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Introduction 
 Attached at Tab A is Sandia National Laboratories’ (Sandia or SNL) final report (Report 
on Accelerated Corrosion Studies of Electrical Components) on their analysis of corrosion of 
electrical components exposed to selected contaminant gasses at elevated temperature and 
humidity to simulate 40 years of exposure to the approximate conditions present in homes with 
problem drywall.  This work was undertaken as part of the U.S. Consumer Product Safety 
Commission (CPSC) staff’s multitrack plan to assess the health and safety impacts of problem 
drywall. 
 
Background 

In April 2009, CPSC Engineering staff developed a plan to study whether problem 
drywall-related corrosion could result in degradation that could affect the performance of 
electrical components and/or pose a risk of electric shock or fire.  To assist in the execution of 
this plan, CPSC staff tasked the Materials Science and Engineering Center at SNL, through an 
interagency agreement with the Department of Energy/National Nuclear Security Administration 
(1) to perform detailed metallurgical analyses of electrical components harvested from homes 
constructed with problem drywall, and (2) to assess long-term effects by conducting accelerated 
corrosion testing on new residential electrical components.  In November 2009, SNL released a 
report, Interim Report on the Analysis of Corrosion Products on Harvested Electrical 
Components (Glass et al., 2009), on the preliminary analysis of six receptacles that had been 
collected by CPSC staff from affected homes in Virginia and Florida.  This report is attached as 
an appendix to the CPSC staff report, Interim Report on the Status of the Analysis of Electrical 
Components Installed in Homes with Chinese Drywall (Gill and Trotta, 2009). 

 
Sandia’s November 2009 preliminary analysis of six standard duplex receptacles that had 

been harvested from affected homes indicated that the accumulation of copper sulfide corrosion 
was evident visually on metal surfaces that were exposed to air in homes in which problem 
drywall was installed, but that the corrosion layer was relatively thin compared to the overall 
volume of the conductors.  Secure metal-to-metal contact surfaces were not corroded.  In 
addition, none of the harvested samples exhibited signs of prefire conditions, such as overheating 
or arcing.  Although, the relatively fast accumulation of corrosion on the components is 
undesirable, there did not appear to be a short-term effect on electrical safety.  In addition, 
Sandia indicated that the copper sulfide that was observed on the corroded parts is a stable 
compound that would not continue to grow in the absence of reactive sulfur gases such as 
hydrogen sulfide. 

 
The rate and nature of corrosion on the components that had been harvested from the six 

houses after approximately three years of exposure to problem drywall led Sandia to characterize 
the local environment as Battelle Class III to IV (Abbott, 1988), comparable to a corrosive 
industrial environment as opposed to a typical residential environment.  One point of 
significance of this classification is that it defined the test conditions for the evaluation of the 
long-term safety effects due to corrosion through the use of accelerated corrosion testing.  
Accelerated corrosion testing involves placing the components under evaluation in a chamber in 
which the corroding gas is combined with additional gases to accelerate the reaction processes, 
mixed and circulated through the chamber.  Eventually, Sandia opted to test the components at 



-3- 

the Class IV level.  These tests commonly are referred to as mixed-flowing gas (MFG) tests.  
ASTM B827, Standard Practice for Conducting Mixed Flowing Gas (MFG) Environmental 
Tests, provides guidance for conducting this type of laboratory accelerated-corrosion testing.  

 
Another critical test parameter involved identifying the primary corroding gas.  This had 

been identified largely by outside parties studying Chinese drywall as H2S; but CPSC staff 
sought to identify independently what the corroding gas was by sponsoring laboratory chamber 
studies, as well as in-home air quality investigations.  Staff contracted with Lawrence Berkeley 
National Laboratory (LBNL) for measurement of chemical emissions from 30 samples of 
drywall products obtained as part of the drywall investigation.  According to LBNL (Maddalena 
et al., 2010), the highest concentration gas was H2S, but many other reactive sulfur gases were 
also present in the samples with high emissions.  The top 10 reactive sulfur-emitting drywall 
samples were from China.  The patterns of reactive sulfur compounds emitted from drywall 
samples showed a clear distinction between the Chinese drywall samples manufactured in 
2005/2006, and Chinese and North American samples with manufacture dates of 2009, which 
did not emit reduced sulfur gases at particularly noteworthy levels.  The data linking problem 
drywall with H2S emissions was augmented by Environmental Health & Engineering’s CPSC-
sponsored 51-home study (Environmental Health & Engineering, 2010), which correlated that 
the corrosion was attributable to problem drywall.  Homes with imported drywall had 
significantly greater H2S concentrations compared to control homes in the study. 

   
Sandia staff verified with William Abbott at Battelle that two weeks of exposure in the 

mixed flowing gas chamber was approximately equivalent to 10 years of actual exposure.  
Sandia’s November 2009 preliminary analysis provided a snapshot of the relatively short-term 
in-situ effects of the drywall-related corrosion in approximately three-years-old houses whereas 
the MFG chamber tests would help answer the question of what possible long-term effects could 
take place if the drywall remained in place.  Most electrical system components, particularly 
passive ones like standard duplex receptacles, are extremely durable, subject to a wide variation 
in their frequency of usage, and they have no specified service life or recommended replacement 
schedule.  However, CPSC staff’s recommendation in the CPSC Guide to Home Wiring Hazards 
(CPSC Publication No. 518) is that homeowners have their electrical systems inspected, at the 
very least, every 40 years.  Seeking to balance the selection of the test duration that was both 
conservative and reasonable in assessing the long-term effects of the drywall-related corrosion 
(especially without knowing how long the drywall may off-gas), CPSC staff selected 40 years of 
aging, which equated to eight weeks of corrosive exposure of the components in the test 
chamber.   

 
CPSC staff chose to cycle the components electrically during the exposure period in the 

chamber to provide thermally-driven stresses of the corrosion product (due to differences in the 
thermal expansion properties of the metal conductors and the corrosion products).  Sandia staff 
used the load cycling to assess corrosion-induced functional impacts while components were 
undergoing exposure by measuring voltage drops across the circuits.  An increase in voltage drop 
over the course of testing would signal degradation of the connection resistance within the 
circuit.  Running the components under a load involved selecting a suitable load current based on 
the 15-ampere (A) rating of the components in the circuit and a duty cycle to define the on/off 
period of the load.  Class IV conditions require the chamber temperature to be held at 50°C.  



-4- 

Circuit breakers are calibrated to carry 100 percent current at 40°C, so derating1 the current-
carrying capacity of the circuit breaker under this elevated ambient temperature was required to 
guard against nuisance tripping.  On this basis, CPSC staff decided to load the circuits at 80 
percent of the handle rating of the circuit breaker (the breakers to be placed in the chamber were 
rated for 15 A) and because 80 percent also complies with 2008 National Electrical Code Article 
210.23(A)(1).2

 

  For a 15-ampere-rated circuit, this corresponds to 12 A.  Sandia elected to use 
portable halogen work lights as the electrical loads for each of three separate circuits.  Three 
work lights, rated 500 Watts (W) each (at 125 volts), were connected electrically in parallel and 
then attached to each circuit for a rated total of 1500 W.  CPSC staff selected a 50 percent duty 
cycle with 10 minutes on, and 10 minutes off, allowing time for the circuit components to come 
up to temperature when connected to the electrical loads, and to return to ambient temperature 
when disconnected.  The test circuits were constructed by a qualified technician in accordance 
with common electrical wiring practices and manufacturer specifications, to the extent 
practicable. 

While Sandia constructed the MFG chamber and assembled the gas control and 
distribution network, CPSC staff procured three sets of off-the-shelf electrical components from 
various manufacturers, as indicated in the table below (distribution panel; standard single-pole 
circuit breaker; single-pole arc-fault circuit-interrupter circuit breaker; standard duplex 
receptacle; GFCI receptacle; nonmetallic cable, two-conductor with ground) and shipped them 
(with spares) to Sandia for the accelerated corrosion testing.  CPSC staff also designed and 
assembled the load switching circuits and shipped them to Sandia for the testing.  

  
Component Manufacturer 
GFCI Receptacle A, B, C 
Toggle Switch A, B, C 
Decorator Rocker Switch A, B, C 
Breaker Enclosure D, E, F 
15- ampere AFCI Circuit Breaker D, E, F 
15-ampere Standard Circuit Breaker D, E, F 
Twist-on Connector (yellow) G, H, I 
Twist-on Connector (red) G, H, I 
Twist-on Connector (green) G, H 
Single-gang Plastic Boxes  J 
NM-B Cable, 2-wire with ground, AWG 14 (250 ft) K 

 
 
Sandia’s Findings - Highlights 

Based on the results of their analyses, Sandia found that the accelerated corrosion tests 
resulted in copper sulfide corrosion growth on copper-containing components, including growth 

                                                 
1 Derating allows operation at a higher-than-rated ambient temperature by decreasing the operating current, provided 
that the ambient temperature does not exceed the maximum allowable.    
2 NEC Article 210.23(A)(1) indicates that any single cord-and-plug-connected equipment not fastened in place 
cannot exceed 80 percent of the branch-circuit ampere rating. 



-5- 

inside non-hermetically-sealed components (receptacles, breakers, and twist-on connectors), with 
reduced growth in areas of reduced availability to gas diffusion. 
 

Sandia’s scientists also observed that insulation on the type NM (nonmetallic) power 
cables tested in the ACT chamber appeared to be very effective in protecting the underlying 
copper wire.  Whenever they removed electrical insulation for inspection of the underlying 
copper surface, they saw no evidence of wire corrosion.  They asserted that their observations on 
this in particular cannot be extrapolated to a 40-year lifetime, but that the fact remains that the 
insulated wire, when exposed to a very aggressive environment, did not suffer corrosion beneath 
the wire insulation. 
 

With respect to electrical characteristics and possible hazardous conditions, Sandia 
reported that their testing and materials characterization measurements revealed: 

• no growth between surfaces that retained physical contact during testing; 
• no manifestations of fire or overheating; 
• no significant detectable changes in circuit resistance (measured via voltage drop); and 
• no significant degradation of wire cross sectional area. 

 
Conclusions 

After exposure to the harsh corrosive conditions of the Battelle Class IV environment for 
eight weeks, roughly equivalent to 40 years of exposure to conditions representative of a house 
with problem drywall, corrosion of the electrical components was observed, which was 
consistent with Sandia’s examination of harvested components and the effects from problem 
drywall reported to the CPSC by thousands of consumers.  Sandia staff did not observe any acute 
or long-term safety events, such as smoking or fire, during the course of the experiment.  
Accordingly, it is the belief of CPSC staff and Sandia that even simulated long-term exposure of 
wiring and other electrical components to hydrogen sulfide gases does not indicate a safety 
hazard to the home’s electrical systems.   
 

While no fire, smoking, or other safety events occurred during the course of this 
experiment, CPSC staff and Sandia are mindful of the limited scope and controlled conditions of 
this experiment.  The experiment does not, and could not, possibly capture every permutation of 
conditions, wiring, installation, brands, environmental conditions, and other possible 
confounding factors that are actually present in the affected houses.  For example, it is widely 
known (Dini, 2008), and CPSC engineers have often observed, that electrical system components 
in homes may be installed with substandard workmanship, and this may affect connection 
resistance and performance.  Sandia’s testing was performed at manufacturers’ recommended 
torque installation levels and did not explore the impact of a loose connection.   
 
