," Emerg Infect Dis [serial online] 2002 Oct; 8, http://www.cdc.gov/ncidod/EID/vol8no10/02-0354.htm.
D.B. Jernigan, P.L. Raghunathan, B.P. Bell, R. Brechner, E.A. Bresnitz, and J.C.Butler et al., Investigation of Bioterrorism-Related Anthrax, United States, 2001: Epidemiologic Findings, Emerg Infect Dis [serial online] 2002 Oct; 8, http://www.cdc.gov/ncidod/EID/vol8no10/02-0353.htm.
"Health Officials Investigating Isolated and Non-contagious Case of Anthrax," Epi Update, 2001; October 8, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2001.htm.
"Update: Public Health Message Regarding Florida Anthrax Case," Epi Update, 2001; October 8, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2001.htm.
"Public health update: Second Anthrax Case," Epi Update, 2001; October 17, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2001.htm.

Multi-County Ciguatera Outbreak (Martin, Palm Beach, Broward Counties), Florida, 2001

 A total of 11 cases of ciguatera intoxication were identified from the consumption of black grouper at restaurants in Martin and Palm Beach Counties who had obtained the fish from different fish markets, but ultimately from the same supplier and same source lot in Broward County. Six of the cases consumed the fish at the same restaurant in Palm Beach County on October 27, three in one party, three in another party. Three of the cases consumed the fish at the same restaurant in Martin County on October 27 and 28, two in one party, and one in another party. Two of the cases consumed the fish at a different restaurant in Martin County on October 27.For additional information regarding this investigation please visit:
Wamnes, J., Hammond, R. "Multi-County Ciguatera Outbreak, Florida." Epi Update, 2001;
November 9.
http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2001/eu110901.htm\#1

Epidemic of Hepatitis A Among Methamphetamine Drug Users, Polk County, Florida, 2001

In 2001, an increase in Hepatitis A was recognized in Polk County. From September 2001 through July 2002 the number of reported cases increased dramatically with 20-60 cases reported per month. Interviews with the cases indicated that the use of illicit drugs, specifically methamphetamine use, was a common risk factor. Polk County reported 263 cases or 28% of the states hepatitis A cases in 2002 while making up 3% of the state's population. Cases were primarily among adults, with 28% of cases in the 30-39 year age group, and 59% of the cases males.

An analysis of risk factors was conducted, and it was found that over 50% of the cases had a history of incarceration in the Polk County Jail, 48% had used illicit drugs, of which methamphetamine was the most common. Three deaths were linked to this outbreak. Viral sequencing conducted at the CDC found 37 of the 39 specimens had an identical sequence and the two other specimens differed by a single-nucleotide difference.

Prevention activities included providing immune globulin and vaccination for contact of cases in heir residences, in the Polk County Jail, and in public health clinics. Hospitals were asked to report E.R. patients with elevated liver function test, and no known etiology, immediately to the health department. This allowed quick identification of case and prophylaxis of contacts. During the outbreak, over 4,500 doses of vaccine were administered.

For additional information regarding this investigation please visit:
S, Vong, A. Fiore, D. Li J. Haight, N. Borgmiller, W. Kuhnert, and F. Nero et. al., "Vaccination in the County Jail as a Strategy to Reach High Risk Adults During a Community-Based Hepatitis A Outbreak Among Methamphetamine Drug Users," Vaccine 2005; 23: 1021-1028.

A Multi-state and International Hepatitis A Outbreak Associated With a Seafood Restaurant, Orange County, Florida, 2001

On February 14, 2001, the epidemiology section of the Orange County Health Department (CHD) received a telephone call from an individual seeking immune globulin protection for a recent hepatitis A exposure from a roommate. Hepatitis A infection was diagnosed among 40 individuals from several counties in Florida, nine additional states, and from the countries of France, Belgium, and Canada, from January 29 through February 28, 2001. Three of the confirmed cases were among restaurant staff who worked at Restaurant A; their onset dates were consistent with, and are included into, case reports. Their onset dates are also consistent with a common exposure. All of the other 36 confirmed, and epidemiologically-linked, cases reported having consumed food and beverages at Restaurant A within a ten day period, beginning January $3-13,2001$. While a number of cases were in the Orlando area for conventions, no food or water sources other than Restaurant A were common to all cases.

For additional information regarding this investigation please visit:
B. Toth, L. Patrick, D. Bodager, and R. Hammond, "A Multi-State and International Hepatitis A Outbreak Associated with a Seafood Restaurant in Orlando, Florida: A Preliminary Report," Epi Update, 2001; May 4, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2001.htm.

Meningococcal Outbreak, University of North Florida Campus, Duval County, Florida, 2001

Three University of North Florida (UNF) students became ill with Neisseria meningitis, serogroup C, during May 1-July 1, 2001. A total of 16 contacts to the three cases received chemoprophylaxis for their potential exposure. Since the was a organization-based outbreak, public health officials and UNF recommended vaccinating students currently enrolled at UNF for the summer B and C sessions. Public health officials successfully vaccinated more than 2,500 students during the mass vaccination campaign.

For additional information regarding this investigation please visit:
M. Traeger, "Meningococcal Outbreak, University of North Florida campus, Jacksonville/Duval County," Epi Update, 2001; July 27,
http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2001.htm.
M. Traeger, "Meningococcal Outbreak Update," Epi Update, 2001; July 27, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2001.htm.
M. Traeger, "Meningococcal Outbreak and Vaccination Campaign, University of North Florida Campus, Jacksonville/Duval County," Epi Update, 2001; August 3,
http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2001.htm.

A Multi-County and Multi-State Outbreak of Salmonella enteriditis (Group D) Among Oriental Restaurant and Market Patrons, 2001

In May 2001, infection control practitioners from two large Orlando, Florida area hospitals reported unusual numbers of Salmonella sp. Group D cases to the Orange County Health Department. Cases were diagnosed with diarrheal illness, treated and released, or admitted. Reported cases totaled approximately twice the number seen in background surveillance. Exposure questioning revealed that 14 of the first 15 reported cases had history of eating at Asian restaurants or purchasing foods from oriental markets within three days of onset. Laboratory-confirmed cases were reported from Orange (29) and Seminole (4) counties in Florida, with two cases reported from Minnesota. Twenty-four of the Orange County cases were laboratory-confirmed, and five were epidemiologically-linked. Reported cases ate at Asian restaurants or consumed food from Asian markets from April 22 to May 9, 2001. A rapid assessment of food items consumed indicated that mung bean sprouts was the single common food item among 14 of the initial 15 (93.3%) reported ill. The restaurants associated with this outbreak, serving primarily Vietnamese and Thai cuisine, serve entrées that include raw or undercooked mung bean sprouts.

For additional information regarding this investigation please visit:
B.Toth, D. Walsh, Z. Mulla, D. Bodager, and R. Hammond, "A Multi-County and Multi-State Outbreak of Salmonella enteriditis (Group D) Among Oriental Restaurant and Market Patrons," Epi Update, 2001; September 28, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2001.htm.

Ciguatera Intoxication, Palm Beach County, Florida, 2000

During the month of August 2000, the Palm Beach County Health Department, Division of Epidemiology and Disease Control (PBCHD-DEDC) reported three clusters (six people) of ciguatera intoxication. The six cases consumed fish bought at the same fish market, from the same supplier, and same lot. Four of the cases consumed the fish at the same restaurant on the same day, August 15, (three in one party, one in another party). Two of the cases had consumed fish three days earlier, August 12, at home. The fish market had bought 138 pounds of hog snapper (12-15 fish) from a licensed supplier in Miami-Dade County on August 12. According to the supplier, the fish had been caught in the Bahamas. All of the hog snapper had been sold. No leftover cooked or uncooked hog snapper was available for testing. No further cases were identified in this outbreak.

For additional information regarding this investigation please visit:
J. Wamnes, R. Hammond, and J. Masters, "Ciguatera Intoxication, Palm Beach County," Epi Update, 2000; August 30,
http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2000.htm.

