

CONSULTANTS, LLC

Florida Onsite Sewage Nitrogen Reduction Strategies Study

TASK A.26 PROGRESS REPORT

PNRS II Test Facility Data Summary Report No. 4

Prepared for:

Florida Department of Health Division of Environmental Health Bureau of Onsite Sewage Programs 4042 Bald Cypress Way Bin #A-08 Tallahassee, FL 32399-1713

FDOH Contract CORCL

February 2011

Prepared by:

In Association With:

PNRS II Test Facility Data Summary Report No. 4

1.0 Background

Task A of the Florida Onsite Sewage Nitrogen Reduction Strategies Study includes the evaluation of passive treatment systems to remove nitrogen from septic tank effluent. The Passive Nitrogen Removal Study II (PNRS II) is a follow-up to the previous experimental evaluations of passive nitrogen removal technologies conducted in Passive Nitrogen Removal Study I. The objective of the PNRS II study is to extend the two-stage biofiltration process into pilot testing to develop design criteria for subsequent full-scale field testing. A unique test facility was constructed for the purpose of the pilot evaluations. The Task A.15 PNRS II Quality Assurance Project Plan (QAPP) documents the objectives, experimental biofiltration systems, monitoring framework, sample frequency and duration, and analytical methods to be used at the PNRS II Test Facility.

2.0 Purpose

This data summary report documents data that was collected in the PNRS II monitoring and sampling event which was conducted January 13, 2011. The corresponding sample event report was submitted as Sample Event Report No. 4, January 2011, as a deliverable under Task A.25. The monitoring event consisted of an assessment and evaluation of PNRS II operation, measurement of flowrates for all systems and flowrate adjustment if warranted, measurement of field parameters, collection of biofilter influent and effluent samples, and their analyses in a NELAC certified laboratory.

3.0 Materials and Methods

3.1 Project Site

The PNRS II Test Facility is located at the University of Florida Gulf Coast Research and Education Center (GCREC) in southeast Hillsborough County, Florida. The specially designed facility enables the simultaneous operation and performance testing of numerous biofilter treatment trains in parallel using the same wastewater source. The source of the influent wastewater is the septic tank effluent from the existing onsite wastewater system serving the GCREC. Details of the design and construction of the PNRS II test facility were presented previously in Task A.17, A.18, A.19 and A.24 documents.

3.2 Modifications of PNRS II Systems

The results of Sample Event No. 1, 2 and 3 and careful observation of PNRS II systems were used to formulate recommendations for modifications to the test systems at the GCREC pilot facility. The modifications that were made following Sample Event No. 3 are presented in this section. All recommendations were based on the overall goal of PNRS II: to provide functional specifications for modular biofiltration components for passive onsite nitrogen reducing wastewater treatment systems.

3.2.1 Polystyrene Biofilter (UNSAT-PS1) Recycle Rate

In Sample Event 3, the unsaturated single pass biofilter with polystyrene media (UNSAT-PS1) exhibited better nitrogen performance as a recirculating system as compared to the single pass configuration during Sample Event 1 and 2. However, significant effluent NH₃-N remained, so the potential utility of polystyrene media in enhanced nitrogen reduction systems depends on further improving ammonia conversion to nitrate. The characteristics of the polystyrene media and the polystyrene based treatment process appear to function better with high recycle rates. Therefore, the Pump 15 runtime was increased so that the recycle ratio was increased to 6:1 from the previous 3:1 ratio.

3.3 Monitoring and Sampling Locations and Identification

A schematic of the PNRS II test facility is shown in Figure 1. Septic tank effluent (STE) from GCREC is pumped from PNRS II-STE-T1 into the PNRS II systems through four points of entry: Hydro-1, Hydro-2, UNSAT-IS1, and UNSAT-IS3. PNRS II biofilters are grouped into the four types of systems shown in Figure 1. The nomenclature and reactor/sample identification used for the PNRS II test facility sampling events are listed in Table 1. The sample designations listed in Table 1 also largely correspond to the locations at which flow volumes are measured in each monitoring event.

Table 1
PNRS II Sample Identification

Group (Figure 1)	PNRS II Sample Identification Sample Location	Sample Identification
1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	STE PNRS II Storage Tank 1	PNRS II-STE-T1
		UNSAT-EC1
	Otana 4 Oisala Basa Biafikasa	UNSAT-EC3
	Stage 1 Single Pass Biofilters	UNSAT-CL1
		UNSAT-CL3
I		DENIT-SU4
		DENIT-LS3
	Stage 2 Single Pass Upflow Biofilters	DENIT-SU3
		DENIT-LS2
		DENIT-LS4
		RC1
		RC2
	Recirculation Tanks	RC3
		RC4
		RC5
II		UNSAT-SA2
		UNSAT-EC4
	Stage 1 Recirculating Biofilters	UNSAT-CL2
		UNSAT-CL4
		UNSAT-PS1
	Pump 15 Tank	P15
	Denite Feed Collection Tank	DFT
		UNSAT-SU1
III	Stage 2 Horizontal Biofilters	UNSAT-SU2
	Stage 2 Horizontal Bioliters	UNSAT-LS1
		UNSAT-GL1
		UNSAT-IS1
	In-Situ In-Tank Simulator Single Pass Biofilter	UNSAT-IS2
	In-one in-rank officiator offigie r ass biolifer	UNSAT-IS3
IV		UNSAT-IS4
	In-Situ In-Tank Simulator Single Pass Biofilter	UNSAT-IS3-SP
	Sample Port	UNSAT-IS4-SP
	(below EC & LS mixture and above SU layer)	

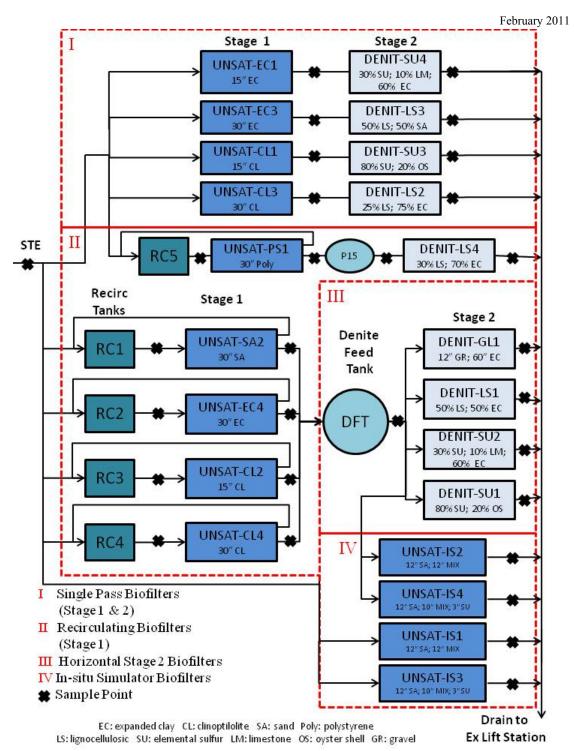


Figure 1
PNRS II Test Facility System Schematic

3.4 Operational Monitoring

Start-up of the PNRS II test facility occurred on May 17, 2010 and all systems have operated continually since that time. The entire facility operation is checked at least once per week and a detailed log of operational observations and activities is maintained. The programmable logic controller (PLC) which controls many of the dosing and pump controls also records pump run times and flow data from flow meters at the facility, and these data can provide useful insight on facility operations.

3.5 Water Quality Sample Collection and Analyses

Influent and effluent water quality samples from the PNRS II test systems for Sample Event 4 were collected January 13, 2011. A sample of STE was collected from the feed line connecting STE Storage Tank 1 (PNRS II-STE-T1) to Hydrosplitter 1 which supplies STE to the single pass Stage 1 biofilters (Figure 1). A manual dose event was initiated on the control panel until sufficient STE sample volume was collected in a clean sample container. Stage 1, 2, and in-situ simulator biofilter and recirculation tank effluents were each sampled by directing the entire flow from the biofilter into a large, clean sample container over a period of time sufficient to obtain the desired sample volume (approximately 3.5 liters). Sample containers were immediately placed in coolers on ice prior to subdivision of the composited sample.

The composite samples in the 3.5 liter sample containers were then subdivided into analysis-specific sample containers. The analysis-specific containers were supplied by the analytical laboratory and contained appropriate preservatives. The analysis-specific containers were labeled, placed in coolers and transported on ice to the analytical laboratory. Each sample container was secured in packing material as appropriate to prevent damage and spills, and was recorded on chain-of-custody forms supplied by the laboratory. Chain of custody forms, provided in Appendix D, were used to document the transfer of samples from field personnel to the analytical laboratory. One chain of custody form was filled out for each set of samples and placed inside the cooler.

Equipment blank, field blank, and field sample duplicates were taken. The equipment blank was collected using a previously cleaned STE sample collection bottle. The bottle was filled with distilled water provided by the laboratory and allowed to sit for eight minutes. The sample containers were then analyzed for the same parameters as the samples. The field blank was collected by filling sample containers with distilled water that had been transported from the laboratory into the field along with other sample containers. The field sample duplicates were collected immediately subsequent to the regular samples. The duplicate sample containers were filled with PNRS II T1-STE effluent, UNSAT-CL3 effluent, UNSAT-CL1 effluent. Additionally, la-

boratory split duplicate samples were collected immediately subsequent to the regular samples. The laboratory split sample containers were filled with PNRS II T1-STE effluent, UNSAT-EC3 effluent, DENIT-LS1 effluent, UNSAT-IS3 effluent, and UNSAT-IS4 effluent.

Field parameters were measured using portable electronic probes and included temperature (Temp), dissolved oxygen (DO), oxidation-reduction potential (ORP), pH, and specific conductance. Temperature (Temp), dissolved oxygen (DO), and oxidation-reduction potential (ORP) were measured with probe tips placed in flow through samplers located directly in the outlet pipe at each sample location. Specific conductance and pH were measured using external sample collection reservoirs. The influent and effluent samples were analyzed by the laboratory for: total alkalinity, total Kjeldahl nitrogen (TKN-N), ammonia nitrogen (NH $_3$ -N), nitrate nitrogen, (NO $_3$ -N), nitrite nitrogen (NO $_2$ -N), carbonaceous biochemical oxygen demand (CBOD $_5$), total dissolved solids (TDS), total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus (TP), and fecal coliform (fecal). For some of the denitrification biofilters containing elemental sulfur media, influent and effluent sample analyses were also conducted for sulfate (SO $_4$) and hydrogen sulfide (H $_2$ S). Table 2 lists the analytical parameters, analytical methods, and detection limits for these analyses.

Table 2
Analytical Parameters, Method of Analysis, and Detection Limits

Analytical Parameter	Method of Analysis	Laboratory Detection Limit (mg/L)
Total Alkalinity as CaCO ₃	SM 2320B	2 mg/L
Total Kjeldahl Nitrogen (TKN-N)	EPA351.2	0.05 mg/L
Ammonia Nitrogen (NH ₃ -N)	EPA350.1	0.01 mg/L
Nitrate/Nitrite Nitrogen (NO _X -N)	EPA353.2	0.01 mg/L
Carbonaceous BOD (CBOD ₅)	SM 5210B	2 mg/L
Total Dissolved Solids (TDS)	SM 2540C	10 mg/L
Total Suspended Solids (TSS)	SM 2540D	1 mg/L
Chemical Oxygen Demand (COD)	EPA 410.4	10 mg/L
Total Phosphorus (TP)	SM 4500PE	0.01 mg/L
Fecal Coliform (fecal)	SM9222D	1 ct/100mL
Sulfate (SO ₄)	EPA300.0	0.2 mg/L
Hydrogen Sulfide Unionized (H ₂ S)	SM4500S F	0.01 mg/L
Sulfide	SM4500S F	0.1 mg/L

3.6 Flow Monitoring

Flow rates for all PNRS II systems were calibrated at initial start-up. The flow rates are then measured and recorded at each sampling event and adjusted as necessary to

maintain flow rates consistent with the experimental design following the sampling event. Flow volumes are measured just after sampling and field analyses and represent the flow rates in effect during the water quality monitoring. Flow rates are then adjusted as necessary to correspond to the target flow rates in the experimental design. For this Sampling Event, influent flow volumes were measured on January 17, 2011 and reported in the Sampling Event No. 4 Report. Flow monitoring results are presented in Appendix C.

4.0 Results and Discussion

4.1 Operational Monitoring

Start up of the PNRS II test facility occurred on May 17, 2010. The test systems have been operated continuously since the May 17th start up, with the exception of occasional power interruptions or outages (see operation and maintenance log). The power interruptions were of relatively short duration. For the most part, operation of the pilot biofilters was fully and automatically resumed when power was restored. The only exceptions are the three peristaltic pumps: Pump 5 which supplies the two In-Situ simulators UN-SAT-IS1 and IS2, Pump 10 which supplies the two column In-Situ simulators UNSAT-IS3 and IS4, and Pump 11 which supplies the four horizontal flow denitrification biofilters. Initially, the peristaltic pumps displayed an error message and required manual restarting upon disruption of the power supply; their off times were somewhat longer than the other system pumps. The peristaltic pump settings were saved through the power outage, and the same pump operation was resumed once the error code was acknowledged. The peristaltic pumps have since been reprogrammed to start automatically in the event of temporary discontinuance of the power supply. Appendix A provides the operation and maintenance log which includes actions taken since start-up. Appendix B provides summary tables of the PLC recorded data of daily runtimes and flows for the test facility between November 11th and January 12th (Day 178 through Day 240 since start-up) used to check general pump operation and performance.

The recycle rates to the recirculating systems are monitored and recorded in the PLC as Pumps 5, 6, 7, 8, and 15 flows. The data shows that the recycle flows are very close to the initially set 44 gpd rate for Pumps 5, 6, 7, and 8, indicating that the desired recycle ratio of approximately 3:1 is being met. As discussed in Section 3.2.1, the Pump 15 flow rate was increased to 88 gpd rate so that the recycle ratio was increased to 6:1 from the previous 3:1 ratio

4.2 Water Quality Analyses

Water quality analytical results for Sample Event No. 4 are listed in Table 3. Quality Control samples, including field blanks, equipment blanks, and external duplicate and lab split samples are also included in this table. Results for the blanks were examined for obvious problems with sample contamination or improper decontamination of sampling equipment. Duplicate and split samples were examined for reproducibility, and where the differences were significant relative to the sample value, the laboratory was notified and requested to verify accuracy in reporting and reanalysis of the sample was requested if warranted. Significant difference determinations for the various lab analyses were based upon a review of reproducibility data in Standard Methods and EPA guidelines as well as on experience of the project team and data accuracy requirements for this project.

Table 4 shows the results of the QC sampling for this sample event, and a calculation of the percent difference between the sample value and the duplicate/split samples. The sample results that are highlighted in this table were forwarded back to the laboratories for verification and potential reanalysis. Any changes to these data from this verification will be reflected in the next data summary report.

A statistical summary of the water quality data collected to date for the PNRS II systems is presented in Table 5. The following discussion summarizes these results. The laboratory report containing the raw analytical data is included in Appendix D.

Influent Water Quality Water quality characteristics of STE collected in Sample Event 4 remained closer to typical STE composition than were STE samples collected earlier in the PNRS II study. Sample Event 4 STE parameters for TSS, COD, and CBOD $_5$ were still somewhat low, but within the range expected for domestic STE. The measured STE total nitrogen (TN) concentration was 66 mg/L, which is in the range that has been typically reported for Florida single family residence STE. The performance of the various biofilter systems was compared by considering the changes through treatment of nitrogen species (TKN-N, NH $_3$ -N, and NO $_X$ -N), as well as supporting water quality parameters.

Group 1 Single Pass Biofilters Effluent NH_3 -N levels were below 2 mg/L for the four Stage 1 single pass biofilters and DO levels were greater than 7.9 mg/L (Table 3). Organic N ranged from 2.3 to 3.5 mg/L in these same four systems. NO_x was significantly increased in all Stage 1 biofilter effluents corresponding to the decrease in TKN.

Effluent NO_X -N was less than 0.13 mg/L in the two Stage 2 single pass denitrification biofilters with sulfur media. The three lignocellulosic biofilters (DENIT-LS2, DENIT-LS3, and DENIT-LS4) exhibited incomplete denitrification with effluent NO_X -N of 41, 43 and 3.4 mg/L, respectively. Although the denitrification performance of the denitrification biofilters was expected to be more or less equivalent to biofilters with sulfur and glycerol electron donor, lignocellulosic biofilter performance continued to be inferior. Possible reasons are lack of reactivity of lignocellulosic material, toxicity (release of toxic material from lignocellulosic material itself), or short circuiting within the biofilters.

The influent to the DENIT-LS4 biofilter was effluent from the recirculation pump tank for the polystyrene biofilter (UNSAT-PS1) which contained 17 mg/L NH $_3$ -N and 12 mg/L NO $_x$ -N. While somewhat successfully denitrifying the relatively low influent NO $_x$ -N, DE-NIT-LS4 effluent contained 9.5 mg/L NH $_3$ -N. This result again confirms that NH $_3$ -N will be readily transported through anoxic denitrification biofilters which are at the same time capable of achieving significant NO $_x$ reduction.

Group 2 Stage 1 Recirculating Biofilters NH_3 -N levels were at or below 0.7 mg/L for the four recirculating Stage 1 biofilters containing clinoptilolite, expanded clay, and sand media, and effluent DO was 7.9 to 11.0 mg/L. Effluent NO_x -N ranged from 25 to 36 mg/L and organic N from 2.0 to 2.4 mg/L for these four recirculating Stage 1 biofilters. The nitrification performance of these biofilters was quite acceptable and TN reduction averaged 51%. The ammonia and DO concentrations in UNSAT-PS1 effluent were 16 mg/L and 5.2 mg/L, respectively, indicating incomplete nitrification. UNSAT-PS-1 also had significantly higher effluent TKN of 17 mg/L.

Group 3 Stage 2 Horizontal Biofilters Influent NOx-N to these biofilters was 29 mg/L. Effluent NO_x-N was 0.35 mg/L and less in three of four Stage 2 horizontal biofilters. The low NO_x-N were accompanied by depressed DO and ORP of -173 to -231 mV. Thus, three of the horizontal biofilters were effective in producing a reducing environment and achieving their NO_x-N reduction goal. DENIT-LS1 exhibited incomplete denitrification, with effluent NO_x-N of 22 mg/L.

Group 4 In-Situ Simulator Systems UNSAT-IS1, UNSAT-IS2 and UNSAT-IS4 exhibited low effluent NO_x -N of less than 0.4 mg/L. UNSAT-IS2 and UNSAT-IS4 exhibited a TN concentration less than 1.3 mg/L. For UNSAT-IS1, the effluent NO_x -N was low but effluent NH_3 -N was 58 mg/L indicating incomplete nitrification as seen in Sample Event 2 and 3. UNSAT-IS3 exhibited effluent NO_x -N of 32.3 mg/L indicating incomplete denitrifi-

cation. In-situ simulator effluent SO_4 concentrations were 7, 250, 120 and 110 mg/L, for IS1, IS2, IS3 and IS4 respectively.

o:\44237-001R004\Wpdocs\Report\Final

Table 3 **Water Quality Analytical Results**

Group (Figure 1)	Sample ID	Media Composition	Analytical Laboratory	Sample Date/Time	Sample Type	Temp (°C)	рН	Total Alkalinit (mg/L)	y DO (mg/L	ORP (mV)		TDS (mg/L)		CBOD _s (mg/L)	COD (mg/L)	TN (mg/L N) ¹		Organic N (mg/L N) ²	NH ₃ -N (mg/L N)	NO ₃ -N (mg/L N)	NO ₂ -N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³	TP (mg/L)	Sulfide (mg/L) (SO ₄ mg/L) (Ct,	Fecal :/100 mL)
	STE Sample															- //												
	PNRS II STE-Tank 1		Southern	1/13/11 13:15	G	13.7	7.1	38		7 -236.	5 1,220	470	83	78	230	66.0	66	9.0	57	0.02	0.03				16	6.9	13	8,900
	PNRS II STE-Tank 1-D		Southern	1/13/11 13:15	G	13.7	7.1	34		7 -236.	5 1,220	470	64	85	280	62.1	62	4.0	58	0.05								11,100
	PNRS II STE-Tank 1-D2		Pace	1/13/11 13:15	G	13.7	7.1	35	1 2.	7 -236.	5 1,220	570	15.5	87.9	290	61.3	61.1	9.8	51.3	0.12	0.12	0.24	51.54	14.1			17.6	100
	Stage 1 Single Pass Biofilters Effluent								4	4—																	_	
	UNSAT-EC1	15" Expanded Clay	Southern	1/13/11 12:05	G	7.8	6.7	16		9 36.5	1,110		1	2	16	49.1	4.0	2.3	1.7	45	0.13	45.11	46.81				61	3,900
	UNSAT-EC1-D	15" Expanded Clay	Southern	1/13/11 12:05	G	7.8	6.7	18		9 36.5	1,110	720	1	2	24	48.2	4.1	2.5	1.6	44	0.13	44.11					_	3,000
	UNSAT-EC3	30" Expanded Clay	Southern	1/13/11 12:05	G	6.3	6.8	2:		9 38.7	1,150		1	2	11	47.5	3.5			44							_	4
	UNSAT-EC3-D	30" Expanded Clay	Pace	1/13/11 12:05	G	6.3	6.8	22		9 38.7	1,150	914	5	3	16.2	35.8	0.42	0.4	0.020	35.1	0.25	35.35	35.37	5.6			64.4	12
	UNSAT-CL1	15" Clinoptilolite	Southern	1/13/11 11:45	G	8.2	7.2	18		8 32.3	1,200	710	1	2	16	33.9	2.7	2.7	0.020	31		31.16				_	59	100
	UNSAT-CL1-D	15" Clinoptilolite	Southern	1/13/11 11:45	G	8.2	7.2			8 32.3			3	2	20	24.1	2.9	2.9	0.020	21	0.18							40
1	UNSAT-CL3	30" Clinoptilolite	Southern	1/13/11 12:05	G	8.3	7.3	30		9 20.2		810	1	2	13	43.8	2.7	2.7	0.016	41	0.07						-	110
	UNSAT-CL3-D	30" Clinoptilolite	Southern	1/13/11 12:05	G	8.3	7.3	28	0 9.	9 20.2	1,300	840	2	2	16	42.9	2.8	2.8	0.018	40	0.06	40.06	40.08				_	25
	Stage 2 Single Pass Upflow Biofilters Effluent	10V Limenton, 20V Cultur, COV Func. 1, 101	Carabasa	1/12/11 0:00	-	7.0				2 -99.6	1.350	1.000			20				0.22	0.00	0.00	0.55	0.25		0.14	0.08	420	
	DENIT-SU4	10% Limestone; 30% Sulfur; 60% Expanded Clay	Southern Southern	1/13/11 9:00	G	7.0	6.8	24		2 -99.6 4 -79	1,350	1,000 790	2	2	20	45.4	1.2 2.3	2.3	0.22	0.10		0.13	0.35		0.14	U.08	420	3
	DENIT-LS3	50% Lignocellulosic; 50% Sand 80% Sulfur; 20% Oyster Shell		1/13/11 9:00	G	6.9	6.7			8 -208.			1		50	45.4				-						_		1
	DENIT-SU3 DENIT-LS2	25% Lignocellulosic; 75% Expanded Clay	Southern Southern	1/13/11 9:00	6	6.9	7.3	28		0 -135	7 1,420 1.300	1,000 860	11	9	50	43.8	2.9	2.1	0.80	0.01	0.0				\vdash	_	380	- 6
	DENIT-LS2 DENIT-LS4	30% Lignocellulosic; 75% Expanded Clay	Southern	1/13/11 9:00	G	7.4				2 -98.6	810	460	118		22	15.4	12		9.5	3.1						_	_	- 1
	Recirculation Tanks Effluent	30% Lignocellulosic; 70% Expanded Clay	Southern	1/15/119.00	G	7.4	7.3	- 23	0 5.	2 -96.0	810	400	110	4	22	15.4	12	2.5	9.5	3.1	0.23	3.33	12.65				-	
	PC1		Southern	1/13/11 11:45	G	7.2	7.2	19	0 1	6 -0.9	950	520	7	11	27	26.5	12	1.0	11	14	0.53	14.53	25.53				-	8,200
	RC2		Southern	1/13/11 11:45	G	7.4	7.2	20		5 -5	1.000		4	11	3/ //1	29.2	13	0.0	13	19	0.22					_	\rightarrow	9,100
	RC3		Southern	1/13/11 11:40	G	7.4	6.9	22		0 -21.7			12	12	41	28.4	12		11	1/1	2.6					_	-	13.000
	RC4		Southern	1/13/11 12:30	6	9.3	7.3	28		4 -121.9		600	13	0	40 E7	31.5	18	2.0	16	10	2.0	13.50					\rightarrow	8,700
	RC5		Southern	1/13/11 11:10	G	7.9		20		5 -120.	7 930	500	17	16	57	36.9	29	6.0	23	6.3	1.6						_	12,700
2	Stage 1 Recirculating Biofilters Effluent		Southern	1/13/11 11:10		7	-		1	J 110.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	300		10	3/	30.3		0.0		0.3	2.0	1	30.30				-	11,700
_	UNSAT-CL4	30" Clinoptilolite	Southern	1/13/11 11:15	G	7.9	7.3	17	0 11	0 55.5	970	660	1	2	13	38.4	2.2	2.2	0.011	36	0.15	36.15	36.16					1
	UNSAT-CL2	15" Clinoptilolite	Southern	1/13/11 9:50	6	6.0	7.0	15		9 -88 9			1	3	16	29.2	2.0	2.0	0.019	27	0.23							730
	UNSAT-EC4	30" Expanded Clay	Southern	1/13/11 10:10	G	7.0	6.9	10	0 10.	0 -88.8	960	600	1	2	16	32.9	2.4	2.4	0.038	30	0.50						-	21
	UNSAT-SA2	30" Sand	Southern	1/13/11 10:10	G	6.2	6.8	19	0 9	6 -70.8	900	550	1	3	16	28.7	3.0	2.3	0.66	25	0.7	25.71	26.37					41
	UNSAT-PS1	30" Polystyrene	Southern	1/13/11 10:15	G	5.8	7.3	20	0 5.	2 -28.5	930	490	9	12	52	28.3	17	1.0	16	10	1.3						-	9,500
	Pump 15 Tank (DENIT-LS4 Influent)	,,,,,	Southern	1/13/11 9:20	G	5.0	7.0	20	0 6.	4 -26.9	900	510	4	10	41	33.2	21	4.0	17	11	1.2	12.20	29.20					3,900
	Denite Feed Tank (Tank 3)			, 7		. 10																					\neg	
	DFT		Southern	1/13/11 10:35	G	6.4	7.0	16	0 9.	8 -40.	9 950	590	1	2	46	31.5	2.4	2.3	0.054	29	0.06	29.06	29.11				67	22
	Stage 2 Horizontal Biofilters Effluent		7			1	D.																					
3	DENIT-SU1	80% Sulfur; 20% Oyster Shell	Southern	1/13/11 8:00	G	0.2	6.8	22	0 1.	2 -231.	2 1,080	760	1	8	22	3.0	2.6	2.1	0.46	0.11	0.24	0.35	0.81				270	5
3	DENIT-SU2	10% Limestone; 30% Sulfur; 60% Expanded Clay	Southern	1/13/11 8:00	G	0.3	6.8	20	0 1.	6 -212.2	2 1,130	740	1	6	24	1.2	1.1	0.8	0.30	0.01	0.05	0.06	0.36		4.3	2.6	300	3
	DENIT-LS1	50% Lignocellulosic; 50% Expanded Clay	Southern	1/13/118:00	G	0.3	7.0	19	0 0.	6 -173.:	1 910	590	1	2	16	23.9	1.8	1.8	0.007	22	0.:	22.10	22.11					1
	DENIT-LS1-D	50% Lignocellulosic; 50% Expanded Clay	Pace	1/13/11 8:00	G	0.3	7.0	2:	9 0.	6 -173.	1 910	640	5	3	20.5	22.3	0.63	0.6	0.020	21.5	0.12	21.62	21.64	5.2			55.5	
	DENIT-GL1	12" Gravel; 60" Expanded Clay	Southern	1/13/11 8:00	G	0.3	6.6	40	0 0.	9 -208.	7 1,000	540	3	17	48	6.5	6.3	0.5	5.8	0.11	0.04	0.15	5.95					1
	In-situ Simulator Biofilters Effluent	4	487		Y																							
	UNSAT-IS1 (receives STE)	15" Sand; 12" Mix (45% EC, 35% Ligno, 20% Sulfur)	Southern	1/13/11 10:00	G	1.2	6.7	43		4 -141.	2 1,200		7	65	120	64.4	64	6.0	58	0.08		0.37					7	10
	UNSAT-IS2 (receives NO ₃)	12" Sand; 12" Mix (45% EC, 35% Ligno, 20% Sulfur)	Southern	1/13/11 8:15	G	6.2	6.8	20	0 3.	9 -234.	5 680	710	1	6	18	1.3	1.1	0.6	0.53	0.01	0.23	0.22	0.75				250	1
	UNSAT-IS3-SP (receives STE)	12" Sand; 10" Mix (60% EC, 40% Ligno)	Southern	1/13/11 14:10	G	4.0	7.5	2:	0 1	2 39.	2 980	600	3	2	26	7.7	1.8	1.8	0.036	3.70	2.20	5.90	5.94				130	
4	UNSAT-IS3 (receives STE)	12" Sand; 10" Mix (60% EC, 40% Ligno); 3" Sulfur	Southern	1/11/118:20	G	11.6	6.97	30	0 0.	4 136.	5 1,331	850	10	2	31	36.4	4.1	2.9	1.2	24.0	8.3	32.30	33.50				120	
l	UNSAT-IS3 (receives STE)	12" Sand; 10" Mix (60% EC, 40% Ligno); 3" Sulfur	Pace	1/11/11 8:20	G	11.6	6.97	28	0 0.	4 136.	5 1,331	868	10		24.2	41.8	1.9	0.8	1.1	31.3	8.6	39.90	41.00	0.50			116	1
l	UNSAT-IS4-SP (receives NO ₃)	12" Sand; 10" Mix (60% EC, 40% Ligno)	Southern	1/13/11 14:00	G	5.1	6.60	10	0 12.	0 35.	1 1,050	710	1	2	22	52.4	3.5	3.4	0.1	46.0	2.9	48.90	49.00				92	1
	UNSAT-IS4 (receives NO ₃)	12" Sand; 10" Mix (60% EC, 40% Ligno); 3" Sulfur	Southern	1/11/11 8:30	G	11.6	7.08	26	0 1.	0 150.	4 993	620	7	2	29	1.0	0.87	0.8	0.092	0.11	0.03	0.12	0.21				110	
l	UNSAT-IS4 (receives NO ₃)	12" Sand; 10" Mix (60% EC, 40% Ligno); 3" Sulfur	Pace	1/11/11 8:30	G	11.6	7.08	26	_		4 993	637	5.0		29.5	1.1	1.0	0.9	0.052	0.050		0.10		3.9			119	1
	Field Blank	Reagent Water	Southern	1/13/11 8:45		5.0			2 9			10	1	2	10	0.1	0.05	0.05	0.005	0.01				3.3				1
ı	Equipment Blank	Reagent Water - Cleaned STE Bottle #2	Southern	1/13/11 11:30		5.0	7.0		2 9				-	-		0.1	0.05	0.04	0.008	0.01							_	=

Notes:

Total Nitrosen (TN) is a calculated value equal to the sum of TXN and NOTotal normanic Nitrosen (DN) is a calculated value equal to the difference of TXN and NNTotal informanic Nitrosen (TN) is a calculated value equal to the difference of TXN and NNTotal informanic Nitrosen (TN) is a calculated value equal to the sum of NN- and NOCC: expanded day, CL: disoptiolite, PS: polystyrene, SU: elemental suffur, LS: lignocellulosic, GL: glycerol, OS: oyster shell, NS: sodium sesquicarbonate, GR: gravel

D.O. - Dissoved oxygen

G- Grab sample
Gray-shaded data points indicate values below method detection level (md), mdl value used for statistical analyses.