 While this study provides some level of reassurance that the installed electrical 
components are sufficiently robust to withstand both the actual in-situ exposure to drywall and 
simulated longer-term exposure to hydrogen sulfide emissions without a discernable safety risk, 
it is evident that the components have been degraded, however slightly, by the corrosive reaction 
with the gases.  Therefore, it is advisable, out of an abundance of caution, for remediation 
guidance to include replacement of affected electrical distribution system components, including 
receptacles, GFCI receptacles, switches, twist-on splicing connectors, and circuit breakers.  
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Corrosion to the exposed ends of Type NM cable assemblies did not reduce significantly the 
overall cross section of copper and thus, did not decrease the wire’s ability to carry its rated 
current.  Thus, removal or cleaning of the exposed ends of the wiring to reveal a 
clean/uncorroded surface is recommended, and cables may remain in place unless damaged 
during drywall removal.  All alterations to, and installation of components in, the electrical 
system should be conducted by qualified personnel strictly in accordance with local code 
requirements with the express approval of authorities having jurisdiction.  

 
Discussion 

The Sandia findings clarify some of the questions raised regarding the electrical safety 
implications of the sulfur gas corrosion caused by drywall.  First, it is apparent that atmospheric 
corrosion of the copper conductor by hydrogen sulfide has no appreciable impact on the 
conductor cross sectional area, and thus, has a negligible impact on the current-carrying capacity 
of the wires.  Similarly, the cross sectional area of the grounding conductor, which is usually 
bare (not electrically insulated) and thus had been the electrical part in affected houses that was 
most visibly-affected (blackened) by drywall-related corrosion, would be decreased negligibly.  
With its cross sectional area essentially intact, a grounding wire would have virtually no impact 
from drywall-related corrosion on its ability to carry fault currents back to the branch overcurrent 
protection device, such as a circuit breaker.   
 

All indications are that secure metal-to-metal contact, such as between a wire and the 
knife-edge contact of a back-wire push-in connection in a receptacle, are shielded significantly 
from the pollutant gases and therefore, experience negligible corrosion from hydrogen sulfide 
gas.  Voltage-drop measurements made during the test indicated that the build-up of corrosion 
product did not interfere with connection interfaces, which could otherwise cause a high-
resistance connection.  However, the quality of the workmanship associated with the installation 
of the electrical system in the home (e.g., how tightly electrical connections are made) may 
become more critical in the long run for devices installed in homes with problem drywall 
because there may not be sufficient metal-to-metal contact to shield the contact surface 
adequately in poorly tightened connections.  

 
The impact of the corrosion on dynamic contact surfaces, such as receptacle sockets and 

switch contacts, relates to their typical use.  Contacts that remain closed in normal use, such as in 
a circuit breaker or GFCI,3

                                                 
3 A GFCI receptacle is an electrical wiring device intended to prevent electrocution by monitoring current flowing 
through the circuit connected to its output terminals.  Upon detection of current “leaking” from the circuit, as would 
occur in a ground fault, a GFCI removes power from the circuit by opening its internal contacts. 

 or even in a receptacle in which a plug is always inserted, maintained 
metal-to-metal contact and thus, did not exhibit performance degradation.  Contacts that may be 
open for long periods of time, such as in a rocker switch or the sockets of a rarely-used 
receptacle, would corrode.  While this corrosion build-up was not studied specifically during the 
accelerated corrosion tests, the copper sulfide was friable and displaced readily by scraping, such 
as sliding a plug into a receptacle.  Rocker switch contacts do not have such a sliding action, but 
the snap action potentially could fracture the film exposing the underlying metal, and 
reestablishing electrical contact.  However, the increased resistance of an undisturbed copper 
sulfide layer at an electrical interface could cause intermittent operation of a switch, as has been 
documented anecdotally from field reports.  Therefore, while this may not constitute a risk of fire 
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or lead to measurable performance degradation, it nonetheless results in degradation in the 
condition of devices with open/movable contacts, justifying their replacement, out of an 
abundance of caution. 
 

 When intact, the tight polyvinyl chloride insulation with nylon jacketing found on a 
nonmetallic (Type NM) cable assembly, as is commonly used in residential branch circuit 
wiring, appears to provide sufficient shielding of the copper conductors against sulfidation along 
the length of the cable.  This was demonstrated by examination of harvested samples and the 
new samples tested in the accelerated corrosion chamber.  However the accelerated test was not 
designed to accelerate diffusion through the insulation, so no conclusions can be drawn relative 
to a 40-year life.  
  

There have been reports of fires or overheating incidents alleged to have been caused by 
problem drywall-related corrosion, and CPSC staff has carefully followed up on each report.  In 
general, while residential electrical systems are very safe, electrical faults occur in normal 
practice, due to a variety of reasons, and fires may result.  For example, according to the CPSC’s 
Directorate for Epidemiology staff (Miller et al., 2010), “During 2005–2007, an estimated annual 
average of 11,500 fires was attributable to electrical distribution system components (e.g., 
installed wiring, lighting, etc.).  This corresponds to 3.0% of the estimated annual average number 
of total residential fires for the same time period.”  These estimates only include incidents that 
were responded to by a fire department.     
 

CPSC staff followed up on every known report of fire or malfunctions through a variety 
of means, from communication with involved witnesses or fire officials to actual physical 
inspections as warranted by the particular circumstance and resource considerations.  CPSC staff 
did not find any fire or malfunction incidents attributable directly to problem drywall-related 
corrosion.  In two cases—one involving an arcing GFCI receptacle that was videotaped and 
circulated on the Internet, and the other involving a report of audible sounds of arcing and 
flickering lights—CPSC headquarters staff conducted site visits to investigate the reported 
problems.  In the investigation of the incident of the arcing GFCI receptacle, staff concluded that 
a line-to-ground fault, created by a ground wire contacting a line conductor, was the source of 
the visible arcing.  Both the GFCI and the branch circuit breaker tripped to de-energize the fault.  
The house had problem drywall, but the line-to-ground fault was attributable to an installation 
error, not to drywall-related corrosion; in addition, both the GFCI and the branch circuit breaker 
tripped to isolate the fault.  In the other case in which occupants reported “hearing the ‘electrical 
arcing’ sound from our walls for the past few weeks …,” CPSC staff conducted a site inspection 
of the house but did not identify any signs of arcing or overheating on any wiring devices or 
wires (the house was undergoing drywall removal and all wires were visible because they were 
exposed by the removed drywall).  
 

In general, residential electrical system components appear to be relatively tolerant of the 
corrosive environment created by problem drywall, if the system is installed properly.  
Appliances and electronic devices, such as flat-screen televisions and video game systems, 
contain more sensitive components that may cause them to cease operating, but these types of 
operational failures do not present a safety concern. 
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Abstract 
 

Sandia National Laboratories (SNL) conducted accelerated atmospheric 
corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) 
to help further the understanding of the development of corrosion products on 
conductor materials in household electrical components exposed to 
environmental conditions representative of homes constructed with problem 
drywall. The conditions of the accelerated testing were chosen to produce 
corrosion product growth that would be consistent with long-term exposure to 
environments containing humidity and parts per billion (ppb) levels of 
hydrogen sulfide (H2

 

S) that are thought to have been the source of corrosion 
in electrical components from affected homes. This report documents the test 
set-up, monitoring of electrical performance of powered electrical components 
during the exposure, and the materials characterization conducted on wires, 
screws, and contact plates from selected electrical components. No 
degradation in electrical performance (measured via voltage drop) was 
measured during the course of the 8-week exposure, which was approximately 
equivalent to 40 years of exposure in a light industrial environment. Analyses 
show that corrosion products consisting of various phases of copper sulfide, 
copper sulfate, and copper oxide are found on exposed surfaces of the 
conductor materials including wires, screws, and contact plates. The 
morphology and the thickness of the corrosion products showed a range of 
character. In some of the copper wires that were observed, corrosion product 
had flaked or spalled off the surface, exposing fresh metal to the reaction with 
the contaminant gasses; however, there was no significant change in the wire 
cross-sectional area. 
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NOMENCLATURE 
 
AES Auger–Electron Spectroscopy 
AFCI arc-fault circuit interrupter 
Al aluminum 
Au gold 
CPSC Consumer Product Safety Commission 
Cr chromium  
ct contact tab 
Cu copper 
Cu2
CuS covellite 

O cuprite, copper oxide 

CuSO4 
Cu

chalcocyanite 
3(SO4)(OH)4

Cu
 antlerite 

9S5
(Cu,Zn)

 digenite, copper sulfide 
5(SO4)6.6(H2

EDS energy dispersive spectroscopy 
O) ktenasite 

FACT Facility for Atmospheric Corrosion Testing 
Fe iron 
FIB focused ion beam 
GFCI ground fault circuit interrupter 
GS ground screw 
GW ground wire 
HSP hot screw plate 
HS hot screw 
HW hot wire 
l left 
lpm liters per minute 
lcp left contact plate 
MFG mixed flowing gas 
m/z mass to charge ratio (in mass spectrometry) 
micrometer 1 millionth of a meter or 1x10-6

micron (µm) 1 millionth of a meter or 1x10
 meters 

-6

mm millimeter 
 meters 

m-ohm milli-ohm or one thousandth of an ohm 
Ni nickel 
NS neutral screw 
O oxygen 
PIHW push-in hot wire 
ppb parts per billion 
ppm parts per million 
Pt platinum 
R receptacle 
r right 
rcp right contact plate 
S sulfur 
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SEM scanning electron microscopy 
SNL Sandia National Laboratories 
Ti titanium 
XRD X-ray Diffraction 
XRF X-ray Fluorescence 
Z atomic number of element from the periodic table (e.g., Z for 
 copper is 29) 
Zn zinc 
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1. INTRODUCTION  
 
In September 2009, Sandia National Laboratories (SNL) was tasked by the U.S. Consumer 
Product Safety Commission (CPSC) staff with identifying the extent and nature of corrosion on 
conductor subcomponents of residential electrical components harvested from homes in several 
states.  Residential electrical components, including receptacles, switches, ground-fault circuit-
interrupters (GFCIs), arc-fault circuit interrupters (AFCIs), and circuit breakers were provided to 
SNL for analyses.  That study examined electrical components that had been installed in Florida 
and Virginia homes for a period of two or more years prior to their removal by the CPSC.  A set 
of six receptacles was the focus of Sandia’s study of harvested electrical components.  Corrosion 
was observed on electrical conductors (wires, screws, and contact plates) from receptacles 
harvested from six homes. The major findings of that study were reported and are summarized as 
follows:1

 
 

• Wires showed the greatest degree of corrosion, with some areas showing a 
continuous layer of corrosion product.  

• Scanning Electron Microscopy / Energy Dispersive Spectroscopy (SEM/EDS) 
elemental analyses showed that the corrosion product, which was up to 20 microns 
thick in samples analyzed, to date, consisted primarily of copper and sulfur.  

• SEM analyses of FIB cross sectioned ground wires also showed that there was 
localized corrosion of the base copper that produced pits.  This is consistent with 
our understanding of the copper sulfidation process. As the copper sulfide film 
forms, copper from the metal below the film migrates through the film, is 
sulfidized at the surface, and results in growth of the film. Thus, the voids in the 
copper surface are the result of copper migration during the sulfidation process. In 
some cases, the voids contained a spongy looking material. The voids observed, to 
date, were up to 20 microns in depth.  

• X-ray diffraction (XRD) analyses identified Cu9S5 (digenite) and Cu2

• Similar results in terms of corrosion product thickness and composition were found 
in a parallel study conducted by the National Institute of Standards and 
Technology (NIST) on Cu hardware used in HVAC, gas distribution, and fire 
safety components.

O (cuprite) 
as the two major constituents of the surface corrosion layer on the ground wire.  

2

• Screws and contact plates also showed evidence of copper sulfide corrosion 
products, but observations showed that it was a thinner layer than that observed on 
wires.  