Bureau of Environmental Epidemiology, Florida Department of Health, "Ciguatera IntoxicationPalm Beach County, August, 2000," Food and Waterborne Illness Surveillance and Investigation, Annual Report, Florida, 2000, 2000, Rev, November 18, pp. 18-19, http://www.doh.state.fl.us/environment/community/foodsurveillance/pdfs/annual2000.pdf.

Cryptosporidium Outbreak Associated with a Swimming Pool, Nassau County, Florida, August 2000

On August 25, 2000, the Nassau County Health Department received notification of an outbreak of gastrointestinal illness among 20 visitors (8 adults, 12 children) from New York City who had vacationed at a local resort during August 13-20, 2000. Based on symptoms reported, incubation period, and exposure histories, cryptosporidiosis was suspected. A case-control study was conducted to determine risk factors. Sixteen of 19 cases tested positive for Cryptosporidium. Statistical analysis demonstrated that pool exposure was a significant risk factor for infection with Cryptosporidium, and the risk increased markedly by the number of hours spent in the pool. The source of the Cryptosporidium contamination of the swimming pool that caused this outbreak is unknown.

For additional information regarding this investigation please visit:
Bureau of Environmental Epidemiology, Florida Department of Health, "Cryptosporidium Outbreak Associated With a Swimming Pool-Nassau County, August 2000," Food and Waterborne Illness Surveillance and Investigation, Annual Report, Florida, 2000, 2000, Rev, November 18, pp. 20-1, http://www.doh.state.fl.us/environment/community/foodsurveillance/pdfs/annual2000.pdf.

Hepatitis A Outbreak in a Daycare Center, Hillsborough County, Florida, March 2000 An outbreak of hepatitis A in March 2000 associated with a Hillsborough County daycare center resulted in 14 cases in attendees, staff, and family members.

For additional information regarding this investigation please visit:
Bosbyshell, F., Kintz, J. "Outbreak of Hepatitis A in a Daycare Center." Epi Update, 2000; April
19, 2000. http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2000.htm

Hepatitis A Outbreak, Lake and Sumter County, Florida, November-December 2000

 A foodborne outbreak of hepatitis A was reported to Lake and Sumter County in December 2000, associated with a community-wide outbreak of hepatitis A in intravenous drug users. There were 25 confirmed cases, all in adults with ages between 15 and 60, and with symptom onsets between November 21 and December 26, 2000. Twenty-two were primary cases, and three were secondary cases. A fast food outlet in Lake County was strongly associated with the foodborne hepatitis A cases.Another hepatitis A outbreak involving nine cases occurred in Kentucky simultaneously with the Florida outbreak, and was associated with the same fast food chain. The CDC performed nucleic acid base sequencing tests on viral gene segments from both the Florida and Kentucky outbreaks, and found an identical match; these outbreaks are therefore related.

For additional information regarding this investigation please visit:
R. Hopkins, "Hepatitis A Outbreak in Lake and Sumter Counties-Update 12/21/00," Epi Update, 2000; December 22, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2000.htm. M. Traeger, "Hepatitis A Outbreak in Lake and Sumter Counties-Update 1/26/00," Epi Update, 2000: January, 26, http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2001.htm.

Risk of Hepatitis C Infection among First Responders

Public health scientists were interested in evaluating the prevalence of Hepatitis C infection among first responders (firefighter, paramedics, and emergency medical technicians). Hep-C ALERT and the University of Pittsburgh tested, and collected, occupational risk factor information from 1314 MiamiDade County municipal firefighters. Anti-HCV positives were detected in 2.7% of participants. Hepatitis C infection was confirmed by HCV RNA in 1.5% of the participants. Post-exposure management will follow exposure to Hepatitis C positive or unknown blood status. While the occupational risk of Hepatitis C infection is among for first responders is low, first responders are encouraged to follow standard bloodborne precautions when responding to any type of event.

For additional information on this investigation and topic please visit:
Centers for Disease Control, "Hepatitis C Virus Infection Among Firefighters, Emergency
Medical Technicians, and Paramedics-Selected Locations, United States, 1991-2000,"
MMWR, 2000; 49(29); pp. 660-5,
http://www.cdc.gov/mmwr/preview/mmwrhtml/mm4929a3.htm.
Centers for Disease Control, "Updated U.S. Public Health Service Guidelines for the Management of Occupational Exposures to HBV, HCV, and HIV and Recommendations for Postexposure Prophylaxis," MMWR, 2001; 50 (RR11); pp 1-42,
http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5011a1.htm.

Multi-county Cluster of Oyster-Related IIIness, Florida, 2000

The State of Florida investigated four clusters of oyster-related illness in four counties (Collier 8, Nassau 2, Bay 4, and Madison 4). Times of onset ranged from January 10 to 19, 2000. Primary symptoms included diarrhea, fever, abdominal cramps, nausea, vomiting, and headache. One stool from the Nassau County cluster and two from the Bay County cluster were positive for Norwalk virus. No stools were available from any of the other clusters. Tags found at the retail establishments for the same purchase dates indicated the oysters for all of these clusters were from Apalachicola Bay, Florida. As a precautionary measure, and according to established protocols, Apalachicola Bay was temporarily closed on January 21, 2000 at sunset. A voluntary recall of oysters harvested between January 4 and 21 from harvest area 1642 was initiated on January 25 by the state's Molluscan Shellfish Program (Division of Aquaculture, Florida Department of Agriculture and Consumer Services).

For additional information regarding this investigation please visit:
Hammond, R. "Multi-county Cluster of Oyster-Related Illness." Epi Update, 2000; January, 26.
http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2000.htm

Reptile-Associated Salmonellosis, January 2000

During January 2000, an infant aged one month was diagnosed with Salmonella serotype Tennessee. One week before illness onset, the infant's family moved into a household that contained a bearded dragon (i.e. Pogona vitticeps). The pet reptile's cage had been washed in the kitchen near the infant's bottle nipples. It is also possible that the reptile's owner played with the reptile, and then fed the infant. A stool culture from the bearded dragon yielded S. Tennessee. Isolates from the infant and the bearded dragon were indistinguishable by PFGE.

For additional information regarding this investigation please visit:
Centers for Disease Control, "Reptile-Associated Salmonellosis-Selected States, 1998-2002,"
MMWR, 2003; 52(49); pp. 1206-1209,
http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5249a3.htm.
M. Zuber, P. Tiffany, R. Baker, and P. Fiorella,"Infant Salmonellosis Linked to a Pet

Reptile," Epi Update, 2000; March 8,
http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/2000.htm.

Cyclosporiasis Outbreak, Palm Beach County, Florida, June 1999

On June 18, 1999, the CDC confirmed that multiple stool samples from infected persons in California and Wisconsin were positive for Cyclospora cayetanensis, a parasite, after attending a convention in Palm Beach County. Multivariate analysis demonstrated that this was a foodborne outbreak associated with one of several convention events that was held at the hotel and the transmission vehicle was most likely either fresh strawberries, blackberries, blueberries, or raspberries served on May 13 or May 14, 1999.

For additional information regarding this investigation please visit:
R. Hammond, "Cyclosporiasis Outbreak in Palm Beach County," Epi Update, 1999; June 24,
http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/1999.htm.

Bureau of Environmental Epidemiology, Florida Department of Health, "Cyclosporasis At A Hotel Convention, Palm Beach County, May, 1999," Food and Waterborne Illness Surveillance and Investigation, Annual Report, Florida, 1999, pp. 16, http://www.doh.state.fl.us/environment/community/foodsurveillance/annualreports.htm.

Nosocomial Transmission of Hepatitis C Virus Associated With the Use of Multi-dose Saline Vials, Dade County, Florida 1998

In 1999, staff from the Dade County Health Department and the State Health office investigated an outbreak of hepatitis C infection occurring in a hospital, and documented that the source was inappropriate use of multi-dose saline vials.