Yellow-shaded data points indicate the reported value is between the laboratory method detection limit and the laboratory practical quantitation limit, value used for statistical analysis.

Table 4
Sample Event No. 4 External QC Sample Results

Sample ID	Total Al	lkalinity g/L)	TE (mg	-	TS (mg		CB0 (mg		CC (mg		TK (mg/		NH₃ (mg/		NO₃ (mg/l		NO ₂ (mg/		SO (mg	-	Fed (Ct/10	
	Value	% diff	Value	% diff	Value	% diff	Value	% diff	Value	% diff	Value	% diff	Value	% diff	Value	% diff	Value	% diff	Value	% diff	Value	% diff
STE Lab	380		470		83		78		230		66		57	1	0.02		0.01		13		8,900	
STE Dup	340	-10.5%	470	0.0%	64	-22.9%	85	9.0%	280	21.7%	62	-6.1%	58	1.8%	0.05		0.01	0.0%			11,100	
STE Split	351	-7.6%	570	21.3%	15.5	-81.3%	87.9	12.7%	290	26.1%	61.1	-7.4%	51.3	-10.0%	0.12	MDL	0.12	MDL	17.6	35.4%	100	
EC1 Lab	160		730		1		2		16		4.0		1.7		45		0.11		61		3,900	
EC1 Dup	180	12.5%	720	-1.4%	1	0.0%	2	0.0%	24	50.0%	4.1	2.5%	1.6	-5.9%	44	-2.2%	0.11	0.0%			3,000	
EC3 Lab	210		740		1		2		11		3.5		0.005		44		0.01				4	
EC3 Split	222	5.7%	914	23.5%	5	MDL	3	MDL	16.2	47.3%	0.42	-88.0%	0.020	MDL	35.1	-20.2%	0.25	MDL	64.4		12	
CL1 Lab	180		710		1		2		16		2.7		0.020		31		0.16		59		100	
CL1 Dup	280	55.6%	700	-1.4%	3	N/A	2	0.0%	20	25.0%	2.9	7.4%	0.020	0.0%	21	-32.3%	0.18	12.5%			40	
CL3 Lab	300		810		1		2		13		2.7		0.016		41		0.07				110	
CL3 Dup	280	-6.7%	840	3.7%	2	N/A	2	0.0%	16	23.1%	2.8	3.7%	0.018	12.5%	40	-2.4%	0.06	-14.3%			25	
LS1 Lab	190		590		1		2		16		1.8		0.007		22		0.1				1	
LS1 Split	219	15.3%	640	8.5%	5	MDL	3	MDL	20.5	28.1%	0.63	-65.0%	0.020	MDL	21.5	-2.3%	0.12	MDL	55.5			
IS3 Lab	300		850		10		2		31		4.1		1.2		24.0		8.3		120			
IS3 Split	280	-6.7%	868	2.1%	10	0.0%			24.2	-21.9%	1.9	-53.7%	1.1	-8.3%	31.3	30.4%	8.6	3.6%	116	-3.3%	1	
IS4 Lab	260		620		7		2		29		0.87		0.092		0.11		0.01		110			
IS4 Split	264	1.5%	637	2.7%	5.0	MDL			29.5	1.7%	1.0	14.9%	0.052	-43.5%	0.050	-54.5%	0.050	MDL	119	8.2%	1	
																Ť						
Field Blank	2		10		1		2		10		0.05		0.005		0.01		0.01				1	
Equipment Blank	2		10		1		2		10	1	0.05		0.008		0.01	-	0.01				1	·

o:\44237-001R004\Wpdocs\Report\Final

Table 5 Statistical Summary of Water Quality Data

Sample ID	Media Composition	Statistical Parameter	Temp (°C)	рН	Total Alkalinity (mg/L)	DO (mg/L)	ORP (mV)	Specific Conductance (µS)	TDS (mg/L)	TSS (mg/L)	CBOD _s (mg/L)	COD (mg/L)	TN (mg/L N) ¹	TKN (mg/L N)	Organic N (mg/L N) ²	NH3-N (mg/L N)	NO ₃ -N (mg/L N)	NO ₂ -N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³	TP (mg/L)	Sulfide (mg/L)	H ₂ S (mg/L)	SO ₄ (mg/L)	Fecal (Ct/100 mL)
STE Sample	•																								
		n	12	12	10	9	8	12	10	12	12	8	10	12	10	10	3	3	10	9	4	3	4	5	
		MEAN	23.2		333.5	1.4	-252.8	1077.3	417.7		71.2	247.6	58.0	59.0			0.06	0.05	0.06	47.3	8.8		8.4	13.9	
STE-Tank 1		STD. DEV.	5.9		77.6			212.0	89.9		29.7		20.6	18.9			0.05	0.06	0.07	18.3	3.6		2.9	12.5	
		MIN	13.7	6.4	210.0	0.0		649.0	240.0		22.0	210.0	25.9	25.9		20.0	0.02	0.01	0.01	20.0	6.6		5.4	2.8	80
		MAX	28.3	7.3	430.0	2.7	-230.0	1250.0	570.0	83.0	100.0	290.0	85.1	85.0	15.0	74.0	0.12	0.12	0.24	67.0	14.1	16.0	12.0	33.0	77000
Stage 1 Single	e Pass Biofilters Eff	luent																							
		n	5	5	5	5	4	5	5	5	5	4	5	5	5	5	2	2	5	5	1	3	3	4	
		MEAN	18.4		152.0	7.4	79.6	1008.4	648.0		2.0	15.8	46.3	3.9				0.1	42.4	43.4	3.9		0.0	54.8	
UNSAT-EC1	15" Expanded Clay		10.1		31.1			221.4	170.4	0.0	0.0		16.3	1.0			0.7	0.0	15.3	15.9		0.5	0.03	7.5	
		MIN	7.8	6.7	110.0	6.8	36.5	617.0	350.0		2.0	10.0	21.2	2.2		0.01	44.0	0.11	19.0	19.0			0.01	46.0	1.0
		MAX	28.6	7.3	180.0	7.9	137.5	1150.0	770.0	1.0	2.0	24.0	66.8	4.8		1.7	45.0	0.1	62.0	63.3	3.9	1.0	0.1	61.0	3900.0
		MEAN	18.2	3	177.2	7.2	74.9	1079.0	730.8	2.0	2.2	13.3	47.1	2.9	,	0.5	39.6	0.1	44.3	44.8	4.8				
UNSAT-EC3	30" Expanded Clay		11.2		59.9	1.2	74.5	210.3	194.2	1.7	0.4		24.0	1.7		0.3	6.3	0.1	22.8	23.7	4.0				
0115/11 225	50 Expanded city	MIN	6.3	6.8	84.0	6.7	38.7	712.0	410.0	1.0	2.0	10.0	21.2	0.4	0.4	0.005	35.1	0.01	19.0	19.0	3.9				1.0
		MAX	29.2	7.3	222.0	7.9	117.0	1250.0	914.0	5.0	3.0	16.2	85.9	4.9		2.4	44.0	0.3	81.0	83.4	5.6				12.0
		n	5	5	5	5	4	5	5	5	5	4	5	5	5	5	2	2	5	5	1	3	3	4	4
		MEAN	19.0		234.0	6.8	71.6	1131.6	686.0	2.6	2.0	16.5	33.2	2.7	2.7	0.013	26.000	0.170	30.5	30.5	8.0	0.5	0.03	51.5	
UNSAT-CL1	15" Clinoptilolite	STD. DEV.	10.2		36.5			161.4	127.0	2.6	0.0		10.9	0.1		0.007	7.071	0.014	11.0	11.0		0.5	0.04	11.4	
		MIN	8.2	7.1	180.0	3.5	32.3	857.0	470.0	1.0	2.0	10.0	20.7	2.6		0.005	21.000	0.160	18.0	18.0			0.01	37.0	10
		MAX	29.5	8.3	280.0	8.8	116.2	1271.0	800.0	7.0	2.0	20.0	46.6	2.9	2.9	0.020	31.000	0.180	44.0	44.0	8.0	1.0	0.08	62.0	100
		n	5	5	5	5	4	5	5	5	5	4	5	5	5	5	2	2	5	5	1				3
		MEAN	18.8		296.0	8.3	56.2	1248.4	774.0		2.0		46.4	3.0		0.012	40.500	0.065	43.4	43.4	6.8				
UNSAT-CL3	30" Clinoptilolite	STD. DEV.	9.9		27.0			159.0	126.2	0.5	0.0	100	22.0	0.6		0.005	0.707	0.007	22.1	22.1					
		MIN	8.3	7.3 8.6	270.0 340.0	6.9 9.9	20.2	974.0	550.0		2.0	13.0	22.8	2.7		0.005	40.000	0.060	20.0	20.0	6.8				3.0 110.0
		MAX	28.7	8.6	340.0	9.9	100.5	1388.0	850.0	2.0	2.0	29.0	82.7	4.0	4.0	0.018	41.000	0.070	80.0	80.0	6.8				110.0
		MEAN	27.8		220.0	2.6	60.0	804.5	345.0	3.0	4.4	48.0	43.3	34.5	83	26.2	0.0	0.0	8.8	35.0	5.9				
UNSAT-PS1	30" Polystyrene	STD. DEV.	1.1		84.9	2.0	00.0	290.6	106.1	1.4	1.9	40.0	25.4	26.2		28.0	0.0	0.0	0.8	27.2	3.3				
(old)		MIN	27.0	7.3	160.0	2.5	60.0	599.0	270.0		3.0	48.0	25.3	16.0		6.4	0.0	0.0	8.2	15.7	5.9				930
Stage 2 Single	e Pass Upflow Biofi	Iters Effluent			280.0	2.7	60.0	1010.0	420.0		5.7		61.2					0.0		54.2					930
		n	2	2	2	2	1	2	2		2	1	2	2	2	2			2	2				2	1
DENIT-SU4	80% Sulfur; 20%	MEAN STD. DEV.	27.6		145.0 7.1	0.2	-106.6	1162.0 329.5	755.0 275.8		3.0 1.3		1.1 0.4	1.0		0.2			0.1			1.0		405.0 205.1	
(old)	Sodium Sesqui.	MIN	27.1	6.6	140.0	0.1	-106.6	929.0	560.0		2.0	22.0	0.4	0.4					0.1	0.2				260.0	1.0
		MAX	28.1	7.3		0.2		1395.0	950.0		3.9		1.4	1.3					0.01					550.0	1.0
		n	3	3	2	3	3	3	2		2	2	2	2	. 2	2	1	1	2	2		2	2	2	
DENIT-SU4	10% Limestone;	MEAN	16		225	4.5	-27	1506	1050	4	2	17	1.1	1.0	0.9	0.2	0.1	0.03	0.08	0.24		1	0.09	490	
(new)	30% Sulfur; 60%	STD. DEV.	-		21		440	155	71		0		0.3	0.2					0.08			0.61	0.01	98.99	
(IICW)	Expanded Clay	MIN	7	7	210	1.6	-118	1350	1000		2	13	0.9	0.9				0.03	0.02			0.14	0.08	420	
		MAX	21	7	240	7.8	138	1659	1100		2	20	1.3	1.2	1.0		0.1	0.03	0.13			1.00	0.09	560	
	50%	n MEAN	19.9	5	220.0	2.8	56.7	5	570.0		4.5	3	26.5	3.0	2.5	4	12.0	0.1	23.5	23.9	3.3				2
DENIT-LS3	Lignocellulosic;	STD. DEV.	19.9 8.9		16.3	2.8	56.7	1118.2 267.1	670.0 210.9				26.5 18.4	1.0		0.4		0.1	18.3						
DEIWIT EDS	50% Sand	MIN	6.6	6.7	200.0	0.1	-79.0	695.0	370.0		2.0	11.0	2.0	2.0		0.0		0.1	0.01	1.0					1.0
		MAX	28.1	7.7		5.4		1432.0	840.0		12.0		45.4	4.3		1.0		0.1	43.1						1.0
		n	5	5	4	5	4	5	4	4	4	3	4	4	4	4	1	1	4	4	1		3	4	2
	000/ 5 1/ 200/	MEAN	20.8		245.0	2.2	-220.0	1472.2	952.5	7.5	6.8	38.3	2.4	2.4	1.7	0.7	0.01	0.04	0.04	0.7	6.2	4.7	2.4	430.0	
DENIT-SU3	80% Sulfur; 20% Oyster Shell	STD. DEV.	8.6		50.7			148.7	168.4		5.2		0.5	0.5		0.2			0.02			2.3	1.9	92.0	
	Oyster Shell	MIN	6.9	6.7	170.0	0.1	-279.6	1257.0	710.0	1.0	2.0	26.0	1.9	1.8	1.2	0.5	0.01	0.04	0.01	0.5	6.2	2.4	0.9	340.0	1.0
		MAX	28.4	7.2	280.0	7.7	-180.0	1655.0	1100.0	16.0	13.0	50.0	3.0	2.9	2.2	0.8	0.01	0.04	0.1	0.9	6.2	7.0	4.5	550.0	6.0
		n	2	2	2	2	1	2	2	2	2	1	2	2	2	2			2	2	1				1
DENIT-LS2	50%	MEAN	27.3		375.0	2.1	-11.5	1223.0	680.0		3.8	24.0	17.5	2.3		0.3			15.2		5.7				
(old)	Lignocellulosic;	STD. DEV.	0.1		7.1			318.2	240.4		2.5		20.7	1.2		0.0			19.5	19.6					
	50% Expanded Clay		27.2	7.8	370.0	0.1	-11.5	998.0	510.0		2.0	24.0	2.8	1.4		0.2			1.4						1.0
		MAX	27.3	8.1	380.0	4.1	-11.5	1448.0	850.0 2		5.5 2	24.0	32.1	3.1	2.8	0.3			29.0	29.3	5.7				1.0
	25%	n MEAN	15.4	3	330.0	4.5	66.4	1315.7	820.0	_	2.0	21.0	31.8	3.3	3.2	0.1	41.0	0.1	28.5	28.6					0.0
DENIT-LS2	Lignocellulosic;	STD. DEV.	7.7		330.0 14.1	4.5	bb.4	1315.7 124.2	820.0 56.6		0.0	21.0	31.8 16.9	0.8		0.1	41.0	0.1	28.5 17.7	28.6 17.7					0.0
(new)	75% Expanded Clay		6.8	7.3	320.0	4.1	-135.0	1200.0	780.0		2.0	16.0	19.8	2.7			41.0	0.1	16.0						1.0
		MAX	21.5	7.6		5.0		1447.0	860.0		2.0	26.0	43.8	3.8		0.1		0.1	41.1						1.0
		n	5	5	5 .5.0	5.6	4	5	5	5	5	3	4	4	4	4	1	1	4	4	1				
	30%	MEAN	20.1		264.0	2.3	-49.8	897.4	412.0	24.6	3.8	25.7	31.8	28.5	12.7	15.8	3.1	0.3	3.3	19.2	6.9				
DEAUT LEA	Lignocellulosic;	STD. DEV.	8.3		85.0			197.0	82.9	52.2	3.1		24.8	26.0	14.4	12.1			4.6	12.2					
DENIT-LS4																									
DENII-LS4	70% Expanded Clay	MAX MAX	7.4 28.1	7.3 7.6	180.0 360.0	0.4 5.2		618.0 1120.0	270.0 480.0		2.0 9.1	20.0 35.0	14.0 67.2	12.0 67.0	2.5 34.0	5.8 33.0	3.1	0.3	0.01 9.8	5.8 33.2					1.0

Table 5 (con't) Statistical Summary of Water Quality Data

	aa-di-	Ca-ai-ai-al	T		Total	200	ORP	Specific	TDS	TCC	CBOD ₅	con	TN	TKN	Organic N	NH3-N	NO N	NO N	NO.	TIN	TP	Sulfide			Facel
Sample ID	Media Composition	Statistical Parameter	Temp (°C)	pН	Alkalinity (mg/L)	DO (mg/L)	(mV)	Conductance (µS)	(mg/L)	TSS (mg/L)	CBOD₅ (mg/L)	COD (mg/L)		l	(mg/L N) ²		NO ₃ -N (mg/L N)	NO ₂ -N (mg/L N)	NOx (mg/L N)	(mg/LN) ³	(mg/L)	(mg/L)	H₂S (mg/L)	SO ₄ (mg/L)	Fecal (Ct/100 mL)
		1	-		(IIIg/L)			(μ3)								- 4	,								1
Recirculation	Tanks Effluent															\mathcal{A}									
		n	4	4	4	3	3	4	4	4	4	3	4	4	4	4	1	1	4	4	1				
0.04		MEAN	22.2		185.0	1.2	-24.1	899.5	495.0		5.5	29.3	36.9	15.3	4.8		14.0	0.5	21.6	32.1	5.8				
RC1		STD. DEV.	11.0		20.8			177.0	112.7	2.6	4.1		12.7	2.4	3.4	3.3			10.9	13.6					
		MIN	7.2 30.8	7.2 7.3	160.0 210.0	0.03	-128.3 57.0	637.0 1011.0	330.0 580.0		2.0 11.0	22.0 37.0	26.5 53.0	12.0 17.0	1.0 9.3	5.7 13.0	14.0 14.0	0.5 0.5	12.0 36.0	17.7 49.0	5.8 5.8				114.0 8200.0
		n.	30.8	7.3	210.0	2.1	37.0	1011.0	580.0	7.0	11.0	37.0	55.0	17.0	9.3	15.0	14.0	0.5	30.0	49.0	5.8				8200.0
		MEAN	21.9	- "	182.5	1.4	-18.2	932.5	515.0	2.5	5.3	33.3	34.8	16.0	4.4	11.6	16.0	0.2	18.8	30.4	4.2				· ·
RC2		STD. DEV.	10.9		31.0	1.4	-10.2	169.5	117.3	1.3	3.8	33.3	7.9	2.6		4.3	10.0	0.2	5.7	9.6	4.2				
		MIN	7.4	7.1	140.0	0.1	-108.2	679.0	340.0	1.0	2.0	24.0	27.0	13.0	0.0	5.3	16.0	0.2	12.0	17.3	4.2				99.0
		MAX	30.5	7.3	210.0	2.5	58.5	1031.0	590.0	4.0	9.0	41.0	43.0	19.0	9.7	15.0	16.0	0.2	24.0	38.0	4.2				9100.0
		n	4	4	4	3	3	4	4	4	4	3	_ 4	4	4	4	1	1	4	4	1				
		MEAN	21.5		210.0	1.5	41.6	979.5	515.0	6.5	6.6	48.7	34.1	14.8	5.5	9.3	14.0	2.4	19.4	28.7	6.4				
RC3		STD. DEV.	10.6		41.6			157.1	104.7	4.9	4.7		8.3	3.4	4.2	2.9			9.5	10.3					
		MIN	7.4	6.9	160.0	0.1	-21.7	760.0	360.0	1.0	2.0	39.0	27.0	12.0	1.0	5.5	14.0	2.4	11.0	16.5	6.4				109.0
		MAX	30.2	7.6	260.0	2.3	89.0	1128.0	590.0	13.0	12.0	61.0	45.0	19.0	10.5	12.0	14.0	2.4	33.0	41.7	6.4				13000.0
		n	4	4	4	3	3	4	4	4	4	3	4	4	4	4	1	1	4	4	1				
		MEAN	21.8		235.0	0.8	0.1	1015.8	552.5		4.7	37.3	32.9	15.5		10.5	10.0	3.5	17.4	27.9	6.7				
RC4		STD. DEV.	10.2		44.3			138.9	102.4	7.8	2.9		4.7	3.1	3.9	4.5			7.0	8.0					
		MIN	8.3 30.4	7.3 7.8	180.0 280.0	0.0 1.9	-121.9 73.0	811.0 1112.0	400.0 620.0	2.0	2.7 9.0	26.0 57.0	27.0 38.0	11.0 18.0	2.0 10.5	5.5 16.0	10.0 10.0	3.5 3.5	11.0 27.0	16.5 35.4	6.7				112.0 8700.0
		MAX	30.4	7.8	280.0	1.9	/3.0	1112.0	620.0	21.0	9.0	57.0	38.0	18.0	10.5	16.0	10.0	3.5	27.0	35.4	b./				8/00.0
		MEAN	15.0	- 4	240.0	2.4	-12.4	990.0	490.0	12.5	12.0	59.0	41.0	30.0	4.5	25.5	6.3	1.6	11.0	36.5					
RC5		STD. DEV.	15.0		240.0	2.4	-12.4	330.0	450.0	12.3	12.0	33.0	41.0	30.0	4.5	23.3	0.5	1.0	11.0	30.3					
		MIN	7.9	7.1	220.0	1.5	-120.7	930.0	480.0	8.0	8.0	57.0	36.9	29.0	3.0	23.0	6.3	1.6	7.9	30.9					
		MAX	22.0	7.3	260.0	3.3	96.0	1050.0	500.0	17.0	16.0	61.0	45.0	31.0	6.0	28.0	6.3	1.6	14.0	42.0					
Stage 1 Besig	culating Biofilters Ef	fluont								1	7	7													
Stage I Recii	Culating Bioliters El	n	4	4	4	4	3	4	4	4	4	3	4	4	4	4	1	1	4	4	1				
		MEAN	22.1	7	207.5	8.3	47.9	1011.0	620.0	2.8	2.0	12.3	34.1	2.3	2.3	0.01	36.00	0.15	31.8	31.8					· ·
UNSAT-CL4	30" Clinoptilolite	STD. DEV.	9.8		47.9			131.5	93.8		0.0		16.1	0.2		0.01		0.20	16.2	16.1					
		MIN	7.9	6.7	170.0	7.1	35.5	860.0	480.0	1.0	2.0	11.0	10.3	2.1	2.1	0.005	36.000	0.150	7.9	7.9	7.6				1.0
		MAX	29.3	7.8	270.0	11.0	55.5	1174.0	680.0	8.0	2.0	13.0	45.1	2.6	2.6	0.02	36.00	0.15	43.0	43.0	7.6				1.0
		n	4	4	4	4	3	4	4	7	4	3	4	4	4	4	1	1	4	4	1				
		MEAN	20.8		175.0	6.6	-2.8	955.3	580.0		2.3	20.7	36.9	2.4		0.011	27.000	0.230	34.6	34.6					
UNSAT-CL2	15" Clinoptilolite	STD. DEV.	10.0		37.9	41		119.1	95.6				17.3	0.5		0.006			17.0	17.0					
		MIN	6.0 27.1	7.0 7.9	120.0 200.0	5.4 7.9	-88.9 50.2	781.0 1050.0	440.0 650.0	1.0	2.0	16.0	17.1	2.0 3.1	2.0	0.005	27.000 27.000	0.230	15.0 54.0	15.0 54.0	7.1				730.0
		MAX -	27.1	7.9	200.0	7.9	50.2	1050.0	650.0	3.0	3.0	24.0	56.3	3.1	5.1	0.019	27.000	0.230	54.0	54.0	7.1				/30.0
		MEAN	21.3	4	145.0	7.9	12.2	900.3	562.5	1.3	2.0	13.0	36.3	2.4	2.4	0.02	30.00	0.50	33.9	33.9	•				,
UNSAT-EC4	30" Expanded Clay		9.9		12.9	7.9	12.2	160.3	143.8	0.5	0.0	15.0	14.0	0.4	0.4	0.02	30.00	0.50	13.8	13.8	3.8				
ONSAT-LC4	50 Expanded Clay	MIN	7.0	6.9	130.0	6.9	-88.8	661.0	350.0		2.0	10.0	18.9	1.9	1.9	0.005	30.00	0.50	17.0	17.0	3.8				1.0
		MAX	28.5	7.3	160.0	10.0	78.8	1000.0	660.0		2.0	16.0	52.3	2.9	2.9	0.04	30.00	0.50	50.0	50.0	3.8				21.0
		n	4	4	4	4	3	4	4	4	4	3	4	4	4	4	1	1	4	4	1				22.
		MEAN	20.9		122.5	7.6	22.0	846.8	532.0	4.0	2.3	17.0	32.2	3.0	2.6	0.4	25.0	0.7	29.2	29.5	6.3				
UNSAT-SA2	30" Sand	STD. DEV.	10.1	b. 1	18.9			163.3	139.6	6.0	0.5		10.3	0.6	0.5	0.4			9.7	9.9					
		MIN	6.2	6.0	110.0	6.3	-70.8	604.0	330.0	1.0	2.0	13.0	19.2	2.2	2.2	0.01	25.0	0.7	17.0	17.0	6.3				1.0
		MAX	28.2	6.9	150.0	9.6	89.2	953.0	638.0	13.0	3.0	22.0	41.5	3.5	3.3	0.7	25.0	0.7	38.0	38.7	6.3				41.0
		n	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	2	2					:
UNSAT-PS1		MEAN	14.8		200.0	6.5	30.8	940.0	520.0		8.0	45.5	63.2	22.5		18.5	10.0	1.3	40.7	59.2					
(new recirc)	30" Polystyrene	STD. DEV.	12.7		0.0		20.5	14.1	42.4		5.7	25.5	49.3	7.8	4.2	3.5	45.5		41.5	45.0					05
		MIN	5.8 23.8	7.2 7.3	200.0	5.2 7.8	-28.5	930.0	490.0		4.0 12.0		28.3	17.0	1.0 7.0	16.0 21.0	10.0	1.3	11.3	27.3					9500.0
		n MAX	23.8	7.3	200.0	7.8	90.0	950.0	550.0		12.0	52.0	98.0	28.0	7.0	21.0	10.0	1.3	70.0 2	91.0					9500.0
Pump 15		MEAN	12.9	2	200.0	6.8	-4.1	935.0	530.0		6.5	37.0	37.6	21.0	4.0	17.0	11.0	1.2	16.6	33.6		-	-	-	
		STD. DEV.	11.1		0.0	0.0	-4.1	49.5	28.3		4.9		6.2	0.0	0.0	0.0	11.0	1.2	6.2	6.2					1
Tank (DENIT-															5.0										
Tank (DENIT- LS4 Influent)		MIN	5.0	7.0	200.0	6.4	-26.9	900.0	510.0	4.0	3.0	33.0	33.2	21.0	4.0	17.0	11.0	1.2	12.2	29.2					3900.0