 

• Wire insulation and coverage by other metallic surfaces provide some degree of 
protection against corrosion. Screw and contact plate surfaces that were in contact 
with other conductors also showed minimal or no corrosion compared to exposed 
conductor surfaces.  

 
                                                 
1 S.J. Glass, D. Mowry, and N. R. Sorensen, Interim Report on the Analysis of Corrosion Products on Harvested 
Electrical Components, Sandia National Labs, Nov. 2009. 

2 R. Khanna, Status Report on the Preliminary Analysis of HVAC, Gas Distribution, and Fire Safety Equipment 
Installed in Homes with Chinese Drywall, U.S. Consumer Product Safety Commission, Nov. 2009. 
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The 2009 study was able to identify the nature and extent of the corrosion product that had 
occurred during the exposure to problem drywall in the six homes, but not how much corrosion 
could occur for the typical lifetime of household electrical components, and what effects this 
might have on the electrical function and safety of powered circuits.  To answer these questions, 
SNL designed and conducted the experimental study described in this report, in which new 
electrical components, supplied by CPSC, were exposed to elevated temperature and humidity, 
and contaminant gasses, including H2S, NO2, and Cl2, in Sandia’s larger Facility for 
Atmospheric Corrosion Testing or FACTII. The conditions of the test and the duration of the 
exposure were chosen to be representative of a Battelle Class IV3

 

 environment to stimulate the 
growth of corrosion product that would be expected to be generated by a 40-year exposure to the 
conditions that produced the corrosion product thickness measured on harvested components in 
the 2009 study.  

Three powered electrical circuits, consisting of switches, receptacles (conventional and GFCI), 
and load centers were cycled electrically over the 8-week exposure in the FACTII 
environmentally controlled chamber. The total cycle time was 20 minutes, with 10 minutes on, 
followed by 10 minutes off. The purpose of the cycling was to provide thermally-driven stresses 
of the corrosion product (due to differences in the thermal expansion properties of the metal 
conductors and the corrosion products).  Furthermore, assessment of corrosion-induced 
functional impacts was performed while components were undergoing exposure. At the end of 
the exposure, the electrical components were subjected to the same materials analyses used for 
the characterization of harvested electrical components from the 2009 study, including SEM, 
XRD, and focused ion beam (FIB). These analyses were used to determine the morphology, 
thickness, and chemical identity of the observed corrosion layers. 
 

2. EXPERIMENTAL DETAILS 
 
This experiment was designed to test multiple components of a powered electrical system in an 
environmental chamber in which Battelle Class IV conditions were maintained. The selection of 
the Class IV environment was based on results from components harvested from several homes. 
The components were analyzed, and a corrosion product thickness was determined. The 
exposure was estimated to be three years. Figure 1 presents the data from the harvested 
components and compares the result to published mixed flowing gas testing. Based on these data, 
the best fit corrosion class appears to be Class IV, the most extreme corrosive conditions of the 
Battelle exposure system. 
 
  

                                                 
3 W. H. Abbott, The Development and Performance Characteristics of Mixed Flowing Gas Test Environment, IEEE 
Transactions, Vol. 11, No. 1, March 1988. 
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Figure 1. Data from components harvested from homes used to determine the appropriate 

corrosion class for testing. The data are compared with results from Battelle Class I 
through Class IV. 

 
2.1 Chamber and Conditions 
 
The Batelle Class IV environment consists of exposure to a mixture of gases (H2S, NO2, and 
Cl2

• 200 ppb H
),and elevated humidity.  The specific conditions are: 

2

• 200 ppb NO
S 

• 50 ppb Cl
2 

• 75% relative humidity (RH) 
2 

• 50 degrees (celsius) 

The pollutant gasses used in the Battelle mixed flowing gas test are based on empirical 
correlations between field exposures and accelerated test exposures. That is, laboratory tests 
were selected based upon their ability to reproduce corrosion products seen in the field. There is 
no fundamental basis for the type or concentration of the pollutant gasses, so extrapolation to 
other conditions, or additional failure mechanisms is not possible. In the Class IV test, H2S is the 
primary corrosive species, and NO2 and Cl2
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 are present primarily as accelerants. The elevated 
temperature also provides an acceleration factor. The primary corrosion product produced in a 
Class IV test is copper sulfide. The pollutant gasses were supplied using permeation tubes, and 
mass flow controllers were used to maintain flow. The chamber used is a 300 liter chamber, and 
the total flow rate was set at 12 liters/minute (lpm). The exposure was for a period of eight 
weeks, which roughly represents a field exposure in a light industrial environment of 40 years, 
according to the Battelle Class IV conditions.  Due to the large area of exposed reactive metal 
(primarily copper), the system was not able to maintain the desired concentration of 200 ppb 
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H2

Figure 2

S.  To compensate for the decreased concentration, the test time was extended to maintain the 
equivalent exposure in ppb-hrs (concentration in ppb times time in hours). A  schematic of the 
exposure system is shown in . The three sets of powered electrical components were set 
up in the FACTII reaction chamber. 
 
 

 
Figure 2. FACT II schematic 
 
 
 
2.2 Component Hardware Setup/Wiring 
 
A schematic of the entire electrical system contained within the environmental chamber is shown 
in Figure 3. Three separate electrical circuits were tested in the FACT at the same time. For each 
circuit, the electrical components were broken into two categories. The first included 
components found in the electrical service panel (circuit breakers). Due to size constraints, and to 
ensure access of the pollutant gas to the circuit breakers, the service panels did not include their 
steel enclosures. The mounts were attached directly to acrylic plates. Hardware consisted of a 
load center panel, one standard circuit breaker, and one arc-fault circuit interrupter (AFCI) 
breaker. Each of the three circuits contained unique hardware from separate manufacturers. The 
two circuit breakers were wired in series. The output from the circuit breaker provided the input 
to the AFCI. The neutral lead from the AFCI was connected to the neutral lead of the input. A 
schematic of the load center circuit is shown in Figure 4, as well as a photograph in Figure 5. 
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Figure 3. Schematic of electrical system (complete system). Each circuit had an electrical load 

of 12 A (via three 500W halogen lamps). 
 
 
 
 

 
Figure 4. Schematic of load center circuit. Three separate load centers were wired in parallel. 

Each load center contains a circuit breaker, an arc-fault circuit breaker, and a junction 
bar.  The two circuit breakers are wired in series. 

 

120 V 
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Figure 5.  Photograph of load center circuit. 
 
The second group of electrical components was comprised of electrical devices that are typically 
found throughout the home. Each of the three circuits contained one rocker switch, one toggle 
switch, one standard duplex receptacle, and one GFCI receptacle. As with the load center 
hardware, three sets of unique devices were included (from various manufacturers), with no 
duplication of the components. A schematic of this circuit is shown in Figure 6, and a 
photograph of the circuit is shown in Figure 7. All four components were connected in series-
parallel. This entire circuit was mounted in an acrylic box with a fan on the end to draw chamber 
gas into the box and through the individual components in order to approximate the manner in 
which gases would flow around and through components when mounted in consumer residences. 
All of the wires were copper. The contacts in the electrical devices contained a variety of metal, 
and were not all analyzed for composition. 
 

 
Figure 6. Schematic of electrical components being tested. The four devices (rocker switch, 

toggle switch, standard duplex receptacle, and GFCI receptacle) are connected in 
series-parallel. 
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Figure 7.  Photograph of electrical components showing interconnected wiring. 
 
Copper witness coupons provided by Sandia were degreased and then pickled in 10 percent HCl 
and rinsed in flowing de-ionized water to provide a reproducible surface.The coupons were then 
placed inside the chamber for later analysis. Coupons were removed and weighed at the 
conclusion of the test.   
 
2.3 Disassembly Procedure 
At the conclusion of the 8-week exposure in a Battelle Class IV environment, all three circuits 
were removed from the chamber. They were photographed while still electrically connected 
(unpowered). The inlet and outlet wires were cut to remove the circuit from the chamber. Twist-
on connectors remained in place. The system was then disassembled according to the following 
procedure: 
 

• Label all components (switches, circuit breakers, receptacles) to identify circuit used for 
testing. 

• Photograph each system as-is, using digital camera. 
• Remove the lid from the box containing the components, and photograph the back side 

(digital camera). 
• Clip the wires near each of the components. Leave a pigtail attached to the components. 

Bag all of the wires (with twist on connectors) in Ziploc®

• Remove receptacles and switches from system. 

 bags (1 bag for each circuit). 
Label wires with circuit and hookup locations (e.g., 1RS to 1TS). 

• Photograph areas of interest (wires, attachment points, case, etc.) using low power optical 
capabilities. 

• Remove circuit breakers from system. 
• Photograph screw connections and bus (clip) connections using microscope. 
• Determine twist on connectors to be analyzed and clip them from the wiring. 
• Photograph twist on connectors using microscope. 
• Assemble hardware and images and determine materials analyses to be performed. 

o SEM 
o XRD 
o FIB sectioning and analyses 

Toggle Switch 
 

Rocker Switch 
 

Outlet 
 

GFCI Outlet 
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o Metallurgical cross section for SEM or other analyses 
 
A sample identification convention was adopted to keep track of all of the parts to be analyzed 
for corrosion. The convention used was “Circuit-Component-Location-Sequential Number.” For 
example, the neutral wire from the GFCI receptacle in circuit 2 is identified as “2-GR-NW-2.”  
Table 1 gives the complete listing of the parts. This identification was used throughout the 
analyses performed, including optical microscopy, SEM, FIB, cross section, and XRD. 
 
Table 1. Naming Convention for Parts Exposed to Class IV Environment 
Circuit Component Location Number 
1 
2 
3 

RS  
TS  
GR 
R 
ACB 
 
CB 
WN  

Rocker Switch 
Toggle Switch 
GFCI Receptacle 
Receptacle 
AFCI circuit 
breaker 
Circuit breaker 
Twist on 
connector 

HW 
NW 
GW 
HS 
NS  
GS 
HSP 
NSP 
GSP 

Hot wire 
Neutral wire 
Ground wire 
Hot screw 
Neutral Screw 
Ground Screw 
Hot screw plate 
Neutral screw plate 
Ground screw plate 

1 
2 
3 
… 
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2.4 Sampling Plan 
 
Once the parts were removed from the chamber and optically examined and photographed, 
specific components were selected for various analyses. In some cases, the selection was 
random, while in others, specific features observed on the surfaces drove the types of analyses to 
be performed, as shown below. Details of the instrumentation follow in the next section. 
 

2-R-GR-GW  Wire between the receptacle and the GFCI, unattached copper ground wire circuit  
XRD analysis 

1-plug  Connector plug from circuit 1 that was in receptacle 
Copper coupon from chamber, randomly selected 
 

1-RS Rocker switch 
Photos only 

2-RS Rocker switch 
3-RS Rocker switch 
3-TS Toggle switch 
2-out   Yellow twist on connector 
 

1-RS-HSP2 Rocker switch, hot screw plate  
SEM, cross section 

2-RS-HW1 Rocker switch, hot wire 
1-GR-HW1 GFCI, hot wire–do 2 cross sections (by insulation, by “teeth” marks) 
2-out  Red twist on connector 
 

1-R-HW1 Receptacle, hot wire 
SEM, corrosion morphology plan view 

3-RS-HW1 Rocker switch, hot wire 
3-TS-HW1 Toggle switch hot wire–pull back insulation (hot wire) 
2-OUT Long neutral connecting wire–sample in middle of long insulated length 
House Sample from harvested parts–sample in middle of long insulated length 
 

3-R-PIHW Receptacle, push-in hot wire 
Optical photos, then possible SEM morphology 

3-R-PINW Receptacle, push-in neutral wire 
3-RS-PIHW Rocker switch, push-in hot wire 
2-RS-PIHW Rocker switch, push-in hot wire 
1-GR-GW GFCI circuit breaker ground wire 
 

1-ACB  AFCI circuit breaker  
Dissassemble, determine analysis path based on observations 

1-GR  GFCI receptacle 
3-TS  Toggle switch 
3-RS  Rocker switch 
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2.5 Materials Characterization Instrumentation and Methods 
 
Corrosion products were analyzed using several materials characterization techniques. The 
following paragraphs provide basic details on the instrumentation and pertinent information 
related to the specific techniques. 
 