For additional information regarding this investigation please visit:
Gérard Krause, MD, DrMed; Mary Jo Trepka, MD, MPH; Robert S. Whisenhunt; Dolly Katz, PhD; Omana Nainan, PhD;Steven T. Wiersma, MD, MPH; Richard S. Hopkins, MD, MSc. "Nosocomial Transmission of Hepatitis C Virus Associated With the Use of Multidose Saline Vials, 1998." Infect Control Hosp Epidemiol 2003;24: pp. 122-127

Escherichia coli O157:H7 Outbreak, Duval County, Florida, 1999

In June, 1999, the Duval County Health Department reported an outbreak of Escherichia coli O157:H7 that was associated with a church supper among members of a local Baptist church. Seventeen (35\%) of 49 attendees became ill. Seven individuals (41\%) were hospitalized. Of the 14 stool samples obtained, 8 were culture-positive for E. coli $\mathrm{O} 157: \mathrm{H} 7$. Among the 6 culture-negative cases, 2 were EIA positive for enterohemorrhagic E. coli. Food samples were not available, and as a result, the source of the outbreak could not be conclusively identified. However, a beef and broccoli dish was consumed by 100% of cases and it was determined to be the most likely source of this outbreak.

For additional information regarding this investigation please visit:
A. Burns, and K. Ward, "Duval County E. Coli Outbreak," Epi Update, 1999; July 7,
http://www.doh.state.fl.us/disease_ctrl/epi/Epi_Updates/1999.htm.

Meningococcal Disease Outbreak, Putnam County, Florida, 1998-1999

An intense outbreak of meningococcal disease occurred in Palatka, county seat of Putnam County. There were a total of nine cases of group C disease in late December 1998 and early January, 1999. A mass vaccination campaign provided vaccine to over 13,000 residents of Palatka under age 21.

For additional information regarding this investigation please visit:
G. Krause, C. Blackmore, S. Wiersma, C. Lesneski, L. Gauch, and R.S. Hopkins, "Mass

Vaccination Campaign Following Community Outbreak of Meningococcal Disease," Emerg Infect Dis [serial online] 2002 Dec; 8, http://www.cdc.gov/ncidod/EID/vol8no12/01-0421.htm.
G. Krause, C. Blackmore, S. Wiersma, C. Lesneski, C.W. Woods, N.E. Rosenstein, and R,S, Hopkins, "Marijuana Use and Social Networks in a Community Outbreak of Meningococcal Disease," South Med J. 2001 May;94(5): pp. 482-5.

Outbreak of Salmonella Serotype Anatum Infection Associated with Unpasteurized Orange Juice, Florida, March 1999.

In March 1999, a patient was infected with Salmonella serotype Anatum after having consumed unpasteurized orange juice from a small fresh juice manufacturer in Florida. A cohort study was conducted among customers of the manufacturer, pulsed-field gel electrophoresis (PFGE) was conducted on isolates, and the manufacturing plant was inspected. Surveillance data identified three additional patients infected with Salmonella Anatum showing indistinguishable or closely related PFGE patterns. Three of the four patients had consumed orange juice from the same manufacturer. In the cohort study, 6 of 68 persons (9\%) who consumed orange juice and/or orange ice cream from the
manufacturer were ill, compared with 1 of 47 (2\%) who did not. A positive antigen test for Salmonella species and coliform growth in juice samples taken from the production line suggested contamination during the manufacturing process. Commercially produced orange juice should be pasteurized or otherwise processed to achieve equivalent reduction of pathogens.

An earlier Salmonella outbreak linked to fresh-squeezed orange juice was investigated in 1995 in Orange County:
K.A. Cook, T.E. Dobbs, G. Hlady, J.G. Wells et. al., "Outbreak of Salmonella Serotype Hartford Infections Associated With Unpasteurized Orange Juice," Journal of the American Medical Association, November 4, 1998, Vol. 280, No. 17, pp. 1504-1509.

For additional information regarding this investigation please visit:
G. Krause, R. Terzagian, R. Hammond, "Outbreak of Salmonella Serotype Anatum Infection Associated with Unpasteurized Orange Juice," Southern Medical Journal 94(12): pp. 1168-1173.

Possible Estuary-Associated Syndrome (PEAS), 1998-1999

Pfiesteria piscicida (Pp) is an alga that has been associated with fish kills in estuaries (where fresh water mixes with salty seawater) along the eastern seaboard. Surveillance for possible estuaryassociated syndrome (PEAS), including possible Pp-related human illness, was conducted in Delaware, Florida, Maryland, North Carolina, South Carolina, and Virginia between June 1, 1998 and December 31, 1999. PEAS was defined as a person with exposure to estuary environments within two weeks of illness onset, with neurological and/ or dermatological, respiratory, and gastro-intestinal symptoms of unknown cause. A hotline was set up for disease reporting. No persons reported illnesses that met PEAS criteria.

For additional information regarding this investigation please visit:
Centers for Disease Control, "Surveillance for Possible Estuary-Associated Syndrome-Six States, 1998-1999," MMWR, 2000; 49(17); pp. 372-3, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm4917a4.htm.

Several other marine and freshwater algae in Florida waters produce toxins that may be harmful to humans. Karenia brevis, the red tide alga, releases brevetoxin, a toxin that has been associated with asthma exacerbations.

For more information see:
B. Kirkpatrick, L.E. Fleming, and C. Lorraine et al., "Environmental Exposures to Florida Red Tides: Effects on Emergency Room Respiratory Diagnoses Admissions," Harmful Algae, October 2006; Volume 5, Issue 5, pp. 526-533.

Illnesses Associated With Use of Automatic Insecticide Dispenser Units, Florida, 1999
To control indoor flying insects, restaurants and other businesses commonly use pyrethrin and pyrethroid insecticides sprayed from automatic dispensing units. Usually placed near entrances, these
units are designed to kill flying insects in food service or work areas. On May 18, 1999, the Florida Department of Health was notified by the Florida Department of Business and Professional Regulation that during May 12-17, three persons, a 42-year-old cook working at a Florida restaurant, a 40-yrold male customer and a 47-yr-old male customer, developed pesticide-related illnesses associated with improperly placed automatic insecticide dispensers. Symptoms included sore throat, dyspnea, headache, dizziness, shortness of breath, swelling, redness, and irritation of an eyelid.

For additional information regarding this investigation please visit:
Centers for Disease Control, "Illnesses Associated with Use of Automatic Insecticide Dispenser Units-Selected States and United States, 1986-1999, MMWR, 2000; 49(22); pp. 492-5, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm4922a3.htm.

Outbreaks of Shigella sonnei Infection Associated with Eating Fresh Parsley, U.S. and Canada, July-August 1998

In August 1998, the Minnesota Department of Health reported to the CDC two restaurant associated outbreaks of Shigella sonnei infections. Isolates from both outbreaks had two closely related pulsed-field gel electrophoresis (PFGE) patterns that differed only by a single band. Epidemiologic investigations implicated chopped, uncooked, curly parsley as the common vehicle for these outbreaks. Through inquiries to health departments and public health laboratories, six similar outbreaks were identified during July and August (in California, Massachusetts, and Florida, in the U.S., and in Ontario and Alberta in Canada). Isolates from five of these outbreaks had the same PFGE pattern identified in the two outbreaks in Minnesota. Parsley imported from a farm in Mexico was implicated as the source of these outbreaks.

For additional information regarding this investigation please visit:
Centers for Disease Control, "Outbreaks of Shigella sonnei Infection Associated with Eating Fresh Parsley-United States and Canada, July-August 1998," MMWR, 1999; 48(14); pp. 285-9, http://www.cdc.gov/mmwr/preview/mmwrhtml/00056895.htm.

Surveillance of Morbidity During Wildfires, Central Florida, 1998

Several large wildfires occurred in Florida during June-July 1998, many involving both rural and urban areas in Brevard, Flagler, Orange, Putnam, Seminole, and Volusia counties. To determine whether certain medical conditions increased in frequency during the wildfires, the Volusia County Health Department and the Florida Department of Health initiated surveillance of selected conditions. Eight local hospitals furnished data about persons seen in the emergency departments (E.D.) and/or admitted for the selected conditions during June 1-July 6, 1998. For comparison, the hospitals also provided the same information for June 1-July 6, 1997. From 1997 to 1998, E.D. visits increased substantially for asthma (91\%), bronchitis with acute exacerbation (132\%), and chest pain (37\%). Changes in the number of admissions were minimal.