Table 5 (con't) **Statistical Summary of Water Quality Data**

			г т					6 '6'																	
Sample ID	Media	Statistical	Temp	pН	Total Alkalinity	DO	ORP	Specific Conductance	TDS	TSS	CBOD ₅	COD	TN	TKN	Organic N	NH3-N	NO ₃ -N	NO ₂ -N	NOx	TIN	TP	Sulfide	H ₂ S	SO ₄	Fecal
Sample 1D	Composition	Parameter	(°C)	þп	(mg/L)	(mg/L)	(mV)	(μS)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/LN)1	(mg/LN)	(mg/L N) ²	(mg/LN)	(mg/LN)	(mg/L N)	(mg/LN)	(mg/LN) ³	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(Ct/100 mL)
					(1116/1-)			(μ3)																	
Denite Feed	Tank (Tank 3)						-																		
		MEAN	20.0	4	452.5	4	3	4	557.5	4	4	3	20.7	4	4	4	20.0	1	25.0	25.0	1	3	3	- 4	2
DFT		STD. DEV.	20.0 10.0		162.5 28.7	8.2	15.6	923.5 123.1	567.5 121.8	1.0	2.0		28.7 10.8	3.0 0.5	2.9 0.4	0.1		0.1	25.8 11.1	25.8 11.1	6.5	0.4	0.0	57.3 9.9	
DFI		MIN	6.4	7.0	130.0	7.3	-40.9	744.0	390.0	1.0		18.0	19.5	2.4		0.01		0.06	16.0	16.2	6.5		0.01	46.0	
		MAX	28.1	8.1	200.0	9.8	62.2	1020.0	660.0	1.0			42.8	3.5		0.01			40.0	40.0			0.01	67.0	
			20.1	0.1	200.0	5.0	02.2	1020.0	000.0	1.0	2.0	40.0	42.0	3.3	3.3	0.2	25.0	0.1	40.0	40.0	0.3	1.0	0.1	07.0	22.0
Stage 2 Horiz	ontal Biofilters Efflu	ent					-								- 4										
		MEAN	4	4	4	4	3	4		4	4	3	4	4	4	4	1	1	4	4	1	3	3		
DENIT-SU1	80% Sulfur; 20%		20.2		222.5	0.9	-272.8	1248.8	830.0	1.0	19.0	45.0	2.5	2.4	1.1	1.3		0.2	0.1	1.4	5.0	23.7	10.7	325.0	
DENII-SUI	Oyster Shell	STD. DEV.	13.4	6.8	17.1 200.0	0.7		165.3	150.1	0.0	8.1 8.0		0.4	0.4 1.9	0.8	0.9	-		0.2	0.8		6.1	1.4	97.1 230.0	
		MAX	0.2	7.2		0.1	-317.2	1080.0	660.0	1.0		22.0	2.0	2.7	0.3			0.2	0.01	2.4		17.0	9.2		
		IVIAX	28.0	7.2	240.0	1.6	-231.2	1473.0	1000.0	1.0	26.0	63.0	3.0	2.7	2.1	2.4	0.1	0.2	0.4	2.4	5.0	29.0	12.0	450.0	5.0
		MEAN	26.4		235.0	0.9	-279.0	1400.0	810.0	1.5	12.5	50.0	4.1	1.5	1.0	0.5			2.6	3.1	4.8	7.1	3.4	305.0	1
DENIT-SU2	80% Sulfur; 20%	STD. DEV.	2.2		35.4	0.5	-275.0	2.8	169.7	0.7	10.7	30.0	3.2	0.4	0.2	0.6			3.7	3.0	4.0	9.8	4.7	233.3	
(old)	Sodium Sesqui.	MIN	24.8	7.0	210.0	0.5	-279.0	1398.0	690.0	1.0	4.9	50.0	1.8	1.2	0.9	0.01			0.025	0.9	4.8	0.1	0.0	140.0	1.0
		MAX	27.9	9.1		1.2	-279.0	1402.0	930.0	2.0	20.0		6.4	1.8	1.2	0.01			5.2	5.2		14.0	6.7	470.0	
		n	2	2	2	2	2	2	2	2	2	2	2	2	2	2		1	2	2		2	2	2	1
DENUT CUE	10% Limestone;	MEAN	12.9		205.0	0.9	-151.1	1240.0	870.0	4.5	4.0	21.0	1.0	0.9	0.8	0.2	0.01	0.1	0.05	0.2		2.7	1.3	395.0	
DENIT-SU2	30% Sulfur; 60%	STD. DEV.	17.8		7.1			155.6	183.8	4.9			0.3	0.3	0.1	0.2			0.02	0.2		2.3	1.8	134.4	
(new)	Expanded Clay	MIN	0.3	6.8	200.0	0.2	-212.2	1130.0	740.0	1.0	2.0	18.0	0.8	0.7	0.7	0.03	0.01	0.1	0.03	0.1		1.0	0.01	300.0	3.0
		MAX	25.5	7.0	210.0	1.6	-90.0	1350.0	1000.0	8.0	6.0	24.0	1.2	1.1	0.8	0.3	0.01	0.1	0.1	0.4		4.3	2.6	490.0	3.0
		n	6	6	6	6	5	6	5	6	6	4	6	6	6	6	2	2	6	6	2				2
	50%	MEAN	14.7		224.8	0.5	-136.3	927.7	534.0	1.7	11.5	24.6	17.3	1.9	1.6	0.3	21.8	0.1	15.5	15.7	2.8				
DENIT-LS1	Lignocellulosic;	STD. DEV.	12.1		23.5			111.0	101.6	1.6	21.8		12.9	0.8	0.9	0.4	0.4	0.0	12.7	12.4					
	50% Expanded Clay	MIN	0.3	6.9	190.0	0.1	-199.7	738.0	370.0	1.0		16.0	1.5	0.6	0.6	0.005	21.5	0.100	0.01	0.7	0.5				1.0
		MAX	27.3	7.7	250.0	1.1	-15.4	1076.0	640.0	5.0	56.0	44.0	33.7	2.7	2.7	0.8	22.0	0.1	31.0	31.0	5.2				1.0
		n	4	4	4	4	3	4	4	4	4	4	4	4	4	4	1	1	5	4	1				2
	12" Gravel; 60"	MEAN	18.6		417.5	0.8	-187.9	1095.0	665.0	27.0	217.3	312.0	20.3	19.0	9.9	9.2		0.04	1.0	10.4	2.9				
DENIT-GL1	Expanded Clay	STD. DEV.	12.5		181.5			402.9	364.6	48.7			30.6	31.4		13.4			2.1	12.7					
		MIN	0.3	6.4		0.0	-208.7	794.0	380.0	1.0	3.0	22.0	2.0	1.9		0.9		0.04	0.04	1.0					1.0
		MAX	27.8	8.0	660.0	1.5	-174.9	1686.0	1200.0	100.0	810.0	1100.0	66.1	66.0	37.0	29.0	0.1	0.04	4.7	29.1	2.9				800.0
In-situ Simul	ator Biofilters Efflue	nt							-		7														
		n	6	6	6	6	5	6	6	6	6	4	6	6	6	6	1	1	6	6	2	5	5	6	3
UNSAT-IS1	15" Sand; 12" Mix	MEAN	20.8		306.7	0.8	-73.9	1391.8	783.3	23.8		82.3	37.2	37.1	2.7	34.3	0.08	0.29	0.1	34.4	1.5		1.2		
(receives	(45% EC, 35%	STD. DEV.	10.8		111.3			513.7	420.1	43.8	24.2		31.0	30.9	2.7	28.4			0.1	28.5	0.4	2.2	1.1	405.8	
STE)	Ligno, 20% Sulfur)	MIN	1.2	6.4	130.0	0.1	-246.2	1120.0	480.0	2.0	2.0	57.0	0.4	0.4	0.0	0.045	0.08	0.29	0.022	0.1		0.1	0.01	7.0	
		MAX	29.7	7.1	430.0	2.0	221.6	2438.0	1600.0	113.0	65.0	120.0	75.0	75.0	6.0	69.0	0.08	0.29	0.4	69.0		4.7	2.8		10.0
		n	6	6	6	6	5	\ 6	6	6	6	4	6	6	6	6	1	1	6	6	2	5	5		3
UNSAT-IS2	12" Sand; 12" Mix	MEAN	21.4		176.7	1.0	-192.8	1474.8	1178.3	48.3	5.5		1.1	1.0		0.4		0.2	0.06	0.5			0.1		
(receives	(45% EC, 35%	STD. DEV.	9.1		40.3	,	Apr	1097.7	897.8	45.1	4.5		0.4	0.3	0.3	0.3			0.08	0.3	3.9	0.5	0.3	588.2	
NO ₃)	Ligno, 20% Sulfur)	MIN	6.2 30.0	6.1	100.0 210.0	0.1 3.9	-234.5 -130.0	365.0 3506.0	700.0 3000.0	1.0 108.0	2.0 13.0	13.0 50.0	0.6 1.5	0.6 1.5	0.4	0.1		0.2	0.01	0.1	1.5 7.0	0.1	0.01	250.0 1800.0	1.0
		IVIAX	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.2	1.0		1.0	1.0	1.0	7.0	1.0	0.6	1.0	
UNSAT-IS3-	Sample Port below	MEAN	4.0	1.0	210.0	12.0	39.2	980.0		3.0			7.7	1.8		0.04			5.9					130.0	
SP (receives	10" Mix (60% EC,	STD. DEV.	4.0		210.0	12.0	35.2	980.0	000.0	5.0	2.0	20.0	7.7	1.0	1.0	0.04	3.7	2.2	3.5	3.3				150.0	
STE)	40% Ligno), above	MIN	4.0	7.5	210.0	12.0	39.2	980.0	600.0	3.0	2.0	26.0	7.7	1.8	1.8	0.04	3.7	2.2	5.9	5.9				130.0	
,	3" Sulfur layer	MAX	4.0	7.5	210.0	12.0	39.2	980.0	600.0	3.0		26.0	7.7	1.8		0.04		2.2	5.9	5.9				130.0	
		n	4	4	4	4	4	4	3	3	3	3	4	4	4	4	2	2	4	4	1	1	1	4	1
UNSAT-IS3	12" Sand; 10" Mix	MEAN	12.7		282.5	0.5	150.6	1390.3	1339.3	8.0	3.0	33.7	38.2	4.2	1.0	3.1	27.7	8.5	34.1	37.2	0.5	1.0	0.01	166.5	
(receives	(60% EC, 40%	STD. DEV.	4.3		12.6			82.1	832.0	3.5	1.0		3.4	1.8	1.3	2.5	5.2	0.2	5.1	3.9				83.0	
STE)	Ligno); 3" Sulfur)	MIN	8.7	6.7		0.4	136.5	1331.0	850.0	4.0	2.0	24.2	34.4	1.9	0.2	1.1		8.3	28.0	33.5	0.5	1.0	0.01	116.0	
		MAX	18.7	7.0	300.0	0.5	171.2	1505.0	2300.0	10.0	4.0	46.0	41.8	6.4	2.9	6.2	31.3	8.6	39.9	41.0	0.5	1.0	0.01	290.0	1.0
LINICAT IC:	Sample Port below	n	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1				1	
UNSAT-IS4-	10" Mix (60% EC,	MEAN	5.1		100.0	12.0	35.1	1050.0	710.0	1.0	2.0	22.0	52.4	3.5	3.4	0.1	46.0	2.9	48.9	49.0				92.0	
SP (receives	40% Ligno), above	STD. DEV.			405 -	45.5	25.	405-	740			25.5							40 -	45.5				05.5	
NO ₃)	3" Sulfur layer	MIN	5.1 5.1	6.6	100.0	12.0	35.1	1050.0	710.0	1.0	2.0	22.0	52.4	3.5	3.4	0.1		2.9 2.9	48.9	49.0				92.0	
		IVIAX	5.1	6.6	100.0	12.0	35.1	1050.0	710.0	1.0	2.0	22.0	52.4	3.5	3.4	0.1	46.0	2.9	48.9	49.0	- 1			92.0	-
UNSAT-IS4	12" Sand; 10" Mix	MEAN	12.5	0.0	251.0	2.9	158.3	778.8	628.5	6.0		31.2	13.2	1.4	1.3	0.07	0.08	0.03	11.8	11.8	3.9			269.8	1
(receives	(60% EC, 40%	STD. DEV.	4.2	0.0	35.1	2.9	136.3	523.1	12.0	1.4			17.5	0.5	0.5	0.07		0.03	17.0	17.0	3.9			181.7	
NO ₃)	Ligno); 3" Sulfur)	MIN	8.4	7.1		0.8	150.4	0.0	620.0	5.0		29.0	1.0	0.9	0.3	0.02	0.04	0.03	0.1	0.2	3.9			110.0	1.0
		MAX	18.3	7.5	280.0	9.0	179.5	1129.0	637.0	7.0		35.0	43.1	2.1	2.1	0.09		0.01	41.0	41.0	3.9			490.0	1.0
	1	1110 01	10.5	7.3	200.0	3.0	1, 3.3	1125.0	0.7.0	7.0	2.0	33.0	43.1	2.1	2.1	0.05	0.11	0.03	41.0	41.0	3.5			450.0	1.0

Yellow-shaded data points indicate the reported value is between the laboratory method detection limit and the laboratory practical quantitation limit, value used for statistical analysis.

Orange - shaded data points indic

Blue-shaded data points indicate the number is greater than reported value.

Purple-shaded data points indicate results based on colony counts outside the method indicated ideal range.

¹Total Nitrogen (TN) is a calculated value equal to the sum of TKN and NO_x

²Organic Nitrogen (ON) is a calculated value equal to the difference of TKN and NH₂

²Total Inorganic Nitroeen (TNN) is a calculated value equal to the sum of NHs and NO_x EC: expanded day, CL: clinoptilolite, PS: polystyrene, SU: elemental sulfur, LS: lignocellulosic, GL: glycerol, OS: oyster shell, NS: sodium sesquicarbonate, GR: gravel

Gray-shaded data points indicate values below method detection level (mdl), mdl value used for statistical analyses.

4.3 Flow Monitoring

Influent and effluent flows were measured, recorded, and adjusted as necessary to maintain flow rates consistent with the experimental design following the sampling event. Flow measurements and adjustments are made following collection of liquid samples and field parameter analyses.

A flow test was conducted January 17, 2011. These flow measurements are considered to represent those in effect leading up to and during the Sample Event 4. The measured volumes and relative errors between measured and target flow rates are presented in Appendix C, Table 1. For the Group 1 systems, measured STE inputs to four of the five Stage 1 biofilters were within the 15% operational target that is considered acceptable for PNRS II flow rates. The measured influent volume of UNSAT-PS1 was - 24.3% of the target volume. Measured effluent volumes for Stage 1 single pass biofilters (Stage 2 influent) were within 14% of the target volume for four of the five systems (Appendix C, Table 1). The DENIT-LS4 influent pipe was substantially clogged which led to UNSAT-PS1 effluent backing up within the Pump 15 holding tank. Therefore a measurement of influent volume to DENIT-LS4 was unable to be taken.

For the Group 2 systems, all measured STE volumes to the Stage 1 recirculation tanks were within 14% of target volumes. All recycle flow volumes as recorded by the PLC were within 5% of target volumes based on the experimental design recycle ratio of 3.0. The calculated recycle ratios (i.e. recycle flow volume divided by the STE flow volume) for four of the five recirculation systems were within 12% of the target recycle ratio of 3.0. Although the recycle rate to the UNSAT-PS1 was close to target, the recycle ratio was high due to the low influent STE flow that was previously discussed.

For Group 3 systems, the measured influent volumes to the Stage 2 horizontal denitrification biofilters were all within 4% of target.

For Group 4 biofilters, the UNSAT-IS1 and UNSAT-IS2 measured influent volumes were within 15% of target volumes. The UNSAT-IS3 and UNSAT-IS4 measured influent volumes were within 3% of target volumes.

After evaluating the influent flow test results, a few maintenance items were conducted:

- Hydrosplitter 1 petcock valves were adjusted January 18th to provide equal distribution of flow to each of the five Stage 1 biofilters with input volumes as close to the target volume as possible.
- Influent pipe to DENIT-LS4 was unclogged January 18th

The flows were rechecked after modifications to the systems were made and are provided in Appendix C, Table 2. The UNSAT-PS1 measured influent volume is closer to the target as measured on January 18th which will continue to be monitored.

5.0 PNRS II Sample Event No. 4: Summary and Recommendations

5.1 Summary

The results of the fourth sampling event serve to confirm that the experimental systems are functioning as intended and provide the basis upon which to make system adjustments and modifications. The Sample Event No. 4 results indicate that:

- Delivered flowrates to all biofilters continued to be generally within 15% of target;
- Septic tank effluent (STE) quality supplied to PNRS II systems is reasonably characteristic of typical household STE quality due to system modifications;
- Nine out of ten Stage 1 unsaturated biofilters produced effluent NH₃-N of 1.7 mg/L or less;
- Five out of nine Stage 2 saturated biofilters produced effluent NO_x-N of 0.35 mg/L or less;

These results provide continuing support of the nitrogen reduction potential of the PNRS II biofiltration systems. Where expected or desired PNRS II outcomes are not being achieved, they appear to be due to tractable issues can be addressed, as discussed in the following sections.

5.2 Recommendations

Careful observation of PNRS II systems and the results of Sample Events No. 1 to 4 were used to formulate recommendations for adjustments and modifications to the test systems and the GCREC pilot facility. The issues to be addressed, recommended modifications and their rationale, and expected outcomes are presented below. Recommendations are made for each of the PNRS II performance issues that have been identified. It is believed that each issue can be resolved by implementing the recommendations. All recommendations are based on the overriding PNRS II goal of providing functional specifications for modular biofiltration components for passive onsite nitrogen reducing treatment systems. The project team will continuously evaluate all PNRS II results including those that particularly result from implementation of the recommendations and make further adaptations as needed.

5.2.1 Polystyrene Biofilter (UNSAT-PS1)

In Sample Event 4, the unsaturated recirculating biofilter with polystyrene media (UN-SAT-PS1) exhibited better nitrogen performance as compared to Sample Event 1, 2 and 3. However, the polystyrene media is not performing as well as the other stage one media and does not appear likely to satisfy the objectives of the project. Therefore, it is recommended to discontinue this system.

5.2.2 Lignocellulosic Containing Biofilters (DENIT-LS1, DENIT-LS2, DENIT-LS3, DENIT-LS4, UNSAT-IS1, UNSAT-IS2, UNSAT-IS3 and UNSAT-IS4)

The three upflow and one horizontal denitrification biofilters with lignocellulosic media continued to show limited NO_x reduction in Sample Event 4. Possible reasons are lack of reactivity of lignocellulosic material, toxicity (release of toxic material from lignocellulosic material itself), or short circuiting as witnessed in the dye test. It is recommended to replace the lignocellulosic material in all the biofilters containing lignocellulosic media with new lignocellulosic material from a different source, and to rebuild these biofilters with special attention to minimizing the potential for hydraulic short circuiting.

5.2.3 UNSAT-IS1 and UNSAT-IS2 Ponding

The UNSAT-IS1 and UNSAT-IS2 biofilters exhibited ponding at the surface during this sample event. Following the sampling event, a clog in the discharge line was detected. It is recommended to replace the discharge PVC piping with clear tubing during the tank cleaning and media replacement to allow better visual inspection for clogs.

5.2.5 Continue to Monitor Quality of STE Supplied to PNRS II Systems

The characteristics of GCREC septic tank effluent in Sample Event 4 continued to be more typical of Florida single family residences than in previous sample events. It

seems likely that this was at least partially due to the system modifications that were implemented after Sample Event 2 but prior to Sample Event 3. Continued diligence will be maintained to insure that the PNRS II systems are supplied STE of acceptable characteristics.

5.2.6 **Modify Operation**

A track record of acceptable performance has been established for many PNRS II systems and increased flowrates are recommended. These are:

Stage 1 Biofilters

- Expanded clay and clinoptilolite media
 - increase loading rates:

Single pass: 3 gal/ft²-day to 5 gal/ft²-day STE Recycle: 3 gal/ft²-day to 6 gal/ft²-day STE

Stage 2 Biofilters

- Sulfur
 - increase loading rates:

Single pass coupled: single pass Stage 1 effluent 5.6 to 9.3 gal/ft²-day; 25.7 to 15.4 hour mean pore water residence time (MPWRT)

Horizontal: Stage 1 w/recycle combined effluent 10 to 20 gal/ft²-day; 43 to 21.5 hour MPWRT

- Glycerol
 - 10 to 20 gal/ft²-day; 43 to 21.5 hour MPWRT increase loading rate:

Appendix A: Operation & Maintenance Log

Table A.1 Operation and Maintenance Log

Operation and Maintenance Log
Description
Start-up
Pump 1 not in Auto, LL float alarm, refilled Tank 1 to HIGH float
Glycerol batch #1 prepared (125 mL glycerol; 1875 mL DI water), feed rate $^{\sim}$ 8 mL/dose
LL float alarm, refilled Tank 1 to HIGH float
Replaced glycerol tubing
LL float alarm, refilled Tank 1 to HIGH float, determined that LOW float is faulty
Revised floats so that old Low Float is now High float
Revised program installed so that only LOW Float turns on/off Pump 1
Glycerol batch #2 prepared (125 mL glycerol; 1875 mL DI water), feed rate ~ 8 mL/dose
Pump 1 screen cleaned with hose
Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps
Pump 8 was on "OFF", turned back to "AUTO"
Pump 5 had turned off, turned back on at 9:32 am
Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps
Replaced glycerol tubing, kink in top, added elbow
Russ replaced existing GCREC mound Pump 2 ~ 11:00 am
All Systems Flow Check
Sample Event #1
Pump 1 screen cleaned with hose
Glycerol tubing had released to bottom of container, replaced with polyethylene tubing
Tank 1 LOW Float alarm, revised magnet distance to shorten Pump 1 runtime
Pump 1 screen cleaned with hose
Pump 5 Error Code 18, cleared alarm and restarted pump
UPS beeping, problem with receptacle, temporary fix with extension cord
Electrician fixed receptacle
Per Dr. Stanley all condensate flow diverted from septic system
Russ fixed existing GCREC Mound Pump 2 which had not been running
Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps

Glycerol batch #3 prepared (125 mL glycerol; 1875 mL DI water), feed rate ~ 8 mL/dose

Appendix A

	Date	Description
	7/16/2010	Capillary mat added to PS-1
	7/19/2010	IS 1 changed discharge (rotated 180°) now 15 inches of saturation from bottom of tank
	7/20/2010	IS 2 changed discharge (rotated 180°) now 15 inches of saturation from bottom of tank
	7/26/2010	Removed PS1 capillary mat from inside mesh bag, replaced with new mat on top of bag
		Glycerol batch #4 (70 mL glycerol; 1930 mL DI water), feed rate ~ 10 mL/dose
	8/3/2010	Glycerol batch #5 (70 mL glycerol; 1930 mL DI water), feed rate ~ 10 mL/dose
	8/4/2010	Cleaned crosses in Stage 1 Recirculating Biofilters
		Added tees to outlet of RC1 and RC4 tanks to alleviate blockage build-up
		Replaced Hydrosplitter 1 & 2 tubing
		Replaced Stage 2 horizontal tubing from Pump 11
		Cleaned Stage 2 horizontal sample ports
		Lowered Pump 1 Low Float 2 wraps to decrease volume in tank(decrease residence time)
	8/10/2010	Glycerol batch #6 (70 mL glycerol; 1930 mL DI water), feed rate ~ 10 mL/dose
		Raised Pump 1 Low Float 1 wrap because float down was below the hole
	8/12/2010	Revised tubing connection at top of In-Situ simulator tanks to elbow
	8/17/2010	Glycerol batch #7 (70 mL glycerol; 1930 mL DI water), feed rate $^{\sim}$ 10 mL/dose
		Added tees to outlet in RC2 and RC3 tanks as well
		Revised RC tanks discharge piping to flexible hose
	8/19/2010	Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps
	8/23/2010	Possible leak detected at Recirc Tank #2 for P7
	8/27/2010	Glycerol batch #8 (70 mL glycerol; 1930 mL DI water), feed rate $^{\sim}$ 10 mL/dose
	8/31/2010	Sample Event #2
	9/1/2010	Replaced elbow for Recirc Tank #2 (STE tubing) to fix leak
		All Systems Flow Check
	9/7/2010	Glycerol batch #9 (70 mL glycerol; 1930 DI water), feed rate ~ 10 mL/dose
		Removed PS1 capillary mat
	9/9/2010	Replaced Pump 5 pump tubing
Oraft	9/10/2010	Cut the LS4 inlet pipe and used a drain snake to unclog both elbows
port/	9/13/2010	Glycerol batch #10 (70 mL glycerol; 1980 DI water), feed rate ~ 10 mL/dose
s\Re	9/17/2010	Modified Pump 7 runtime to 15 seconds per dose
oopd	9/21/2010	Reconnected the glycerol tubing between bottle and pump head which had separated
<u></u>		Added sample ports to recirculation pump tank discharge lines for flow measurement
o:\44237-001\\Wpdocs\Report\Draft	9/28/2010	Glycerol batch #11 (70 mL glycerol; 1930 DI water), feed rate ~ 10 mL/dose
\442;		New clear glycerol bottle with graduated sides, replaced tubing
ö	10/5/2010	Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps
	10/6/2010	Glycerol batch #12 (30 mL glycerol; 1970 DI water), feed rate ~ 10 mL/dose

February 2011

Appendix A

Date	Description
10/7/2010	Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps
10/8/2010	Modified Pump 1 discharge pipe to extend through Tank 1 hole in baffle wall
10/11/2010	DENIT-GL-1 nitrified STE influent tubing had disconnected, reattached
	Calibrated IS1 and IS2 tubing
	Calibrated Stage 2 horizontal tubing
10/14/2010	Glycerol batch #13 (30 mL glycerol; 1970 DI water), feed rate ~ 10 mL/dose
	Built new in-situ columns IS3 and IS4
10/15/2010	Unclogged PS1 discharge pipe
	Cleaned Pump 1 intake screen
	Lowered Pump 1 Low Float 1 wrap to decrease volume in tank
10/18/2010	Completed IS3 and IS4 piping, started dosing @ 9:30 am
	Added 3" coarse sand to UNSAT-IS1 for complete nitrification
10/19/2010	Started dye test DENIT-LS2 and DENIT-LS3
	Lowered Pump 1 Low Float 1 wrap to decrease volume in tank
10/20/2010	Calibrated IS3 and IS4 tubing
	Glycerol batch #14 (15 mL glycerol; 985 DI water), feed rate $^{\sim}$ 10 mL/dose
10/22/2010	Moved Pump 1 to effluent baffle tee of existing GCREC Tank 1
	Converted UNSAT-PS1 to recirculating biofilter
10/25/2010	Glycerol batch #15 (15 mL glycerol; 985 DI water), feed rate $^{\sim}$ 10 mL/dose
	DENIT-SU4 media ~5.5" below initial level
	Removed DENIT-SU4, DENIT-SU2 and DENIT-LS2 media
	Cleaned tanks
	Replaced DENIT-SU2 media (30% sulfur, 10% limestone, 60% expanded clay mixture)
	Replaced DENIT-SU4 media (30% sulfur, 10% limestone, 60% expanded clay mixture)
	Replaced DENIT-LS2 media (25% lignocellulosic, 75% expanded clay mixture)
10/27/2010	Glycerol batch #16 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
11/1/2010	Glycerol batch #17 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
11/5/2010	Glycerol batch #18 (13.5 mL glycerol; 986.5 DI water), feed rate ~ 10 mL/dose
11/10/2010	Sample Event #3
11/11/2010	Glycerol batch #19 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
11/18/2010	Glued UNSAT-IS3 and UNSAT-IS4 discharge piping to stop potential leaks
	Glycerol batch #20 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
	Calibrated UNSAT-IS3 and IS4 tubing
11/19/2010	All Systems Flow Check
11/24/2010	Glycerol batch #21 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
11/29/2010	Glycerol batch #22 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose

February 2011

1/18/2011

Appendix A

Data	Description
Date 11/29/2010	Description Threaded and glued UNSAT-IS3 and UNSAT-IS4 petcock valves
12/1/2010	Tank 1 low-low float alarm activated, high float had activated in Tank 1 preventing
12/1/2010	Pump 1 to run. Cleared both alarms
12/3/2010	Cleared plug in DENIT-LS4 influent piping
12/3/2010	
	Replaced Hydrosplitter 1 & 2 tubing
	Replaced Pump I pump and system tubing
	Replaced Pump 5 pump and system tubing Chapter batch #32 /13 F ml ghyperel 1073 Pl water) feed rate × 10 ml /dece
12/7/2010	Glycerol batch #23 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
12/7/2010	Hydrosplitter 1 Flow Check Calibrated UNSAT-IS3 and IS4 tubing
12/10/2010	Glycerol batch #24 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
12/10/2010	
12/13/2010	Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps
12/14/2010	Increased Pump 15 runtime to 6:1 recycle rate
12/17/2010	Glycerol batch #25 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
12/22/2010	UNSAT-IS3 and IS4 effluent samples sent to Southern
12/23/2010	DENIT-LS4, LS2, SU3, LS3, and SU4 effluent sample to Southern
12/27/2010	Glycerol batch #26 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
12/27/2010	Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps
12/30/2010	Hydrosplitter 1 Flow Check
	Glycerol batch #27 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
1/6/2011	All Systems Flow Check
1/6/2011	Glycerol batch #28 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
1/11/2011	UNSAT-IS3 and IS4 effluent Sample Event #4 samples sent to Southern
	Ponding at surface of UNSAT-IS1 and IS2
4/42/2044	Cleared line blockage at outlet from IS1 and IS2
1/13/2011	Sample Event #4
4 /4 4 /2044	Glycerol batch #29 (13.5 mL glycerol; 1973 DI water), feed rate ~ 10 mL/dose
1/14/2011	Stage 2 Profile Samples sent to Southern
1/17/2011	Pump 5 and 11 Error Code 18, cleared alarm and restarted pumps
*	All Systems Flow Check
	Cleaned all recirculation system Stage 1 distribution pipes with tap water
	Pump 7 was air locked - restarted

Hydrosplitter 1 Flow Check - calibration

February 2011

Figure A.1 Capillary Mat Installed above Polystyrene Media 7/16/10

Figure A.2
Revised In-situ Simulators Discharge Piping 7/20/10

Figure A.3 RC1 Outlet Tee 8/4/10

Figure A.4
UNSAT-CL4 before Cleaning 8/4/10

Figure A.5
UNSAT-CL4 after Cleaning 8/4/10

Figure A.6
Unclogging UNSAT-LS4 Influent Pipe 9/10/10

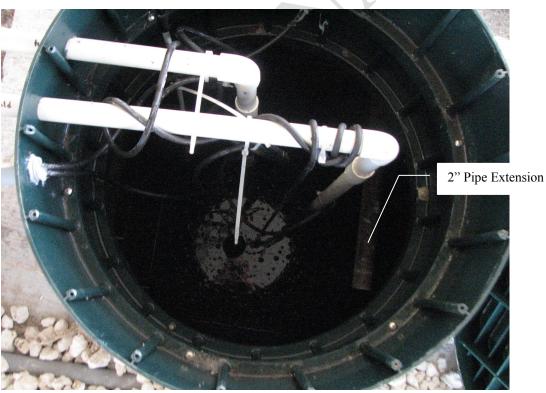


Figure A.7 2" Pipe Extension into PNRS II Tank 1 Pump Chamber 10/8/10

Figure A.8
UNSAT-IS3 and UNSAT-IS4 Columns 10/14/10

Appendix B: PLC Data Tables

Table B.1 Summary of PLC Recorded Daily Flows (11/11/10 - 1/12/11)

Date Range		Average Recorded Flow (gpd)	Std. Dev.	MIN (gpd)	MAX (gpd)	Target Flow (gpd)	Relative Error ¹ (%)
	Pump 4 to Hy- dro 1	70	16.84	0	118	73.7	-5.0%
	Pump 14 to Hydro 2	57	11.40	0	62	58.9	-2.6%
11/11/10-	Pump 6 to Recirc. System 1	41	8.01	0	44	44.2	-7.4%
1/12/11	Pump 7 to Recirc. System 2	42	8.20	0	45	44.2	-5.3%
	Pump 8 to Recirc. System 3	41	8.05	0	44	44.2	-7.0%
	Pump 9 to Recirc. System 4	41	8.42	0	44	44.2	-8.3%
UNSAT-PS1 T	arget 3:1 Recycle I	Ratio					
11/11/10-	Pump 15 to Re-	40	11.71	0	64	44.2	-10.6%
12/13/10	circ. System 5		11.71	J	U-T	77.2	- 10.0 /0
UNSAT-PS1 T	arget 6:1 Recycle I	Ratio					
12/15/10- 1/12/11	Pump 15 to Recirc. System 5	91	5.43	89	119	88.4	2.8%

¹Relative Error = (Recorded Flow – Target Flow)/ Target Flow *100

Table B.2 Summary of PLC Recorded Daily Runtimes (1/11/10 – 1/12/11)

F		(171)	.,	1/14/11)			
Date Range		Average Recorded Daily Runtime (minutes/day)	Std. Dev.	MIN (minutes)	MAX (minutes)	Target Daily Runtime (minutes)	Relative Error ¹ (%)
P4 Runtime Ta	rget = 31 seco	nds/dose					
11/11/10- 12/6/10	Pump 4 to Hydro 1	11.4	3.6	0.0	13.0	12.4	-7.9%
P4 Runtime Ta	rget = 44 ² sec	onds/dose					
12/8/10- 1/12/11	Pump 4 to Hydro 1	18.2	1.1	17.0	24.0	17.6	3.5%
	Pump 14 to Hydro 2	10.3	2.0	0.0	11.0	10.4	-1.1%
	Pump 6 to Recirc. System 1	6.1	1.3	0.0	7.0	6.0	1.6%
11/11/10- 1/12/11	Pump 7 to Recirc. System 2	6.1	1.3	0.0	7.0	6.0	1.6%
	Pump 8 to Recirc. System 3	6.1	1.3	0.0	7.0	6.0	1.6%
	Pump 9 to Recirc. System 4	6.1	1.3	0.0	7.0	6.0	1.6%
UNSAT-PS1 Ta	arget 3:1 Recy	cle Ratio					
11/11/10- 12/13/10	Pump 15 to Recirc. System 5	6.1	1.9	0.0	10.0	6.0	2.0%
UNSAT-PS1 Ta	arget 6:1 Recy	cle Ratio					
12/15/10- 1/12/11	Pump 15 to Recirc. System 5	14.2	0.9	14.0	19.0	14.0	1.2%

¹Relative Error = (Recorded Runtime – Target Runtime)/ Target Runtime *100 ²Pump 4 Runtime was increased to increase UNSAT-PS1 STE influent volume to target level

Appendix C: Flow Test Results

Table C.1 Flow Test Results (before flow recalibration)

	Biofilter/Flow	Target Input			Measured Input		Recycle Ratio		
Group (Figure 1)		Target Input Volume	Dose/day	Target Input Volume	Measured Input Volume	Relative Error (%)	Target Recycle Ratio (RR)	Calculated Recycle Ratio (RR)	Relative Error (%)
		(mL/day)	(Dose/day)	(mL/dose)	(mL/dose)	(Measured Input -Target Input) / Target Input * 100	Volume Recycle / Volume STE	Volume Recycle / Volume STE	Measured RR - Target RR / Measured RR * 100
	Stage 1 Single Pass Biofilters (Hydrosplitter 1)								
	Date				1/17/2011 Dose @				
	UNSAT-PS1				9:00 am 1,755	-24.3%			
	UNSAT-CL3		24		2,650	14.3%			
	UNSAT-CL1	55,656		2,319	2,520	8.7%			
	UNSAT-EC3				2,620	13.0%			
	UNSAT-EC1				2,580	11.3%		7	
	Mean				2,425	4.6%			
1	Stage 2 Single Pass Upflow Biofilters								
	Date				1/17/2011 8:00- 9:00 am				
	DENIT-LS4				Plugged				
	DENIT-LS2				2,580	11.3%	7		
	DENIT-SU3	55,656	24	2,319	2,165	-6.6%			
	DENIT-LS3				2,640	13.8%			
	DENIT-SU4				2,245	-3.2% 3.8%			
	Mean Stage 1 Recirculating Biofilters				2,408	3.8%			
	(Hydrosplitter 2)								
•	Date				(1/17/2011) dose @ 10:30 am				
	RC1 : UNSAT-SA2		24	2,319	2,000	-13.8%			
	RC2 : UNSAT-EC4	55,656			2,080	-10.3%			
	RC3 : UNSAT-CL2				2,290	-1.3%			
	RC4 : UNSAT-CL4				2,260	-2.5%			
	Mean				2,158	-7.0%			
	Stage 1 Recirculating Biofilters (Recycle)				Flowmeter 1/17/2011				
	RC1 : UNSAT-SA2		24		6,781	-2.5%		3.39	11.5%
2	RC2 : UNSAT-EC4	166,968		6,957	6,939	-0.3%	3:1	3.34	10.1%
	RC3 : UNSAT-CL2				6,781	-2.5%		2.96	-1.3%
	RC4 : UNSAT-CL4 Mean				6,624 6,781	-4.8% -2.5%		2.93 3.15	-2.4% 4.5%
	RC5 : UNSAT-PS1	333,936	24	13,914	14,036	0.9%	6:1	8.00	25.0%
	Stage 1 Recirculating Biofilters				- ,,			0.00	
	(Hydrosplitter + Recycle)								
	RC1 : UNSAT-SA2		24	9,276	8,781				
	RC2 : UNSAT-EC4	222,624			9,019				
	RC3 : UNSAT-CL2				9,071				
	RC4 : UNSAT-CL4				8,884 8,939				
ŀ	Mean RC5 : UNSAT-PS1	389,592	24	16,233	15,791				
	Horizontal Denitrification Biofilters	303,332	24	10,233	15,751				
3	Date				1/17/2011 dose @				
	DENIT-SU1		24	308.7	10:40 am 311	0.7%			
	DENIT-SU2				311	0.7%			
	DENIT-GL1	7,409			298	-3.5%			
	DENIT-LS1			<u> </u>	300	-2.8%			
	Mean				305	-1.2%			
4	In-Situ Simulators								
	Date	-			1/17/2011 manual dose				
	UNSAT-IS1 (STE)	446::		2.000	2,590	4.9%			
	UNSAT-IS2 (Nitrified STE)	14,814	6	2,469	2,830	14.6%			
	UNSAT-IS3 (STE)	594	6	99	96	-3.0%			
	UNSAT-IS4 (Nitrified STE)	554	,	33	101	2.0%]		