Two scanning electron microscopes (SEM) (Hitachi S4500 and Zeiss Supra 55VP) with X-ray 
energy dispersive spectroscopy (EDS) capabilities were used. The SEM can produce high 
magnification images of parts and/or materials. Prior to analysis, samples sometimes were coated 
with a thin layer of platinum (Pt), gold-palladium (Au-Pd), or carbon (C) to enhance imaging and 
prevent charging. The EDS data collected here provides information about which elements are 
present at or near the surface. Qualitative information about differences in the relative amounts 
of various elements can also be obtained. Samples used for plan view SEM imaging and analysis 
were affixed to an aluminum stub with conductive carbon tape. Subcomponents or wires 
submitted for SEM cross-sectional imaging and analysis were mounted in epoxy, and then cut, 
ground, and polished, to provide a smooth surface, including a cutaway of the subcomponent. 
 
A focused ion beam (FIB) instrument (FEI Helios Nanolab) was used to generate local cross 
sections, as well as remove material from the surface of interest, in order to measure corrosion 
layer thickness. A platinum coating was used to protect the top surface of the sample during the 
FIB sectioning process. The exposed cross sections then were analyzed using SEM techniques 
including analysis by Hyperspectral Imaging, which allows the entire elemental spectrum at each 
point to be measured. 
 
The µXRD (microsampling X-ray diffraction) technique allows the phase identification to be 
made for the material in a region of interest. Micro XRD data were collected using a Bruker D8 
system with GADDS software (area detector frame buffer software for data collection, display 
and data processing). Cu K alpha radiation was employed from a sealed tube source. The X-ray 
beam was conditioned via an incident beam mirror for removal of K beta radiation. A 300 
micron pinhole snout was used for beam collimation. The detector used was a Hi-Star area 
detector. Sample to detector distance was 15 centimeters. Data reduction was performed using 
GADDS software. Phase identification was performed using Jade v 9.0 and the ICDD 
(International Centre for Diffraction Data) database. Analyses were performed either on powder 
scraped physically from the corroded surface of the component of interest, or in situ directly on 
the component. The approximate sampling area for each technique is a circle about 500 microns 
in diameter. Data are plotted as signal intensity versus two-theta (2θ) in degrees. 
 
Analyses designated as obtained by XRD (i.e., not “micro”) were collected using a Siemens 
D500 q/q powder diffractometer. The data were collected over a scan range of 10-80ο 2θ at a step 
size of 0.04o 2θ and a dwell times ranging from 1 to 20 sec. Monochromatic Cu Kα (0.15406nm) 
radiation was produced using a diffracted beam curved graphite monochromator. Fixed slits of 
1.0, 1.0, 1.0, 0.15, and 0.15 degrees were used. The instrument power was 40kV and 30mA. 
Alignment and calibration were checked using a LaB6

 

 (NIST SRM660) external standard. XRD 
analysis was performed on corrosion product scraped physically from the component of interest. 
Data were plotted as signal intensity versus two-theta in degrees. 
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X-ray fluorescence (XRF) data were collected using a Bruker M4 micro-XRF system employing 
a Rh X-ray source, a polycapillary beam optic (resolution ~30 micron spot size), and a silicon-
drift detector. Elemental mapping of specimens was performed by rastering the specimen over 
various X–Y coordinates while simultaneously collecting XRF spectra from each map 
coordinate. These spectra were employed to generate the false color images displaying the 
concentration of a given elemental species as a function of map location. 
 

3. RESULTS AND DISCUSSION 
 
This section includes detailed descriptions of several of the components and provides an 
overview of the questions that the accelerated corrosion studies were intended to answer and 
resulting observations applicable to each question. A summary of the electrical measurements 
performed during exposure to the corrosive atmosphere and observations consistent among the 
three assembled electrical test circuits are also presented. The results of the characterization work 
follows, organized by test circuit, then by component. Because a subset of wires and components 
was characterized, not every component will have observations and data associated with it. 
 
3.1 System Measurements 
 
3.1.1 Electrical Measurements 
 
To determine if corrosion products on contacts could lead to resistive heating, measurement 
points were established to allow the voltage drop across the entire electrical circuit to be 
measured. Measurements were made several times a week and were taken while the circuit was 
activated under a 12 A load. Measurements were made with a Keithley 2000 multimeter. 
Dedicated test points were wired into the circuit (external to the exposure chamber) to allow 
measurement on a regular basis. Voltage drop data are shown in Figure 8 (hot leg) and Figure 9 
(neutral leg). All three of the circuits exhibited essentially identical behavior. The hot leg of the 
circuit registered about 40 milli-volts and remained constant throughout the test. The neutral leg 
of the circuit registered about 25 milli-volts and remained constant. The difference is due likely 
to the smaller number of components with neutral wire connections (both switches and the 
standard circuit breaker used only hot wire connections). The small magnitude of the voltage 
drop suggests that resistive heating—due to the presence of corrosion products—should not be a 
concern. 
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Figure 8. Voltage measurements made along the length of the ungrounded conductor (hot leg) 

for each of the three circuits, which included the load center and all the electrical 
components. 

 

 
Figure 9. Voltage measurements made along the length of the grounded conductor (neutral 

leg)for each of the three circuits. Circuits included the load center and all of the 
electrical components. 

 
  



25 

3.2 Observations Across All Circuits 
 
Several materials characterization tests were performed on a variety of components to measure 
and observe the corrosion product across different metals and components. Following 
disassembly, all three circuits had the following similarities: 
 

• Extensive black corrosion product on bare wires; 
• Variability in extent of corrosion (thicknesses, colors, morphology) on contact screws; 
• Lack of corrosion observed on galvanized metal plates; 
• A variety of microgrowth morphologies; 
• Apparent “layering” of growth; 
• Variations in corrosion product thickness between the inner (less gas access) and outer 

(exposed) areas; 
• Flaking, blistering, and spalling of corrosion product films. This type of behavior is often 

observed with thick corrosion product films on metal substrates. 
• Bare metal at contact points (pinch-points or screw contacts, contact plates) on wires, 

screws, and contact plates; 
• Evidence of oxidation on the outer surface of the sulfide films. This is consistent with 

long-time exposure in an oxidizing environment.  
• Multiple phases of copper sulfide on various surfaces. 

   
Several of these observations have precedent in the literature of corroded copper, even though 
much of the literature is for tests with shorter timeframes and less aggressive conditions than 
those described in this report.  These references illustrate the complexity observed in the 
products.  For example, a variety of microgrowth morphologies have been observed in 
atmospheric monitoring of corrosion and controlled laboratory testing.4,5,6  Similar “layering” of 
growth has been observed using SEM and other analysis techniques.7,8  The flaking, blistering, 
and spalling of corrosion product films observed here is often observed with thick corrosion 
product films on metal substrates.4,8,9  The presence of multiple phases of copper sulfide, and in 
some cases, the oxidized form antlerite, also has precedent.6,7

                                                 
4 T.T.M. Tran, C. Fiaud, E.M.M. Sutter, A. Villanova, The Atmospheric Corrosion of Copper by Hydrogen 
Sulphide in Underground Conditions, in Corros Sci, Vol. 45, pp. 2787-802, 2003. 

  In many studies, the goal did not 

5J.C. Barbour, J.P. Sullivan, M.J. Campin, A.F. Wright, N.A. Missert, J.W. Braithwaite, K.R. Zavadil, N.R. 
Sorensen, S.J. Lucero, W. G. Breiland, and H.K. Moffat, Mechanisms of Atmospheric Copper Sulfidation and 
Evaluation of Parallel Experimentation Techniques, SAND2002-0699.  Sandia National Laboratories, 2002. 

6 M. Watanabe, Y. Higashi, T. Ichino, Surface Observation and Depth Profiling Analysis Studies of Corrosion 
Products on Copper Exposed Outdoors, in J Electrochem Soc, Vol. 150, pp. B37-B44, 2003. 

7 M. Reid, J. Punch, L.F. Garfias-Mesias, K. Shannon, S. Belochapkine, D.A. Tanner, Study of Mixed Flowing Gas 
Exposure of Copper, in J Electrochem Soc, Vol. 155, pp. C147-C53, 2008. 

8 K. Demirkan, G.E. Derkits, D.A. Fleming, J.P. Franey, K. Hannigan, R.L. Opila, J. Punch, W.D. Reents, M. Reid, 
B. Wright, C. Xu, Corrosion of Cu under Highly Corrosive Environments, in J Electrochem Soc, Vol. 157, pp. 
C30-C35, 2010. 

9 M. Reid, J. Punch, C. Ryan, L.F. Garfias, S. Belochapkine, J.P. Franey, G.E. Derkits, W.D. Reents, 
Microstructural Development of Copper Sulfide on Copper Exposed to Humid H2S, in J Electrochem Soc, Vol. 
154, pp. C209-C14, 2007. 
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include identifying a specific crystal phase or stoichiometry. Therefore, only a generic Cu2S 
assignment is made in these published reports.10

 
 

Some of the specific crystalline phases of copper sulfide observed here are different than the 
digenite phase observed in the harvested components reported earlier.  This is not unexpected 
because the accelerated conditions used here were not meant to mimic exactly conditions in the 
field.  The sulfidation corrosion of copper is a complex event in which electrochemical, 
chemical, thermodynamic, and diffusion processes are all occurring.  Each process is dependent 
upon factors such as temperature, concentration of gases present, and composition of local 
material at the surface.   For atmospheric corrosion, or corrosion in mixed flowing gas 
experiments such as those in which oxygen is present, both copper oxides and sulfides form.  In 
the case of copper sulfides, a variety of crystalline phases (elemental arrangements), each with a 
different stoichiometry (ratio of copper to sulfur), is possible and also can be found in nature.  
Some natural minerals, their stoichiometries, and weight percent of copper, include chalcocite 
(Cu2S – 79.85% Cu), djurleite (Cu31S16–79.34% Cu), digenite (Cu9S5–78.10% Cu), and 
covellite (CuS–66.46% Cu).  In nature, and in laboratory tests, these copper sulfides can be 
oxidized and/or hydrated to form additional species, such as antlerite (Cu3(SO4)(OH)4) and 
posnajakite (Cu4(SO4)(OH)6·H2

 

O). For these reasons, the specific phase detected is less 
important than where the corrosion is (or is not) occurring. 

The following tables contain comparisons of corrosion product thicknesses, using measurements 
from SEM cross section images of bare copper wires and a brass contact pad (1-RS-HSP2). The 
Figure number in this table documents where some of the SEM images used for these 
measurements can be observed. These measurements are not meant as a statistical sampling, and 
in each case, the thickest area or interesting feature was selected for measurement. These 
thicknesses are greater than those observed in the harvested components reported previously, 
where the maximum thickness found in any of the homes analyzed was 18 microns. 
 
  

                                                 
10 T.T.M. Tran, C. Fiaud, E.M.M. Sutter, Oxide and Sulphide Layers on Copper Exposed to H2S Containing Moist 

Air, in Corros Sci, Vol. 47, pp. 1724-37, 2005. 
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Table 2. Table of Corrosion Product Thickness Observed in SEM Cross Sections of Bare 
Copper Wires. 