For additional information regarding this investigation please visit:
Centers for Disease Control, "Surveillance of Morbidity During Wildfires-Central Florida, 1998," MMWR, 1999; 48(04); pp. 78-79,
http://www.cdc.gov/mmwr/preview/mmwrhtml/00056377.htm.

Cyclosporiasis, U.S. and Canada, 1997

As of June 11, 1997, there were 21 clusters of cases of cyclosporiasis reported from eight states (California, Florida, Maryland, Nebraska, Nevada, New York, Rhode Island, and Texas), and one province in Canada (Ontario). These clusters were associated with events (e.g. receptions, banquets, or time-place-related exposures i.e. meals in the same restaurant on the same day) that occurred during March 19-May 25, and comprise approximately 140 laboratory-confirmed and 370 clinically defined cases of cyclosporiasis. In addition, four laboratory-confirmed and approximately 220 clinically defined cases have been reported among persons who, during March 29-April 5, were on a cruise ship that departed from Florida. Approximately 70 laboratory-confirmed sporadic cases (i.e. cases not associated with events, the cruise, or recent overseas travel) were reported in the U.S. and Canada. The investigations implicated fresh red raspberries imported from Guatemala as the probable vehicle of infection for most of the outbreaks of cyclosporiasis identified in 1997. There is no evidence of ongoing transmission of Cyclospora in association with mesclun, which was the vehicle for one, and possibly two, early outbreaks in March and April in Florida.

For additional information regarding this investigation please visit:
Centers for Disease Control, "Update: Outbreaks of Cyclosporiasis-United States and Canada, 1997," MMWR, 1997; 46(23); pp. 521-523, http://www.cdc.gov/mmwr/preview/mmwrhtml/00047875.htm.

An Outbreak of Typhoid Fever Associated with an Imported Frozen Fruit, Florida, 1997

An outbreak of typhoid fever in Florida involving at least 16 persons during the winter of 1998-99 was investigated using case-control, environmental, and laboratory methods. The genomic profiles of Salmonella serovar Typhi (Salmonella Typhi) isolates from the 15 confirmed case subjects were identical. Consumption of fruit shakes made with frozen mamey, a tropical fruit, was significantly associated with illness (matched odds ratio, 7.6; 95\% confidence interval, 1.4 81.4). Laboratory testing showed that the fruit was heavily contaminated with fecal coliforms although no Salmonella Typhi was isolated. The implicated frozen mamey was prepared in plants in Guatemala. No further cases occurred after the frozen product was recalled. As our nation's food sources become increasingly globalized, the risk of outbreaks of exotic diseases linked to contaminated imported food will increase. This outbreak highlights the need for new approaches to ensure the safety of our food supply.

For additional information regarding this investigation please visit:
Katz, D., Cruz, M., Trepka, M.J., Suarez, J., Fiorella, P., Hammond, R. "An Outbreak of Typhoid Fever in Florida Associated with an Imported Frozen Fruit." The Journal of Infectious Diseases, 2002;186: pp. 234-239:
http://www.journals.uchicago.edu/JID/journal/issues/v186n2/011517/011517.html

2006 Florida Morbidity Statistics

Summary of Cancer Data

Section 5

Cancer incidence data are collected, verified, and maintained by the Florida Cancer Data System (FCDS), Florida's statewide cancer registry. The FCDS is administered by the Florida Department of Health, Bureau of Epidemiology, and operated by the Sylvester Comprehensive Cancer Center at the University of Miami Leonard M. Miller School of Medicine.

The FCDS began operation with a pilot project for cancer registration in 1980, and commenced statewide collection of cancer incidence data from all Florida hospitals in 1981. The FCDS now collects incidence data from hospitals, freestanding ambulatory surgical centers, radiation therapy facilities, pathology laboratories, and dermatopathologists' offices.

During 2003, physicians diagnosed 94,910 primary cancers among Floridians, an average of 260 cases per day. Cancer occurs predominantly among older people; age is the top risk factor. Sixty-two percent of the newly diagnosed cancers in 2003 occurred in persons age 65+; this age group accounts for 18% of Florida's population. The four most common cancers in Floridians were lung and bronchus (15,768 cases), prostate (12,817 cases), female breast (11,933 cases), and colorectal (10,620 cases), which accounted for 57% of all new cases in blacks, and 54% in whites. Fifty-three percent of new cancers were diagnosed in males. The number of new cancer cases in Florida's five most populous counties (Broward, Miami-Dade, Hillsborough, Pinellas, and Palm Beach) which had 43\% of Florida's population accounted for 40% of the new cancer cases in Florida in 2003.

Over the 23-year period from 1981 to 2003, males had a higher incidence (age-adjusted incidence rate) than females. Among blacks, the incidence among males was between 54% and 100% higher than that among females. Among whites, the incidence among males was between 30% and 53% higher than that among females. White females had higher ageadjusted incidence rates than black females in all 23 years. The racial disparity varied between 10% and 27%. Black males had higher age-adjusted incidence rates than white males in all years, except 1987 and 1988. The racial disparity between black and white males increased from 1989 until 1995; however, has declined from 19\% to 5\% since 1995.

Additional Resources

More information about the burden of cancer in Florida is provided in the Florida Annual Cancer Report, an epidemiological series, available on the DOH website www.doh.state.fl.us/disease_ctrl/epi/cancer/CancerIndex.htm, or the Florida Cancer Data System website www.fcds.med.miami.edu

Table 1. Number of New Cancer Cases by Sex and Race, Florida, 2003

	All Cancers	Lung \& Bronchus	Prostate	Breast	Colorectal	Bladder	Head \& Neck	NonHodgkin (1)	Melanoma	Cervix
Florida (2)	94,910	15,768	12,817	11,933	10,620	4,836	3,667	3,590	3,181	840
Female	44,440	7,079		11,933	5,178	1,233	1,009	1,639	1,217	840
Male	50,431	8,678	12,817		5,438	3,601	2,657	1,949	1,963	
Black	8,171	1,120	1,550	1,077	936	157	316	260		131
White	85,045	14,479	11,063	10,607	9,480	4,607	3,283	3,254	3,115	686
Black Female	3,854	395		1,077	503	57	73	127		131
White Female	39,737	6,612		10,607	4,578	1,152	914	1,478	1,188	686
Black Male	4,315	725	1,550		432	100	242	133		
White Male	45,276	7,858	11,063		4,899	3,453	2,369	1,775	1,926	

Source of data: Florida Cancer Data System
(1) Non-Hodgkin refers to Non-Hodgkin lymphoma throughout this report.
(2) Florida totals throughout this report include 710 new cancers in persons of "Other" races, 984 cases with unknown race, 39 cases with unknown sex, and 3 cases with unknown age. Totals by sex include unknown age, race and Other races; totals by race include unknown sex and age.