Table C.2 Flow Test Results (after flow recalibration)

	Biofilter/Flow	Target Input			Measured Input		Recycle Ratio			
Group (Figure 1)		Target Input Volume	Dose/day	Target Input Volume	Measured Input Volume	Relative Error (%)	Target Recycle Ratio (RR)	Calculated Recycle Ratio (RR)	Relative Error (%)	
		(mL/day)	(Dose/day)	(mL/dose)	(mL/dose)	(Measured Input -Target Input) / Target Input * 100	Volume Recycle / Volume STE	Volume Recycle / Volume STE	Measured RR - Target RR / Measured RR * 100	
	Stage 1 Single Pass Biofilters (Hydrosplitter 1)									
	Date				(1/18/11) manual					
	UNSAT-PS1				dose @ 9:55 am 2,645	14.1%				
	UNSAT-CL3	55,656	24	2,319	2,420	4.4%				
	UNSAT-CL1				2,410	3.9%				
	UNSAT-EC3				2,310	-0.4%				
	UNSAT-EC1				2,250	-3.0%		7		
1	Mean				2,407	3.8%				
1	Stage 2 Single Pass Upflow Biofilters									
	Date				1/17/2011 8:00- 9:00 am					
	DENIT-LS4				Plugged					
	DENIT-LS2	55,656	24]	2,580	11.3%	7			
	DENIT-SU3			2,319	2,165	-6.6%				
	DENIT-LS3				2,640	13.8%				
	DENIT-SU4				2,245	-3.2%				
	Mean				2,408	3.8%				
	Stage 1 Recirculating Biofilters (Hydrosplitter 2)									
	Date				(1/17/2011) dose @ 10:30 am					
	RC1 : UNSAT-SA2		24	2,319	2,000	-13.8%				
	RC2 : UNSAT-EC4	55,656			2,080	-10.3%				
	RC3 : UNSAT-CL2				2,290	-1.3%				
	RC4 : UNSAT-CL4				2,260	-2.5%				
	Mean Stage 1 Recirculating Biofilters				2,158 Flowmeter	-7.0%				
	(Recycle)				1/17/2011					
	RC1 : UNSAT-SA2				6,781	-2.5%		3.39	11.5%	
2	RC2 : UNSAT-EC4	166,968	24	6,957	6,939	-0.3%	3:1	3.34	10.1%	
	RC3 : UNSAT-CL2	,		0,000	6,781	-2.5%		2.96	-1.3%	
	RC4 : UNSAT-CL4				6,624	-4.8%		2.93	-2.4%	
	Mean RC5 : UNSAT-PS1	333,936	24	13,914	6,781 14,036	-2.5% 0.9%	6:1	3.15 5.31	4.5% -13.1%	
	Stage 1 Recirculating Biofilters	333,530	24	13,514	14,030	0.5%	0.1	3.31	-13.176	
	(Hydrosplitter + Recycle)									
	RC1 : UNSAT-SA2				8,781					
	RC2 : UNSAT-EC4	222,624	24	9,276	9,019					
	RC3 : UNSAT-CL2				9,071					
	RC4 : UNSAT-CL4 Mean				8,884 8,939					
	RC5 : UNSAT-PS1	389,592	24	16,233	16,681					
	Horizontal Denitrification Biofilters									
3	Date				1/17/2011 dose @ 10:40 am					
	DENIT-SU1		24	308.7	311	0.7%				
	DENIT-SU2	7,409			311	0.7%				
	DENIT-GL1	7,405			298	-3.5%				
	DENIT-LS1				300	-2.8%				
	Mean			-	305	-1.2%				
	In-Situ Simulators				1/17/2011 manual					
4	Date				dose					
4	UNSAT-IS1 (STE)	14,814	6	2,469	2,590	4.9%				
7	11101E 100 (1 ·· · · · · · · · · · · · · · ·	14,014								
7	UNSAT-IS2 (Nitrified STE) UNSAT-IS3 (STE)	14,014		,	2,830 96	14.6% -3.0%				

Notes: Yellow-shaded cells are measured values; grey-shaded cells are calculated values

Appendix D: Laboratory Report

o:\44237-001\\\Wpdocs\Report\Draft

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Laboratory Report

Project Name PNRS II								
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		PNRS II STE-TI						
Matrix		Wastewater						
SAL Sample Number		1100234-01						
Date/Time Collected		01/13/11 13:15						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
рН	SU	7.1	DEP FT1100	0.1	0.1		01/13/11 13:15	TDD
Water Temperature	°C	13.7	DEP FT1400	0.1	0.1		01/13/11 13:15	TDD
Specific conductance	umhos/cm	1,220	DEP FT1200	0.1	0.1		01/13/11 13:15	TDD
Dissolved Oxygen	mg/L	2.7	DEP FT1500	0.1	0.1		01/13/11 13:15	TDD
Inorganics	(1	0.0	CM 455005	0.04	0.04		04/40/44 44:00	ито
Hydrogen Sulfide (Unionized)	mg/L	6.9	SM 4550SF	0.04	0.01		01/18/11 11:00	KTC
Ammonia as N	mg/L	57	EPA 350.1	0.010	0.005	04/44/44 40 54	01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	78	SM 5210B	2	2	01/14/11 13:51	01/19/11 11:27	KTC
Chemical Oxygen Demand	mg/L	230	EPA 410.4	25	10		01/17/11 09:00	ARM
Nitrate (as N)	mg/L	0.02	EPA 300.0	0.04	0.01		01/14/11 12:19	MEJ
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		01/14/11 12:19	MEJ
Sulfate	mg/L	13	EPA 300.0	0.60	0.20		01/14/11 12:19	MEJ
Sulfide	mg/L	16	SM 4500SF	0.40	0.10	04/44/44 44:00	01/18/11 11:00	KTC
Total Alkalinity	mg/L	380	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	470	SM 2540C	10	10	01/14/11 14:00	01/17/11 16:30	MJV
Total Kjeldahl Nitrogen	mg/L	66	EPA 351.2 SM 2540D	0.20	0.05	01/18/11 07:30	01/21/11 10:18	SMB
Total Suspended Solids	mg/L	83	SIVI 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTC
Microbiology Fecal Coliforms	CFU/100 ml	8,900	SM 9222D	1	1	01/13/11 16:16	01/14/11 16:00	MEJ
- Codi Comornio	01 07 100 1111	0,000		· ·		01/10/11 10:10	01/11/11/10:00	
Sample Description		RC1						
Matrix		Wastewater						
SAL Sample Number		1100234-02						
Date/Time Collected Collected by		01/13/11 11:45						
Date/Time Received		Thomas Drunasky 01/13/11 13:20						
Field Parameters	211		DED ET4400	0.4	6.4		04/40/44 44 5=	T = 5
pH	SU	7.2	DEP FT1100	0.1	0.1		01/13/11 11:45	TDD
Water Temperature	°C	7.2	DEP FT1400	0.1	0.1		01/13/11 11:45	TDD
Specific conductance	umhos/cm	950	DEP FT1200	0.1	0.1		01/13/11 11:45	TDD
Dissolved Oxygen	mg/L	1.6	DEP FT1500	0.1	0.1		01/13/11 11:45	TDD
Inorganics			EDA 050 1					
Ammonia as N	mg/L	11	EPA 350.1	0.010	0.005	044044	01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	11	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	37	EPA 410.4	25	10		01/17/11 09:00	ARM
Nitrate (as N)	mg/L	14	EPA 300.0	0.04	0.01		01/13/11 18:08	MEJ
Nitrite (as N)	mg/L	0.53	EPA 300.0	0.04	0.01		01/13/11 18:08	MEJ

FDOH Laboratory No.E84129 NELAP Accredited

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619

January 26, 2011 Work Order: 1100234

Laboratory Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		RC1						
Matrix		Wastewater						
SAL Sample Number		1100234-02						
Date/Time Collected		01/13/11 11:45						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Total Alkalinity	mg/L	190	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	520	SM 2540C	10	10	01/14/11 14:00	01/17/11 16:30	MJV
Total Kjeldahl Nitrogen	mg/L	12	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	7	SM 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTC
Microbiology								
Fecal Coliforms	CFU/100 ml	8,200	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description		RC2						
Matrix		Wastewater						
SAL Sample Number		1100234-03						
Date/Time Collected		01/13/11 11:40						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
pH	SU	7.1	DEP FT1100	0.1	0.1		01/13/11 11:40	TDD
Water Temperature	°C	7.4	DEP FT1400	0.1	0.1		01/13/11 11:40	TDD
Specific conductance	umhos/cm	1,000	DEP FT1200	0.1	0.1		01/13/11 11:40	TDD
Dissolved Oxygen	mg/L	2.5	DEP FT1500	0.1	0.1		01/13/11 11:40	TDD
Inorganics	9. =							
Ammonia as N	mg/L	13	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	9	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	41	EPA 410.4	25	10	01/10/11 10:00	01/17/11 09:00	ARM
Nitrate (as N)	mg/L	16	EPA 300.0	0.04	0.01		01/13/11 18:08	MEJ
Nitrite (as N)	mg/L	0.22	EPA 300.0	0.04	0.01		01/13/11 18:08	MEJ
Total Alkalinity	mg/L	200	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	570	SM 2540C	10	10	01/14/11 14:00	01/17/11 16:30	MJV
Total Kjeldahl Nitrogen	mg/L	13	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	4	SM 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTC
Microbiology	-							
Fecal Coliforms	CFU/100 ml	9,100	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
0 1 5 1 1								
Sample Description		RC3						
Matrix		Wastewater						

SAL Sample Number Date/Time Collected Collected by Date/Time Received

1100234-04 01/13/11 11:40 **Thomas Drunasky** 01/13/11 13:20

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619

Project Name

January 26, 2011 Work Order: 1100234

Laboratory Report

PNRS II

Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		RC3 Wastewater 1100234-04 01/13/11 11:40 Thomas Drunasky 01/13/11 13:20						
Field Parameters								
pH	SU	6.9	DEP FT1100	0.1	0.1		01/13/11 11:40	TDD
Water Temperature	°C	7.4	DEP FT1400	0.1	0.1		01/13/11 11:40	TDD
Specific conductance	umhos/cm	990	DEP FT1200	0.1	0.1		01/13/11 11:40	TDD
Dissolved Oxygen	mg/L	2.0	DEP FT1500	0.1	0.1		01/13/11 11:40	TDD
<u>Inorganics</u>	9-							
Ammonia as N	mg/L	11	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	12	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	46	EPA 410.4	25	10	01/13/11 13.00	01/17/11 09:00	ARM
Nitrate (as N)	mg/L	14	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Nitrite (as N)	mg/L	2.4	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Total Alkalinity	mg/L	220	SM 2320B	8.0	2.0	01/14/11 11:03	01/13/11 17:24	KTC
Total Dissolved Solids	•	560	SM 2540C	10	10	01/14/11 11:03	01/17/11 16:30	MJV
	mg/L	12	EPA 351.2					
Total Kjeldahl Nitrogen	mg/L		SM 2540D	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	13	3W 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTC
Microbiology								
Fecal Coliforms	CFU/100 ml	13,000	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		RC4 Wastewater 1100234-05 01/13/11 12:30 Thomas Drunasky 01/13/11 13:20						
Field Parameters								
pH	SU	7.3	DEP FT1100	0.1	0.1		01/13/11 12:30	TDD
Water Temperature	°C	8.3	DEP FT1400	0.1	0.1		01/13/11 12:30	TDD
Specific conductance	umhos/cm	1,050	DEP FT1200	0.1	0.1		01/13/11 12:30	TDD
Dissolved Oxygen	mg/L	0.4	DEP FT1500	0.1	0.1		01/13/11 12:30	TDD
Inorganics	5							
Ammonia as N	mg/L	16	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	9	SM 5210B	2	2	01/14/11 13:51	01/19/11 11:27	KTC
Chemical Oxygen Demand	mg/L	57	EPA 410.4	25	10	0 11 11 11 10:01	01/17/11 09:00	ARM
Nitrate (as N)	mg/L	10	EPA 300.0	0.04	0.01		01/14/11 12:19	MEJ
Nitrite (as N)	mg/L	3.5	EPA 300.0	0.04	0.01		01/14/11 12:19	MEJ
Total Alkalinity	mg/L	280	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	600	SM 2540C	10	10	01/14/11 11:03	01/17/11 16:30	MJV
	mg/L	18	EPA 351.2	0.20	0.05	01/18/11 07:30	01/1/11 10:30	SMB
Total Kjeldahl Nitrogen						[]]/[8/]] []/:30	(17/27/11 111 ⁻⁷ ×	

FDOH Laboratory No.E84129 NELAP Accredited Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		RC4						
Matrix		Wastewater						
SAL Sample Number		1100234-05						
Date/Time Collected		01/13/11 12:30						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Total Suspended Solids	mg/L	12	SM 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTO
<u>Microbiology</u>								
Fecal Coliforms	CFU/100 ml	8,700	SM 9222D	1	1	01/13/11 16:16	01/14/11 16:00	ME
Sample Description		RC5						
Matrix		Wastewater						
SAL Sample Number		1100234-06						
Date/Time Collected		01/13/11 11:10						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
рН	SU	7.1	DEP FT1100	0.1	0.1		01/13/11 11:10	TDE
Water Temperature	°C	7.9	DEP FT1400	0.1	0.1		01/13/11 11:10	TDE
Specific conductance	umhos/cm	930	DEP FT1200	0.1	0.1		01/13/11 11:10	TDE
Dissolved Oxygen	mg/L	1.5	DEP FT1500	0.1	0.1		01/13/11 11:10	TDE
<u>Inorganics</u>								
Ammonia as N	mg/L	23	EPA 350.1	0.010	0.005		01/14/11 09:39	SME
Carbonaceous BOD	mg/L	16	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	57	EPA 410.4	25	10		01/17/11 09:00	ARM
Nitrate (as N)	mg/L	6.3	EPA 300.0	0.04	0.01		01/13/11 17:24	ME
Nitrite (as N)	mg/L	1.6	EPA 300.0	0.04	0.01		01/13/11 17:24	ME
Total Alkalinity	mg/L	220	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	500	SM 2540C	10	10	01/14/11 14:00	01/17/11 16:30	MJ∖
Total Kjeldahl Nitrogen	mg/L	29	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SME
Total Suspended Solids	mg/L	17	SM 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTC
Microbiology Focal Coliforms	CELI/100 ml	12 700	SM 9222D	1	1	01/12/11 14:00	01/14/11 15:20	JAA
Fecal Coliforms	CFU/100 ml	12,700	3IVI 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description		P15-T						
Matrix		Wastewater						
SAL Sample Number		1100234-07						
Date/Time Collected		01/13/11 09:20 Thomas Drupasky						
Collected by Date/Time Received		Thomas Drunasky 01/13/11 13:20						
Field Devements:								
Field Parameters pH	SU	7.0	DEP FT1100	0.1	0.1		01/13/11 09:20	TDE
Water Temperature	°C	7.0 5.0	DEP FT1100 DEP FT1400	0.1	0.1		01/13/11 09:20	TDE
vvater remperature		ა.0	DEI 1 1 1400	U. I	U. I		01/10/11 08.20	וטו

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Laboratory Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		P15-T						
Matrix		Wastewater						
SAL Sample Number		1100234-07						
Date/Time Collected		01/13/11 09:20						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Specific conductance	umhos/cm	900	DEP FT1200	0.1	0.1		01/13/11 09:20	TDE
Dissolved Oxygen	mg/L	6.4	DEP FT1500	0.1	0.1		01/13/11 09:20	TDE
<u>Inorganics</u>								
Ammonia as N	mg/L	17	EPA 350.1	0.010	0.005		01/14/11 09:39	SME
Carbonaceous BOD	mg/L	10	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	41	EPA 410.4	25	10		01/17/11 09:00	ARM
Nitrate (as N)	mg/L	11	EPA 300.0	0.04	0.01		01/13/11 17:24	ME
Nitrite (as N)	mg/L	1.2	EPA 300.0	0.04	0.01		01/13/11 17:24	ME
Total Alkalinity	mg/L	200	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	510	SM 2540C	10	10	01/14/11 14:00	01/17/11 16:30	MJ∖
Total Kjeldahl Nitrogen	mg/L	21	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	4	SM 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTC
Microbiology								
Fecal Coliforms	CFU/100 ml	3,900	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description		UNSAT-IS1						
Matrix		Wastewater						
SAL Sample Number		1100234-08						
Date/Time Collected		01/13/11 10:00						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
pH	SU	6.7	DEP FT1100	0.1	0.1		01/13/11 10:00	TDD
Water Temperature	°C	1.2	DEP FT1400	0.1	0.1		01/13/11 10:00	TDD

FDOH Laboratory No.E84129 NELAP Accredited

Specific conductance Dissolved Oxygen

Carbonaceous BOD

Chemical Oxygen Demand

Inorganics
Ammonia as N

Nitrate (as N)

Nitrite (as N)

Total Alkalinity

Microbiology

Total Dissolved Solids

Total Kjeldahl Nitrogen

Total Suspended Solids

Sulfate

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

01/13/11 10:00

01/13/11 10:00

01/14/11 09:39

01/18/11 13:48

01/17/11 09:00

01/13/11 17:24

01/13/11 17:24

01/13/11 17:24

01/14/11 11:06

01/17/11 16:30

01/17/11 14:48

01/15/11 10:43

TDD

TDD

SMB

KTC

ARM

MEJ

MEJ

MEJ

KTC

MJV

SMD

KTC

DEP FT1200

DEP FT1500

EPA 350.1

SM 5210B

EPA 410.4

EPA 300.0

EPA 300.0

EPA 300.0

SM 2320B

SM 2540C

EPA 351.2

SM 2540D

0.1

0.1

0.010

2

25

0.04

0.04

0.60

8.0

10

0.20

1

0.1

0.1

0.005

2

10

0.01

0.01

0.20

2.0

10

0.05

01/13/11 15:00

01/14/11 11:03

01/14/11 14:00

01/14/11 08:31

01/14/11 16:35

1,200

0.4

58

65

120

0.08

0.29

7.0

430

480

64

7

umhos/cm

mg/L

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		UNSAT-IS1						
Matrix		Wastewater						
SAL Sample Number		1100234-08						
Date/Time Collected		01/13/11 10:00						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Fecal Coliforms	CFU/100 ml	10	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description		UNSAT-IS2						
Matrix		Wastewater						
SAL Sample Number		1100234-09						
Date/Time Collected		01/13/11 08:15						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
рН	SU	6.8	DEP FT1100	0.1	0.1		01/13/11 08:15	TDE
Water Temperature	°C	6.2	DEP FT1400	0.1	0.1		01/13/11 08:15	TDE
Specific conductance	umhos/cm	680	DEP FT1200	0.1	0.1		01/13/11 08:15	TDE
Dissolved Oxygen	mg/L	3.9	DEP FT1500	0.1	0.1		01/13/11 08:15	TDE
Inorganics								
Ammonia as N	mg/L	0.53	EPA 350.1	0.010	0.005		01/14/11 09:39	SME
Carbonaceous BOD	mg/L	6	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	18 I	EPA 410.4	25	10		01/17/11 09:00	ARN
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		01/13/11 17:24	ME
Nitrite (as N)	mg/L	0.21	EPA 300.0	0.04	0.01		01/13/11 17:24	ME
Sulfate	mg/L	250	EPA 300.0	0.60	0.20		01/19/11 09:57	ME
Total Alkalinity	mg/L	200	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	710	SM 2540C	10	10	01/14/11 14:00	01/17/11 16:30	MJ\
Total Kjeldahl Nitrogen	mg/L	1.1	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SME
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTC
Microbiology	ŭ							
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description		UNSAT-IS3-SP						
Matrix		Wastewater						
SAL Sample Number		1100234-10						
Date/Time Collected		01/13/11 14:10						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 15:40						
Field Parameters								
рН	SU	7.5	DEP FT1100	0.1	0.1		01/13/11 14:10	TDE
Water Temperature	°C	4.0	DEP FT1400	0.1	0.1		01/13/11 14:10	TDE
Specific conductance	umhos/cm	980	DEP FT1200	0.1	0.1		01/13/11 14:10	TDE

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Project Name PNRS II									
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву	
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		UNSAT-IS3-SP Wastewater 1100234-10 01/13/11 14:10 Thomas Drunasky 01/13/11 15:40							
Dissolved Oxygen	mg/L	12	DEP FT1500	0.1	0.1		01/13/11 14:10	TDD	
<u>Inorganics</u>									
Ammonia as N	mg/L	0.036	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB	
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	01/14/11 13:51	01/19/11 11:27	KTC	
Chemical Oxygen Demand	mg/L	26	EPA 410.4	25	10		01/17/11 09:00	ARM	
Nitrate (as N)	mg/L	3.7	EPA 300.0	0.04	0.01		01/14/11 12:19	MEJ	
Nitrite (as N)	mg/L	2.2	EPA 300.0	0.04	0.01		01/14/11 12:19	MEJ	
Sulfate	mg/L	130	EPA 300.0	0.60	0.20		01/19/11 09:57	MEJ	
Total Alkalinity	mg/L	210	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC	
Total Dissolved Solids	mg/L	600	SM 2540C	10	10	01/14/11 14:00	01/17/11 16:30	MJV	
Total Kjeldahl Nitrogen	mg/L	1.8	EPA 351.2	0.20	0.05	01/18/11 07:30	01/21/11 10:18	SMB	
Total Suspended Solids	mg/L	3	SM 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTC	
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		UNSAT-IS4-SP Wastewater 1100234-11 01/13/11 14:00 Thomas Drunasky 01/13/11 15:40							
Field Parameters									
pH	SU	6.6	DEP FT1100	0.1	0.1		01/13/11 14:00	TDD	
Water Temperature	°C	5.1	DEP FT1400	0.1	0.1		01/13/11 14:00	TDD	
Specific conductance	umhos/cm	1,050	DEP FT1200	0.1	0.1		01/13/11 14:00	TDD	
Dissolved Oxygen	mg/L	12	DEP FT1500	0.1	0.1		01/13/11 14:00	TDD	
Inorganics									
Ammonia as N	mg/L	0.10	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB	
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	01/14/11 13:51	01/19/11 11:27	KTC	
Chemical Oxygen Demand	mg/L	22 I	EPA 410.4	25	10		01/17/11 09:00	ARM	
Nitrate (as N)	mg/L	46	EPA 300.0	0.04	0.01		01/14/11 15:44	MEJ	
Nitrite (as N)	mg/L	2.9	EPA 300.0	0.04	0.01		01/14/11 12:19	MEJ	
Sulfate	mg/L	92	EPA 300.0	0.60	0.20		01/14/11 15:44	MEJ	
Total Alkalinity	mg/L	100	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC	
Total Dissolved Solids	mg/L	710	SM 2540C	10	10	01/14/11 14:00	01/17/11 16:30	MJV	
Total Kjeldahl Nitrogen	mg/L	3.5	EPA 351.2	0.20	0.05	01/18/11 07:30	01/21/11 10:18	SMB	
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTC	
Microbiology									
WILCIODIOIOGY									

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Laboratory Report

Project Name PNRS II									
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву	
Sample Description		UNSAT-EC1							
Matrix		Wastewater							
SAL Sample Number		1100234-12							
Date/Time Collected		01/13/11 12:05							
Collected by		Thomas Drunasky							
Date/Time Received		01/13/11 15:40							
Field Parameters									
рН	SU	6.7	DEP FT1100	0.1	0.1		01/13/11 12:05	TDD	
Water Temperature	°C	7.8	DEP FT1400	0.1	0.1		01/13/11 12:05	TDD	
Specific conductance	umhos/cm	1,110	DEP FT1200	0.1	0.1		01/13/11 12:05	TDD	
Dissolved Oxygen	mg/L	7.9	DEP FT1500	0.1	0.1		01/13/11 12:05	TDD	
Inorganics Ammonia as N	mg/L	1.7	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB	
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	01/14/11 13:51	01/19/11 11:27	KTC	
Chemical Oxygen Demand	mg/L	16 I	EPA 410.4	25	10	01/14/11 10.01	01/17/11 09:00	ARM	
Nitrate (as N)	mg/L	45	EPA 300.0	0.04	0.01		01/14/11 15:44	MEJ	
Nitrite (as N)	mg/L	0.11	EPA 300.0	0.04	0.01		01/14/11 12:19	MEJ	
Sulfate	mg/L	61	EPA 300.0	0.60	0.20		01/14/11 12:19	MEJ	
Total Alkalinity	mg/L	160	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC	
Total Dissolved Solids	mg/L	730	SM 2540C	10	10	01/14/11 14:00	01/17/11 16:30	MJV	
Total Kjeldahl Nitrogen	mg/L	4.0	EPA 351.2	0.20	0.05	01/21/11 12:39	01/25/11 09:24	SMD	
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTC	
<u>Microbiology</u>									
Fecal Coliforms	CFU/100 ml	3,900	SM 9222D	1	1	01/13/11 16:16	01/14/11 16:00	MEJ	
Sample Description		UNSAT-SA2							
Matrix		Wastewater							
SAL Sample Number		1100234-13							
Date/Time Collected		01/13/11 10:10							
Collected by		Thomas Drunasky							
Date/Time Received		01/13/11 13:20							
Field Parameters									
рН	SU	6.8	DEP FT1100	0.1	0.1		01/13/11 10:10	TDD	
Water Temperature	°C	6.2	DEP FT1400	0.1	0.1		01/13/11 10:10	TDD	
Specific conductance	umhos/cm	900	DEP FT1200	0.1	0.1		01/13/11 10:10	TDD	
Dissolved Oxygen	mg/L	9.6	DEP FT1500	0.1	0.1		01/13/11 10:10	TDD	
Inorganics									
Ammonia as N	mg/L	0.66	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB	
Carbonaceous BOD	mg/L	3	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC	
Chemical Oxygen Demand	mg/L	16 I	EPA 410.4	25	10		01/17/11 09:00	ARM	
Nitrate (as N)	mg/L	25	EPA 300.0	0.04	0.01		01/14/11 15:44	MEJ	
Nitrite (as N)	mg/L	0.71	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ	
Total Alkalinity	mg/L	150	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC	
Total Dissolved Solids	mg/L	550	SM 2540C	10	10	01/14/11 14:00	01/17/11 16:30	MJV	

FDOH Laboratory No.E84129 NELAP Accredited

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		UNSAT-SA2						
Matrix		Wastewater						
SAL Sample Number		1100234-13						
Date/Time Collected		01/13/11 10:10						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Total Kjeldahl Nitrogen	mg/L	3.0	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	1	SM 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTC
Microbiology								
Fecal Coliforms	CFU/100 ml	41	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description		UNSAT-EC3						
Matrix		Wastewater						
SAL Sample Number		1100234-14						
Date/Time Collected		01/13/11 12:05						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
pH	SU	6.8	DEP FT1100	0.1	0.1		01/13/11 12:05	TDD
Water Temperature	°C	6.3	DEP FT1400	0.1	0.1		01/13/11 12:05	TDD
Specific conductance	umhos/cm	1,150	DEP FT1200	0.1	0.1		01/13/11 12:05	TDD
Dissolved Oxygen	mg/L	7.9	DEP FT1500	0.1	0.1		01/13/11 12:05	TDD
<u>Inorganics</u>								
Ammonia as N	mg/L	0.005 I	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	01/14/11 13:51	01/19/11 11:27	KTC
Chemical Oxygen Demand	mg/L	11 I	EPA 410.4	25	10		01/17/11 09:00	ARM
Nitrate (as N)	mg/L	44	EPA 300.0	0.04	0.01		01/14/11 15:44	MEJ
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		01/14/11 12:19	MEJ
Total Alkalinity	mg/L	210	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	740	SM 2540C	10	10	01/14/11 14:00	01/17/11 16:30	MJV
Total Kjeldahl Nitrogen	mg/L	3.5	EPA 351.2	0.20	0.05	01/18/11 07:30	01/21/11 10:18	SMB
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTC
Microbiology Fecal Coliforms	CFU/100 ml	4	SM 9222D	1	1	01/13/11 16:16	01/14/11 16:00	MEJ
	0. 0. 100	·		<u> </u>	<u> </u>	0.1.10.1.1		
Sample Description		UNSAT-EC4						
Matrix		Wastewater						
SAL Sample Number		1100234-15						
Date/Time Collected		01/13/11 10:10						
Collected by Date/Time Received		Thomas Drunasky 01/13/11 13:20						
Field Parameters								
<u>Field Parameters</u> pH	SU	6.9	DEP FT1100	0.1	0.1		01/13/11 10:10	TDD
k. i		0.0	22	V. I	J. I		51/10/11 10:10	

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619

Project Name

January 26, 2011 Work Order: 1100234

Laboratory Report

PNRS II

Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		UNSAT-EC4 Wastewater 1100234-15 01/13/11 10:10 Thomas Drunasky 01/13/11 13:20						
Water Temperature	°C	7.0	DEP FT1400	0.1	0.1		01/13/11 10:10	TDD
Specific conductance	umhos/cm	960	DEP FT1200	0.1	0.1		01/13/11 10:10	TDD
Dissolved Oxygen	mg/L	10	DEP FT1500	0.1	0.1		01/13/11 10:10	TDD
<u>Inorganics</u>								
Ammonia as N	mg/L	0.038	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	16 I	EPA 410.4	25	10		01/17/11 09:00	ARM
Nitrate (as N)	mg/L	30	EPA 300.0	0.04	0.01		01/14/11 15:44	MEJ
Nitrite (as N)	mg/L	0.50	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Total Alkalinity	mg/L	150	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	600	SM 2540C	10	10	01/14/11 14:00	01/17/11 16:30	MJV
Total Kjeldahl Nitrogen	mg/L	2.4	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTC
<u>Microbiology</u>								
Fecal Coliforms	CFU/100 ml	21	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		UNSAT-CL1 Wastewater 1100234-16 01/13/11 11:45 Thomas Drunasky 01/13/11 13:20						
Field Parameters								
pH	SU	7.2	DEP FT1100	0.1	0.1		01/13/11 11:45	TDD
Water Temperature	°C	8.2	DEP FT1400	0.1	0.1		01/13/11 11:45	TDD
Specific conductance	umhos/cm	1,200	DEP FT1200	0.1	0.1		01/13/11 11:45	TDD
Dissolved Oxygen	mg/L	8.8	DEP FT1500	0.1	0.1		01/13/11 11:45	TDD
<u>Inorganics</u>								
Ammonia as N	mg/L	0.020	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	01/14/11 13:51	01/19/11 11:27	KTC
Chemical Oxygen Demand	mg/L	16 I	EPA 410.4	25	10		01/17/11 09:00	ARM
		31	EPA 300.0	0.04	0.01		01/14/11 15:44	MEJ
Nitrate (as N)	mg/L	• .						
` ,		0.16	EPA 300.0	0.04	0.01		01/14/11 12:19	MEJ
Nitrate (as N) Nitrite (as N) Sulfate	mg/L mg/L mg/L		EPA 300.0 EPA 300.0	0.04 0.60	0.01 0.20		01/14/11 12:19 01/14/11 12:19	MEJ MEJ
Nitrite (as N)	mg/L	0.16				01/14/11 11:03		
Nitrite (as N) Sulfate	mg/L mg/L	0.16 59	EPA 300.0	0.60	0.20	01/14/11 11:03 01/14/11 14:00	01/14/11 12:19	MEJ
Nitrite (as N) Sulfate Total Alkalinity	mg/L mg/L mg/L	0.16 59 180	EPA 300.0 SM 2320B	0.60 8.0	0.20 2.0		01/14/11 12:19 01/14/11 11:06	MEJ KTC