Part Figure Number Comments Thickness (microns) 

1-ACB-NW-BUS-1 Figure 26 Stranded wire 
Large pit 26.7 

1-ACB-NW-BUS-1 Not shown 
Stranded wire 

Flaked off layer + 
tight layer 

6.3 

1-ACB-NW-BUS-1 Not shown Stranded wire 
 “divot” growth 6 

1-ACB-NW-BUS-1 Not shown 

Stranded wire 
Wide pit with upper 
layer that appears to 
have growth under it 

21.7 

1-ACB-NW-BUS-1 Figure 27 
Stranded wire 

Wavy layer with wide 
pit 

8.5 

1-GR-NW-1 Figure 18 
Outer layer with what 
appears to be growth 

underneath 
11.4 

2T-RS-HW1 Not shown Blister growth 16.4 
2T-RS-HW1 Not shown Blister growth 25.7 
2T-RS-HW1 Not shown  26.2 

 
 
Table 3. Table of Corrosion Product Thickness Observed in SEM Cross Sections of Brass 

Contact Pad HSP2. 
Part Figure Number Comments Thickness (microns) 
1-RS-HSP2 Figure 12,  

Figure 13 
Void below corrosion film.  
Measure depth from perpendicular 

15.3 

1-RS-HSP2 Not shown  12 
1-RS-HSP2 Not shown At inside curvature of part 36.6 
1-RS-HSP2 Not shown Separation of outer layer, possible 

fill underneath 
52 

1-RS-HSP2 Not shown Wide view with layers and pits 25 
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3.3 Results for Circuit No. 1 
 
3.3.1 Summary of Work 
 
Figure 10 shows the components for Circuit 1 prior to disassembly. Once they were removed 
from the box and examined, several of the parts were selected for various analyses. Table 4 
presents the individual components and associated analyses for Circuit 1.  

(A)  Circuit 1 

 
(B) ckt-1_6970.jpg 

 
 

(C) ckt-1_6974.jpg 

 
 

Figure 10. Photographs of the electrical components tested in Circuit 1. The view from the 
bottom (C) shows how the system was wired electrically. 
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 Table 4. Circuit No. 1 Components Submitted for Analysis 

Part Sample ID Optical SEM FIB 
Metallography 

(SEM) 
X-ray 

Rocker Switch 1-RS-HW-1      
Rocker Switch 1-RS-HSP-2      
Toggle Switch        
GFCI Receptacle 1-GR-HW-1      
GFCI Receptacle 1-GR-GW-1      
Receptacle 1-R-HW1      

AFCI Circuit Breaker 
1-ACB--NW-
BUS-1      

Circuit Breaker        
Grounded Plug 1-PLUG-1      
Cu coupon Cu-5      

 
 
3.3.2 Rocker Switch  
 
Figure 11 shows macro images for the rocker switch. The image in (A) shows one set of 
electrical connections to the switch. The image in (B) is of the contact plate under one of the 
screws. The image in (C) shows a close-up of one of the connections, and (D) shows both sides 
of the hot wire that was connected to the switch. The black color of the metal parts is the result 
of the sulfidation process. The contact plate is tarnished completely. Importantly, a row of shiny 
contact points is visible where the wire contacted the plate. There is a corresponding set of 
similar features on the wire, where the wire was in intimate contact with the screw. Note that 
bare metal is visible, indicating that the interface was shielded from the active species in the gas. 
The screws exhibit less attack. The wire shows considerable corrosion, with “furry” growth 
observed next to the insulation. Additionally, there is a band of bare metal adjacent to the 
insulation that appears to have suffered less attack. That is likely the result of slight movement of 
the wire, exposing fresh surface that had been protected previously by the insulation. This does 
point out the fact that the insulation shields the underlying metal from exposure to the gas. 
However, it is also important to note that this accelerated test is designed for boldly exposed 
metals. It is not designed to accelerate transport of aggressive species through the insulation. 
Thus, it does not represent 40 years relative to sulfide diffusion and cannot be used to assess the 
ability of the insulation to protect the wire over a 40-year life.  
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(A)A1-RS-1 

 

(B) 1-RS-HSP2-2 

 

(C)1-RS-HW1 

 

(D) 1-RS-HW1-1 
 

 

 

Figure 11. Optical images from sample 1-RS (rocker switch). The contact plate is shown in B, and 
one of the hot wires is shown in D (both sides of the same wire are shown). Note the 
presence of extensive corrosion product on the copper hot wire and contact plate.  

 
Figure 12 shows SEM images of a cross section of the hot screw plate from the rocker switch. 
Figure 13 and 14 present the elemental data obtained from EDS analysis of the cross section 
shown in Figure 12. In Figure 13A, a thin layer of corrosion product is visible on the surface of 
the contact plate. There is evidence of voids below the corrosion product layer, consistent with 
the sulfidation process. The elemental maps also show Cu and Zn (Figure 13C-D), elemental 
constituents of the substrate (brass). The sulfide layer is clearly visible on the surface. As seen in 
Figure 14, the corrosion product layer also contains chlorine and oxygen. 



31 

(A) 1-RS-HSP2-39 

 

(B) 1-RS-HSP2-41 

 
Figure 12. SEM cross section of the hot screw plate (HSP2) from the rocker switch in Circuit 

No. 1. 
 
 
 

 
Figure 13. SEM image (top left) and elemental maps using EDS of HSP2: sulfur (green), Cu 

(red), and Zn (purple). 
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Figure 14. Elemental maps using EDS of HSP2, showing chloride (yellow), and oxygen (blue). 
 
3.3.3 Toggle Switch  
 
Figure 15 shows optical images of the toggle switch from Circuit 1. The metal contact surfaces 
exhibit sulfidation. Tarnishing of the wires, contact plates, and screws was observed. 
 
(A) 1-TS-1 

 

(B) 1-TS-HW1-1 

 
Figure 15. Photographs of toggle switch from Circuit 1. 
 
3.3.4 GFCI Receptacle (push in)  
 
Optical images of the GFCI receptacle from Circuit 1 are given in Figure 16 and Figure 17. 
Corrosion of the contact surfaces was observed. The screws presented in (B) do not exhibit 
significant attack. Their color indicates that they are not brass screws, so they are considerably 
more resistant to sulfidation. Interestingly, the push-in wire (D) exhibits the presence of an 
extensive layer of corrosion product. This indicates that the gas permeated the receptacle itself. 
This is supported by the images in Figure 17, which show the insides of the GFCI. Clearly, the 
receptacle case presents little or no impediment to the corrosion gas. It is interesting to note that 
many of the internal components were corroded during this test (Figure 17D). Note that the 
majority of the contact is tarnished, with the real contact area (the spot near the center) exhibiting 
considerably less corrosion. During the test, one of the load lamps arced, resulting in tripping of 
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the AFCI for that circuit. This demonstrated that the AFCI component continued to function. The 
GFCI receptacles were functioned at the conclusion of the test using the “test” button. All 
functioned properly. 
 
(A) 1-GR-1 

 

(B) 1-GR-2 

 
(C) 1-GR-HS1-1 

 

(D) 1-GR-NW-1 

 
Figure 16. Photos of outside of GFCI receptacle from Circuit 1. 
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(A) 1-GR-insides-1 

 

(B) 1-GR-insides-4 

 
(C) Internal Contact 

 

(D) Internal Contact 

 
Figure 17.  Photos of inside of GFCI receptacle from Circuit 1. 
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The neutral wire from the GFCI receptacle was cross sectioned for analysis. The SEM images 
are shown in Figure 18. A thin corrosion product layer can be seen covering the wire surface. A 
very conservative estimate of the decrease in cross section of the wire can be calculated based on 
the SEM images. As given in Table 2, the corrosion product thickness was 11 microns. If we 
assume that the thickness is uniform, and that the corrosion product thickness equals the loss of 
metal, the cross sectional area of the wire at the conclusion of the test is 98% of the original cross 
section. In reality, the area decrease is considerably less (the corrosion product thickness is less 
than the thickness of lost). Thus, attack of the wire did not result in a significant decrease in cross 
sectional area and does not affect the current carrying capabilities of the wire. 
 
(A) 100 micron bar 

 
 

(B) 10 micron bar 

 

(C) 2 micron bar 

 

 

Figure 18.  SEM images of cross section of neutral wire 1-GR-NW1. 
 
 
3.3.5 Receptacle 
 
Analysis of the receptacle from Circuit 1 included optical images and SEM analysis of the hot 
wire. Optical images are presented in Figure 19 and Figure 20. They show corrosion of the Cu 
base materials. Very little attack of the neutral screws or the ground screw was observed. The 
wires exhibited significant attack, but were essentially untouched in two locations: where the 
wire was in intimate contact with screws, and where the wire contacted the pressure plate. 
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(A) 1-R-2 

 

(B) 1-R-HS1-1 

 
(C) 1-R-1 

IMAGE 

(D) 1-R-NS1-1 

 

Figure 19. Optical photographs of receptacle from Circuit 1.  The image in (A) shows the side 
view of hot wires; (B) hot screw and contact plate; (C) side view of neutral wires; and 
(D) neutral screw and contact plate. 

 
(A) 1-R-HW1-1 

 

(B) 1-R-HW1-2 

 
Figure 20. Optical photographs of hot wire removed from receptacle from Circuit 1. 
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SEM analyses of the hot wire are shown in Figure 21. The location of these analyses is the bend 
in the wire. Note that the corrosion is significantly more extensive on the outside of the bend. 
The elemental maps clearly show the difference in corrosion product thickness, clearly a result of 
shielding the inner portion of the bend from the corrosive gasses. 
 
(A) 

 

(B) 

 
(C) 

 

(D) 

 
Figure 21. SEM image (A) of hot wire 1-R-HW1; (B) SEM image of screw contact surface with 

zoomed area (top right); (C) EDS elemental map showing copper (red) and sulfur (green) 
distribution; and (D) SEM image ~300 µm from contact (all with 100 µm measurement 
bars). 
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Figure 22 presents SEM images from various locations on the hot wire. Several corrosion 
product morphologies can be seen. In addition, there is evidence of spalling of the film. Once the 
film ruptures, it reforms below the previous layer. 
 
(A) 

 

(B) 

 
(C) 

 

(D) 

 
(E) 

 

(F) 

 
Figure 22. SEM images showing the different morphologies of corrosion products on the hot wire 

from the receptacle in Circuit 1. 
 

Spalling 

Spalling 

Spalling 
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In addition to differences in film morphology across the surface, there is also evidence of 
differences in film composition. An example is shown in Figure 23. Clearly, certain features are 
oxygen rich, while others are sulfur-rich. The oxygen-rich features are on the outer surface of the 
film, and are likely due to oxidation of the surface of the copper sulfide. 
 

   

  

 
 
 
 
 
 
 
 
 
 

   

  

 

Figure 23. SEM images and elemental maps for two areas on wire 1-R-HW-1, showing copper (red), 
oxygen (blue), carbon (purple), and sulfur (green) distributions. 
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3.3.6 AFCI  
 
Figure 24 shows optical images of the AFCI from Circuit 1. The output from the standard circuit 
breaker provides the input to the AFCI. In addition, the neutral feed is connected to the neutral 
input, and the neutral sense wire is connected to the load center bus.  Sulfidation of the contact 
surfaces can be seen. Both the neutral and hot wires exhibit corrosion, as well as the stranded 
neutral sense wire (where it is connected to the load center bus–lower left image).  
 