Table 2. Number of New Cancer Cases by County, Florida, 2003

	All Cancers	Lung \& Bronchus	Prostate	Breast	Colorectal	Bladder	Head \& Neck	NonHodgkin	Melanoma	Cervix
Florida	94,910	15,768	12,817	11,933	10,620	4,836	3,667	3,590	3,181	840
Alachua	897	160	109	133	102	24	33	32	26	\wedge
Baker	93	19	13	12	11	\wedge	\wedge	\wedge	\wedge	\wedge
Bay	729	144	94	100	86	39	33	25	24	\wedge
Bradford	99	17	10	15	15	\wedge	\wedge	\wedge	\wedge	\wedge
Brevard	3,301	570	449	415	335	219	109	112	122	25
Broward	8,635	1,391	950	1,110	1,031	454	293	356	264	76
Calhoun	51	20	\wedge							
Charlotte	1,219	217	191	138	128	72	59	47	20	\wedge
Citrus	1,044	225	170	131	110	38	41	33	27	\wedge
Clay	689	139	84	92	90	24	26	17	28	\wedge
Collier	1,918	269	355	203	175	117	68	79	91	15
Columbia	295	66	23	35	38	12	11	\wedge	13	\wedge
Miami-Dade	10,419	1,184	1,627	1,334	1,313	421	396	429	237	154
DeSoto	155	25	23	20	26	\wedge	\wedge	\wedge	\wedge	\wedge
Dixie	97	26	\wedge	14	\wedge	\wedge	\wedge	\wedge	\wedge	\wedge
Duval	3,562	602	502	457	381	159	148	121	93	38
Escambia	1,513	265	216	234	133	64	70	62	42	11
Flagler	529	81	95	83	55	26	19	18	11	\wedge
Franklin	52	14	\wedge							
Gadsden	226	40	34	33	18	11	14	\wedge	\wedge	\wedge
Gilchrist	69	17	\wedge	\wedge	10	\wedge	\wedge	\wedge	\wedge	\wedge
Glades	28	^	\wedge							
Gulf	79	12	\wedge	10	12	\wedge	\wedge	\wedge	\wedge	\wedge
Hamilton	33	\wedge								
Hardee	128	21	21	18	\wedge	\wedge	\wedge	\wedge	\wedge	\wedge
Hendry	148	34	14	\wedge	14	\wedge	\wedge	\wedge	\wedge	\wedge
Hernando	1,230	257	181	123	145	78	41	42	36	11
Highlands	793	153	111	88	86	41	39	26	20	\wedge
Hillsborough	4,913	758	655	638	548	216	174	180	183	55
Holmes	68	10	\wedge							
Indian River	896	167	117	74	125	47	31	28	39	\wedge
Jackson	156	28	20	10	22	\wedge	\wedge	\wedge	10	\wedge
Jefferson	75	\wedge	11	12	\wedge	\wedge	\wedge	\wedge	\wedge	\wedge
Lafayette	31	^	\wedge							
Lake	2,066	342	292	250	218	123	86	89	80	12
Lee	3,199	559	459	392	301	170	135	127	151	22
Leon	807	119	109	119	85	25	31	34	24	\wedge
Levy	231	48	29	18	30	\wedge	16	\wedge	\wedge	\wedge
Liberty	33	\wedge								
Madison	82	17	11	\wedge	10	\wedge	\wedge	\wedge	\wedge	\wedge
Manatee	1,816	331	241	203	231	102	69	76	33	12
Marion	2,016	408	269	255	251	99	65	68	56	\wedge
Martin	1,112	202	180	144	120	61	41	30	55	\wedge
Monroe	422	85	30	49	53	13	28	13	22	\wedge
Nassau	316	58	45	33	34	10	13	13	11	\wedge
Okaloosa	883	157	116	112	99	59	30	34	31	\wedge
Okeechobee	242	51	33	24	19	12	13	10	\wedge	\wedge
Orange	4,035	600	588	554	423	167	168	146	126	51
Osceola	848	140	102	123	88	32	27	34	31	11
Palm Beach	8,122	1,204	970	1,025	823	548	317	351	389	56
Pasco	2,924	525	431	311	332	173	113	96	86	21
Pinellas	6,208	1,145	751	786	734	364	267	194	198	53
Polk	3,266	554	419	442	352	156	105	130	136	30
Putnam	458	110	53	55	49	17	22	19	12	\wedge
Saint Johns	724	133	93	108	76	36	32	31	31	\wedge
Saint Lucie	1,267	250	185	132	147	57	48	47	42	12
Santa Rosa	659	118	96	102	71	35	46	15	22	\wedge
Sarasota	2,881	525	384	371	334	180	109	116	98	13
Seminole	1,573	223	249	225	151	84	47	63	60	18
Sumter	475	110	49	47	57	25	15	21	11	\wedge
Suwannee	206	43	27	31	20	11	\wedge	14	\wedge	\wedge
Taylor	103	25	13	12	12	\wedge	\wedge	\wedge	\wedge	\wedge
Union	147	36	16	\wedge	\wedge	\wedge	14	\wedge	\wedge	\wedge
Volusia	3,253	617	419	373	386	135	124	118	99	25
Wakulla	103	15	10	16	\wedge	\wedge	\wedge	\wedge	\wedge	\wedge
Walton	187	38	18	23	18	\wedge	\wedge	\wedge	\wedge	\wedge
Washington	76	19	\wedge	\wedge	12	\wedge	\wedge	\wedge	\wedge	\wedge

Table 3. Age-adjusted Incidence Rates (1) by Sex and Race, Florida, 2003

	All Cancers			Lung \& Bronchus			Prostate			Breast			Colorectal		
	Rate	CI		Rate	Cl		Rate	CI		Rate	C		Rate	CI	
Florida (2)	431.6	428.8	434.4	69.1	68.0	70.2	124.4	122.2	126.6	105.8	103.9	107.8	46.6	45.7	47.5
Female	377.6	374.0	381.2	56.3	55.0	57.7				105.8	103.9	107.8	40.5	39.4	41.7
Male	503.4	499.0	507.9	85.1	83.3	86.9	124.4	122.2	126.6				54.1	52.7	55.6
Black	418.0	408.7	427.5	59.3	55.8	63.0	193.1	183.1	203.6	91.7	86.2	97.5	49.8	46.5	53.2
White	432.4	429.4	435.4	70.1	68.9	71.2	117.8	115.6	120.0	107.3	105.2	109.4	45.8	44.8	46.7
Black Female	342.1	331.2	353.3	36.4	32.8	40.3				91.7	86.2	97.5	46.4	42.4	50.8
White Female	381.9	378.0	385.9	58.5	57.0	59.9				107.3	105.2	109.4	39.5	38.3	40.7
Black Male	525.7	509.1	542.8	91.6	84.6	99.1	193.1	183.1	203.6				54.4	49.0	60.3
White Male	499.8	495.2	504.5	84.5	82.7	86.5	117.8	115.6	120.0				53.6	52.1	55.1
	Bladder			Head \& Neck			Non-Hodgkin			Melanoma			Cervix		
	Rate	CI		Rate	Cl		Rate	CI		Rate	CI		Rate	CI	
Florida (2)	20.6	20.0	21.2	17.2	16.6	17.8	16.7	16.1	17.2	17.1	16.5	17.7	9.0	8.3	9.6
Female	9.4	8.9	10.0	8.7	8.2	9.3	13.7	13.0	14.4	13.2	12.4	13.9	9.0	8.3	9.6
Male	35.3	34.2	36.5	27.1	26.1	28.2	20.1	19.2	21.0	22.3	21.3	23.3			
Black	9.0	7.6	10.5	15.1	13.4	16.9	11.9	10.4	13.5				10.7	8.9	12.8
White	21.6	21.0	22.2	17.4	16.8	18.0	16.9	16.3	17.5	17.1	16.5	17.7	8.9	8.2	9.6
Black Female	5.5	4.1	7.2	6.2	4.9	7.9	10.7	8.9	12.9				10.7	8.9	12.8
White Female	9.7	9.1	10.3	8.9	8.3	9.6	13.8	13.1	14.6	13.2	12.4	14.0	8.9	8.2	9.6
Black Male	14.2	11.4	17.6	26.5	23.1	30.4	13.2	10.9	16.0						
White Male	36.9	35.6	38.1	27.1	26.1	28.3	20.4	19.4	21.4	22.3	21.3	23.3			

(1) Rates are expressed as number of cases per 100,000 population per year, adjusted to the 2000 U.S. standard population.
(2) Florida total rates throughout this report include 710 new cancers in persons of "Other" races, 984 cases with unknown race, 39 cases with unknown sex, and 3 cases with unknown age. Total rates by sex include unknown age, race and Other races; rates by race include unknown sex and age.
Source of data: Florida Cancer Data System