FDOH Laboratory No.E84129 NELAP Accredited Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		UNSAT-CL1						
Matrix		Wastewater						
SAL Sample Number		1100234-16						
Date/Time Collected		01/13/11 11:45						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Microbiology								
Fecal Coliforms	CFU/100 ml	100	SM 9222D	1	1	01/13/11 16:16	01/14/11 16:00	ME
Sample Description		UNSAT-CL2						
Matrix		Wastewater						
SAL Sample Number		1100234-17						
Date/Time Collected		01/13/11 09:50						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
рН	SU	7.0	DEP FT1100	0.1	0.1		01/13/11 09:50	TDI
Water Temperature	°C	6.0	DEP FT1400	0.1	0.1		01/13/11 09:50	TDI
Specific conductance	umhos/cm	990	DEP FT1200	0.1	0.1		01/13/11 09:50	TDI
Dissolved Oxygen	mg/L	7.9	DEP FT1500	0.1	0.1		01/13/11 09:50	TDI
<u>Inorganics</u>								
Ammonia as N	mg/L	0.019	EPA 350.1	0.010	0.005		01/14/11 09:39	SME
Carbonaceous BOD	mg/L	3	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTO
Chemical Oxygen Demand	mg/L	16 I	EPA 410.4	25	10		01/17/11 09:00	ARN
Nitrate (as N)	mg/L	27	EPA 300.0	0.04	0.01		01/14/11 15:44	ME
Nitrite (as N)	mg/L	0.23	EPA 300.0	0.04	0.01		01/13/11 17:24	ME
Total Alkalinity	mg/L	180	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTO
Total Dissolved Solids	mg/L	600	SM 2540C	10	10	01/14/11 14:00	01/17/11 16:30	MJ۱
Total Kjeldahl Nitrogen	mg/L	2.0	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMI
Total Suspended Solids	mg/L	1	SM 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTO
Microbiology Fecal Coliforms	CFU/100 ml	730	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	10.
recai Collionns	CFU/100 mi	730	3W 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description		UNSAT-CL3						
Matrix		Wastewater						
SAL Sample Number		1100234-18						
Date/Time Collected Collected by		01/13/11 12:05 Thomas Drupasky						
Date/Time Received		Thomas Drunasky 01/13/11 13:20						
Field Parameters								
pH	SU	7.3	DEP FT1100	0.1	0.1		01/13/11 12:05	TDI
•	°C	7.3 8.3	DEP FT1100 DEP FT1400	0.1 0.1	0.1 0.1		01/13/11 12:05 01/13/11 12:05	TDI
Water Temperature	umhos/cm			0.1			01/13/11 12:05	TDI
Specific conductance	urrinos/cm	1,300	DEP FT1200	0.1	0.1		01/13/11 12:05	TDI

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Project Name PNRS II									
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву	
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		UNSAT-CL3 Wastewater 1100234-18 01/13/11 12:05 Thomas Drunasky 01/13/11 13:20							
Dissolved Oxygen	mg/L	9.9	DEP FT1500	0.1	0.1		01/13/11 12:05	TDD	
Inorganics Ammonia as N Carbonaceous BOD Chemical Oxygen Demand Nitrate (as N) Nitrite (as N) Total Alkalinity Total Dissolved Solids Total Kjeldahl Nitrogen Total Suspended Solids Microbiology Fecal Coliforms Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received	mg/L mg/L mg/L mg/L mg/L mg/L mg/L CFU/100 ml	0.016	EPA 350.1 SM 5210B EPA 410.4 EPA 300.0 EPA 300.0 SM 2320B SM 2540C EPA 351.2 SM 2540D SM 9222D	0.010 2 25 0.04 0.04 8.0 10 0.20 1	0.005 2 10 0.01 0.01 2.0 10 0.05 1	01/14/11 13:51 01/14/11 11:03 01/18/11 15:00 01/18/11 07:30 01/14/11 16:35 01/13/11 16:16	01/14/11 09:39 01/19/11 11:27 01/18/11 09:00 01/14/11 15:44 01/14/11 12:19 01/14/11 11:06 01/19/11 15:45 01/21/11 10:18 01/15/11 10:43	SMB KTC ARM MEJ KTC MJV SMB KTC	
		01/13/11 13:20							
pH Water Temperature Specific conductance Dissolved Oxygen	SU °C umhos/cm mg/L	7.3 7.9 970 11	DEP FT1100 DEP FT1400 DEP FT1200 DEP FT1500	0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1		01/13/11 11:15 01/13/11 11:15 01/13/11 11:15 01/13/11 11:15	TDD TDD TDD TDD	
Inorganics Ammonia as N Carbonaceous BOD Chemical Oxygen Demand Nitrate (as N) Nitrite (as N) Total Alkalinity Total Dissolved Solids	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.011 2 U 13 I 36 0.15 170 660	EPA 350.1 SM 5210B EPA 410.4 EPA 300.0 EPA 300.0 SM 2320B SM 2540C	0.010 2 25 0.04 0.04 8.0 10	0.005 2 10 0.01 0.01 2.0 10	01/13/11 15:00 01/14/11 11:03 01/18/11 15:00	01/14/11 09:39 01/18/11 13:48 01/18/11 09:00 01/14/11 15:44 01/13/11 17:24 01/14/11 11:06 01/19/11 15:45	SMB KTC ARM MEJ MEJ KTC MJV	
Total Kjeldahl Nitrogen Total Suspended Solids Microbiology Fecal Coliforms	mg/L mg/L mg/L	2.2 1 U	EPA 351.2 SM 2540D	0.20 1	0.05 1	01/14/11 08:31 01/14/11 16:35 01/13/11 14:00	01/17/11 14:48 01/15/11 10:43 01/14/11 15:30	SMD KTC	

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619

Project Name

January 26, 2011 Work Order: 1100234

Laboratory Report

PNRS II

Project Name		PN	KS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		UNSAT-PS1						
Matrix		Wastewater						
SAL Sample Number		1100234-20						
Date/Time Collected		01/13/11 10:15						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
pH	SU	7.3	DEP FT1100	0.1	0.1		01/13/11 10:15	TDD
Water Temperature	°C	5.8	DEP FT1400	0.1	0.1		01/13/11 10:15	TDD
Specific conductance	umhos/cm	930	DEP FT1200	0.1	0.1		01/13/11 10:15	TDD
Dissolved Oxygen	mg/L	5.2	DEP FT1500	0.1	0.1		01/13/11 10:15	TDD
Inorganics Ammonia as N	mg/L	16	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	12	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	52	EPA 410.4	25	10	01/13/11 13.00	01/18/11 13:48	ARM
Nitrate (as N)	mg/L	10	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Nitrite (as N)	mg/L	1.3	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Total Alkalinity	mg/L	200	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	490	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJV
Total Kjeldahl Nitrogen	mg/L	17	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	9	SM 2540D	1	1	01/14/11 16:35	01/15/11 10:43	KTC
Microbiology	3							
Fecal Coliforms	CFU/100 ml	9,500	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description		DENIT-SU1						
Matrix		Wastewater						
SAL Sample Number		1100234-21						
Date/Time Collected		01/13/11 08:00						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
pН	SU	6.8	DEP FT1100	0.1	0.1		01/13/11 08:00	TDD
Water Temperature	°C	0.2	DEP FT1400	0.1	0.1		01/13/11 08:00	TDD
Specific conductance	umhos/cm	1,080	DEP FT1200	0.1	0.1		01/13/11 08:00	TDD
Dissolved Oxygen	mg/L	1.2	DEP FT1500	0.1	0.1		01/13/11 08:00	TDD
<u>Inorganics</u>								
Ammonia as N	mg/L	0.46	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	8	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	22	EPA 410.4	25	10		01/18/11 09:00	ARM
Nitrate (as N)	mg/L	0.11	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Nitrite (as N)	mg/L	0.24	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Sulfate	mg/L	270	EPA 300.0	0.60	0.20		01/19/11 18:44	MEJ
Total Alkalinity	mg/L	220	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
•	_	760	SM 2540C					

FDOH Laboratory No.E84129 NELAP Accredited

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Project Name		PNI	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		DENIT-SU1 Wastewater 1100234-21 01/13/11 08:00 Thomas Drunasky 01/13/11 13:20						
Total Kjeldahl Nitrogen	mg/L	2.6	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJV
<u>Microbiology</u>								
Fecal Coliforms	CFU/100 ml	5	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		DENIT-SU2 Wastewater 1100234-22 01/13/11 08:00 Thomas Drunasky 01/13/11 13:20						
Field Parameters								
pH	SU	6.8	DEP FT1100	0.1	0.1		01/13/11 08:00	TDD
Water Temperature	°C	0.3	DEP FT1400	0.1	0.1		01/13/11 08:00	TDD
Specific conductance	umhos/cm	1,130	DEP FT1200	0.1	0.1		01/13/11 08:00	TDD
Dissolved Oxygen	mg/L	1.6	DEP FT1500	0.1	0.1		01/13/11 08:00	TDD
<u>Inorganics</u>								
Hydrogen Sulfide (Unionized)	mg/L	2.6	SM 4550SF	0.04	0.01		01/18/11 11:00	KTC
Ammonia as N	mg/L	0.30	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	6	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	24 l	EPA 410.4	25	10		01/18/11 09:00	ARM
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Nitrite (as N)	mg/L	0.05	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Sulfate	mg/L	300	EPA 300.0	0.60	0.20		01/19/11 18:44	MEJ
Sulfide	mg/L	4.3	SM 4500SF	0.40	0.10		01/18/11 11:00	KTC
Total Alkalinity	mg/L	200	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	740	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJV
Total Kjeldahl Nitrogen	mg/L	1.1	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJV
<u>Microbiology</u>								
Fecal Coliforms	CFU/100 ml	3	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Laboratory Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		DENIT-SU3						
Matrix		Wastewater						
SAL Sample Number		1100234-23						
Date/Time Collected		01/13/11 09:00						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
рН	SU	6.9	DEP FT1100	0.1	0.1		01/13/11 09:00	TD
Water Temperature	°C	6.9	DEP FT1400	0.1	0.1		01/13/11 09:00	TD
Specific conductance	umhos/cm	1,420	DEP FT1200	0.1	0.1		01/13/11 09:00	TDI
Dissolved Oxygen	mg/L	2.8	DEP FT1500	0.1	0.1		01/13/11 09:00	TDI
<u>Inorganics</u>								
Ammonia as N	mg/L	0.80	EPA 350.1	0.010	0.005		01/14/11 09:39	SMI
Carbonaceous BOD	mg/L	9	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KT
Chemical Oxygen Demand	mg/L	50	EPA 410.4	25	10		01/18/11 09:00	ARN
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		01/13/11 17:24	ME
Nitrite (as N)	mg/L	0.04	EPA 300.0	0.04	0.01		01/13/11 17:24	ME
Sulfate	mg/L	380	EPA 300.0	0.60	0.20		01/19/11 18:44	ME
Total Alkalinity	mg/L	280	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KT
Total Dissolved Solids	mg/L	1,000	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJ
Total Kjeldahl Nitrogen	mg/L	2.9	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMI
Total Suspended Solids	mg/L	11	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJ
Microbiology	3							
Fecal Coliforms	CFU/100 ml	6	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JA
Sample Description		DENIT-SU4						
Matrix		Wastewater						
SAL Sample Number		1100234-24						
Date/Time Collected		01/13/11 09:00						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
pH	SU	6.8	DEP FT1100	0.1	0.1		01/13/11 09:00	TDI
Water Temperature	°C	7.0	DEP FT1400	0.1	0.1		01/13/11 09:00	TDI
Specific conductance	umhos/cm	1,350	DEP FT1200	0.1	0.1		01/13/11 09:00	TDI
Dissolved Oxygen	mg/L	4.2	DEP FT1500	0.1	0.1		01/13/11 09:00	TDI
Inorganics	-							
Hydrogen Sulfide (Unionized)	mg/L	0.08	SM 4550SF	0.04	0.01		01/18/11 11:00	KT
Ammonia as N	mg/L	0.22	EPA 350.1	0.010	0.005		01/14/11 09:39	SMI
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KT
Chemical Oxygen Demand	mg/L	20 I	EPA 410.4	25	10	2	01/18/11 09:00	ARN
Nitrate (as N)	mg/L	0.10	EPA 300.0	0.04	0.01		01/13/11 17:24	ME
Nitrite (as N)	mg/L	0.03 1	EPA 300.0	0.04	0.01		01/13/11 17:24	ME
Culfata	g/ L	400	EDA 200.0	0.00	0.01		04/00/44 04:45	

FDOH Laboratory No.E84129 NELAP Accredited

mg/L

Sulfate

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

01/20/11 21:45

MEJ

420

EPA 300.0

0.60

0.20

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		DENIT-SU4 Wastewater 1100234-24 01/13/11 09:00 Thomas Drunasky 01/13/11 13:20						
Sulfide	mg/L	0.14 I	SM 4500SF	0.40	0.10		01/18/11 11:00	KTC
Total Alkalinity	mg/L	240	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	1,000	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJV
Total Kjeldahl Nitrogen	mg/L	1.2	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	2	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJV
Microbiology								
Fecal Coliforms	CFU/100 ml	3	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		Wastewater 1100234-25 01/13/11 08:00 Thomas Drunasky 01/13/11 13:20						
Field Parameters								
рН	SU	7.0	DEP FT1100	0.1	0.1		01/13/11 08:00	TDD
Water Temperature	°C	0.3	DEP FT1400	0.1	0.1		01/13/11 08:00	TDD
Specific conductance	umhos/cm	910	DEP FT1200	0.1	0.1		01/13/11 08:00	TDD
Dissolved Oxygen	mg/L	0.6	DEP FT1500	0.1	0.1		01/13/11 08:00	TDD
<u>Inorganics</u>								
Ammonia as N	mg/L	0.007 I	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	16 I	EPA 410.4	25	10		01/18/11 09:00	ARM
Nitrate (as N)	mg/L	22	EPA 300.0	0.04	0.01		01/14/11 15:44	MEJ
Nitrite (as N)	mg/L	0.10	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Total Alkalinity	mg/L	190	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	590	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJV
Total Kjeldahl Nitrogen	mg/L	1.8	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJV
Microbiology								
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619

Project Name

January 26, 2011 Work Order: 1100234

Laboratory Report

PNRS II

Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description Matrix		DENIT-LS2 Wastewater						
SAL Sample Number Date/Time Collected		1100234-26 01/13/11 09:00						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
pH	SU	7.3	DEP FT1100	0.1	0.1		01/13/11 09:00	TDD
Water Temperature	°C	6.8	DEP FT1400	0.1	0.1		01/13/11 09:00	TDD
Specific conductance	umhos/cm	1,300	DEP FT1200	0.1	0.1		01/13/11 09:00	TDD
Dissolved Oxygen	mg/L	5.0	DEP FT1500	0.1	0.1		01/13/11 09:00	TDD
• •	mg/L	0.0	22	0.1	0.1		01/10/11 00:00	100
Inorganics	ma/l	0.005	EPA 350.1	0.010	0.005		04/44/44 00:20	CMD
Ammonia as N	mg/L	0.085 2 U	SM 5210B	0.010 2	0.005 2	01/13/11 15:00	01/14/11 09:39	SMB KTC
Carbonaceous BOD	mg/L	16 I	EPA 410.4	25	2 10	01/13/11 15.00	01/18/11 13:48	
Chemical Oxygen Demand	mg/L	41	EPA 300.0		0.01		01/18/11 09:00	ARM MEJ
Nitrate (as N)	mg/L			0.04			01/14/11 15:44	
Nitrite (as N)	mg/L	0.07	EPA 300.0 SM 2320B	0.04	0.01	04/44/44 44.00	01/13/11 17:24	MEJ
Total Alkalinity	mg/L	340		8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	860	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJV
Total Kjeldahl Nitrogen	mg/L	2.7	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJV
Microbiology								
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description		DENIT-LS3						
Matrix		Wastewater						
SAL Sample Number		1100234-27						
Date/Time Collected		01/13/11 09:00						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
pH	SU	6.7	DEP FT1100	0.1	0.1		01/13/11 09:00	TDD
Water Temperature	°C	6.6	DEP FT1400	0.1	0.1		01/13/11 09:00	TDD
Specific conductance	umhos/cm	1,150	DEP FT1200	0.1	0.1		01/13/11 09:00	TDD
Dissolved Oxygen	mg/L	5.4	DEP FT1500	0.1	0.1		01/13/11 09:00	TDD
Inorganics	-							
Ammonia as N	mg/L	0.012	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	16 I	EPA 410.4	25	10	31/10/11 10:00	01/18/11 09:00	ARM
Nitrate (as N)	mg/L	43	EPA 300.0	0.04	0.01		01/14/11 15:44	MEJ
Nitrite (as N)	mg/L	0.05	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Total Alkalinity	mg/L	240	SM 2320B	8.0	2.0	01/14/11 11:03	01/13/11 17:24	KTC
Total Dissolved Solids	mg/L	790	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJV
Total Kjeldahl Nitrogen	mg/L	2.3	EPA 351.2	0.20	0.05	01/14/11 08:31	01/19/11 13:43	SMD
rotal rycluani Milloyen	illy/L	2.0	L1 7 1 00 1.2	0.20	0.03	01/17/11/00.31	01/11/11 14.40	SIVID

FDOH Laboratory No.E84129 NELAP Accredited Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Project Name								
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		DENIT-LS3						
Matrix		Wastewater						
SAL Sample Number		1100234-27						
Date/Time Collected		01/13/11 09:00						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJV
Microbiology								
Fecal Coliforms	CFU/100 ml	1	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description		DENIT-LS4						
Matrix		Wastewater						
SAL Sample Number		1100234-28						
Date/Time Collected		01/13/11 09:00						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
рН	SU	7.3	DEP FT1100	0.1	0.1		01/13/11 09:00	TDD
Water Temperature	°C	7.4	DEP FT1400	0.1	0.1		01/13/11 09:00	TDD
Specific conductance	umhos/cm	810	DEP FT1200	0.1	0.1		01/13/11 09:00	TDD
Dissolved Oxygen	mg/L	5.2	DEP FT1500	0.1	0.1		01/13/11 09:00	TDD
<u>Inorganics</u>								
Ammonia as N	mg/L	9.5	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	4	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	22	EPA 410.4	25	10		01/18/11 09:00	ARM
Nitrate (as N)	mg/L	3.1	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Nitrite (as N)	mg/L	0.29	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Total Alkalinity	mg/L	230	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	460	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJV
Total Kjeldahl Nitrogen	mg/L	12	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	118	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJV
Microbiology Fecal Coliforms	CFU/100 ml	1	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description		DENIT-GL1						
Matrix		Wastewater						
SAL Sample Number		1100234-29						
Date/Time Collected		01/13/11 08:00						
Collected by Date/Time Received		Thomas Drunasky 01/13/11 13:20						
Date/Time Neceived		01/13/11 13:20						
Field Parameters	CLI	2.2	DED 574400	0.4	0.4		04/40/44 00:00	TOO
pH	SU	6.6	DEP FT1100	0.1	0.1		01/13/11 08:00	TDD
Water Temperature	°C	0.3	DEP FT1400	0.1	0.1		01/13/11 08:00	TDD

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		DENIT-GL1						
Matrix		Wastewater						
SAL Sample Number		1100234-29						
Date/Time Collected		01/13/11 08:00						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Specific conductance	umhos/cm	1,000	DEP FT1200	0.1	0.1		01/13/11 08:00	TDD
Dissolved Oxygen	mg/L	0.9	DEP FT1500	0.1	0.1		01/13/11 08:00	TDD
<u>Inorganics</u>								
Ammonia as N	mg/L	5.8	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	17	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	48	EPA 410.4	25	10		01/18/11 09:00	ARM
Nitrate (as N)	mg/L	0.11	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Nitrite (as N)	mg/L	0.04	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Total Alkalinity	mg/L	400	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	540	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJV
Total Kjeldahl Nitrogen	mg/L	6.3	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	3	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJV
Microbiology								
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description		DFT						
Matrix		Wastewater						

Sample Description		DFT						
Matrix		Wastewater						
SAL Sample Number		1100234-30						
Date/Time Collected		01/13/11 10:35						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
pН	SU	7.0	DEP FT1100	0.1	0.1		01/13/11 10:35	TDD
Water Temperature	°C	6.4	DEP FT1400	0.1	0.1		01/13/11 10:35	TDD
Specific conductance	umhos/cm	950	DEP FT1200	0.1	0.1		01/13/11 10:35	TDD
Dissolved Oxygen	mg/L	9.8	DEP FT1500	0.1	0.1		01/13/11 10:35	TDD
<u>Inorganics</u>								
Ammonia as N	mg/L	0.054	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	46	EPA 410.4	25	10		01/18/11 09:00	ARM
Nitrate (as N)	mg/L	29	EPA 300.0	0.04	0.01		01/14/11 15:44	MEJ
Nitrite (as N)	mg/L	0.06	EPA 300.0	0.04	0.01		01/13/11 17:24	MEJ
Sulfate	mg/L	67	EPA 300.0	0.60	0.20		01/13/11 17:24	MEJ
Total Alkalinity	mg/L	160	SM 2320B	8.0	2.0	01/20/11 09:28	01/20/11 09:30	KTC
Total Dissolved Solids	mg/L	590	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJV
Total Kjeldahl Nitrogen	mg/L	2.4	EPA 351.2	0.20	0.05	01/14/11 08:31	01/17/11 14:48	SMD
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJV
<u>Microbiology</u>								

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Project Name								
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		DFT						
Matrix		Wastewater						
SAL Sample Number		1100234-30						
Date/Time Collected		01/13/11 10:35						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Fecal Coliforms	CFU/100 ml	22	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description		T1-D						
Matrix		Wastewater						
SAL Sample Number		1100234-31						
Date/Time Collected		01/13/11 10:15						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 15:40						
Field Parameters								
рН	SU	7.1	DEP FT1100	0.1	0.1		01/13/11 10:15	TDE
Water Temperature	°C	13.7	DEP FT1400	0.1	0.1		01/13/11 10:15	TDE
Specific conductance	umhos/cm	1,220	DEP FT1200	0.1	0.1		01/13/11 10:15	TDE
Dissolved Oxygen	mg/L	2.7	DEP FT1500	0.1	0.1		01/13/11 10:15	TDE
Inorganics								
Ammonia as N	mg/L	58	EPA 350.1	0.010	0.005		01/14/11 09:39	SME
Carbonaceous BOD	mg/L	85	SM 5210B	2	2	01/14/11 13:51	01/19/11 11:27	KTC
Chemical Oxygen Demand	mg/L	280	EPA 410.4	25	10		01/18/11 09:00	ARM
Nitrate (as N)	mg/L	0.05	EPA 300.0	0.04	0.01		01/14/11 12:19	ME
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		01/14/11 12:19	ME
Total Alkalinity	mg/L	340	SM 2320B	8.0	2.0	01/20/11 09:28	01/20/11 09:30	KTC
Total Dissolved Solids	mg/L	470	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJ\
Total Kjeldahl Nitrogen	mg/L	62	EPA 351.2	0.20	0.05	01/18/11 07:30	01/21/11 10:18	SME
Total Suspended Solids	mg/L	64	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJ\
Microbiology	ŭ							
Fecal Coliforms	CFU/100 ml	11,100	SM 9222D	1	1	01/13/11 16:16	01/14/11 16:00	ME
Sample Description		CL3-D						
Matrix		Wastewater						
SAL Sample Number		1100234-32						
Date/Time Collected		01/13/11 12:05						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 15:40						
Field Parameters								
pH	SU	7.3	DEP FT1100	0.1	0.1		01/13/11 12:05	TDE
Water Temperature	°C	8.3	DEP FT1400	0.1	0.1		01/13/11 12:05	TDE
Specific conductance	umhos/cm	1,300	DEP FT1200	0.1	0.1		01/13/11 12:05	TDE
Dissolved Oxygen	mg/L	9.9	DEP FT1500	0.1	0.1		01/13/11 12:05	TDE

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		CL3-D						
Matrix		Wastewater						
SAL Sample Number		1100234-32						
Date/Time Collected		01/13/11 12:05						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 15:40						
Inorganics								
Ammonia as N	mg/L	0.018	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	01/14/11 13:51	01/19/11 11:27	KTC
Chemical Oxygen Demand	mg/L	16 I	EPA 410.4	25	10		01/18/11 09:00	ARM
Nitrate (as N)	mg/L	40	EPA 300.0	0.04	0.01		01/14/11 15:44	MEJ
Nitrite (as N)	mg/L	0.06	EPA 300.0	0.04	0.01		01/14/11 12:19	MEJ
Total Alkalinity	mg/L	280	SM 2320B	8.0	2.0	01/20/11 09:28	01/20/11 09:30	KTC
Total Dissolved Solids	mg/L	840	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJV
Total Kjeldahl Nitrogen	mg/L	2.8	EPA 351.2	0.20	0.05	01/18/11 07:30	01/21/11 10:18	SMB
Total Suspended Solids	mg/L	2	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJV
<u>Microbiology</u>								
Fecal Coliforms	CFU/100 ml	25	SM 9222D	1	1	01/13/11 16:16	01/14/11 16:00	MEJ
Sample Description		EC1-D						
Matrix		Wastewater						
SAL Sample Number		1100234-33						
Date/Time Collected		01/13/11 12:05						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 15:40						
Field Parameters								
pH	SU	6.7	DEP FT1100	0.1	0.1		01/13/11 12:05	TDD
Water Temperature	°C	7.8	DEP FT1400	0.1	0.1		01/13/11 12:05	TDD
Specific conductance	umhos/cm	1,110	DEP FT1200	0.1	0.1		01/13/11 12:05	TDD
Dissolved Oxygen	mg/L	7.9	DEP FT1500	0.1	0.1		01/13/11 12:05	TDD
<u>Inorganics</u>								
Ammonia as N	mg/L	1.6	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	01/14/11 13:51	01/19/11 11:27	KTC
Chemical Oxygen Demand	mg/L	24 I	EPA 410.4	25	10		01/18/11 09:00	ARM
Nitrate (as N)	mg/L	44	EPA 300.0	0.04	0.01		01/14/11 15:44	MEJ
Nitrite (as N)	mg/L	0.11	EPA 300.0	0.04	0.01		01/14/11 12:19	MEJ
Total Alkalinity	mg/L	180	SM 2320B	8.0	2.0	01/20/11 09:28	01/20/11 09:30	KTC
Total Dissolved Solids	mg/L	720	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJV
Total Kjeldahl Nitrogen	mg/L	4.1	EPA 351.2	0.20	0.05	01/21/11 12:39	01/25/11 09:24	SMD
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJV
Microbiology	-							
Fecal Coliforms	CFU/100 ml	3,000	SM 9222D	1	1	01/13/11 16:16	01/14/11 16:00	MEJ

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619

Project Name

January 26, 2011 Work Order: 1100234

Laboratory Report

PNRS II

Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		CL1-D Wastewater 1100234-34 01/13/11 11:45 Thomas Drunasky 01/13/11 13:20						
Field Parameters								
pH	SU	7.2	DEP FT1100	0.1	0.1		01/13/11 11:45	TDD
Water Temperature	°C	8.2	DEP FT1400	0.1	0.1		01/13/11 11:45	TDD
Specific conductance	umhos/cm	1,200	DEP FT1200	0.1	0.1		01/13/11 11:45	TDD
Dissolved Oxygen	mg/L	8.8	DEP FT1500	0.1	0.1		01/13/11 11:45	TDD
<u>Inorganics</u>	ŭ							
Ammonia as N	ma/l	0.020	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L mg/L	2 U	SM 5210B	2	2	01/14/11 13:51	01/19/11 11:27	KTC
	-	20 I	EPA 410.4	25	10	01/14/11 13.31	01/18/11 09:00	ARM
Chemical Oxygen Demand	mg/L	20 1		0.04	0.01			
Nitrate (as N)	mg/L		EPA 300.0				01/14/11 21:06	MEJ
Nitrite (as N)	mg/L	0.18	EPA 300.0	0.04	0.01	04/00/44 00:00	01/14/11 21:06	MEJ
Total Alkalinity	mg/L	280	SM 2320B	8.0	2.0	01/20/11 09:28	01/20/11 09:30	KTC
Total Dissolved Solids	mg/L	700	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJV
Total Kjeldahl Nitrogen	mg/L	2.9	EPA 351.2	0.20	0.05	01/21/11 12:39	01/25/11 09:24	SMD
Total Suspended Solids	mg/L	3	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJV
Microbiology	0511/400		014 0000			0.1.1.0.1.1.1.0.1.0	0.4.4.4.4.4.0.00	
Fecal Coliforms	CFU/100 ml	40	SM 9222D	1	1	01/13/11 16:16	01/14/11 16:00	MEJ
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		FB Wastewater 1100234-35 01/13/11 08:45 Thomas Drunasky 01/13/11 13:20						
Field Parameters								
pH	SU	7.0	DEP FT1100	0.1	0.1		01/13/11 08:45	TDD
Water Temperature	°C	5.0	DEP FT1400	0.1	0.1		01/13/11 08:45	TDD
Specific conductance	umhos/cm	40	DEP FT1200	0.1	0.1		01/13/11 08:45	TDD
Dissolved Oxygen	mg/L	9.8	DEP FT1500	0.1	0.1		01/13/11 08:45	TDD
<u>Inorganics</u>	ŭ							
Ammonia as N	ma/l	0.005 U	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
	mg/L		SM 5210B			01/13/11 15:00		
Carbonaceous BOD	mg/L	2 U		2	2	01/13/11 15.00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10		01/19/11 09:45	ARM
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		01/14/11 21:06	MEJ
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01	0.1.10.0.11.1.00.7.7	01/14/11 21:06	MEJ
Total Alkalinity	mg/L	2.0 U	SM 2320B	8.0	2.0	01/20/11 09:28	01/20/11 09:30	KTC
		40 11	CM 2E40C	40	10	04/40/44 45:00	01/10/11 15:45	MJV
Total Dissolved Solids Total Kjeldahl Nitrogen	mg/L	10 U 0.05 U	SM 2540C EPA 351.2	10 0.20	10 0.05	01/18/11 15:00 01/18/11 07:30	01/19/11 15:45 01/21/11 10:18	SMB

FDOH Laboratory No.E84129 NELAP Accredited Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description		FB						
Matrix		Wastewater						
SAL Sample Number		1100234-35						
Date/Time Collected		01/13/11 08:45						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJV
<u>Microbiology</u>								
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA
Sample Description		ЕВ						
Matrix		Wastewater						
SAL Sample Number		1100234-36						
Date/Time Collected		01/13/11 11:30						
Collected by		Thomas Drunasky						
Date/Time Received		01/13/11 13:20						
Field Parameters								
рН	SU	7.0	DEP FT1100	0.1	0.1		01/13/11 11:30	TDD
Water Temperature	°C	5.3	DEP FT1400	0.1	0.1		01/13/11 11:30	TDD
Specific conductance	umhos/cm	40	DEP FT1200	0.1	0.1		01/13/11 11:30	TDD
Dissolved Oxygen	mg/L	9.8	DEP FT1500	0.1	0.1		01/13/11 11:30	TDD
Inorganics								
Ammonia as N	mg/L	0.008 I	EPA 350.1	0.010	0.005		01/14/11 09:39	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	01/13/11 15:00	01/18/11 13:48	KTC
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10		01/19/11 09:45	ARM
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		01/14/11 21:06	MEJ
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		01/14/11 21:06	MEJ
Total Alkalinity	mg/L	2.0 U	SM 2320B	8.0	2.0	01/20/11 09:28	01/20/11 09:30	KTC
Total Dissolved Solids	mg/L	10 U	SM 2540C	10	10	01/18/11 15:00	01/19/11 15:45	MJV
Total Kjeldahl Nitrogen	mg/L	0.05 U	EPA 351.2	0.20	0.05	01/18/11 07:30	01/21/11 10:18	SMB
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	01/15/11 10:00	01/17/11 15:25	MJV
<u>Microbiology</u>								
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	01/13/11 14:00	01/14/11 15:30	JAA