(A) CKT-1_6971 

 

(B) CKT-1_6994 

 
(C) CKT-1_7002 

 

(D) CKT-1_6991 

 
(E) CKT-1_6989 

 

(F) CKT-1_6990 

 
 

Figure 24. Optical images of the load center and AFCI for Circuit 1. 
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Figure 25 presents SEM images of the cross section of the neutral wire. A multilayered structure 
is observed. There is little or no adhesion between some of the layers, suggesting that spalling 
and/or delamination of the individual layers occurred during the corrosion process.  
 

 
Figure 25. SEM image of the cross section of the neutral wire from the arc-fault circuit breaker 

from Circuit 1.  
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Elemental maps for the neutral wire are shown in Figure 26 and Figure 27. A continuous sulfide 
film can be seen, with subsurface attack of the base metal which is typical of copper sulfidation 
reactions. In the void formed in the base metal, oxidation has occurred, filling the cavity with 
copper oxide and/or copper sulfate. 
 

 
Figure 26. EDS map of wire cross section showing oxygen in “pocket. The elemental maps for 

Cu (red), S (green), and oxygen (blue) are shown. 
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Figure 27. Elemental maps taken on cross section of the neutral wire from the arc-fault circuit 

breaker from Circuit 1. The image at the top left is an SEM image of the area being 
analyzed. The elemental maps for Cu (red), S (green), and oxygen (blue) are shown. 
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Figure 28 shows elemental maps taken on the stranded wire from the AFCI that was attached to 
the load center bus. All of the strands of wire are covered with a sulfide layer. 
 

 
Figure 28. Elemental maps taken on cross section of the neutral wire from the arc-fault circuit 

breaker from Circuit 1. The image on the left is an SEM image of the area being 
analyzed. The elemental maps for Cu (red), S (green), and oxygen (blue) are shown. 
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3.3.7 Circuit Breaker 
 
Figure 29 shows optical images of the contact surfaces of the standard circuit breaker from 
Circuit 1. Corrosion of the upper contact is visible. The lower contact appears to be plated, or 
constructed of a different material. It did not exhibit extensive corrosion. 
 
(A) 1-CB-contact1-1 

 

(B) 1-CB-contact1-2 

 
Figure 29. Optical images of the contacts in the standard circuit breaker in Circuit 1. 
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3.3.8 Grounded Plug 
 
Figure 30 shows images of the plug used to connect the standard receptacle to the GFCI 
receptacle in Circuit 1. Note that the contact surfaces exhibit corrosion, even when inserted into 
the socket. Also, note that there are areas of contact that prevented or reduced the attack of the 
base metal. 
 
(A) 1-GR-R-plug-1 

 

(B) 1-GR-R-plug-GS-1 

 
(C) 1-GR-R-plug-HS-1 

 

(D) 1-GR-R-plug-NS-1 

 
Figure 30. Optical images of the plug used to connect the standard receptacle to the GFCI 

receptacle in Circuit 1. The prongs and screws are blackened relative to those on a 
new, as-received, unexposed plug.  

 
 
Corrosion product was scraped from the “hot” prong of the plug and analyzed by XRD, and an in 
situ spot was analyzed by µXRD. These tests detected that the base metal is a copper-zinc alloy 
and revealed the presence of a covellite (CuS) copper sulfide phase. Additional phases detected 
only by XRD include: copper sulfate hydroxide hydrate and copper zinc sulfate hydroxide 
hydrate (Ktenasite), whereas, only cuprite Cu2

Figure 31

O was detected by µXRD. Lack of full cross-
validation of XRD and µXRD is expected due to the differences in counting statistics and 
sampling area. The µXRD spectrum is shown in  and illustrates the peaks attributable 
to the covellite, cuprite, and copper-zinc alloy. The figure is also labeled with the approximate 
locations where a digenite copper sulfide phase would be detected.  
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Figure 31. µ-XRD data for ground prong of plug from Circuit 1, showing cuprite (blue), 

covellite (green), and copper/zinc (orange) peaks observed and labels where digenite 
(D) peaks would occur, if present. 

 
A copper-zinc alloy was detected for the ground prong of the plug by XRF analysis, and the 
elemental map, Figure 32, shows that the sulfur coverage is uniform within the tested length 
(approximately 2.5 mm) near the prong end. 
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Figure 32. Photo of one side of ground prong and XRF element maps of ground prong of 
grounded plug. XRF images taken “end-on” of full prong. 
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3.3.9 Copper Exposure Coupon 
 
XRD of scraped powder and in situ µXRD both detected the copper sulfide phase known as 
“djurleite” (Cu31S16

Figure 33

) as the predominant corrosion product observed on copper witness coupon 
No. 5. Data for the µXRD, along with the image indicating the location of the analysis, are 
shown in . The image shows the copper witness coupon (which has a small hole for 
mounting, which was not used in these tests) on top of the metal instrument sample holder. The 
grey to bluish-black appearance of the sample is consistent with the appearance of djurleite. Both 
XRD and µXRD techniques verify also that the witness coupon is pure copper. 
 
XRF analysis and mapping confirms sulfur signal in specimen and indicates uniform spatial 
distribution of sulfur (data not shown). 
 
 

 
 
Figure 33. Video image (inset) showing location of µXRD analysis and µXRD data for witness 

coupon No. 5, showing labeled copper and djurleite peaks (green). 
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3.4 Results for Circuit No. 2 
 
 
Table 5. Circuit No. 2 Components Submitted for Analysis. 

Part Sample ID Optical SEM FIB 
Metallography 

(SEM) 
X-RAY 

Rocker Switch 2-RS-hsp-2      
Rocker Switch 2-RS-HW-1      

Rocker Switch 

2-RS-PIHW-1 
(push-in hot 
wire)      

GFCI Receptacle 2-R-GR-GW-1      
 
3.4.1 Summary of Work 
 
Figure 34 shows optical images of the load center and the back side of the components for 
Circuit 2. Parts from the rocker switch and the GFCI receptacle were selected for cross section 
SEM and X-Ray analysis (see Table 5). 
 
(A) CKT-2_6929 

 
 

(B) CKT-2_6928 

 
 

Figure 34. Photographs of the electrical components tested in Circuit 2.  The view from the 
bottom (left image) shows how the system was wired electrically.  The image on the 
right shows the load center. 
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3.4.2 Rocker Switch 
 
Optical images of the hot wires from the rocker switch in Circuit 2 are shown in Figure 35.  The 
wire on the left was connected using a screw contact, while the wire on the right is from the 
push-in contact. Note that both exhibit corrosion across the majority of the surface, with contact 
areas where the surface was shielded, showing little or no attack.  
 
 
(A) 2-RS-HW1-1 

 

(B) 2-RS-PIHW-7 

 
Figure 35. Optical images of wires from the rocker switch in Circuit 2. Both the standard wire 

connection and the push-in connection are shown. 
 
Figure 36 shows SEM images of the hot wire (screw connected) from the rocker switch. As with 
other components, there is evidence of film growth and rupture. It is important to note that the 
thickness of the corrosion product film is very small relative to the diameter of the wire. In other 
words, copper sulfidation under these conditions is a surface phenomenon and does not result in 
significant reduction in the cross sectional area of the conductor. As such, the corrosion process 
will have no effect on the current carrying capabilities of the wire. 
 
(A) 2T-RS-HW1-69 

 

(B) 2T-RS-HW1-83 (10 MICRON BAR) 

 
Figure 36.  SEM images of the cross section of the rocker switch hot wire from Circuit 2. The 

image on the left shows a low magnification image of the wire, with a high 
magnification image showing details of the corrosion product layer presented in the 
figure on the right. 

 

Cu Wire 

Cu Wire 

Epoxy 

Corrosion Products 

Corrosion  
Products 
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Figure 37 shows the elemental maps of the wire shown in Figure 36. The corrosion product 
consists of a layer of copper sulfide, with a thinner layer of either copper oxide or possibly 
copper sulfate. 
 

 
Figure 37. Elemental maps from the rocker switch hot wire (cross sections) in Circuit 2. The 

upper left image is an SEM image identifying the area being analyzed. Three maps 
are shown for Cu (red), S (green), and oxygen (blue). 

 
 

Cu Wire 

Epoxy 

Corrosion  
Products 
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XRD analysis of scraped powder from this contact plate detected the same phases that were 
detected in the powder scraped from the Circuit 1 plug: covellite, copper sulfate hydroxide 
hydrate, Cu-Zn sulfate hydroxide hydrate (Ktenasite), and a copper-zinc alloy (as the Cu0.67 
Zn0.33).   µXRD analysis was also consistent with that of the Circuit 1 plug, detecting cuprite, 
covellite, and copper-zinc alloy. Additionally a chalcocyanite phase (CuSO4

Figure 38
) was detected in 

situ on this part. The location of sampling and µXRD data are shown in . The large 
metal piece behind the sulfidated (black) part is the instrument sample holder. 
 
 

 
 
Figure 38. Video image (inset) and µ-XRD data for 2-RS-HSP-2 (contact plate), showing cuprite 

(orange), covellite (green), and copper/zinc (purple), and chalcocyanite (Cu+2SO4

 

- 
light blue) peaks observed. 
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3.4.3 GFCI Receptacle 
 
XRD analysis of black powder scraped from the wire surface (top, Figure 39) and µXRD in situ 
of the ground wire (bottom, Figure 39) of the GFCI component of Circuit 2 detected covellite 
(CuS) and the antlerite copper sulfate hydroxide phase (Cu3(SO4)(OH)4

 

 ). In addition, the 
µXRD data shows copper oxide (cuprite) and copper metal. 

 

 

 
 
Figure 39. XRD data (top) for powder scraped from wire 2-R-GR-GW showing covelite (green) 

and antlerite (blue), and µ-XRD data (bottom) showing antlerite (orange), cuprite 
(light blue), covellite (dark blue), and copper (green) peaks. 

 
 



55 

3.5 Results for Circuit No. 3 
 
Table 6 indicates which components from Circuit 3 were selected for analyses. In this case, both 
optical and SEM examinations were conducted for several of the parts. 
 
Table 6. Circuit No. 3 Components Submitted for Analysis 

Part Sample ID Optical SEM FIB Metallography 
(SEM) 

X-Ray 

Rocker Switch 3-RS-PIHW-1      
Rocker Switch 3-RS-HW-1      
Toggle Switch 3-TS-HW-1 

Look under 
insulation as 

well. 

     

GFCI Receptacle 3-GR      
Receptacle 3-R-PIHW-1      
Receptacle 3-R-PINW-1      

AFCI Circuit 
Breaker 

3-ACB-1      

Circuit Breaker 3-CB-1      
Twist on 
connector 

3-WN-1      
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3.5.1 Rocker Switch 
 
Figure 40 shows optical images for the rocker switch from Circuit 3. The case was removed to 
reveal the interior components. As with other components, it appears that the case provides little 
or no protection against the corrosive gasses. Both interior and exterior components exhibit 
corrosion. The bottom two images show both sides of the hot wire. In this case, the wire was 
connected to the push-in contact. Corrosion of the wire surface was less nonuniform, but it 
essentially covered the entire surface other than the contact point. 
 
(A) 3-RS-insides-3 

 

(B) 3-RS-insides-2 

 
(C) 3-RS-PIHW-1 

 

(D) 3-RS-PIHW-2 

 
Figure 40. Optical images of the rocker switch and hot wires from Circuit 3.  
 