Table 4. Age-adjusted Incidence Rates (1) by County, Florida, 2003

	All Cancers			Lung \& Bronchus			Prostate			Breast			Colorectal		
	Rate	CI		Rate	CI		Rate	CI		Rate	Cl		Rate	CI	
Florida	431.6	428.8	434.4	69.1	68.0	70.2	124.4	122.2	126.6	105.8	103.9	107.8	46.6	45.7	47.5
Alachua	466.6	436.3	498.5	84.6	71.9	98.9	132.2	108.2	160.4	126.8	106.1	150.7	54.4	44.3	66.1
Baker	443.9	356.3	549.1	86.6	51.5	140.5	119.3	62.4	240.9	113.5	58.4	202.0	59.8	29.3	111.0
Bay	422.3	392.0	454.5	82.8	69.7	97.8	117.4	94.3	145.7	109.4	88.9	133.8	50.8	40.6	63.1
Bradford	334.7	271.9	409.4	56.9	33.1	93.6	76.9	35.6	151.3	107.3	58.6	186.8	49.0	27.4	83.5
Brevard	461.3	445.3	477.8	75.8	69.6	82.5	129.3	117.5	142.2	116.8	105.4	129.3	45.3	40.5	50.7
Broward	422.6	413.6	431.7	66.6	63.1	70.3	106.3	99.6	113.3	102.5	96.4	108.9	48.3	45.3	51.4
Calhoun	333.4	248.0	443.3	130.3	79.5	206.8	^	\wedge	\wedge	\wedge	\wedge	\wedge	^	\wedge	\wedge
Charlotte	388.5	364.2	415.2	65.2	56.0	76.9	118.4	101.2	140.6	92.5	75.4	115.1	37.4	30.5	46.8
Citrus	414.6	386.4	445.7	83.1	71.7	97.6	124.5	105.7	149.1	116.5	94.0	145.6	38.1	30.9	48.3
Clay	456.0	422.1	492.2	92.5	77.5	109.6	121.6	96.2	153.0	109.3	87.9	134.7	62.7	50.2	77.4
Collier	395.2	376.6	414.7	51.2	45.0	58.4	141.9	127.1	158.6	87.6	75.0	102.4	33.5	28.6	39.5
Columbia	453.3	402.8	508.9	97.9	75.6	125.3	75.9	47.5	118.3	107.3	74.5	151.3	58.1	41.0	80.5
Miami-Dade	412.4	404.5	420.4	46.4	43.8	49.2	145.4	138.4	152.7	97.4	92.3	102.9	51.6	48.8	54.5
DeSoto	349.0	294.1	412.8	55.2	35.0	85.1	93.5	58.9	146.2	98.0	57.9	162.2	59.2	37.9	90.0
Dixie	517.0	416.2	639.2	116.4	75.8	178.4	\wedge	\wedge	\wedge	166.9	87.5	302.1	^	\wedge	\wedge
Duval	467.7	452.4	483.5	80.7	74.3	87.5	156.9	143.2	171.7	105.3	95.8	115.5	50.7	45.7	56.1
Escambia	466.1	442.8	490.3	80.7	71.3	91.2	149.7	130.3	171.6	133.3	116.6	151.9	41.0	34.3	48.7
Flagler	454.8	412.7	502.7	61.5	48.3	81.0	148.2	119.0	189.7	153.0	117.8	201.4	45.2	33.4	63.4
Franklin	328.3	242.3	446.1	91.5	48.3	171.1	\wedge	\wedge	\wedge	^	\wedge	^	^	\wedge	\wedge
Gadsden	470.7	411.1	536.9	83.4	59.5	114.2	162.8	112.1	230.6	122.1	83.8	173.2	37.9	22.4	60.5
Gilchrist	393.5	305.5	503.7	93.5	54.2	156.6	^	^	\wedge	^	\wedge	\wedge	56.6	27.0	111.2
Glades	200.9	131.0	304.7	\wedge		\wedge	\wedge	\wedge	\wedge						
Gulf	414.2	327.4	523.0	62.3	32.1	117.9	\wedge	\wedge	\wedge	119.0	55.1	239.4	64.0	32.9	120.7
Hamilton	255.4	175.0	361.8	\wedge											
Hardee	441.8	367.9	527.5	72.3	44.5	112.6	146.9	90.5	231.1	127.9	74.9	209.9	\wedge	\wedge	\wedge
Hendry	459.1	387.7	540.8	104.0	71.9	146.8	91.4	48.5	163.7	\wedge	\wedge	\wedge	44.2	24.1	75.6
Hernando	477.7	448.0	509.8	92.3	80.4	106.6	133.9	114.2	158.4	96.5	78.1	120.1	51.5	42.7	62.8
Highlands	440.6	405.5	479.4	81.4	67.4	99.3	114.0	92.9	142.4	107.0	81.4	141.4	42.2	33.0	55.2
Hillsborough	442.7	430.4	455.3	68.4	63.7	73.5	131.7	121.8	142.4	106.8	98.7	115.5	49.4	45.3	53.7
Holmes	296.1	229.4	380.1	44.6	21.3	87.7	^	^	\wedge	^	\wedge	^	\wedge	\wedge	\wedge
Indian River	406.2	377.5	437.4	68.9	58.3	82.0	104.2	85.8	127.5	71.6	54.7	94.2	52.0	42.5	64.0
Jackson	284.6	241.4	334.3	51.2	34.0	75.3	84.6	51.3	133.0	36.8	17.5	71.3	40.2	25.1	62.2
Jefferson	459.9	361.1	581.8	\wedge	\wedge	\wedge	146.9	71.5	277.1	155.3	77.6	288.1	\wedge	\wedge	
Lafayette	409.1	277.2	588.4	\wedge	\wedge	\wedge	\wedge	^	\wedge	^	\wedge	\wedge	\wedge	\wedge	\wedge
Lake	494.0	471.3	518.0	76.8	68.4	86.4	139.0	123.0	157.4	123.0	106.9	141.9	46.8	40.5	54.4
Lee	396.2	381.6	411.3	63.1	57.8	69.0	107.8	98.0	118.7	104.2	93.4	116.4	34.5	30.5	39.0
Leon	403.8	375.9	433.4	63.4	52.4	76.2	129.4	105.4	158.2	105.1	86.9	126.4	44.3	35.3	55.1
Levy	438.5	382.6	502.5	87.0	63.9	118.7	105.8	70.3	159.9	68.7	39.8	116.6	55.6	37.1	83.2
Liberty	484.1	329.5	703.3	\wedge	\wedge	\wedge	^	\wedge							
Madison	397.4	315.6	495.5	78.6	45.7	128.4	116.0	57.6	212.8	\wedge	\wedge	\wedge	48.8	23.3	92.1
Manatee	384.9	366.3	404.4	68.1	60.6	76.5	105.9	92.7	121.0	87.4	74.9	102.0	46.8	40.6	54.0
Marion	433.3	413.4	454.2	82.0	73.9	91.1	116.1	102.3	132.1	109.7	95.6	126.0	52.3	45.7	59.9
Martin	459.5	430.7	490.7	76.3	65.7	89.2	148.8	127.2	174.9	136.5	112.6	166.0	45.6	37.4	56.1
Monroe	425.7	385.3	470.3	84.4	67.2	106.1	60.9	40.1	91.1	98.0	72.3	133.0	53.6	39.9	71.9
Nassau	447.8	398.9	501.7	78.9	59.6	103.4	132.2	95.0	185.0	90.5	62.0	129.4	47.2	32.6	67.3
Okaloosa	478.6	447.3	511.7	84.9	72.0	99.6	133.7	109.9	162.7	112.5	92.5	135.7	53.3	43.3	65.3
Okeechobee	511.0	447.2	582.5	102.1	75.6	136.5	130.4	89.4	187.3	109.2	68.5	170.3	38.0	22.7	61.8
Orange	453.6	439.6	467.9	69.8	64.3	75.7	150.2	138.1	163.2	112.4	103.2	122.2	49.1	44.5	54.1
Osceola	394.1	367.9	421.7	65.0	54.7	76.8	99.7	81.1	122.1	106.4	88.4	127.2	41.9	33.6	51.8
Palm Beach	436.0	426.1	446.1	60.8	57.3	64.5	115.5	108.3	123.3	110.5	103.4	118.1	41.8	38.8	44.9
Pasco	460.0	442.0	478.8	79.1	72.1	87.0	135.8	123.0	150.3	99.6	87.7	113.1	46.7	41.5	52.7
Pinellas	435.4	424.2	446.9	77.2	72.7	82.0	115.5	107.3	124.3	109.2	101.3	117.7	47.2	43.7	50.9
Polk	476.4	459.8	493.5	76.2	69.9	83.0	125.5	113.7	138.5	123.6	112.0	136.4	50.3	45.0	56.0
Putnam	459.4	417.1	505.7	104.6	85.7	127.7	108.7	80.9	145.5	112.7	83.9	150.6	48.3	35.5	65.6
Saint Johns	398.9	370.1	429.8	71.3	59.7	85.1	109.6	88.2	135.7	114.1	93.3	139.5	41.6	32.7	52.7
Saint Lucie	396.3	373.9	420.1	73.7	64.6	84.1	116.1	99.7	135.3	87.6	72.5	105.6	42.5	35.7	50.6
Santa Rosa	495.2	457.5	535.7	87.1	71.9	105.1	153.3	123.1	191.5	141.0	114.8	172.0	55.1	42.8	70.5
Sarasota	428.6	411.1	447.0	71.7	65.2	79.0	116.3	104.5	129.9	113.0	100.1	128.0	45.4	40.2	51.6
Seminole	407.7	387.6	428.7	60.6	52.8	69.2	144.1	126.2	164.2	102.2	89.2	116.8	39.8	33.6	46.8
Sumter	388.9	351.6	431.4	84.7	68.6	106.2	76.9	55.4	110.1	83.1	58.3	120.9	44.5	33.0	61.8
Suwannee	418.7	362.5	483.0	84.5	60.9	116.6	113.8	74.7	170.8	118.2	79.6	174.7	39.0	23.8	63.4
Taylor	441.5	359.8	538.0	101.7	65.7	153.0	106.7	56.6	198.6	97.5	49.8	182.5	49.5	25.5	89.6
Union	1098.3	920.8	1309.2	275.4	190.7	395.9	231.6	127.1	446.3	\wedge	\wedge	\wedge	\wedge	\wedge	\wedge
Volusia	460.4	444.1	477.3	82.8	76.2	90.0	123.3	111.7	136.2	102.5	91.8	114.5	52.1	46.9	58.0
Wakulla	419.6	340.7	513.9	57.0	31.6	98.8	76.5	35.6	161.9	121.5	69.1	203.0	^	\wedge	\wedge
Walton	292.0	250.9	339.6	57.7	40.7	81.7	53.5	31.6	89.7	70.6	44.3	111.9	27.6	16.3	46.1
Washington	274.9	216.0	348.2	65.7	39.5	107.2	\wedge	\wedge	\wedge	\wedge	^	\wedge	44.6	22.8	82.7