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

0/ DEC

Amalada	D 14	DOL	MDL	1.1	Spike	Source	0/ DEO	%REC	DDD	RPD
Analyte	Result	PQL	IVIDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BA11306 - Ion Chroma	tography 300.0	Prep								
Blank (BA11306-BLK1)					Prepared 8	& Analyzed:	01/13/11			
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
LCS (BA11306-BS1)					Prepared 8	k Analyzed:	01/13/11			
Nitrite (as N)	1.36	0.04	0.01	mg/L	1.4		97	85-115		
Nitrate (as N)	1.63	0.04	0.01	mg/L	1.7		96	85-115		
LCS Dup (BA11306-BSD1)					Prepared 8	& Analyzed:	01/13/11			
Nitrite (as N)	1.33	0.04	0.01	mg/L	1.4		95	85-115	2	200
Nitrate (as N)	1.63	0.04	0.01	mg/L	1.7		96	85-115	0	200
Matrix Spike (BA11306-MS1)		Source: 1	100219-10		Prepared 8	& Analyzed:	01/13/11			
Nitrite (as N)	1.37	0.04	0.01	mg/L	1.4	ND	98	85-115		
Nitrate (as N)	1.61	0.04	0.01	mg/L	1.7	ND	95	85-115		
Matrix Spike (BA11306-MS2)		Source: 1	100376-03		Prepared 8	k Analyzed:	01/13/11			
Nitrite (as N)	1.44	0.04	0.01	mg/L	1.4	ND	103	85-115		
Nitrate (as N)	1.59	0.04	0.01	mg/L	1.7	0.0156	93	85-115		
Batch BA11322 - BOD										
Blank (BA11322-BLK1)					Prepared:	01/13/11 Ar	nalyzed: 01	/18/11		
Carbonaceous BOD	2 U	2	2	mg/L						
Blank (BA11322-BLK2)					Prepared:	01/13/11 Ar	nalyzed: 01	/18/11		
Carbonaceous BOD	2 U	2	2	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result	FQL	IVIDL	Offics	Levei	Nesuit	/0KLC	LIIIIIIS	KFD	LIIIII
Batch BA11322 - BOD										
LCS (BA11322-BS1)					Prepared:	01/13/11 Ar	nalyzed: 01	/18/11		
Carbonaceous BOD	191	2	2	mg/L	200		96	85-115		
LCS (BA11322-BS2)					Prepared:	01/13/11 Ar	nalyzed: 01	/18/11		
Carbonaceous BOD	191	2	2	mg/L	200		96	85-115		
LCS Dup (BA11322-BSD1)					Prepared:	01/13/11 Ar	nalyzed: 01	/18/11		
Carbonaceous BOD	176	2	2	mg/L	200		88	85-115	8	10
LCS Dup (BA11322-BSD2)					Prepared:	01/13/11 Ar	nalyzed: 01	/18/11		
Carbonaceous BOD	176	2	2	mg/L	200		88	85-115	8	10
Duplicate (BA11322-DUP1)		Source: 1	100362-03		Prepared:	01/13/11 Ar	nalyzed: 01	/18/11		
Carbonaceous BOD	240	2	2	mg/L		240			2	25
Duplicate (BA11322-DUP2)		Source: 1	100407-01		Prepared:	01/13/11 Ar	nalyzed: 01	/18/11		
Carbonaceous BOD	520	2	2	mg/L		470			9	25
Batch BA11334 - Ammonia b	y SEAL									
Blank (BA11334-BLK1)					Prepared 8	& Analyzed:	01/14/11			
Ammonia as N	0.005 U	0.010	0.005	mg/L						
Blank (BA11334-BLK2)					Prepared 8	& Analyzed:	01/14/11			
Ammonia as N	0.005 I	0.010	0.005	mg/L						
Blank (BA11334-BLK3)					Prepared 8	& Analyzed:	01/14/11			
Ammonia as N	0.005 U	0.010	0.005	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

					Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BA11334 - Ammonia by	SEAL									
LCS (BA11334-BS1)					Prepared 8	Analyzed:	01/14/11			
Ammonia as N	0.51	0.010	0.005	mg/L	0.50		101	90-110		
LCS (BA11334-BS2)					Prepared 8	Analyzed:	01/14/11			
Ammonia as N	0.54	0.010	0.005	mg/L	0.50		107	90-110		
LCS (BA11334-BS3)					Prepared 8	Analyzed:	01/14/11			
Ammonia as N	0.53	0.010	0.005	mg/L	0.50		107	90-110		
Matrix Spike (BA11334-MS1)		Source: 1	100340-01		Prepared 8	Analyzed:	01/14/11			
Ammonia as N	0.56	0.010	0.005	mg/L	0.50	0.072	97	90-110		
Matrix Spike (BA11334-MS2)		Source: 1	100234-35		Prepared 8	Analyzed:	01/14/11			
Ammonia as N	0.52	0.010	0.005	mg/L	0.50	ND	104	90-110		
Matrix Spike (BA11334-MS3)		Source: 1	100234-36		Prepared 8	Analyzed:	01/14/11			
Ammonia as N	0.52	0.010	0.005	mg/L	0.50	0.008	101	90-110		
Matrix Spike Dup (BA11334-MSD1)	Source: 1	100340-01		Prepared 8	Analyzed:	01/14/11			
Ammonia as N	0.57	0.010	0.005	mg/L	0.50	0.072	100	90-110	3	10
Matrix Spike Dup (BA11334-MSD2	2)	Source: 1	100234-35		Prepared 8	Analyzed:	01/14/11			
Ammonia as N	0.52	0.010	0.005	mg/L	0.50	ND	104	90-110	0.5	10
Matrix Spike Dup (BA11334-MSD3	3)	Source: 1	100234-36		Prepared 8	Analyzed:	01/14/11			
Ammonia as N	0.53	0.010	0.005	mg/L	0.50	0.008	104	90-110	2	10
Batch BA11336 - Ion Chromat	ography 300.0	Prep								
Blank (BA11336-BLK1)					Prepared 8	Analyzed:	01/13/11			
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Sulfate	0.20 U	0.60	0.20	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

					Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BA11336 - Ion Chroma	tography 300.0	Prep								
LCS (BA11336-BS1)					Prepared 8	& Analyzed:	01/13/11			
Sulfate	9.83	0.60	0.20	mg/L	9.0		109	85-115		
Nitrite (as N)	1.49	0.04	0.01	mg/L	1.4		106	85-115		
Nitrate (as N)	1.78	0.04	0.01	mg/L	1.7		105	85-115		
LCS Dup (BA11336-BSD1)					Prepared 8	& Analyzed:	01/13/11			
Nitrite (as N)	1.54	0.04	0.01	mg/L	1.4		110	85-115	3	200
Nitrate (as N)	1.83	0.04	0.01	mg/L	1.7		108	85-115	3	200
Sulfate	9.86	0.60	0.20	mg/L	9.0		110	85-115	0.3	200
Matrix Spike (BA11336-MS1)		Source: 1	100234-20		Prepared 8	& Analyzed:	01/13/11			
Nitrate (as N)	12.2	0.04	0.01	mg/L	1.7	10.4	106	85-115		
Nitrite (as N)	2.80	0.04	0.01	mg/L	1.4	1.31	106	85-115		
Sulfate	71.9	0.60	0.20	mg/L	9.0	63.7	91	85-115		
Matrix Spike (BA11336-MS2)		Source: 1	100234-30		Prepared 8	& Analyzed:	01/13/11			
Nitrate (as N)	23.1 +0	0.04	0.01	mg/L	1.7	29.0	NR	85-115		
Nitrite (as N)	1.29	0.04	0.01	mg/L	1.4	0.0625	88	85-115		
Sulfate	69.2 +O	0.60	0.20	mg/L	9.0	67.3	21	85-115		
Batch BA11403 - Digestion fo	r TKN by EPA	351.2								
Blank (BA11403-BLK1)					Prepared:	01/14/11 Ar	nalyzed: 01	/17/11		
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
Blank (BA11403-BLK2)					Prepared:	01/14/11 Ar	nalyzed: 01	/17/11		
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

					Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BA11403 - Digestion fo	or TKN by EPA	351.2								
LCS (BA11403-BS1)					Prepared: (01/14/11 Ar	nalyzed: 01/	/17/11		
Total Kjeldahl Nitrogen	2.25	0.20	0.05	mg/L	2.5		90	90-110		
LCS (BA11403-BS2)					Prepared: (01/14/11 Ar	nalyzed: 01/	/17/11		
Total Kjeldahl Nitrogen	2.41	0.20	0.05	mg/L	2.5		96	90-110		
Matrix Spike (BA11403-MS1)		Source: 1	100340-05		Prepared: (01/14/11 Ar	nalyzed: 01/	/17/11		
Total Kjeldahl Nitrogen	3.09	0.20	0.05	mg/L	2.5	0.770	93	80-120		
Matrix Spike (BA11403-MS2)		Source: 1	100234-27		Prepared: (01/14/11 Ar	nalyzed: 01/	/17/11		
Total Kjeldahl Nitrogen	4.95	0.20	0.05	mg/L	2.5	2.31	106	80-120		
Matrix Spike Dup (BA11403-MSD	1)	Source: 1	100340-05		Prepared: (01/14/11 Ar	nalyzed: 01/	/17/11		
Total Kjeldahl Nitrogen	3.06	0.20	0.05	mg/L	2.5	0.770	92	80-120	8.0	20
Matrix Spike Dup (BA11403-MSD	2)	Source: 1	100234-27		Prepared: (01/14/11 Ar	nalyzed: 01/	/17/11		
Total Kjeldahl Nitrogen	5.02	0.20	0.05	mg/L	2.5	2.31	108	80-120	1	20
Batch BA11407 - Ion Chroma	tography 300.0) Prep								
Blank (BA11407-BLK1)					Prepared 8	& Analyzed:	01/14/11			
Sulfate	0.20 U	0.60	0.20	mg/L						
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
LCS (BA11407-BS1)					Prepared 8	& Analyzed:	01/14/11			
Nitrite (as N)	1.37	0.04	0.01	mg/L	1.4		98	85-115		
Sulfate	8.94	0.60	0.20	mg/L	9.0		99	85-115		
Nitrate (as N)	1.69	0.04	0.01	mg/L	1.7		99	85-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyto	result	I QL	111111	Office	LCVCI	resuit	70TKLO	Lillito	INID	Liiiiii
Batch BA11407 - Ion Chroma	tography 300.0	Prep								
LCS Dup (BA11407-BSD1)					Prepared 8	& Analyzed:	01/14/11			
Sulfate	8.46	0.60	0.20	mg/L	9.0		94	85-115	6	200
Nitrite (as N)	1.37	0.04	0.01	mg/L	1.4		98	85-115	0	200
Nitrate (as N)	1.62	0.04	0.01	mg/L	1.7		95	85-115	4	200
Matrix Spike (BA11407-MS1)		Source: 1	100234-01		Prepared 8	& Analyzed:	01/14/11			
Nitrite (as N)	1.43	0.04	0.01	mg/L	1.4	ND	102	85-115		
Nitrate (as N)	1.70	0.04	0.01	mg/L	1.7	0.0217	99	85-115		
Sulfate	22.1	0.60	0.20	mg/L	9.0	13.0	101	85-115		
Matrix Spike (BA11407-MS2)		Source: 1	100234-33		Prepared 8	& Analyzed:	01/14/11			
Nitrate (as N)	22.4 +0	0.04	0.01	mg/L	1.7	44.0	NR	85-115		
Nitrite (as N)	1.47	0.04	0.01	mg/L	1.4	0.108	97	85-115		
Sulfate	71.1	0.60	0.20	mg/L	9.0	63.0	90	85-115		
Batch BA11410 - Ion Chroma	tography 300.0	Prep								
Blank (BA11410-BLK1)					Prepared 8	& Analyzed:	01/14/11			
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
LCS (BA11410-BS1)					Prepared 8	& Analyzed:	01/14/11			
Nitrate (as N)	1.72	0.04	0.01	mg/L	1.7		101	85-115		
Nitrite (as N)	1.50	0.04	0.01	mg/L	1.4		107	85-115		
LCS Dup (BA11410-BSD1)					Prepared 8	& Analyzed:	01/14/11			
Nitrite (as N)	0.440 +O	0.04	0.01	mg/L	1.4		31	85-115	109	200
Nitrate (as N)	1.75	0.04	0.01	mg/L	1.7		103	85-115	2	200

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

					Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BA11410 - Ion Chroma	tography 300.0	Prep								
Matrix Spike (BA11410-MS1)		Source: 1	100408-07		Prepared 8	k Analyzed:	01/14/11			
Nitrate (as N)	1.83	0.04	0.01	mg/L	1.7	0.0676	104	85-115		
Nitrite (as N)	1.45	0.04	0.01	mg/L	1.4	ND	104	85-115		
Matrix Spike (BA11410-MS2)		Source: 1	100220-05		Prepared 8	k Analyzed:	01/14/11			
Nitrate (as N)	18.0	0.04	0.01	mg/L	17	0.0333	106	85-115		
Nitrite (as N)	14.8	0.04	0.01	mg/L	14		106	85-115		
Batch BA11412 - alkalinity										
Blank (BA11412-BLK1)					Prepared 8	& Analyzed:	01/14/11			
Total Alkalinity	2.0 U	8.0	2.0	mg/L						
Blank (BA11412-BLK2)					Prepared 8	k Analyzed:	01/14/11			
Total Alkalinity	2.0 U	8.0	2.0	mg/L						
LCS (BA11412-BS1)					Prepared 8	k Analyzed:	01/14/11			
Total Alkalinity	120	8.0	2.0	mg/L	120		98	90-110		
LCS (BA11412-BS2)					Prepared 8	k Analyzed:	01/14/11			
Total Alkalinity	120	8.0	2.0	mg/L	120		98	90-110		
Matrix Spike (BA11412-MS1)		Source: 1	100408-01		Prepared 8	k Analyzed:	01/14/11			
Total Alkalinity	280	8.0	2.0	mg/L	120	150	98	80-120		
Matrix Spike (BA11412-MS2)		Source: 1	100234-07		Prepared 8	k Analyzed:	01/14/11			
Total Alkalinity	320	8.0	2.0	mg/L	120	200	98	80-120		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

					Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BA11412 - alkalinity										
Matrix Spike Dup (BA11412-MSD1)		Source: 1	100408-01		Prepared 8	k Analyzed:	01/14/11			
Total Alkalinity	280	8.0	2.0	mg/L	120	150	98	80-120	0	26
Matrix Spike Dup (BA11412-MSD2)		Source: 1	100234-07		Prepared 8	k Analyzed:	01/14/11			
Total Alkalinity	320	8.0	2.0	mg/L	120	200	98	80-120	0	26
Batch BA11430 - BOD										
Blank (BA11430-BLK1)					Prepared:	01/14/11 Ar	nalyzed: 01	/19/11		
Carbonaceous BOD	2 U	2	2	mg/L						
Blank (BA11430-BLK2)					Prepared:	01/14/11 Ar	nalyzed: 01	/19/11		
Carbonaceous BOD	2 U	2	2	mg/L						
LCS (BA11430-BS1)					Prepared:	01/14/11 Ar	nalyzed: 01	/19/11		
Carbonaceous BOD	178	2	2	mg/L	200		89	85-115		
LCS (BA11430-BS2)					Prepared:	01/14/11 Ar	nalyzed: 01	/19/11		
Carbonaceous BOD	178	2	2	mg/L	200		89	85-115		
LCS Dup (BA11430-BSD1)					Prepared:	01/14/11 Ar	nalyzed: 01	/19/11		
Carbonaceous BOD	178	2	2	mg/L	200		89	85-115	0	10
LCS Dup (BA11430-BSD2)					Prepared:	01/14/11 Ar	nalyzed: 01	/19/11		
Carbonaceous BOD	178	2	2	mg/L	200		89	85-115	0	10
Duplicate (BA11430-DUP1)		Source: 1	100294-01		Prepared:	01/14/11 Ar	nalyzed: 01	/19/11		
Carbonaceous BOD	200	2	2	mg/L		220			13	25

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BA11430 - BOD										
Duplicate (BA11430-DUP2)		Source: 1	1100455-01		Prepared:	01/14/11 A	nalyzed: 01	/19/11		
Carbonaceous BOD	560	2	2	mg/L		520			8	25
Batch BA11445 - TSS prep										
Blank (BA11445-BLK1)					Prepared:	01/14/11 A	nalyzed: 01	/15/11		
Total Suspended Solids	1 U	1	1	mg/L						
LCS (BA11445-BS1)					Prepared:	01/14/11 A	nalyzed: 01	/15/11		
Total Suspended Solids	47.5	1	1	mg/L	50		95	85-115		
Duplicate (BA11445-DUP1)		Source: 1	1100455-07		Prepared:	01/14/11 A	nalyzed: 01	/15/11		
Total Suspended Solids	1 U	1	1	mg/L		ND				30
Batch BA11504 - TSS prep										
Blank (BA11504-BLK1)					Prepared:	01/15/11 A	nalyzed: 01	/17/11		
Total Suspended Solids	1 U	1	1	mg/L						
LCS (BA11504-BS1)					Prepared:	01/15/11 A	nalyzed: 01	/17/11		
Total Suspended Solids	47.5	1	1	mg/L	50		95	85-115		
Duplicate (BA11504-DUP1)		Source: 1	1100258-01		Prepared:	01/15/11 A	nalyzed: 01	/17/11		
Total Suspended Solids	18.0	1	1	mg/L		18.0			0	30
Duplicate (BA11504-DUP2)		Source: 1	1100283-03		Prepared:	01/15/11 A	nalyzed: 01	/17/11		
Total Suspended Solids	1 U	1	1	mg/L		ND				30

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Allaryte	resuit	I QL		Office	LCVCI	result	701 1 LO	Liiilio	IN D	Lillie
Batch BA11701 - COD prep										
Blank (BA11701-BLK1)					Prepared 8	& Analyzed:	01/17/11			
Chemical Oxygen Demand	10 U	25	10	mg/L						
LCS (BA11701-BS1)					Prepared 8	& Analyzed:	01/17/11			
Chemical Oxygen Demand	52	25	10	mg/L	50		104	90-110		
Matrix Spike (BA11701-MS1)		Source: 1	100234-02		Prepared 8	& Analyzed:	01/17/11			
Chemical Oxygen Demand	82	25	10	mg/L	50	37	90	85-115		
Matrix Spike Dup (BA11701-MSD1	I)	Source: 1	100234-02		Prepared 8	& Analyzed:	01/17/11			
Chemical Oxygen Demand	82	25	10	mg/L	50	37	90	85-115	0	32
Batch BA11731 - TDS Prep										
Blank (BA11731-BLK1)					Prepared:	01/14/11 Ar	nalyzed: 01	/17/11		
Total Dissolved Solids	10 U	10	10	mg/L						
LCS (BA11731-BS1)					Prepared:	01/14/11 Ar	nalyzed: 01	/17/11		
Total Dissolved Solids	1,020	10	10	mg/L	1000		102	90-110		
Duplicate (BA11731-DUP1)		Source: 1	100234-11		Prepared:	01/14/11 Ar	nalyzed: 01	/17/11		
Total Dissolved Solids	716	10	10	mg/L		706			1	24
Batch BA11801 - Digestion for	r TKN by EPA	351.2								
Blank (BA11801-BLK1)					Prepared:	01/18/11 Ar	nalyzed: 01	/21/11		
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

					Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BA11801 - Digestion for 1	TKN by EPA	351.2								
Blank (BA11801-BLK2)					Prepared:	01/18/11 A	nalyzed: 01	/21/11		
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
LCS (BA11801-BS1)					Prepared:	01/18/11 Ai	nalyzed: 01	/21/11		
Total Kjeldahl Nitrogen	2.47	0.20	0.05	mg/L	2.5		99	90-110		
LCS (BA11801-BS2)					Prepared:	01/18/11 Aı	nalyzed: 01	/21/11		
Total Kjeldahl Nitrogen	2.49	0.20	0.05	mg/L	2.5		99	90-110		
Matrix Spike (BA11801-MS1)		Source: 1	100396-01		Prepared:	01/18/11 Aı	nalyzed: 01	/21/11		
Total Kjeldahl Nitrogen	3.89	0.20	0.05	mg/L	2.5	1.33	103	80-120		
Matrix Spike (BA11801-MS2)		Source: 1	100407-09		Prepared:	01/18/11 A	nalyzed: 01	/21/11		
Total Kjeldahl Nitrogen	3.46	0.20	0.05	mg/L	2.5	0.778	107	80-120		
Matrix Spike Dup (BA11801-MSD1)		Source: 1	100396-01		Prepared:	01/18/11 Aı	nalyzed: 01	/21/11		
Total Kjeldahl Nitrogen	4.05	0.20	0.05	mg/L	2.5	1.33	109	80-120	4	20
Matrix Spike Dup (BA11801-MSD2)		Source: 1	100407-09		Prepared:	01/18/11 Aı	nalyzed: 01	/21/11		
Total Kjeldahl Nitrogen	3.52	0.20	0.05	mg/L	2.5	0.778	110	80-120	2	20
Batch BA11809 - COD prep										
Blank (BA11809-BLK1)					Prepared 8	& Analyzed:	01/18/11			
Chemical Oxygen Demand	10 U	25	10	mg/L						
LCS (BA11809-BS1)					Prepared 8	& Analyzed:	01/18/11			
Chemical Oxygen Demand	46	25	10	mg/L	50		92	90-110		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Batch BA11809 - COD prep										
Matrix Spike (BA11809-MS1)		Source: 1	100234-18		Prepared 8	Analyzed:	01/18/11			
Chemical Oxygen Demand	59	25	10	mg/L	50	13	92	85-115		
Matrix Spike Dup (BA11809-MSD1)		Source: 1	100234-18		Prepared 8	k Analyzed:	01/18/11			
Chemical Oxygen Demand	59	25	10	mg/L	50	13	92	85-115	0	32
Batch BA11816 - Sulfide prep										
Blank (BA11816-BLK1)					Prepared 8	& Analyzed:	01/18/11			
Sulfide	0.10 U	0.40	0.10	mg/L						
LCS (BA11816-BS1)					Prepared 8	k Analyzed:	01/18/11			
Sulfide	4.95	0.40	0.10	mg/L	5.0		99	85-115		
Duplicate (BA11816-DUP1)		Source: 1	100234-24		Prepared 8	& Analyzed:	01/18/11			
Sulfide	0.140 I	0.40	0.10	mg/L		0.140			0	14
Batch BA11822 - Ion Chromato	graphy 300.0	Prep								
Blank (BA11822-BLK1)					Prepared 8	& Analyzed:	01/14/11			
Sulfate	0.20 U	0.60	0.20	mg/L						
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
LCS (BA11822-BS1)					Prepared 8	k Analyzed:	01/14/11			
Nitrate (as N)	1.69	0.04	0.01	mg/L	1.7		99	85-115		
Sulfate	8.83	0.60	0.20	mg/L	9.0		98	85-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

					Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BA11822 - Ion Chroma	tography 300.0	Prep								
LCS Dup (BA11822-BSD1)					Prepared & Analyzed: 01/14/11					
Nitrate (as N)	1.68	0.04	0.01	mg/L	1.7		99	85-115	0.6	200
Sulfate	8.86	0.60	0.20	mg/L	9.0		98	85-115	0.3	200
Matrix Spike (BA11822-MS1)	Source: 1100234-25				Prepared & Analyzed: 01/14/11					
Nitrate (as N)	36.4	0.04	0.01	mg/L	17	21.7	86	85-115		
Sulfate	148	0.60	0.20	mg/L	90	65.4	92	85-115		
Matrix Spike (BA11822-MS2)	Source: 1100384-15				Prepared 8	k Analyzed:	01/14/11			
Nitrate (as N)	44.9	0.04	0.01	mg/L	17	29.3	92	85-115		
Sulfate	883 +O	0.60	0.20	mg/L	90	873	11	85-115		
Batch BA11833 - Ion Chroma	tography 300.0	Prep								
Blank (BA11833-BLK1)					Prepared & Analyzed: 01/19/11					
Sulfate	0.20 U	0.60	0.20	mg/L						
.CS (BA11833-BS1)					Prepared 8	& Analyzed:	01/19/11			
Sulfate	8.68	0.60	0.20	mg/L	9.0		96	85-115		
_CS Dup (BA11833-BSD1)					Prepared & Analyzed: 01/19/11					
Sulfate	8.69	0.60	0.20	mg/L	9.0		97	85-115	0.1	200
Matrix Spike (BA11833-MS1)		Source: 1100515-01			Prepared & Analyzed: 01/19/11					
Sulfate	10.7	0.60	0.20	mg/L	9.0	2.10	96	85-115		
Matrix Spike (BA11833-MS2)		Source: 1100516-01			Prepared & Analyzed: 01/19/11					
Sulfate	14.3	0.60	0.20	mg/L	9.0	5.82	94	85-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BA11902 - COD prep										
Blank (BA11902-BLK1)					Prepared 8	Analyzed:	01/19/11			
Chemical Oxygen Demand	10 U	25	10	mg/L						
LCS (BA11902-BS1)					Prepared 8	Analyzed:	01/19/11			
Chemical Oxygen Demand	46	25	10	mg/L	50		92	90-110		
Matrix Spike (BA11902-MS1)		Source: 1	100384-01		Prepared 8	Analyzed:	01/19/11			
Chemical Oxygen Demand	61	25	10	mg/L	50	11	100	85-115		
Matrix Spike Dup (BA11902-MSD1))	Source: 1	100384-01		Prepared 8	Analyzed:	01/19/11			
Chemical Oxygen Demand	61	25	10	mg/L	50	11	100	85-115	0	32
Batch BA11928 - Ion Chromato	graphy 300.0	Prep								
Blank (BA11928-BLK1)					Prepared 8	Analyzed:	01/19/11			
Sulfate	0.20 U	0.60	0.20	mg/L						
LCS (BA11928-BS1)					Prepared 8	Analyzed:	01/19/11			
Sulfate	9.90	0.60	0.20	mg/L	9.0		110	85-115		
LCS Dup (BA11928-BSD1)					Prepared 8	Analyzed:	01/19/11			
Sulfate	9.90	0.60	0.20	mg/L	9.0		110	85-115	0	200
Matrix Spike (BA11928-MS1)		Source: 1	100472-08		Prepared 8	Analyzed:	01/19/11			
Sulfate	107 +O	0.60	0.20	mg/L	9.0	107	0	85-115		
Matrix Spike (BA11928-MS2)		Source: 1	100576-05		Prepared 8	Analyzed:	01/19/11			
Sulfate	10.9 +O	0.60	0.20	mg/L	9.0	3.26	85	85-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BA11930 - TDS Prep		·								
Blank (BA11930-BLK1)					Prepared: (01/18/11 Ar	nalyzed: 01	/19/11		
Total Dissolved Solids	10 U	10	10	mg/L						
Blank (BA11930-BLK2)					Prepared: (01/18/11 Ar	nalyzed: 01	/19/11		
Total Dissolved Solids	10 U	10	10	mg/L						
LCS (BA11930-BS1)					Prepared: (01/18/11 Ar	nalyzed: 01	/19/11		
Total Dissolved Solids	990	10	10	mg/L	1000		99	90-110		
Duplicate (BA11930-DUP1)		Source: 1	100234-32		Prepared: (01/18/11 Ar	nalyzed: 01	/19/11		
Total Dissolved Solids	854	10	10	mg/L		844			1	24
Duplicate (BA11930-DUP2)		Source: 1	100215-09		Prepared: (01/18/11 Ar	nalyzed: 01	/19/11		
Total Dissolved Solids	2,700	10	10	mg/L		2720			8.0	24
Batch BA12007 - Ion Chromat	ography 300.0	Prep								
Batch BA12007 - Ion Chromat Blank (BA12007-BLK1)	ography 300.0	Prep			Prepared 8	& Analyzed:	01/20/11			
	ography 300.0	Prep 0.60	0.20	mg/L	Prepared 8	& Analyzed:	01/20/11			
Blank (BA12007-BLK1)			0.20	mg/L	<u> </u>	& Analyzed:				
Blank (BA12007-BLK1) Sulfate			0.20	mg/L	<u> </u>			85-115		
Blank (BA12007-BLK1) Sulfate LCS (BA12007-BS1)	0.20 U	0.60			Prepared 8		01/20/11	85-115		
Blank (BA12007-BLK1) Sulfate LCS (BA12007-BS1) Sulfate	0.20 U	0.60			Prepared 8	& Analyzed:	01/20/11	85-115 85-115	1	200
Blank (BA12007-BLK1) Sulfate LCS (BA12007-BS1) Sulfate LCS Dup (BA12007-BSD1)	0.20 U 9.53	0.60 0.60 0.60	0.20	mg/L	Prepared 8 9.0 Prepared 8 9.0	& Analyzed:	01/20/11 106 01/20/11 104		1	200

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

					Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BA12007 - Ion Chromatog	graphy 300.0	Prep								
Matrix Spike (BA12007-MS2)		Source: 1	100422-03		Prepared 8	k Analyzed:	01/20/11			
Sulfate	341	0.60	0.20	mg/L	90	242	110	85-115		
Batch BA12008 - alkalinity										
Blank (BA12008-BLK1)					Prepared 8	k Analyzed:	01/20/11			
Total Alkalinity	2.0 U	8.0	2.0	mg/L						
LCS (BA12008-BS1)					Prepared 8	& Analyzed:	01/20/11			
Total Alkalinity	120	8.0	2.0	mg/L	120		98	90-110		
Matrix Spike (BA12008-MS1)		Source: 1	100563-01		Prepared 8	& Analyzed:	01/20/11			
Total Alkalinity	430	8.0	2.0	mg/L	120	300	98	80-120		
Matrix Spike Dup (BA12008-MSD1)		Source: 1	100563-01		Prepared 8	& Analyzed:	01/20/11			
Total Alkalinity	430	8.0	2.0	mg/L	120	300	98	80-120	0	26
Batch BA12118 - Digestion for 1	ΓΚΝ by EPA	351.2								
Blank (BA12118-BLK1)					Prepared: (01/21/11 Ar	nalyzed: 01	/25/11		
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
Blank (BA12118-BLK2)					Prepared: (01/21/11 Ar	nalyzed: 01	/25/11		
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L			·	·	·	·
LCS (BA12118-BS1)					Prepared: (01/21/11 Ar	nalyzed: 01	/25/11		
Total Kjeldahl Nitrogen	2.61	0.20	0.05	mg/L	2.5		104	90-110		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

					Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BA12118 - Digestion	for TKN by EPA	351.2								
LCS (BA12118-BS2)					Prepared:	01/21/11 Ar	nalyzed: 01	/25/11		
Total Kjeldahl Nitrogen	2.33	0.20	0.05	mg/L	2.5		93	90-110		
Matrix Spike (BA12118-MS1)		Source: 1	100002-03	}	Prepared:	01/21/11 Ar	nalyzed: 01	/25/11		
Total Kjeldahl Nitrogen	3.03	0.20	0.05	mg/L	2.5	0.668	95	80-120		
Matrix Spike (BA12118-MS2)		Source: 1	100602-09)	Prepared:	01/21/11 Ar	nalyzed: 01	/25/11		
Total Kjeldahl Nitrogen	2.85	0.20	0.05	mg/L	2.5	0.414	97	80-120		
Matrix Spike Dup (BA12118-M	SD1)	Source: 1	100002-03	}	Prepared:	01/21/11 Ar	nalyzed: 01	/25/11		
Total Kjeldahl Nitrogen	2.94	0.20	0.05	mg/L	2.5	0.668	91	80-120	3	20
Matrix Spike Dup (BA12118-M	SD2)	Source: 1	100602-09)	Prepared:	01/21/11 Ar	nalyzed: 01	/25/11		
Total Kjeldahl Nitrogen	2.84	0.20	0.05	mg/L	2.5	0.414	97	80-120	0.2	20

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa, FLORIDA 33619 January 26, 2011 Work Order: 1100234

Microbiology - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit
Batch BA11713 - FC-MF										
Blank (BA11713-BLK1)					Prepared:	01/13/11 <i>A</i>	Analyzed: 01	/14/11		
Fecal Coliforms	1 U	1	1	CFU/100 n	nl					
Batch BA11716 - FC-MF										
Blank (BA11716-BLK1)					Prepared:	01/13/11 A	Analyzed: 01	/14/11		
Fecal Coliforms	1 U	1	1	CFU/100 n	nl					
Duplicate (BA11716-DUP1)		Source: 1	100296-0	04	Prepared:	01/13/11 <i>A</i>	Analyzed: 01	/14/11		
Fecal Coliforms	1 U	1	1	CFU/100 n	nl	ND				200
Non-Coliform	1 U	1	1	CFU/100 n	nl	ND				200

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer
10002 Princess Palm Avenue Suite 200
Tampa, FLORIDA 33619

January 26, 2011 Work Order: 1100234

* Qualifiers, Notes and Definitions

Results followed by a "U" indicate that the sample was analyzed but the compound was not detected. Results followed by "I" indicate that the reported value is between the laboratory method detection limts and the laboratory practical quantitation limit.