Figure 41 shows SEM images of the hot wire from the rocker switch. The figures on the left are 
secondary electron images that show topography. In this case, the insulation was removed next to 
the corroded area. The images on the right are back-scattered electron images. In these images, 
brightness is a function of the atomic number of the element on the surface. The bright area in 
the top of the image represents bare copper exposed by the removal of the insulation; the lower 
portion of the picture is darker and represents the sulfide layer (i.e., copper has a higher/larger 
atomic number than sulfur). These images show that sulfidation of the copper stops where the 
insulation protects the underlying copper. Figure 42 shows the elemental maps associated with 
this location. Clearly, the insulation protected the underlying copper from sulfidation because the 
top of the elemental maps showing the region of the wire that was covered with insulation shows 
no sulfur. 
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(A) -RS-HW-1_01 

 

(B) -RS-HW-1_02 

 
(C) 3-RS-HW-1_093 

 

(D) 3-RS-HW-1_063 

 
Figure 41. SEM images of the hot wire from the rocker switch in Circuit 3. The figures on the 

left are secondary electron images, which show topography. The images on the right 
are back-scatter images. In these images, brightness is a function of the atomic 
number, with higher brightness indicating elements of higher atomic number. 
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(A) 

 

(B) 

 
(C) 

 

(D) 

 
Figure 42. EDS elemental maps of the hot wire from the rocker switch in Circuit 3. Images 

include A the SEM image, (B) a copper map (red), (C) a sulfur map (green), and (D) 
a combined copper/sulfur map (red and green).  

 
 
3.5.2 Toggle Switch 
 
Optical images of the toggle switch from Circuit 3 are shown in Figure 43. As with previous 
components, sulfidation was universal, except where the surface was shielded (contact points).  
 
Figure 44 shows SEM images of the hot wire from this component. The top two images are 
back-scattered electron images and show the presence of bare Cu at a contact point (light region). 
The corrosion product film structure/morphology is similar to that found on other components, 
exhibiting layering, buckling, and spalling.  
 
Figure 45 shows EDS elemental maps of two areas of the hot wire from the toggle switch. 
Copper is shown in red, and sulfur is shown in green. These images are consistent with the SEM 
images and show the presence of bare Cu at the contact points. 
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(A) 3-TS-insides-1 

 

(B) 3-TS-1 

 
Figure 43. Optical images of the toggle switch in Circuit 3. The figure on the left shows the 

inside of the switch. Note the extensive corrosion product on some of the 
components. The image on the right is of the hot wire connected to the toggle switch 
(screw side).  

 
(A) 3-TS-HW-1_01 

 

(B) 3-TS-HW-1_10 

 
(C) 3-TS-HW-1_27 

 

(D) 3-TS-HW-1_29 

 
Figure 44. SEM images of the hot wire from the toggle switch in Circuit 3. Note the spalling of 

the corrosion product film. The contact areas can be seen in the upper two images 
(bright areas) where the contact shielded the surface from the corrosive gasses. 

Spalling of film Spalling of film 
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Figure 45. SEM images and EDS elemental maps of the hot wire from the toggle switch in 

Circuit 3. Sulfur is shown in green, and copper is shown in red. 
 
 
The following figures show different SEM magnification views of a FIB cut into areas of the hot 
wire from the toggle switch, near where the toggle switch screw was in contact with the wire. 
The FIB technique uses a thin layer of deposited platinum to keep surface features intact so there 
is a thin layer that appears white in the images—this is the platinum overcoat. Using a FIB cut is 
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potentially less damaging to the surface layers; however, it is time consuming; therefore, only 
limited FIB analyses were performed. Figure 46 shows a low magnification view with circles 
indicating locations of two FIB cuts. Since this is a very low magnification, the instrument 
aperture is observed as the wider circle. The bright area in the upper right, is the area where the 
screw made contact with the wire and appears to be free of corrosion product. 
 

 
Figure 46. Low magnification FIB image of hot wire from toggle switch (3TS-HW-1), showing 

location of FIB cuts (red designated as “Section 1” and blue designated as “Section 
2”) into corrosion product film. 

 
Figure 47 shows SEM images of the FIB cut designated as “Section 1,” indicated by the red 
circle in the previous figure, at increasing magnifications (350 to 12,000X magnification). This 
FIB cut is approximately 50 microns from the nearest portion of the wire contacted by the screw. 
The middle top image illustrates wavy features of the corrosion product observed in SEM cross 
sections of other samples. The right top and lower left images illustrate an abrupt edge of the 
wavy growth that appears to have smaller features, suggesting flaking and regrowth of the 
corrosion product. The middle lower and right lower images show closer views of the corrosion 
layer and the varying gap between the wire and corrosion product. This is consistent with 
crosssection observations of other wires. 
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Figure 47. FIB cuts into 3-TS-HW-1 “Section 1” (see Figure 46) with scale bars at 200 (350X), 

50, 20, 5, and 5 (12,000X) microns, respectively. 
 
Figure 48 shows three images at the same magnification (20,000X) of the edge of the FIB cut. 
The copper wire is at the bottom, the varying contrast areas are consistent with solid copper. 
Some pitted areas are observed along with roughened product growth underneath the upper layer 
of corrosion. The bright white top layer is the platinum layer deposited on the sample to preserve 
features. 
 
 

 
Figure 48. FIB cuts into 3-TS-HW-1 “Section 1” (see Figure 46) with scale bars at 4 microns 

each. 
 
Interesting growth morphologies were seen in all samples, which included needles and other 
features. One example, with needle and spiral-like growths, observed near the FIB cut is shown 
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in Figure 49 at various magnifications. On the left is a wider view of “Section 2,” indicated with 
the blue circle. The orange box indicates the approximate area of the middle image, while the 
orange box in the middle image indicates the approximate area of the image on the right. 
 
 

 
Figure 49. FIB cuts into 3-TS-HW-1 “Section 2” (see Figure 46) with scale bars at 50, 30, and 

10 microns, respectively. 
 
A closer look at the cross section of corrosion growth revealed by the FIB cut designated as 
“Section 2” is shown in Figure 50. In the top row, a bare copper area is observed to the upper 
right of the images, the area underneath the screw. The lower row shows higher magnification 
views of the change in the corrosion growth thickness from left to right. 
 
 

 
Figure 50. FIB cuts into hot wire from Circuit 3 toggle switch (3-TS-HW-1) “Section 2” (see 

Figure 46) with scale bars at 200, 50, 20, 10, 5, and 5 microns, respectively. 
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Figure 51 contains a series of SEM images across the FIB cut at 20,000X magnification. 
Layering and pitting is observed; moving from left to right and  closer to the contact point of the 
screw, the overall corrosion thickness transitions from approximately nine microns to 
significantly less than one. 
 

 
Figure 51. FIB cuts into 3-TS-HW-1 “Section 2” (see Figure 46) with scale bars at 4 microns 

each (20,000X). 
 
3.5.3 GFCI Receptacle 
 
Figure 52 shows optical images of the GFCI receptacle from Circuit 3. The contact screws 
showed evidence of minor corrosion on the surface. The contact plates below the screws were 
corroded extensively. As seen in the figure, they were black at the conclusion of the test.  
 
(A) CKT-3_6957 

 

(B) CKT-3_6960 

 
Figure 52. Optical images of the GFCI receptacle. Note the darkening of the normally shiny 

contact pads and slight corrosion (discoloration) of the screws. 
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3.5.4 Receptacle 
 
Figure 53 shows optical images of the hot wires (push-in contacts) from the standard receptacle 
from Circuit 3. These results are consistent with previous samples, showing corrosion product 
across the surface except where the contact was made.  
 
The SEM images shown in Figure 54 show similar features to other samples: multiple layers of 
the film, spalling, voiding of the metal, and bare metal at the contact point. 
 
(A) 3-R-PIHW-2 

 

(B) 3-R-PINW-1 

 
Figure 53. Optical images of wires from the standard receptacle from Circuit 3. Both the (A) hot 

and (B) neutral wire are shown. Both are “push-in” type contacts. 
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(A) 3-R-PINW-1_20 

 

(B) 3-R-PINW-1_13 

 
(C) 

 

(D) 3-R-PINW-1_05 

 
Figure 54. SEM images of the surface of the neutral wire from the receptacle in Circuit 3. The 

connection was a push-in connection. (B) shows the contact point, which is brighter 
due to the presence of Cu without S. The end of the wire is shown in the lower 
images at two magnifications. Note the spalling of the corrosion product film. It is 
believed that the spalling occurred during the test, but is it possible that it occurred 
after exposure and prior to analysis. 

 

Spalling of film 
Spalling of film 
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SEM images of two FIB cuts (designated as “Section 3” and “Section 4”) on the neutral wire 
from the push-in connector of the receptacle are shown below at magnifications of 128x and 
127x. The aperture of the instrument is observed as the outer view circle due to wide view and 
low magnification. “Section 3” (left) was cut at the edge of the corrosion product film. Section 4 
(right) was cut into an area surrounded by “wavy” corrosion growth. 
 
 

 
 

Figure 55. FIB cuts into corrosion product on surface of neutral wire 3-R-PINW-1 with “Section 
3” (left) and “Section 4” (right) with scale bar of 500 micron.  

 
Higher magnification images of “Section 3”, ranging from 350X to 12,000X are presented next 
(Figure 56) and display varying thickness as well as voiding of the copper below the corrosion 
product film. The fracture line down the center of the images in the top row shows an area of 
corrosion product that flaked off. 

FIB Location 

FIB Location 
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Figure 56. FIB cuts into neutral wire 3-R-PINW-1 “Section 3” (see Figure 55) with scale bars of 

200, 50, 20, 10, 5, and 5 microns. 
 
Higher magnification images of the pitting observed in “Section 3” are below (Figure 57); with 
the thinnest corrosion growth, the platinum FIB coating, and pure copper grains prevalent in the 
image on the right. 
 

o

 
Figure 57. FIB cuts into neutral wire 3-R-PINW-1 “Section 3” (see Figure 55) with scale bars of 

4 micron each. 
 
Higher magnification views of “Section 4” are shown in Figure 58 and illustrate an additional 
morphology seen in some samples—that of a “ bubbling” or blistering of the corrosion product 
layer. The magnification ranges from 350X to 25,000X. In the lower right image, three different 
kinds of growth layer are observed—a layer with few voids, a middle layer with multiple voids, 
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and a third solid layer with what appears to be striated growth. The top-most white layer in the 
image is the platinum FIB overcoat. 
 

 
Figure 58. FIB cuts into neutral wire 3-R-PINW-1 “Section 4” (see Figure 55) with scale bars of 

200, 50, 20, 10, 5, and 3 microns, respectively. 
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Figure 59 shows SEM images of the push-in hot wire from the receptacle in Circuit 3. The image 
on the left shows the contact point. It is clear that the intimate contact between the wire and the 
receptacle contact prevented sulfidation from occurring in the contact area. The image on the 
right shows the wire at the interface with the insulation. In this case, the insulation was removed 
to reveal the wire surface directly beneath the insulation. The fact that bare copper is visible in 
the region shielded by the insulation suggests that the insulation prevents the pollutant gas from 
contacting the copper wire.  
 
(A) 3-R-PIHW-1_08 

 

(B) 3-R-PIHW-1_21 

 
Figure 59. SEM images of the hot wire from the receptacle in Circuit 3. The connection was a 

push-in connection. The contact point is shown in the image on the left. The image on 
the right shows a region of a hot wire that was covered by insulation on the bottom. 
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Figure 60 shows the EDS elemental maps from the wire in Figure 59. Copper corrosion products 
(primarily sulfide with some oxide and/or sulfate) are present on the wire surface, except where 
the contact was made. In that location, bare copper is visible. 
 

  

  

 

 

Figure 60. EDS elemental maps of the wire shown in Figure 59. Copper (red), sulfur (green), 
and oxygen (blue) are shown. 
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3.5.5 Twist-on Connectors 
 
Figure 61 shows optical images of twist-on connectors and the associated wires used to connect 
component assemblies inside the chamber. Corrosion of both the wires and the twist-on 
connectors was observed. The extent of corrosion decreased with depth into the twist on 
connector. A thick corrosion product layer was found next to the insulation. The ends of the 
wires, where protected by the twist-on connector, exhibit bare copper. 
 