(1) Rates are expressed as number of cases per 100,000 population per year, adjusted to the 2000 U.S. standard population.
^ Statistics are not displayed for cells with fewer than 10 cases.
Source of data: Florida Cancer Data System

Table 4. Age-adjusted Incidence Rates (1) by County, Florida, 2003

	Bladder			Head \& Neck			Non-Hodgkin			Melanoma			Cervix		
	Rate	CI		Rate	Cl										
Florida	20.6	20.0	21.2	17.2	16.6	17.8	16.7	16.1	17.2	17.1	16.5	17.7	9.0	8.3	9.6
Alachua	12.6	8.1	18.9	16.8	11.5	23.8	16.3	11.1	23.1	14.9	9.7	22.4	\wedge	\wedge	\wedge
Baker	\wedge														
Bay	22.4	15.9	31.0	18.8	12.9	26.7	14.3	9.3	21.5	15.3	9.7	23.2	\wedge	\wedge	\wedge
Bradford	\wedge														
Brevard	28.6	24.9	32.9	15.9	13.0	19.4	15.7	12.9	19.2	20.5	16.9	24.9	8.0	5.1	12.4
Broward	20.5	18.6	22.6	14.6	13.0	16.4	17.6	15.8	19.6	15.7	13.8	17.9	7.9	6.2	10.0
Calhoun	\wedge														
Charlotte	20.1	15.3	27.7	21.6	15.8	30.2	16.4	11.4	24.3	7.0	4.0	13.7	\wedge	\wedge	\wedge
Citrus	15.4	10.3	24.0	18.5	12.5	28.0	15.2	9.8	24.3	12.3	7.4	21.2	\wedge	\wedge	\wedge
Clay	17.4	11.1	26.1	16.0	10.4	23.8	11.5	6.6	18.7	18.9	12.5	27.7	\wedge	\wedge	\wedge
Collier	21.9	18.0	26.9	14.8	11.3	19.3	16.6	12.9	21.4	20.6	16.2	26.1	10.3	5.6	17.9
Columbia	18.3	9.4	32.9	17.4	8.7	32.0	\wedge	\wedge	\wedge	22.7	12.0	40.1	\wedge	\wedge	\wedge
Miami-Dade	16.4	14.9	18.0	15.6	14.1	17.3	17.2	15.6	18.9	11.3	9.9	12.9	12.0	10.1	14.0
DeSoto	\wedge														
Dixie	\wedge														
Duval	21.3	18.1	24.9	19.1	16.1	22.4	15.9	13.2	19.0	15.4	12.4	18.9	9.0	6.3	12.3
Escambia	19.5	15.0	25.0	21.5	16.8	27.3	19.3	14.8	24.8	16.1	11.6	22.0	7.3	3.6	13.3
Flagler	19.8	12.6	34.1	17.3	9.6	32.7	19.3	10.3	36.3	14.3	5.8	32.7	\wedge	\wedge	\wedge
Franklin	\wedge														
Gadsden	22.8	11.4	41.5	29.3	16.0	49.9	\wedge								
Gilchrist	\wedge														
Glades	\wedge														
Gulf	\wedge														
Hamilton	\wedge														
Hardee	\wedge														
Hendry	\wedge														
Hernando	27.3	21.1	36.1	21.6	14.8	31.3	15.0	10.5	22.3	16.2	10.6	25.1	18.8	8.8	36.3
Highlands	16.6	11.9	25.6	24.0	16.1	36.5	14.7	8.9	25.1	11.9	6.4	23.1	\wedge	\wedge	\wedge
Hillsborough	19.7	17.1	22.5	15.5	13.3	18.0	16.4	14.1	19.0	18.8	16.2	21.8	9.5	7.2	12.4
Holmes	\wedge	,	A	\wedge	\wedge	\wedge									
Indian River	18.0	13.0	25.6	15.4	10.0	23.7	16.4	10.4	25.5	22.0	14.7	32.8	\wedge	\wedge	\wedge
Jackson	\wedge	22.0	10.5	43.6	\wedge	\wedge	\wedge								
Jefferson	\wedge														
Lafayette	\wedge														
Lake	26.4	21.7	32.4	22.7	17.9	29.0	22.3	17.5	28.5	21.3	16.4	27.7	10.1	4.9	18.9
Lee	18.9	16.0	22.3	18.1	15.0	21.8	16.7	13.7	20.3	21.3	17.6	25.6	9.6	5.9	15.0
Leon	12.5	8.0	18.7	14.8	9.9	21.3	16.6	11.3	23.6	13.8	8.7	21.1	\wedge	\wedge	\wedge
Levy	\wedge	\wedge	\wedge	33.5	18.8	58.1	\wedge								
Liberty	\wedge														
Madison	\wedge														
Manatee	19.1	15.4	23.8	15.1	11.6	19.8	16.1	12.4	20.8	7.7	5.1	11.6	7.8	3.8	14.8
Marion	19.8	15.9	24.7	16.3	12.4	21.5	15.1	11.5	20.0	13.8	10.1	18.9	\wedge	\wedge	\wedge
Martin	21.0	15.9	28.6	20.1	13.9	29.0	12.3	8.1	19.2	26.0	18.7	36.4	\wedge	\wedge	\wedge
Monroe	14.2	7.5	26.2	25.0	16.5	38.0	14.7	7.7	26.8	21.4	13.3	34.7	\wedge	\wedge	\wedge
Nassau	14.5	6.9	28.1	18.6	9.8	33.1	17.6	9.2	31.7	17.3	8.4	32.7	\wedge	\wedge	\wedge
Okaloosa	33.3	25.2	43.2	15.7	10.6	22.8	19.6	13.6	27.7	17.7	12.0	25.4	\wedge	\wedge	\wedge
Okeechobee	23.6	11.9	44.1	25.4	13.4	46.2	24.0	11.3	46.2	\wedge	\wedge	\wedge	\wedge	\wedge	\wedge
Orange	19.7	16.8	23.0	18.6	15.9	21.7	16.2	13.7	19.1	16.2	13.5	19.4	10.1	7.5	13.3
Osceola	15.4	10.5	21.8	12.5	8.2	18.3	16.0	11.1	22.4	14.9	10.1	21.3	10.0	4.9	18.1
Palm Beach	25.6	23.4	27.9	18.5	16.4	20.8	19.2	17.1	21.5	24.0	21.5	26.8	8.3	6.2	11.1
Pasco	23.4	19.9	27.7	19.2	15.6	23.8	14.9	11.8	18.9	16.9	13.1	21.7	8.7	5.1	14.4
Pinellas	22.7	20.3	25.3	20.3	17.8	23.0	13.6	11.6	15.8	16.2	13.9	18.9	9.6	7.1	12.9
Polk	21.4	18.1	25.2	15.6	12.7	19.1	19.0	15.8	22.7	24.0	20.0	28.8	11.9	7.9	17.3
Putnam	16.2	9.4	27.8	21.5	13.4	34.3	17.8	10.6	29.6	17.3	8.4	32.8	\wedge	\wedge	\wedge
Saint Johns	19.6	13.7	27.9	17.6	12.0	25.6	17.4	11.8	25.5	18.3	12.3	26.9	\wedge	\wedge	\wedge
Saint Lucie	17.0	12.8	22.8	15.4	11.2	21.1	16.1	11.5	22.2	17.2	12.1	24.4	9.8	4.8	18.3
Santa Rosa	28.0	19.5	39.7	33.6	24.5	45.6	11.3	6.2	19.5	17.0	10.5	26.6	\wedge	\wedge	\wedge
Sarasota	23.2	19.7	27.6	18.4	14.7	23.2	18.8	15.0	23.7	18.6	14.5	24.1	4.7	2.3	9.9
Seminole	22.8	18.2	28.4	11.5	8.4	15.5	17.0	13.1	21.9	16.7	12.7	21.6	8.2	4.8	13.2
Sumter	18.1	11.3	31.5	13.0	6.9	26.2	19.4	11.2	34.5	13.3	5.4	30.4	\wedge	\wedge	\wedge
Suwannee	22.6	11.0	44.0	^	\wedge	\wedge	30.4	16.3	54.3	^	\wedge	\wedge	\wedge	\wedge	\wedge
Taylor	\wedge														
Union	\wedge	\wedge	\wedge	92.1	49.5	172.6	\wedge								
Volusia	17.2	14.4	20.7	18.7	15.5	22.7	17.4	14.3	21.2	15.9	12.7	20.0	9.6	6.0	14.8
Wakulla	\wedge														
Walton	\wedge														
Washington	\wedge														