A statement of estimated uncertainty of test results is available upon request.

For methods marked with **, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Test results in this report meet all the requirements of the NELAC standards. Any applicable qualifiers are shown below. Questions regarding this report should be directed to Client Services at 813-855-1844.

+O Matrix spike source sample was over the reccommended range for the method.

Due to the large amount of sampling locations, sampling efforts were completed by both Southern Analytical Laboratories and Hazen and Sawyer staff. In addition, some sampling locations produced very minimal sample volume making it very difficulty to use SAL's field meters. A combination of both companies meters was used to complete all field readings.

Findail

SAL Project No. 1160334

SOUTHERN ANALYTICAL LABORATORIES, INC.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Client Name								O.	Contact / Phone	ione:					
	Hazan a	Hazan and Sawver) 	sephin Ed	Josephin Edeback-Hirst 813-630-4498	813-630-	4498			
Project Name / Location								ग्	deback@h	jedeback@hazanandsawyer.com	wyer.com				
	PNRS II	PNRS II Wastewater System Analyses	System Analy	ses/											T
Samplers: (Signature)	ex.						P,	ARAMETER	R/CONTA	PARAMETER / CONTAINER DESCRIPTION	CRIPTION		_	-	
Matrix Codes: DW-Drinking Water WW-Wastewater SW-SurfaceWater SL-Sludge SO-Soil GW-Groundwater SA-Saline Water O-Other R-Reagent Water	stewater SO-Soil ter O-Other							ace alfide H	10x, COD, TP		t meter)				
SAL Use Only Sample Description	ioi	ətsO	9miT	xintsM	Composite	500mL P, Co Alkalinity, CE TDS	125mL P, Cd 500mL P, Zh	Acetate/NaC IS nagorbyH Sqsbs9H oN	125ml P, H ₂ , TKN, NH ₃ , N	125mL P, St Fecal Colifor	ORP (Client	Hq bləi국	Field Temp	Field Conc	Field DO
PNRS II STE-T		112/11		WW	×	1	-	-	_	-					
			1145	ww	×	-			-	-					T
03 RC2			1140	MM	×	-			-	-					
Į.			1140	ww	×	-			-	-					
05 RC4				ww.	×	~			-	-					
06 RC5			1110	ww.	×	_			-	-					
07 P15-T			0,250	ww	×	-				-					
08 UNSAT-IS1			1000	ww	×	-	-	+	-	-					
09 UNSAT-IS2			5/80	ww	×	-	-	+	-	-					
				ww	×	-	-	+	-						
11 UNSAT-IS4 - SP				ww	×	-	-	+		-					
12 IINSAT-FC1		3		MM	×	-	Υ-	+	-	-		-			
	Date/Time: 1200	Received:			Date/Time:	1500	Seal intact?	_		z		Instructions / Remarks	s / Remarks		
	61-12-11	167			17/11		Samples in	Samples intact upon arrival?		Z Z >	-				
d:	Date/Time: (320)	Received:		-	Date/Time:		Received	Received on ice? Temp		N N/A					
Relinquished:	2/ '', Date/Time:	Received:			Date/Time:		Proper pre	Proper preservatives indicated?		Z Z Z					
							*	, n		<u>:</u>					
Relinquished:	Date/Time:	Received:			Date/Time:		Volatiles re Proper cor	Volatiles rec'd w /out headspace Proper containers used?	dspace	∀/Z Z ≻					
Relinquished:	Date/Time:	Received:			Date/Time:					∀Z Z ≻		7011	1100234	,	
						-					1				

Chain of Custody.xls Rev.Date 11/19/01

Chain of Custody

SAL Project No. $//\ell \Omega$

SOUTHERN ANALYTICAL LABORATORIES, INC.

110 BAYVIEW BOUL EVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Lield DO Field Cond Instructions / Remarks Field Temp Chain of Custody Field pH Josephin Edeback-Hirst 813-630-4498 PARAMETER / CONTAINER DESCRIPTION jedeback@hazanandsawyer.com ORP (Client meter) ₹ Z ∀ Z ₹ Z Z Z ž ž Z Fecal Coliforms z z 125mL P, Sterile, Cool Contact / Phone Proper preservatives indicated? Volatiles rec'd w/out headspace TKN, NH_3 , NO_X , COD, TPSamples intact upon arrival? Rec'd within holding time? 125ml P, H₂SO₄ Proper containers used? Received on ice? Temp No Headspace Hydrogen Sulfide f 7 Acetate/NaOH nZ ,9 Jm008 Seal intact? **⊅OS** 125mL P, Cool SQI 12 Alkalinity, CBOD, TSS, 500mL P, Cool Date/Time: Date/Time × × × × × × Crab \times × × \times Composite ≶ **%** ≶ **≷** ≶ \leq ≶ ≶ ≶ ≶ ≶ Matrix PNRS If Wastewater System Analyses 3 2/2/ 380 V 5 0.50 1010 350 300 əmiT Hazan and Sawyer Received Date 1200 GW-Groundwater SA-Saline Water O-Other Date/Time: SW-SurfaceWater SL-Sludge SO-Soil Date/Time: DW-Drinking Water WW-Wastewater Jate/Time 4/7 Sample Description R-Reagent Water Matrix Codes Project Name / Location Samplers: (Signature) UNSAT-CL3 UNSAT-SA2 UNSAT-EC3 UNSAT-EC4 UNSAT-CL2 UNSAT-CL4 UNSAT-CL1 UNSAT-PS1 DENIT-SU3 DENIT-SU4 DENIT-SU2 DENIT-SU1 ontainers Prepared/ Client Name Relinquished: Relinquished Selinquished Relinquished Sample No. SAL Use Only 18 19 22 23 24 13 4 15 16 17 20 21

Chain of Custody.xls Rev.Date 11/19/01

SAL Project No. 1/0003

SOUTHERN ANALYTICAL LABORATORIES, INC.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Client Name								S S	Contact / Phone:	Contact / Phone: Josephin Edeback-Hirst 813-630-4498	813-630-4	1498			
	Hazan	Hazan and Sawyer							4 (-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		0000				
Project Name / Location	7-							Del led	ераск(фп	Jedeback(@nazanandsawyer.com	vyer corn				
	PNRS	II Wastewate	PNRS II Wastewater System Analyses	yses	ŀ										
Samplers: (Signature)		نسر	\sim		_		PA	PARAMETER / CONTAINER DESCRIPTION	/ CONTA	NER DESC	RIPTION			-	
Matrix Codes: DW-Drinking Water WW-Wastewater SW-SurfaceWater SL-Sludge SO-Soil GW-Groundwater SA-Saline Water O-Other R-Reagent Water	Vastewater ge SO-Soil Vater O-Other					loc BOD, TSS,		apillide Jfide	4T, GOD, TP		t meter)		d	F	
Sample Description	iption	Date	Jime	xintsM	Composite Grab	500mL P, Co Alkalinity, CE TDS	125mL P, Cd 500mL P, Zr	Acetate/NaC Hydrogen Si No Headspa 125ml P, H ₂		125mL P, SI Fecal Colifo	ORP (Clien	Hq bləi∃	Field Tem	Field Cond	Field DO
DENIT-LS1		11)(1)	2780	WW	×	-			-	-					
			6960	ww	×	_		:	-	-					
			0,80	ww	×	-				-					
28 DENIT-LS4			2,900	ww	×	-			-	-					
			0800	ww	×	-			-	-					
1	:		1035	ww	×	-	-	7	-	-					
31 T1-D				ww	×	-			-	-					
32 SU-4D				WW	×	-			-	-					
33 LS2-D				ww	×	-			-	-					
1				WW	×	-			-	-		:			
35 FB			084	ww	×	-			-	-					
36 FB		→	1/30	MM	×	Ψ-			1	-					
7 ≝ ≔	Date/Time: 1,200	Received:			Date/Time	1500	Seal intact?	Seal intact?	> >	∀ ₹ Ž Ž Z Z	<u>=</u> _	Instructions / Remarks	s / Remarks	"	
Relinquished:	Date/Time: 1328	Received:			Date/Time		Received or	Received on ice? Temp_		z					
Relinquished:	Date/Time:	Received:			Date/Time		Proper pres Rec'd withir	Proper preservatives indicated? Rec'd within holding time?	icated? Y	∀ ₹ Ž Ž Z Z					
Relinquished:	Date/Time:	Received:			Date/Time:		Volatiles red	Volatiles rec'd w /out headspac€	dspac€ Y	Z Z					
Relinquished:	Date/Time:	Received:			Date/Time:		Proper cont	Proper containers used?	>	∢ Ż Ż		1100	1100234		

Chain of Custody.xls Rev.Date 11/19/01

Chain of Custody

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 20, 2011 Work Order: 1100335

Laboratory Report

Project Name		PN	RS II					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Ву
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		UNSAT-IS3 Wastewater 1100335-01 01/11/11 08:20 Client 01/11/11 13:50						
Inorganics								
Ammonia as N	mg/L	1.2	EPA 350.1	0.010	0.005		01/12/11 08:41	SMB
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	01/12/11 17:05	01/17/11 13:47	KTC
Chemical Oxygen Demand	mg/L	31	EPA 410.4	25	10		01/12/11 09:15	ARM
Nitrate (as N)	mg/L	24	EPA 300.0	0.04	0.01		01/12/11 13:55	MEJ
Nitrite (as N)	mg/L	8.3	EPA 300.0	0.04	0.01		01/11/11 17:00	MEJ
Sulfate	mg/L	120	EPA 300.0	0.60	0.20		01/15/11 00:31	MEJ
Total Alkalinity	mg/L	300	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	850	SM 2540C	10	10	01/14/11 13:30	01/17/11 16:30	MJV
Total Kjeldahl Nitrogen	mg/L	4.1	EPA 351.2	0.20	0.05	01/13/11 07:45	01/14/11 11:34	SMB
Total Suspended Solids	mg/L	10	SM 2540D	1	1	01/18/11 15:54	01/18/11 16:00	KTC
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		UNSAT-IS4 Wastewater 1100335-02 01/11/11 08:30 Client 01/11/11 13:50						
Inorganics								
Ammonia as N	mg/L	0.092	EPA 350.1	0.010	0.005		01/12/11 08:41	SMB
Carbonaceous BOD	mg/L	2 υ	SM 5210B	2	2	01/12/11 17:05	01/17/11 13:47	KTC
Chemical Oxygen Demand	mg/L	29	EPA 410.4	25	10		01/12/11 09:15	ARM
Nitrate (as N)	mg/L	0.11	EPA 300.0	0.04	0.01		01/11/11 17:00	MEJ
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		01/11/11 17:00	MEJ
Sulfate	mg/L	110	EPA 300.0	0.60	0.20		01/15/11 00:31	MEJ
Total Alkalinity	mg/L	260	SM 2320B	8.0	2.0	01/14/11 11:03	01/14/11 11:06	KTC
Total Dissolved Solids	mg/L	620	SM 2540C	10	10	01/14/11 13:30	01/17/11 16:30	MJV
Total Kjeldahl Nitrogen	mg/L	0.87	EPA 351.2	0.20	0.05	01/13/11 07:45	01/14/11 11:34	SMB
Total Suspended Solids	mg/L	7	SM 2540D	1	1	01/18/11 15:54	01/18/11 16:00	KTC

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 20, 2011 Work Order: 1100335

					Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BA11118 - Ion Chroma	tography 300.0	Prep								
Blank (BA11118-BLK1)					Prepared 8	& Analyzed:	01/11/11			
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
LCS (BA11118-BS1)					Prepared 8	& Analyzed:	01/11/11			
Nitrite (as N)	1.43	0.04	0.01	mg/L	1.4		102	85-115		
Nitrate (as N)	1.70	0.04	0.01	mg/L	1.7		100	85-115		
LCS Dup (BA11118-BSD1)					Prepared 8	& Analyzed:	01/11/11			
Nitrate (as N)	1.69	0.04	0.01	mg/L	1.7		99	85-115	0.6	200
Nitrite (as N)	1.42	0.04	0.01	mg/L	1.4		101	85-115	0.7	200
Matrix Spike (BA11118-MS1)		Source: 1	100315-02		Prepared 8	& Analyzed:	01/11/11			
Nitrate (as N)	1.56	0.04	0.01	mg/L	1.7	0.0267	90	85-115		
Nitrite (as N)	1.32	0.04	0.01	mg/L	1.4	ND	94	85-115		
Matrix Spike (BA11118-MS2)		Source: 1	100335-02		Prepared 8	& Analyzed:	01/11/11			
Sulfate	102 +O	0.60	0.20	mg/L	9.0	114	NR	85-115		
Nitrite (as N)	1.33	0.04	0.01	mg/L	1.4	ND	95	85-115		
Nitrate (as N)	1.68	0.04	0.01	mg/L	1.7	0.107	93	85-115		
Batch BA11121 - Ammonia b	y SEAL									
Blank (BA11121-BLK1)					Prepared 8	& Analyzed:	01/12/11			
Ammonia as N	0.005 U	0.010	0.005	mg/L						
Blank (BA11121-BLK2)					Prepared 8	& Analyzed:	01/12/11			
Ammonia as N	0.005 U	0.010	0.005	mg/L			<u> </u>			<u> </u>

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 20, 2011 Work Order: 1100335

				Spike	Source		%REC		RPD
Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
y SEAL									
				Prepared 8	k Analyzed:	01/12/11			
0.005	0.010	0.005	mg/L						
				Prepared 8	k Analyzed:	01/12/11			
0.49	0.010	0.005	mg/L	0.50		99	90-110		
				Prepared 8	k Analyzed:	01/12/11			
0.51	0.010	0.005	mg/L	0.50		102	90-110		
				Prepared 8	k Analyzed:	01/12/11			
0.48	0.010	0.005	mg/L	0.50		96	90-110		
	Source: 1	100250-01		Prepared 8	k Analyzed:	01/12/11			
0.51	0.010	0.005	mg/L	0.50	ND	103	90-110		
	Source: 1	100195-11		Prepared 8	k Analyzed:	01/12/11			
0.49	0.010	0.005	mg/L	0.50	ND	97	90-110		
	Source: 1	100330-09		Prepared 8	Analyzed:	01/12/11			
0.50	0.010	0.005	mg/L	0.50	0.031	93	90-110		
1)	Source: 1	100250-01		Prepared 8	k Analyzed:	01/12/11			
0.50	0.010	0.005	mg/L	0.50	ND	101	90-110	2	10
2)	Source: 1	100195-11		Prepared 8	k Analyzed:	01/12/11			
0.51	0.010	0.005	mg/L	0.50	ND	101	90-110	4	10
3)	Source: 1	100330-09		Prepared 8	k Analyzed:	01/12/11			
0.50	0.010	0.005	mg/L	0.50	0.031	94	90-110	0.6	10
	0.005 0.49 0.51 0.48 0.51 0.49 0.50 1) 0.50 2) 0.51	y SEAL 0.005 0.010 0.49 0.010 0.51 0.010 0.48 0.010 Source: 1 0.51 0.010 Source: 1 0.49 0.010 Source: 1 0.50 0.010 1) Source: 1 0.50 0.010 2) Source: 1 0.51 0.010 Source: 1 Source: 1	y SEAL 0.005 0.010 0.005 0.49 0.010 0.005 0.51 0.010 0.005 Source: 1100250-01 0.51 0.010 0.005 Source: 1100195-11 0.49 0.010 0.005 Source: 1100330-09 0.50 0.010 0.005 1) Source: 1100250-01 0.50 0.010 0.005 Source: 1100195-11 0.50 0.010 0.005 Source: 1100330-09 0.50 Source: 1100195-11 0.50 Source: 1100195-11 0.51 0.010 0.005 Source: 1100330-09	y SEAL 0.005 0.010 0.005 mg/L 0.49 0.010 0.005 mg/L 0.51 0.010 0.005 mg/L 0.48 0.010 0.005 mg/L Source: 1100250-01 0.51 0.010 0.005 mg/L Source: 1100195-11 0.49 0.010 0.005 mg/L Source: 1100330-09 0.50 0.010 0.005 mg/L 1) Source: 1100250-01 0.50 0.010 0.005 mg/L Source: 1100250-01 0.50 0.010 0.005 mg/L Source: 1100195-11 0.51 0.010 0.005 mg/L Source: 1100195-11 0.51 Source: 1100330-09	Result PQL MDL Units Level	Result PQL MDL Units Level Result y SEAL	Result PQL MDL Units Level Result %REC	Result PQL MDL Units Level Result %REC Limits	Result PQL MDL Units Level Result %REC Limits RPD

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 20, 2011 Work Order: 1100335

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
										-
Batch BA11205 - COD prep										
Blank (BA11205-BLK1)					Prepared 8	& Analyzed:	01/12/11			
Chemical Oxygen Demand	10 U	25	10	mg/L						
LCS (BA11205-BS1)					Prepared 8	& Analyzed:	01/12/11			
Chemical Oxygen Demand	46	25	10	mg/L	50		92	90-110		
Matrix Spike (BA11205-MS1)		Source: 1	100152-01		Prepared 8	& Analyzed:	01/12/11			
Chemical Oxygen Demand	2,200	25	10	mg/L	1000	1100	108	85-115		
Matrix Spike Dup (BA11205-MSD	1)	Source: 1	100152-01		Prepared 8	& Analyzed:	01/12/11			
Chemical Oxygen Demand	2,200	25	10	mg/L	1000	1100	108	85-115	0	32
Batch BA11218 - Ion Chroma	tography 300.0	Prep								
Blank (BA11218-BLK1)					Prepared 8	& Analyzed:	01/12/11			
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
LCS (BA11218-BS1)					Prepared 8	& Analyzed:	01/12/11			
Nitrate (as N)	1.65	0.04	0.01	mg/L	1.7		97	85-115		
LCS Dup (BA11218-BSD1)					Prepared 8	& Analyzed:	01/12/11			
Nitrate (as N)	1.71	0.04	0.01	mg/L	1.7		101	85-115	4	200
Matrix Spike (BA11218-MS1)		Source: 1	100361-01		Prepared 8	& Analyzed:	01/12/11			
Nitrate (as N)	1.73	0.04	0.01	mg/L	1.7	0.0250	100	85-115		
Matrix Spike (BA11218-MS2)		Source: 1	100365-06		Prepared 8	& Analyzed:	01/12/11			
Nitrate (as N)	1.85	0.04	0.01	mg/L	1.7	0.319	90	85-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 20, 2011 Work Order: 1100335

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BA11225 - BOD										
Blank (BA11225-BLK1)					Prepared:	01/12/11 Ar	nalyzed: 01	/17/11		
Carbonaceous BOD	2 U	2	2	mg/L						
LCS (BA11225-BS1)					Prepared:	01/12/11 Ar	nalyzed: 01	/17/11		
Carbonaceous BOD	181	2	2	mg/L	200		90	85-115		
LCS Dup (BA11225-BSD1)					Prepared:	01/12/11 Ar	nalyzed: 01	/17/11		
Carbonaceous BOD	177	2	2	mg/L	200		88	85-115	2	10
Duplicate (BA11225-DUP1)		Source: 1	100330-01		Prepared:	01/12/11 Ar	nalyzed: 01	/17/11		
Carbonaceous BOD	430	2	2	mg/L		430			0.7	25
Batch BA11301 - Digestion for	TKN by EPA	351.2								
Blank (BA11301-BLK1)					Prepared:	01/13/11 Ar	nalyzed: 01	/14/11		
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
Blank (BA11301-BLK2)					Prepared:	01/13/11 Ar	nalyzed: 01	/14/11		
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
LCS (BA11301-BS1)					Prepared:	01/13/11 Ar	nalyzed: 01	/14/11		
Total Kjeldahl Nitrogen	2.40	0.20	0.05	mg/L	2.5		96	90-110		
LCS (BA11301-BS2)					Prepared:	01/13/11 Aı	nalyzed: 01	/14/11		
Total Kjeldahl Nitrogen	2.43	0.20	0.05	mg/L	2.5		97	90-110		
Matrix Spike (BA11301-MS1)		Source: 1	100195-11		Prepared:	01/13/11 Ar	nalyzed: 01	/14/11		
Total Kjeldahl Nitrogen	2.36	0.20	0.05	mg/L	2.5	ND	94	80-120		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 20, 2011 Work Order: 1100335

					Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BA11301 - Digestion for	TKN by EPA	351.2								
Matrix Spike (BA11301-MS2)		Source: 1	100284-01		Prepared: (01/13/11 Ar	nalyzed: 01	/14/11		
Total Kjeldahl Nitrogen	2.39	0.20	0.05	mg/L	2.5	ND	96	80-120		
Matrix Spike Dup (BA11301-MSD1)	Source: 1	100195-11		Prepared: (01/13/11 Ar	nalyzed: 01	/14/11		
Total Kjeldahl Nitrogen	2.36	0.20	0.05	mg/L	2.5	ND	95	80-120	0.2	20
Matrix Spike Dup (BA11301-MSD2	2)	Source: 1	100284-01		Prepared: (01/13/11 Ar	nalyzed: 01	/14/11		
Total Kjeldahl Nitrogen	2.51	0.20	0.05	mg/L	2.5	ND	100	80-120	5	20
Batch BA11412 - alkalinity										
Blank (BA11412-BLK1)					Prepared 8	Analyzed:	01/14/11			
Total Alkalinity	2.0 ∪	8.0	2.0	mg/L						
Blank (BA11412-BLK2)					Prepared 8	Analyzed:	01/14/11			
Total Alkalinity	2.0 ∪	8.0	2.0	mg/L						
LCS (BA11412-BS1)					Prepared 8	Analyzed:	01/14/11			
Total Alkalinity	120	8.0	2.0	mg/L	120		98	90-110		
LCS (BA11412-BS2)					Prepared 8	Analyzed:	01/14/11			
Total Alkalinity	120	8.0	2.0	mg/L	120		98	90-110		
Matrix Spike (BA11412-MS1)		Source: 1	100408-01		Prepared 8	Analyzed:	01/14/11			
Total Alkalinity	280	8.0	2.0	mg/L	120	150	98	80-120		
Matrix Spike (BA11412-MS2)		Source: 1	100234-07		Prepared 8	Analyzed:	01/14/11			
Total Alkalinity	320	8.0	2.0	mg/L	120	200	98	80-120		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 20, 2011 Work Order: 1100335

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BA11412 - alkalinity										
Matrix Spike Dup (BA11412-MSD1)		Source: 1	100408-01		Prepared 8	& Analyzed:	01/14/11			
Total Alkalinity	280	8.0	2.0	mg/L	120	150	98	80-120	0	26
Matrix Spike Dup (BA11412-MSD2)		Source: 1	100234-07		Prepared 8	k Analyzed:	01/14/11			
Total Alkalinity	320	8.0	2.0	mg/L	120	200	98	80-120	0	26
Batch BA11729 - TDS Prep										
Blank (BA11729-BLK1)					Prepared:	01/14/11 Ar	nalyzed: 01	/17/11		
Total Dissolved Solids	10 U	10	10	mg/L						
LCS (BA11729-BS1)					Prepared:	01/14/11 Ar	nalyzed: 01	/17/11		
Total Dissolved Solids	996	10	10	mg/L	1000		100	90-110		
Duplicate (BA11729-DUP1)		Source: 1	100219-04		Prepared:	01/14/11 Ar	nalyzed: 01	/17/11		
Total Dissolved Solids	276	10	10	mg/L		272			1	24
Duplicate (BA11729-DUP2)		Source: 1	100315-01		Prepared: 01/14/11 Analyzed: 01/17/11					
Total Dissolved Solids	10 U	10	10	mg/L		ND				24
Batch BA11821 - Ion Chromato	graphy 300.0	Prep								
Blank (BA11821-BLK1)					Prepared 8	& Analyzed:	01/15/11			
Sulfate	0.20 U	0.60	0.20	mg/L	·					
LCS (BA11821-BS1)					Prepared 8	k Analyzed:	01/15/11			
Sulfate	8.90	0.60	0.20	mg/L	9.0		99	85-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 20, 2011 Work Order: 1100335

Matrix Spike (BA11821-MS1) Source: 1100384-25 Prepared & Analyzed: 01/15/11 Sulfate 158 0.60 0.20 mg/L 90 176 Matrix Spike (BA11821-MS2) Source: 1100367-03 Prepared & Analyzed: 01/15/11	Limits	RPD	Limit
LCS Dup (BA11821-BSD1) Prepared & Analyzed: 01/15/11 Sulfate 8.99 0.60 0.20 mg/L 9.0 100 Matrix Spike (BA11821-MS1) Source: 1100384-25 Prepared & Analyzed: 01/15/11 Sulfate 158 0.60 0.20 mg/L 90 176 Matrix Spike (BA11821-MS2) Source: 1100367-03 Prepared & Analyzed: 01/15/11 Sulfate 102 or SO4 0.60 0.20 mg/L 90 148			
Sulfate 8.99 0.60 0.20 mg/L 9.0 100 Matrix Spike (BA11821-MS1) Source: 1100384-25 Prepared & Analyzed: 01/15/11 Sulfate 158 0.60 0.20 mg/L 90 176 Matrix Spike (BA11821-MS2) Source: 1100367-03 Prepared & Analyzed: 01/15/11 Sulfate NO2 or SO4 0.60 0.20 mg/L 90 148			
Matrix Spike (BA11821-MS1) Source: 1100384-25 Prepared & Analyzed: 01/15/11 Sulfate 158 0.60 0.20 mg/L 90 176 Matrix Spike (BA11821-MS2) Source: 1100367-03 Prepared & Analyzed: 01/15/11 Sulfate NO2 or SO4 0.60 0.20 mg/L 90 148			
Sulfate 158 0.60 0.20 mg/L 90 176 Matrix Spike (BA11821-MS2) Source: 1100367-03 Prepared & Analyzed: 01/15/11 Sulfate NO2 or SO4 0.60 0.20 mg/L 90 148	85-115	1	200
Matrix Spike (BA11821-MS2) Source: 1100367-03 Prepared & Analyzed: 01/15/11 Sulfate NO2 or SO4 0.60 0.20 mg/L 90 148			
Sulfate 4O2 or SO4 0.60 0.20 mg/L 90 148	85-115		
Batch BA11835 - TSS prep	85-115		
Blank (BA11835-BLK1) Prepared & Analyzed: 01/18/11			
Total Suspended Solids 1 U 1 1 mg/L			
Blank (BA11835-BLK2) Prepared & Analyzed: 01/18/11			
Total Suspended Solids 1 U 1 1 mg/L			
LCS (BA11835-BS1) Prepared & Analyzed: 01/18/11	Prepared & Analyzed: 01/18/11		
Total Suspended Solids 45.5 1 1 mg/L 50 91	85-115		
LCS (BA11835-BS2) Prepared & Analyzed: 01/18/11			
Total Suspended Solids 45.5 1 1 mg/L 50 91	85-115		
Duplicate (BA11835-DUP1) Source: 1100455-06 Prepared & Analyzed: 01/18/11			
Total Suspended Solids 1 U 1 1 mg/L ND			30
Duplicate (BA11835-DUP2) Source: 1100374-07 Prepared & Analyzed: 01/18/11			
Total Suspended Solids 1 U 1 1 mg/L ND			30

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Avenue Suite 200 Tampa FLORIDA, 33619 January 20, 2011 Work Order: 1100335

* Qualifiers, Notes and Definitions

Results followed by a "U" indicate that the sample was analyzed but the compound was not detected. Results followed by "I" indicate that the reported value is between the laboratory method detection limts and the laboratory practical quantitation limit.

A statement of estimated uncertainty of test results is available upon request.

For methods marked with **, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Test results in this report meet all the requirements of the NELAC standards. Any applicable qualifiers are shown below. Questions regarding this report should be directed to Client Services at 813-855-1844.

+O Matrix spike source sample was over the reccommended range for the method.

Finder

SAL Project No. 1100335

SOUTHERN ANALYTICAL LABORATORIES, INC.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Client Name		Hazan and Cawar							Contact / Phone: Josephin Edebad	Phone: Edeback-Hi	Contact / Phone: Josephin Edeback-Hirst 813-630-4498	0-4498		
Projec	Project Name / Location	of and one in							jedebacké	Phazanand	iedeback@hazanandsawver.com			
<u> </u>		PNRS II Wastewater System Analyses	er System An	alyses					Naponal Indiana	Aliazaliailu	Sawyer Coll	-1		
Sampl	Samplers: (Signature)						PARA	METER /	ANIATMOC	PARAMETER / CONTAINER DESCRIPTION	NOILA			
			-		-		7.			2000				
	Matrix Codes: DW-Drinking Water WW-Wastewater SW-SurfaceWater SL-Sludge SO-Soil GW-Groundwater SA-Saline Water O-Other R-Reagent Water		1.0.11.0			tos ;do	+09 +09	HOs/Nade Hide, Sulfide		meter)				
SAL Use Only	Comple Decreiption	ətsO	əwi	xinteA	Composite	LP, Cool	.KN' NH3' M 20 ^M I b' H58	LP, Zn Aceta lydrogen Sul lo Headspa		i fneilO) 4였	Hq bləi	qməT bləi	bnoO bləi	ield DO
2	UNSAT-IS3		2	M M	-	<u> </u>	-	1 7		136.5	46.9	1.6	123	3.4
02	UNSAT-IS4	1)11/11	6;30	MM	×	-	-	1			30.€	1.6	113	9.98
														1
Containers Pre Relinquished:	Containers Prepared \bigcirc Date/Time: $ SBO $ Relinquished: \bigcirc	Received:	tut!		Date/Time:	ne: 2730pr	Seal intact? Samples int	Seal intact? Samples intact upon arrival?		Z Z ,	Y N (A) Instructions / Remarks	ns / Remar	(S	
Belinquishe	Shed: Date/Time: (f-1/-//)	Received: $\mathcal{K}\mathcal{I}$	ween	rach	Date/Tir	Date/Time: 1350	Received	Received on ice? Temp		N N N				
Relinquished	. DateA	Received:			Daté/Tinfe	ie:	Proper pre Rec'd with	Proper preservatives indicated? Rec'd w ithin holding time?		y y z z z z				
Relinquished	ished: Date/Time:	Received:			Date/Time:	ne.	Volatiles r	Volatiles rec'd w /out headspace Y N	neadspace	Ž Z				
Relinquished	ished: Date/Time:	Received			Date/Time:	ne:		000000000000000000000000000000000000000		چ ک ک				
Chain of Custody.xls Rev.Date 11/19/01	ustody, xis 11/19/01									Š	Chain of Custody	ybo		

January 28, 2011

Ms. Josefin Edebeck-Hirst Hazen and Sawyer, P.C 10002 Princess Palm Avenue Suite 200 Tampa, FL 33619

RE: Project: FDOH

Pace Project No.: 3524876

Dear Ms. Edebeck-Hirst:

Enclosed are the analytical results for sample(s) received by the laboratory on January 14, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sakina Mckenzie

Sa on one

sakina.mckenzie@pacelabs.com Project Manager

Enclosures

Pace Analytical Services, Inc.