(A)  2-output-WN1-2 

 

(B)  2-output-WN1-1 

 
(C) 2-output-WN2-2 

 

D 2-output-WN2-1 

 
Figure 61. Optical images of twist-on connectors with hot and neutral wires used on the output 

section of Circuit 2.  
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3.6 Questions to Answer 
 
Based upon observations and measurements of corrosion products in our previous analyses of 
harvested components, the accelerated testing and analyses were intended to investigate a variety 
of questions. 

1. A specific phase (composition) of copper sulfide product known as digenite (Cu9S5

a. Several copper sulfide phases were observed, including covellite (CuS) and 
djurleite (Cu

) was 
observed in harvested electrical components—Is copper sulfide observed in accelerated 
aging tests? 

31S16). A sulfated hydrated phase known as antlerite [Cu3(SO4)(OH)4

2. In a sampling of harvested components previously analyzed, corrosion products were 
observed in a variety of thicknesses up to 20 microns. In these tests, chosen to simulate 
aging for 40 years—what range of thicknesses is observed? Note: For ground wires from 
components harvested from homes (data below)—values normally were less than 10 
microns, and typically, were less than 3 microns. 
 01R–1-7 14R–2.5 
 33R–2.4 -18 48R–2-6 
 50R–8 52R–3-18 

] 
was also observed. In the Battelle MFG test, the corrosion products are identified 
simply as copper sulfide. No distinction is made between the various forms (i.e., 
covelite, djurleite, diginite). 

In the accelerated aging exposure paradigm, on bare exposed Cu wires, corrosion product 
thickness was observed from approximately 6 microns up to 27 microns (see Table 2). A 
corrosion product thickness of up to 52 microns was observed on a brass contact plate (see  
Table 3). Additionally, the corrosion product layer was more consistent (less range in thickness 
from location to location) and generally thicker on parts from the accelerated test than on 
samples collected from homes.  

• For areas inside components, such as wires or contacts within circuit breakers, 
receptacles, and GFCIs, cross sections were not measured. The following observations 
were made optically and by SEM: 

o Plug-in type wires have a range of corrosion product thickness. In contact areas 
(e.g., screw to wire contact) metallic copper is visible, indicating that the contact 
surfaces were shielded from the corrosive gasses. 

o Wrap-on wires have bare copper area where contact was made. 
o Inside twist-on wire connectors exhibit various thicknesses of corrosion product. 

One connector had a completely bare area (teeth and grooves), whereas another 
only has teeth (where contact was made). 

o Corrosion product layer thickness on metal surfaces inside circuit 
breakers/receptacles/GFCIs has not been measured.  
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3. Is there corrosion product under wire insulation?  
a. No. Visual and SEM analyses of several samples of Cu wire beneath the insulation 

showed no tarnishing or evidence of corrosion. However, this test does not 
accelerate H2S diffusion through the insulation, so it is not appropriate for analysis 
of this failure mechanism. A better understanding of  H2

4. In the previous study of harvested electrical components (a limited sampling of six 
homes), corrosion product was NOT observed between wires and other fixed contact 
surfaces. Under the accelerated conditions of this work, is corrosion product observed 
underneath or between wire and contact surface? 

S diffusion through PVC 
insulation would be required to address this issue.The fact still remains that the 
insulation protected the underlying wire from corrosion. 

a. Based on visual and SEM inspection, corrosion product did not grow between 
surfaces in contact. 

5. Different levels of corrosion were observed previously in harvested components where 
contact is made/broken (such as switches and GFCIs). Does corrosion grow between or 
on contact surfaces in switches and GFCIs? 
a. Corrosion product was observed on these contact surfaces. Components with 

moveable parts were not exercised during the accelerated aging tests. In general, 
these parts were tested in the closed condition. The switches and circuit breakers 
were all closed so that a continuous circuit was established. The sulfide film forms 
wherever bare metal is exposed to the environment.  

6. What are the physical/electrical properties of the corrosion products? 
a. The copper sulfide that forms on the metal surface starts out as a thin, coherent film. 

It is strongly attached to the metal. It is not easily wiped off. It is, however, brittle, 
and is removed easily through mechanical abrasion (such as through 
inserting/removing a plug). In that case, only the material directly in contact with 
the sliding member is removed. The remainder of the corrosion film remains 
attached. As the film thickens, stresses can build up in the film, resulting in 
buckling and/or rupturing of the film. This process exposes fresh surface below the 
film, and the corrosion process continues.  

b. The electrical conductivity, as reported in the literature, ranges from  
0.07 ohm-1cm-1 to 2700 ohm-1cm,-1 depending on composition of the sulfide (Cu2S 
to Cu1.8S).11

7. In the analysis of harvested electrical components, a cauliflower-like growth morphology 
was observed with some fracturing of the corrosion product layer and apparent “layering” 
similar to growth rings of a tree. Under the conditions of this test, is fracturing observed 
that could alter the access of corrosion gas to the underlying copper? 

 

                                                 
11 K. Okamoto and S. Kawai, Electrical Conduction and Phase Transition of Copper Sulfide, Japanese Journal of 
Applied Physics, Vol. 12, No. 8, August, 1973. 
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a. Yes, as the film thickens, rupture of the film (often identified as flaking, spalling, 
fracturing ) was observed. This process certainly provides greater access of the 
pollutants to the metal surface. Despite constant ambient temperature conditions, 
“layering” was also observed. 

8. In harvested electrical components, the nature of the corrosion product varied widely on 
wires, screws, and contact plates. We used a simple rating system (1 to 5, with 1 
representing little or no corrosion, and 5 representing the most severe corrosion) to 
categorize the observed corrosion products in an effort to correlate measurements with 
harvested components (see Table 7). Using the same rating system, what range of 
corrosion is observed under accelerated conditions?  
a. Exposed copper wire and brass contact plates were all category 5, with the visual 

extent (thickness) exceeding any observed in the harvested electrical components. 
Exposed screws were observed across the whole range and could be categorized 
between 1 and 5. Across the board, the extent of corrosion was much more severe in 
this test than in the harvested components. 

9. While our lab did not perform electrical measurements on the harvested electrical 
components investigated in our earlier study, an important question in these current tests 
is: does corrosion cause any change in the resistance of the electrical circuit that could 
cause tripping or heating of the circuit? 
a. Circuit resistance values did not show any detectable changes during measurements, 

which were made several times a week during the 8-week exposure. There were 
several trip events, but they were all the result of arcing at the lamp contacts, which 
were all exterior to the test chamber, and were not part of the hardware being tested. 

 

Table 7.  Table of Corrosion Ratings for Electrical Components from Homes.  
 

Category Number of components 
(% of total) 

1 0     (0%) 
2 14   (16.1%) 
3 25   (28.7%) 
4 35   (40.2%) 
5   9   (10.3%) 

unknown   4   (  4.6%) 
Mean 3.4 

Std. Dev. 0.9 
NOTE: A total of 87 individual electrical 
components from six different homes are included. 
The components listed as unknown were circuit 
breakers for which the extent of corrosion could 
not be determined. 



76 

4. CONCLUSIONS 
 
In a previous study, we characterized corrosion products on wires and electrical components 
harvested from homes by CPSC staff. One result of that study was the conclusion that some 
components were exposed to environmental conditions that could be classified (in the field of 
corrosion) as a Battelle Class III or IV. This study, a follow-on to the domestic analysis,  was 
designed to simulate a long duration installation in a household and observe the effects with 
respect to failure modes, corrosion generated, and any other issues that might affect electrical 
performance. 
 
A variety of commercial, off-the-shelf electrical components (switches, outlets, AFCIs, GFCIs) 
were enclosed in a chamber for eight weeks under Class IV Battelle environmental conditions 
and thus, simulated corrosion aging of ~40 years. This type of testing is commonly referred to as 
“accelerated aging.” Because actual field conditions have not been measured, this is an estimate 
meant to exceed conditions that might occur over that timeframe in an actual house. 
 
Copper sulfide corrosion product characterized in this work exhibited: 

• growth on copper-containing components; 
• growth inside non-hermetically-sealed components (receptacles, breakers, twist-on 

connectors); 
• reduced growth in areas of reduced availability to gas diffusion; 
• many crystallographic phases; 
• a wide variety of morphologies; 
• a range of oxygen content within portions of the product; and 
• physical features due to flaking, spalling. 

 
Exposed areas of contact screws also exhibited corrosion; however, the copper content or exact 
composition of corrosion was not measured. The range of corrosion observed, as was observed in 
the study of harvested components, could be categorized from one to five (representing little or 
no corrosion to representing the most severe corrosion). 
 
The insulation appeared to be very effective in protecting the underlying copper wire. In several 
instances, the insulation was removed, and no evidence of wire corrosion was seen. These 
observations cannot be extrapolated to a 40-year lifetime, as the accelerated test would not be 
expected to accelerate diffusion of sulfur-containing gasses through the PVC insulation. 
However, the fact remains that the insulated wire, when exposed to a very aggressive 
environment, did not suffer corrosion beneath the wire insulation. 
 
With respect to electrical characteristics and possible hazardous conditions, our testing and 
materials characterization measurements revealed: 

• no growth between surfaces that retained physical contact during testing; 
• no manifestations of fire or overheating; 
• no significant detectable changes in circuit resistance (measured via voltage drop); and 
• no significant degradation of wire cross sectional area. 
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5. IMPLICATIONS 
 
The 2009 study was able to identify the nature and extent of the corrosion product that had 
occurred during the exposure to problem drywall in the six homes, but not how much corrosion 
could occur for the typical lifetime of household electrical components, and what effects this 
might have on the electrical function and safety of powered circuits. 
 
At the conclusion of this test, copper-containing elements (wires or contact plates) of the 
electrical components exhibited more extensive (with respect to coverage and thickness) 
corrosion than any of the components harvested from homes. The corrosion product thickness is 
small, however, relative to the thickness of any component element. Because the components 
from this test exhibited no significant loss in cross section, the current carrying capability of the 
conductors is not expected to be diminished. All of the exposed components functioned 
throughout the test, with no indication of performance degradation, even though significant 
corrosion was observed on the copper-based metals. Additionally, no voltage drop (across the 
entire circuit) was seen, indicating that the presence of the corrosion product film had not 
resulted in an increase in resistance. There was no intentional activation of the GFCI or AFCI 
assemblies during the course of the tests. One of the AFCI circuit breakers tripped several times 
during the test, due to arcing at one of the lamp contacts (external to the exposure chamber), 
indicating that the functional capabilities had not been compromised. All of these results suggest 
that the electrical performance and safety of static components or AFCI and GFCI assemblies 
have not been compromised by the corrosion process.   
 
Electrical components, such as rocker switches and contact plates in receptacles that would 
normally receive both intermittent exposure and intermittent mechanical function in a household 
installation, were not exercised during the accelerated corrosion test. It is possible that moving 
metal surfaces relative to one another would remove fragile corrosion layers, reexposing bare 
metal conductor to the corrosive agent, leading to a higher rate of corrosion and loss of more of 
the underlying copper as it diffuses to corrosion product layer.  Conversely intermittent use and 
incomplete removal of corrosion could potentially cause a higher resistivity, thus, affecting 
performance.  Further testing that includes functioning of switches and inserting and removing 
plugs from receptacles is recommended to  determine the effect on performance by these specific 
contact processes. 
 
While metal-to-metal contact did not appear to be degraded by the corrosion, exposed metallic 
parts were corroded, and this likely would render them marginally fit for service (such as in 
relation to a remediation, they should be replaced). 
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