(1) Rates are expressed as number of cases per 100,000 population per year, adjusted to the 2000 U.S. standard population.
^ Statistics are not displayed for cells with fewer than 10 cases.

Figure 1. New Cases and Age-Adjusted Incidence Rates for All Cancers by Sex and Race, Florida, 1981-2003

[^17]Figure 2.1 Age-Adjusted Incidence Rates by Sex and Race, Florida, 1981-2003

Figure 2.2 Age-Adjusted Incidence Rates by Sex and Race, Florida, 1981-2003

Figure 2.3 Age-Adjusted Incidence Rates by Sex and Race, Florida, 1981-2003

Figure 4. Age-Specific Incidence Rates for All Cancers by Sex, Race, and Age Group, Florida, 1981-2003

Summary of Revisions to Florida's Notifiable Disease Reporting Law (Chapter 64D-3. F.A.C.)
Section 6

Notifiable Disease Reporting: Changes to Chapter 64D-3, Florida Administrative Code (F.A.C.)

Reporting suspect and confirmed notifiable diseases or conditions in the State of Florida is mandated under Florida Statute 381.0031, Chapter 64D-3, Florida Administrative Code (F.A.C.). During 2005 and 2006 the Florida Department of Health conducted an extensive rewrite of Chapter 64D-3 F.A.C.. These changes became effective November 2006.

As stated in Chapter 64D-3 F.A.C., persons in charge of laboratories, practitioners, hospitals, medical facilities, schools, nursing homes, state institutions, or other locations providing health services are required to report diseases or conditions and the associated laboratory test results listed in the Table of Notifiable Diseases or Conditions. Physicians, laboratorians, infection control practitioners, and other healthcare providers play a key role in the state and local public health department efforts to control notifiable diseases. The public health system depends upon reports of disease to monitor the health of the community, and to provide the basis for preventive action.

Some important highlights to Chapter 64D-3, F.A.C. that took effect November 2006 include:

■ Revised reporting timeframes to three major categories:

- Suspect Immediately (newly added): Report immediately upon initial suspicion or laboratory test order, 24/7 by phone;
- Immediately: Report immediately upon diagnosis confirmed clinically or by laboratory test results, 24/7 by phone;
- Next Business Day (previously within 72 hours): Report no later than the closure of the county health department next business day following confirmatory testing or diagnosis.

■ Added new diseases or conditions to the list of reportable diseases for practitioners and laboratories:

- Reportable by practitioners: HIV-exposed infants or newborns, and conjunctivitis in neonates <14 days old;
- Reportable by laboratories: CD-4 counts, viral load, and STARHS; abnormal cervical cytologist/histologies; ALL blood lead tests performed;
- Reportable by practitioners and laboratories (newly added): California serogroup viruses; HPV cancer associate strains; novel or pandemic influenza virus strains (isolated from a human); influenza associated pediatric mortality; hepatitis D, E, and G; SARS; typhus fever (epidemic); varicella; varicella mortality; and cancer, including benign and borderline intracranial and central nervous system tumors.

■ Required routine testing during pregnancy for chlamydia, gonorrhea, hepatitis B, HIV, and syphilis with an opt-out approach.

- Required laboratories to report laboratory results for notifiable diseases or conditions electronically.

To obtain more information, such as the updated version of Chapter 64D-3, F.A.C., or other important reporting documents and guidelines, please visit
http://www.doh.state.fl.us/disease_ctrl/epi/topics/surv.htm or contact the Florida Department of Health state offices, or the local county health department.

[^0]: ${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals

[^1]: Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
 ${ }^{2} 997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals.

[^2]: ${ }^{1}$ Includes reported cases of H . influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.

[^3]: ${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals.

[^4]: ${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals.

[^5]: ${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
 ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
 ${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
 ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NA - Not Applicable

[^6]: ${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals

[^7]: ${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals,
 ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
 ${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
 ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NA - Not Applicable

[^8]: ${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
 ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
 ${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
 ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other NA - Not Applicable

[^9]: ${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals.

[^10]: ${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals.

[^11]: ${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals

[^12]: Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthritis.
 ${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals
 ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
 ${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
 ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other.
 NR - Not Reportable NA - Not Applicable

[^13]: Includes reported cases of H. influezae presenting as cellulitis, epiglottitis, meningitis, bacteremia, and septic arthrits.
 ${ }^{2} 997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals

[^14]: ${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals,
 ${ }^{3}$ Includes reported cases of listeriosis and cases of meningitis caused by Listeria monocytogenes
 ${ }^{4}$ Includes reported cases of meningococcal meningitis, pneumonia caused by Neisseria meningitidis, meningococcal disease, and meningococcemia disseminated.
 ${ }^{5}$ Includes reported cases of V. alginolyticus, V. cholerae non-O1, V. fluvialis, V. hollisae, V. mimicus, V. parahaemolyticus, V. vulnificus, and V. other.
 NR - Not Reportable NA - Not Applicable

[^15]: ${ }^{2} 1997$ cases are only from July-Dec. HIV data includes those cases that have converted to AIDS. These HIV cases cannot be added with AIDS cases to get combined totals.

[^16]: A. Lerche, N. Rasmussen, J.H. Wandall, and V.A. Bohr, "Staphylococcus aureus Meningitis: A Review of 28 Community Acquired Cases," Scandinavian Journal of Infectious Diseases, Vol. 27, No. 6, 1995, pp. 569-573.

[^17]: Source of data: Florida Cancer Data System