8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

CERTIFICATIONS

Project: **FDOH** Pace Project No.: 3524876

Ormond Beach Certification IDs

8 East Tower Circle, Ormond Beach, FL 32174

Alabama Certification #: 41320 Arizona Certification #: AZ0735

Colorado Certification: FL NELAC Reciprocity

Connecticut Certification #: PH 0216 Florida Certification #: E83079 Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity

Hawaii Certification: FL NELAC Reciprocity

Kansas Certification #: E-10383 Kentucky Certification #: 90050 Louisiana Certification #: LA090012

Louisiana Environmental Certificate #: 05007

Maine Certification #: FL1264

Massachusetts Certification #: M-FL1264

Michigan Certification #: 9911

Mississippi Certification: FL NELAC Reciprocity

Montana Certification #: Cert 0074 Nevada Certification: FL NELAC Reciprocity

New Hampshire Certification #: 2958 New Jersey Certification #: FL765 New York Certification #: 11608

North Carolina Environmental Certificate #: 667

North Carolina Certification #: 12710 Pennsylvania Certification #: 68-547 Puerto Rico Certification #: FL01264 Tennessee Certification #: TN02974

Texas Certification: FL NELAC Reciprocity

Virginia Certification #: 00432

Wyoming Certification: FL NELAC Reciprocity

Tampa Certification IDs

1209 Tech Boulevard, Ste 207, Tampa FL 33619

Florida Certification #: E84973

SAMPLE SUMMARY

Project: FDOH
Pace Project No.: 3524876

Lab ID	Sample ID	Matrix	Date Collected	Date Received
3524876001	DENIT-LS1	Water	01/13/11 08:00	01/14/11 07:00
3524876002	UNSAT-EC3	Water	01/13/11 12:05	01/14/11 07:00
3524876003	PNRSII STE-T1	Water	01/13/11 13:30	01/14/11 07:00

SAMPLE ANALYTE COUNT

Project: FDOH
Pace Project No.: 3524876

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
3524876001	DENIT-LS1	SM 2320B	HEM	1	PASI-O
		SM 2540C	AIS	1	PASI-O
		SM 2540D	AIS	1	PASI-O
		SM 5210B	KHC	1	PASI-O
		EPA 300.0	KDM	3	PASI-O
		EPA 300.0	KDM	1	PASI-O
		EPA 350.1	AMD	1	PASI-O
		EPA 351.2	AMD	1	PASI-O
		EPA 365.4	AMD	1	PASI-O
		EPA 410.4	MMD	1	PASI-O
3524876002	UNSAT-EC3	SM 9222D	KMC	1	PASI-T
		SM 2320B	HEM	1	PASI-O
		SM 2540C	AIS	1	PASI-O
		SM 2540D	AIS	1	PASI-O
		SM 5210B	KHC	1	PASI-O
		EPA 300.0	KDM	3	PASI-O
		EPA 300.0	KDM	1	PASI-O
		EPA 350.1	AMD	1	PASI-O
		EPA 351.2	AMD	1	PASI-O
		EPA 365.4	AMD	1	PASI-O
		EPA 410.4	MMD	1	PASI-O
3524876003	PNRSII STE-T1	SM 9222D	KMC	1	PASI-T
		SM 2320B	HEM	1	PASI-O
		SM 2540C	AIS	1	PASI-O
		SM 2540D	AIS	1	PASI-O
		SM 5210B	KHC	1	PASI-O
		EPA 300.0	KDM	3	PASI-O
		EPA 300.0	KDM	1	PASI-O
		EPA 350.1	AMD	1	PASI-O
		EPA 351.2	AMD	1	PASI-O
		EPA 365.4	AMD	1	PASI-O
		EPA 410.4	MMD	1	PASI-O

Project: FDOH
Pace Project No.: 3524876

Method: SM 9222D

Description: 9222D Fecal Coliform Tampa
Client: Hazen and Sawyer, P.C
Date: January 28, 2011

General Information:

2 samples were analyzed for SM 9222D. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SM 9222D with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: FDOH
Pace Project No.: 3524876

Method: SM 2320B
Description: 2320B Alkalinity
Client: Hazen and Sawyer, P.C
Date: January 28, 2011

General Information:

3 samples were analyzed for SM 2320B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WET/6874

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3524769003,3524811002

J(M1): Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 160912)
 - Alkalinity, Total as CaCO3
- MS (Lab ID: 160914)
 - Alkalinity, Total as CaCO3

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: FDOH
Pace Project No.: 3524876

Method: SM 2540C

Description: 2540C Total Dissolved Solids
Client: Hazen and Sawyer, P.C
Date: January 28, 2011

General Information:

3 samples were analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: FDOH
Pace Project No.: 3524876

Method: SM 2540D

Description: 2540D Total Suspended Solids
Client: Hazen and Sawyer, P.C
Date: January 28, 2011

General Information:

3 samples were analyzed for SM 2540D. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: FDOH
Pace Project No.: 3524876

Method: SM 5210B

Description: 5210B cBOD, 5 day
Client: Hazen and Sawyer, P.C
Date: January 28, 2011

General Information:

3 samples were analyzed for SM 5210B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SM 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: WET/6832

J(B2): Estimated Value. Oxygen usage is less than 2.0 for all dilutions set. The reported value is an estimated less than value and is calculated for the dilution using the most amount of sample.

- DENIT-LS1 (Lab ID: 3524876001)
 - Carbonaceous BOD, 5 day
- UNSAT-EC3 (Lab ID: 3524876002)
 - · Carbonaceous BOD, 5 day

Project: FDOH
Pace Project No.: 3524876

Method:EPA 300.0Description:300.0 IC AnionsClient:Hazen and Sawyer, P.CDate:January 28, 2011

General Information:

3 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: WETA/8171

1p: The recovery of the analyte in the CRDL standard (also known as the reporting limit verification) did not meet the acceptance criteria.

- BLANK (Lab ID: 160412)
 - Nitrite as N
 - Nitrate as N
 - Orthophosphate as P

REPORT OF LABORATORY ANALYSIS

Page 10 of 37

Project: FDOH
Pace Project No.: 3524876

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days Client: Hazen and Sawyer, P.C Date: January 28, 2011

General Information:

3 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: WETA/8172

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

• PNRSII STE-T1 (Lab ID: 3524876003)

Sulfate

Project: **FDOH** Pace Project No.: 3524876

Method: **EPA 350.1** Description: 350.1 Ammonia Client: Hazen and Sawyer, P.C Date: January 28, 2011

General Information:

3 samples were analyzed for EPA 350.1. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/8258

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3524811002

J(M1): Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 162542) • Nitrogen, Ammonia

QC Batch: WETA/8259

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3524876003

J(M1): Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 162546) · Nitrogen, Ammonia

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: FDOH
Pace Project No.: 3524876

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen
Client: Hazen and Sawyer, P.C
Date: January 28, 2011

General Information:

3 samples were analyzed for EPA 351.2. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/8206

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3524858002

J(M1): Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS)

- MS (Lab ID: 161199)
 - Nitrogen, Kjeldahl, Total

QC Batch: WETA/8208

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3524876003,3524989002

J(M1): Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 161209)
 - Nitrogen, Kjeldahl, Total
- MS (Lab ID: 161380)
 - Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

REPORT OF LABORATORY ANALYSIS

Project: FDOH
Pace Project No.: 3524876

Method: EPA 351.2

Description:351.2 Total Kjeldahl NitrogenClient:Hazen and Sawyer, P.CDate:January 28, 2011

QC Batch: WETA/8208

J(D6): Estimated Value. The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory

control limits.

DUP (Lab ID: 161379)Nitrogen, Kjeldahl, Total

FDOH Project: Pace Project No.: 3524876

Method: **EPA 365.4**

Description: 365.4 Phosphorus, Total Client: Hazen and Sawyer, P.C Date: January 28, 2011

General Information:

3 samples were analyzed for EPA 365.4. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 365.4 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: FDOH
Pace Project No.: 3524876

Method: EPA 410.4 Description: 410.4 COD

Client: Hazen and Sawyer, P.C Date: January 28, 2011

General Information:

3 samples were analyzed for EPA 410.4. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/8276

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3524641001

J(M1): Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 163023)
 - Chemical Oxygen Demand

QC Batch: WETA/8365

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3524910001

J(M1): Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 164825)
 - Chemical Oxygen Demand

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Page 16 of 37

ANALYTICAL RESULTS

Project: FDOH
Pace Project No.: 3524876

Sample: DENIT-LS1	Lab ID:	3524876001	Collected	d: 01/13/1 ⁻	1 08:00	Received: 01	/14/11 07:00 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
2320B Alkalinity	Analytical	Method: SM 2	2320B						
Alkalinity, Total as CaCO3	219 m	ng/L	5.0	5.0	1		01/18/11 20:18		
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
Total Dissolved Solids	640 m	ng/L	5.0	5.0	1		01/18/11 08:52		
2540D Total Suspended Solids	Analytical	Method: SM 2	2540D						
Total Suspended Solids	5.0U m	ng/L	5.0	5.0	1		01/17/11 09:16		
5210B cBOD, 5 day	Analytical	Method: SM :	5210B Prepa	ration Meth	nod: SM	1 5210B			
Carbonaceous BOD, 5 day	3.0U m	ng/L	3.0	3.0	1.5	01/14/11 08:02	01/19/11 11:00		J(B2)
300.0 IC Anions	Analytical	Method: EPA	300.0						
Nitrate as N Nitrite as N Nitrogen, NO2 plus NO3	21.5 m 0.12U m 21.5 m	ng/L	0.25 0.25 0.25	0.12 0.12 0.12	5 5 5		01/14/11 22:36 01/14/11 22:36 01/14/11 22:36		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
Sulfate	55.5 m	ng/L	10.0	5.0	2		01/14/11 15:07	14808-79-8	
350.1 Ammonia	Analytical	Method: EPA	350.1						
Nitrogen, Ammonia	0.020U m	ng/L	0.050	0.020	1		01/24/11 10:21	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA	351.2 Prepa	ration Meth	nod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.63 m	ng/L	0.50	0.25	1	01/19/11 12:00	01/20/11 12:30	7727-37-9	
365.4 Phosphorus, Total	Analytical	Method: EPA	365.4 Prepa	ration Meth	nod: EP	A 365.4			
Phosphorus, Total (as P)	5.2 m	ng/L	0.10	0.050	1	01/19/11 12:00	01/20/11 12:30	7723-14-0	
410.4 COD	Analytical	Method: EPA	410.4						
Chemical Oxygen Demand	20.5 I m	ng/L	25.0	12.5	1		01/25/11 09:56		

Date: 01/28/2011 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 17 of 37

ANALYTICAL RESULTS

Project: FDOH
Pace Project No.: 3524876

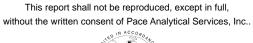
Sample: UNSAT-EC3	Lab ID:	3524876002	Collecte	d: 01/13/1	1 12:05	Received: 01/	14/11 07:00 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
9222D Fecal Coliform Tampa	Analytical	Method: SM 92	222D Prepa	aration Met	hod: SM	1 9222D			
Fecal Coliforms	12.0	CFU/100 mL	1.0	1.0	1	01/13/11 15:40	01/14/11 13:55		
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	222 r	ng/L	5.0	5.0	1		01/20/11 12:17		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	914 n	ng/L	10.0	10.0	1		01/18/11 08:52		
2540D Total Suspended Solids	Analytical	Method: SM 2	540D						
Total Suspended Solids	5.0U n	ng/L	5.0	5.0	1		01/17/11 09:16		
5210B cBOD, 5 day	Analytical	Method: SM 5	210B Prepa	aration Metl	nod: SM	I 5210B			
Carbonaceous BOD, 5 day	3.0U n	ng/L	3.0	3.0	1.5	01/14/11 08:02	01/19/11 11:00		J(B2)
300.0 IC Anions	Analytical	Method: EPA 3	300.0						
Nitrate as N Nitrite as N Nitrogen, NO2 plus NO3	35.1 n 0.25U n 35.1 n	ng/L	0.50 0.50 0.50	0.25 0.25 0.25	10 10 10		01/14/11 22:49 01/14/11 22:49 01/14/11 22:49		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0						
Sulfate	64.4 n	ng/L	10.0	5.0	2		01/14/11 15:44	14808-79-8	
350.1 Ammonia	Analytical	Method: EPA 3	350.1						
Nitrogen, Ammonia	0.020U n	ng/L	0.050	0.020	1		01/24/11 10:23	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	351.2 Prepa	aration Metl	nod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.42 l n	ng/L	0.50	0.25	1	01/19/11 12:00	01/20/11 12:32	7727-37-9	
365.4 Phosphorus, Total	Analytical	Method: EPA 3	865.4 Prepa	aration Metl	nod: EP	A 365.4			
Phosphorus, Total (as P)	5.6 n	ng/L	0.10	0.050	1	01/19/11 12:00	01/20/11 12:32	7723-14-0	
410.4 COD	Analytical Method: EPA 410		10.4						
Chemical Oxygen Demand	16.2 l n	ng/L	25.0	12.5	1		01/25/11 09:56		

Date: 01/28/2011 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 18 of 37

ANALYTICAL RESULTS


Project: FDOH
Pace Project No.: 3524876

Sample: PNRSII STE-T1	Lab ID:	3524876003	Collecte	d: 01/13/1	1 13:30	Received: 01/	/14/11 07:00 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
9222D Fecal Coliform Tampa	Analytical	Method: SM 92	222D Prepa	aration Met	hod: SM	1 9222D			
Fecal Coliforms	100 C	CFU/100 mL	100	100	100	01/13/11 15:40	01/14/11 13:55		
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	351 n	ng/L	5.0	5.0	1		01/20/11 12:41		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	570 n	ng/L	10.0	10.0	1		01/18/11 08:52		
2540D Total Suspended Solids	Analytical	Method: SM 2	540D						
Total Suspended Solids	15.5 n	ng/L	5.0	5.0	1		01/17/11 09:16		
5210B cBOD, 5 day	Analytical	Method: SM 5	210B Prepa	aration Metl	nod: SM	1 5210B			
Carbonaceous BOD, 5 day	87.9 n	ng/L	2.0	2.0	1	01/14/11 08:02	01/19/11 11:00		
300.0 IC Anions	Analytical	Method: EPA 3	300.0						
Nitrate as N Nitrite as N Nitrogen, NO2 plus NO3	0.12U n 0.12U n 0.12U n	ng/L	0.25 0.25 0.25	0.12 0.12 0.12	5 5 5		01/14/11 15:56 01/14/11 15:56 01/14/11 15:56		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0						
Sulfate	17.6 l n	ng/L	25.0	12.5	5		01/14/11 15:56	14808-79-8	D3
350.1 Ammonia	Analytical	Method: EPA 3	350.1						
Nitrogen, Ammonia	51.3 n	ng/L	0.25	0.10	5		01/24/11 10:27	7664-41-7	J(M1)
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 3	351.2 Prepa	aration Metl	nod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	61.1 n	ng/L	2.0	1.0	1	01/19/11 12:00	01/20/11 12:55	7727-37-9	J(M1)
365.4 Phosphorus, Total	Analytical	Method: EPA 3	865.4 Prepa	aration Meth	nod: EP	A 365.4			
Phosphorus, Total (as P)	14.1 n	ng/L	0.40	0.20	1	01/19/11 12:00	01/20/11 12:55	7723-14-0	
410.4 COD	Analytical	A 410.4							
Chemical Oxygen Demand	290 n	ng/L	50.0	25.0	2		01/27/11 19:27		

Date: 01/28/2011 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 37

Project: FDOH
Pace Project No.: 3524876

QC Batch: TAMP/2094 Analysis Method: SM 9222D

QC Batch Method: SM 9222D Analysis Description: 9222D MBIO Fecal Coliform Tampa

Associated Lab Samples: 3524876002, 3524876003

METHOD BLANK: 160318 Matrix: Water

Associated Lab Samples: 3524876002, 3524876003

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersFecal ColiformsCFU/100 mL1.0U1.001/14/11 13:55

SAMPLE DUPLICATE: 160319

 Parameter
 Units
 Result Result Result RPD
 Max RPD
 Qualifiers

 Fecal Coliforms
 CFU/100 mL
 100
 100
 0

Analysis Method:

Blank

Analysis Description:

Matrix: Water

FDOH Project: Pace Project No.: 3524876

METHOD BLANK: 160909

QC Batch: WET/6874 QC Batch Method: SM 2320B

Associated Lab Samples: 3524876001

Associated Lab Samples: 3524876001

Parameter Units Alkalinity, Total as CaCO3 mg/L

Result

Limit Analyzed

Reporting

5.0 01/18/11 18:07

Qualifiers

SM 2320B

2320B Alkalinity

LABORATORY CONTROL SAMPLE: 160910

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 250 250 100 90-110

5.0U

MATRIX SPIKE SAMPLE: 160912

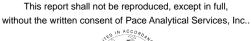
3524769003 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 234 407 Alkalinity, Total as CaCO3 250 69 90-110 J(M1) mg/L

MATRIX SPIKE SAMPLE: 160914

3524811002 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 75.7 Alkalinity, Total as CaCO3 mg/L 250 262 74 90-110 J(M1)

SAMPLE DUPLICATE: 160911

3524769003 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers Alkalinity, Total as CaCO3 234 2 20 mg/L 239


SAMPLE DUPLICATE: 160913

3524811002 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers mg/L 75.7 Alkalinity, Total as CaCO3 73.4 3 20

Date: 01/28/2011 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 21 of 37

Project: FDOH
Pace Project No.: 3524876

QC Batch: WET/6901 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 3524876002, 3524876003

METHOD BLANK: 161584 Matrix: Water

Associated Lab Samples: 3524876002, 3524876003

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L 5.0U 5.0 01/20/11 12:04

LABORATORY CONTROL SAMPLE: 161585

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 250 241 96 90-110

MATRIX SPIKE SAMPLE: 161587

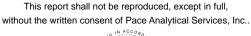
3524876002 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 222 479 103 Alkalinity, Total as CaCO3 250 90-110 mg/L

MATRIX SPIKE SAMPLE: 161589

3524948001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 8.7 Alkalinity, Total as CaCO3 mg/L 250 258 100 90-110

SAMPLE DUPLICATE: 161586

3524876002 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers Alkalinity, Total as CaCO3 222 3 20 mg/L 228


SAMPLE DUPLICATE: 161588

3524948001 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers mg/L 8.7 Alkalinity, Total as CaCO3 8.7 .5 20

Date: 01/28/2011 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 22 of 37

Project: FDOH
Pace Project No.: 3524876

QC Batch: WET/6855 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 3524876001, 3524876002, 3524876003

METHOD BLANK: 160650 Matrix: Water

Associated Lab Samples: 3524876001, 3524876002, 3524876003

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L 5.0U 5.0 01/18/11 08:49

LABORATORY CONTROL SAMPLE: 160651

Spike LCS LCS % Rec Conc. Parameter Units Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 300 287 90-110

SAMPLE DUPLICATE: 160652

3524866002 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 280 258 8 20 **Total Dissolved Solids** mg/L

SAMPLE DUPLICATE: 160653

3039900001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 99.0 **Total Dissolved Solids** mg/L 93.0 6 20

Project: FDOH
Pace Project No.: 3524876

QC Batch: WET/6841 Analysis Method: SM 2540D

QC Batch Method: SM 2540D Analysis Description: 2540D Total Suspended Solids

Associated Lab Samples: 3524876001, 3524876002, 3524876003

METHOD BLANK: 160506 Matrix: Water

Associated Lab Samples: 3524876001, 3524876002, 3524876003

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Suspended Solids mg/L 5.0U 5.0 01/17/11 09:16

LABORATORY CONTROL SAMPLE: 160507

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Suspended Solids** mg/L 80 83.0 104 90-110

SAMPLE DUPLICATE: 160508

Parameter Units Result Result RPD Max Qualifiers

Total Suspended Solids mg/L 5.0U 5.0U 20

SAMPLE DUPLICATE: 160509

Parameter Units Suspended Solids mg/L 5.0U 5.0U Max Result RPD RPD Qualifiers 20

Project: FDOH
Pace Project No.: 3524876

QC Batch: WET/6832 Analysis Method: SM 5210B

QC Batch Method: SM 5210B Analysis Description: 5210B cBOD, 5 day

Associated Lab Samples: 3524876001, 3524876002, 3524876003

METHOD BLANK: 160371 Matrix: Water

Associated Lab Samples: 3524876001, 3524876002, 3524876003

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersCarbonaceous BOD, 5 daymg/L2.0U2.001/19/11 11:00

LABORATORY CONTROL SAMPLE: 160372

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Carbonaceous BOD, 5 day mg/L 198 183 85-115

SAMPLE DUPLICATE: 160373

3524790001 Dup Max **RPD RPD** Qualifiers Parameter Units Result Result 2.1 2.1 0 20 Carbonaceous BOD, 5 day mg/L

Project: FDOH
Pace Project No.: 3524876

QC Batch: WETA/8171 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 3524876001, 3524876002, 3524876003

METHOD BLANK: 160412 Matrix: Water

Associated Lab Samples: 3524876001, 3524876002, 3524876003

Blank Reporting Qualifiers Limit Parameter Units Result Analyzed Nitrate as N mg/L 0.025U 0.050 01/14/11 14:43 1p mg/L Nitrite as N 0.025U 0.050 01/14/11 14:43 1p mg/L Nitrogen, NO2 plus NO3 0.025U 0.050 01/14/11 14:43

LABORATORY CONTROL SAMPLE: 160413

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Nitrate as N	mg/L		4.5	90	90-110	
Nitrite as N	mg/L	5	5.0	101	90-110	
Nitrogen, NO2 plus NO3	mg/L	10	9.5	95	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 160414 160415												
			MS	MSD								
	35	524876001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrate as N	mg/L	21.5	10	10	32.1	32.0	106	106	90-110	.05	20	
Nitrite as N	mg/L	0.12U	10	10	10.3	10.3	103	103	90-110	.05	20	
Nitrogen, NO2 plus NO3	mg/L	21.5	20	20	42.4	42.3	105	104	90-110	.05	20	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 16041	6	160417								
	3(39900003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
			- 1		_	_	_	_				
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrate as N	mg/L	0.27	5	5	5.0	5.0	95	95	90-110	.3	20	
Nitrite as N	mg/L	ND	5	5	5.4	5.4	107	107	90-110	.006	20	
Nitrogen, NO2 plus NO3	mg/L	0.27	10	10	10.4	10.4	101	101	90-110	.1	20	

Date: 01/28/2011 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 26 of 37

Project: FDOH
Pace Project No.: 3524876

QC Batch: WETA/8172 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 3524876001, 3524876002, 3524876003

METHOD BLANK: 160418 Matrix: Water

Associated Lab Samples: 3524876001, 3524876002, 3524876003

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Sulfate mg/L 2.5U 5.0 01/14/11 14:43

LABORATORY CONTROL SAMPLE: 160419

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 45.9 92 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 160420 160421

MS MSD 3524876001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual mg/L Sulfate 55.5 100 100 165 165 109 109 90-110 .03 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 160422 160423

MS MSD MS MS 3039900003 Spike Spike MSD MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual Sulfate ND 50 50 55.8 55.9 102 102 90-110 .2 20 mg/L

Project: **FDOH** Pace Project No.: 3524876

QC Batch: WETA/8258 Analysis Method: EPA 350.1 QC Batch Method: EPA 350.1 Analysis Description: 350.1 Ammonia

Associated Lab Samples: 3524876001, 3524876002

METHOD BLANK: 162539 Matrix: Water

Associated Lab Samples: 3524876001, 3524876002

Blank Reporting Limit Parameter Result Analyzed Qualifiers Units

Nitrogen, Ammonia mg/L 0.020U 0.050 01/24/11 09:37

LABORATORY CONTROL SAMPLE: 162540

Spike Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Ammonia mg/L 1.1 105 90-110

MATRIX SPIKE SAMPLE: 162542

MS 3524811002 Spike MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrogen, Ammonia 0.020U 1 1.1 112 90-110 J(M1) mg/L

LCS

LCS

% Rec

SAMPLE DUPLICATE: 162541

3524811002 Dup Max RPD RPD Parameter Units Result Result Qualifiers 0.020U Nitrogen, Ammonia mg/L 0.020U 20

Project: FDOH
Pace Project No.: 3524876

QC Batch: WETA/8259
QC Batch Method: EPA 350.1

Analysis Method:
Analysis Description:

EPA 350.1 350.1 Ammonia

Analyzed

Qualifiers

Associated Lab Samples: 3524876003

METHOD BLANK: 162543 Matrix: Water

Associated Lab Samples: 3524876003

Blank Reporting
Parameter Units Result Limit

Nitrogen, Ammonia mg/L 0.020U 0.050 01/24/11 10:24

LABORATORY CONTROL SAMPLE: 162544

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Ammonia mg/L 1.1 106 90-110

MATRIX SPIKE SAMPLE: 162546

MS 3524876003 Spike MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 51.3 5 Nitrogen, Ammonia 57.3 119 90-110 J(M1) mg/L

SAMPLE DUPLICATE: 162545

Parameter Units Result Result RPD ARPD Qualifiers

Nitrogen, Ammonia mg/L 51.3 50.6 1 20

Project: **FDOH** Pace Project No.: 3524876

QC Batch: WETA/8206 QC Batch Method: EPA 351.2

Analysis Method: EPA 351.2 Analysis Description: 351.2 TKN

Associated Lab Samples: 3524876001, 3524876002

METHOD BLANK: 161196 Matrix: Water

Associated Lab Samples: 3524876001, 3524876002

> Blank Reporting Limit Parameter Result Analyzed Qualifiers Units

Nitrogen, Kjeldahl, Total 0.25U 0.50 01/20/11 12:06 mg/L

LABORATORY CONTROL SAMPLE: 161197

Spike Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total mg/L 20 21.2 106 90-110

MATRIX SPIKE SAMPLE: 161199

3524858002 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 5.4 Nitrogen, Kjeldahl, Total 20 28.3 115 90-110 J(M1) mg/L

LCS

LCS

% Rec

SAMPLE DUPLICATE: 161198

3524858002 Dup Max RPD RPD Parameter Units Result Result Qualifiers 5.4 Nitrogen, Kjeldahl, Total mg/L 5.4 20

FDOH Project: Pace Project No.: 3524876

QC Batch: WETA/8208 QC Batch Method: EPA 351.2

Associated Lab Samples: 3524876003 Analysis Method: Analysis Description: EPA 351.2

351.2 TKN

METHOD BLANK: 161206 Matrix: Water

Associated Lab Samples: 3524876003

Blank

Reporting

Parameter Limit Qualifiers Units Result Analyzed Nitrogen, Kjeldahl, Total 0.25U 0.50 01/20/11 12:49 mg/L

LABORATORY CONTROL SAMPLE: 161207

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total mg/L 20 19.9 100 90-110

MATRIX SPIKE SAMPLE: 161209

3524876003 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 61.1 156 Nitrogen, Kjeldahl, Total 80 118 90-110 J(M1) mg/L

MATRIX SPIKE SAMPLE: 161380

3524989002 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.56 Nitrogen, Kjeldahl, Total mg/L 20 23.4 114 90-110 J(M1)

SAMPLE DUPLICATE: 161208

3524876003 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers Nitrogen, Kjeldahl, Total 61.1 61.2 .2 20 mg/L

SAMPLE DUPLICATE: 161379

3524989002 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers mg/L 0.56 Nitrogen, Kjeldahl, Total 0.70 22 20 J(D6)

Date: 01/28/2011 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 31 of 37

Project: **FDOH** Pace Project No.: 3524876

QC Batch: WETA/8207 Analysis Method:

EPA 365.4

QC Batch Method:

EPA 365.4

Analysis Description:

Matrix: Water

365.4 Phosphorus

Associated Lab Samples:

3524876001, 3524876002

METHOD BLANK: 161200

Associated Lab Samples:

3524876001, 3524876002

Blank

Reporting

Parameter

Units

Units

Result

Limit

Analyzed

Qualifiers

Phosphorus, Total (as P)

mg/L

161201

0.050U

0.10 01/20/11 12:33

LABORATORY CONTROL SAMPLE:

Parameter

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Phosphorus, Total (as P)

mg/L

4.1

102

90-110

MATRIX SPIKE SAMPLE:

161203

mg/L

mg/L

Parameter

Parameter

3524858002 Units Result

0.050U

Spike Conc.

4

MS Result

MS % Rec

106

20

% Rec Limits

Qualifiers

Phosphorus, Total (as P)

SAMPLE DUPLICATE: 161202

Units

3524858002 Result

Dup Result

RPD

4.2

Max RPD

Qualifiers

80-120

Phosphorus, Total (as P)

0.050U

0.050U

Date: 01/28/2011 04:31 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: **FDOH** Pace Project No.: 3524876

QC Batch: WETA/8209 QC Batch Method:

EPA 365.4

Analysis Method: Analysis Description: EPA 365.4

365.4 Phosphorus

Associated Lab Samples: 3524876003

METHOD BLANK: 161211

Matrix: Water

Associated Lab Samples:

3524876003

Blank Result Reporting

Parameter

Units

Units

Units

Limit

Analyzed

Qualifiers

Phosphorus, Total (as P)

mg/L

0.050U

0.10 01/20/11 13:33

LABORATORY CONTROL SAMPLE: 161212

Parameter

Spike Conc.

LCS Result

14.1

14.1

LCS % Rec % Rec Limits

Qualifiers

Phosphorus, Total (as P)

mg/L

mg/L

mg/L

4.0

100

MATRIX SPIKE SAMPLE:

161214

Parameter

3524876003 Result

Spike Conc.

16

13.8

MS Result

MS % Rec

108

20

90-110

% Rec Limits

80-120

Qualifiers

Phosphorus, Total (as P)

Phosphorus, Total (as P)

SAMPLE DUPLICATE: 161213

Parameter

3524876003 Units Result

Dup Result

RPD

31.3

2

Max RPD

Qualifiers

Date: 01/28/2011 04:31 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: **FDOH** Pace Project No.: 3524876

QC Batch: WETA/8276 QC Batch Method: EPA 410.4

Analysis Method:

EPA 410.4

Analysis Description:

410.4 COD

Associated Lab Samples: 3524876001, 3524876002

METHOD BLANK: 163020

Matrix: Water

Associated Lab Samples:

3524876001, 3524876002

Blank

Reporting

Parameter

Units

Units

Units

Units

Limit Result

Analyzed

Qualifiers

Chemical Oxygen Demand

mg/L

12.5U

25.0 01/25/11 09:56

LABORATORY CONTROL SAMPLE:

Parameter

163021

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Chemical Oxygen Demand

mg/L

500

498

100

90-110

MATRIX SPIKE SAMPLE:

163023

Parameter

Parameter

3524641001 Result

Spike Conc.

MS Result

MS % Rec % Rec

Qualifiers

Chemical Oxygen Demand

mg/L

24.2 I

400 500

75

Limits 90-110 J(M1)

SAMPLE DUPLICATE: 163022

3524641001 Result

Dup Result

RPD

Max

Chemical Oxygen Demand

mg/L

24.2 I

29.4

RPD

20

Qualifiers

Date: 01/28/2011 04:31 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: **FDOH** Pace Project No.: 3524876

QC Batch: WETA/8365 QC Batch Method: EPA 410.4

Analysis Method: Analysis Description: EPA 410.4

410.4 COD

Associated Lab Samples: 3524876003

METHOD BLANK: 164822

Matrix: Water

12.5U

Associated Lab Samples: 3524876003

> Blank Result

Reporting

Parameter Units Chemical Oxygen Demand

mg/L

Limit Analyzed 25.0 01/27/11 19:27 Qualifiers

LABORATORY CONTROL SAMPLE: 164823

> Spike LCS LCS Parameter Units Conc. Result % Rec

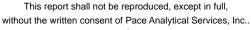
% Rec Limits

Qualifiers

Chemical Oxygen Demand mg/L 500 504 101 90-110

MATRIX SPIKE SAMPLE: 164825

MS 3524910001 Spike MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 273 701 Chemical Oxygen Demand 500 86 90-110 J(M1) mg/L


SAMPLE DUPLICATE: 164824

3524910001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 273 Chemical Oxygen Demand mg/L 275 .9 20

Date: 01/28/2011 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 35 of 37

QUALIFIERS

Project: FDOH
Pace Project No.: 3524876

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-O	Pace Analytical Services - Ormond Beach
PASI-T	Pace Analytical Services - Tampa

ANALYTE QUALIFIERS

I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
1p	The recovery of the analyte in the CRDL standard (also known as the reporting limit verification) did not meet the acceptance criteria.
D3	Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
J(B2)	Estimated Value. Oxygen usage is less than 2.0 for all dilutions set. The reported value is an estimated less than value and is calculated for the dilution using the most amount of sample.
J(D6)	Estimated Value. The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.
J(M1)	Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: FDOH
Pace Project No.: 3524876

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
3524876002 3524876003	UNSAT-EC3 PNRSII STE-T1	SM 9222D SM 9222D	TAMP/2093 TAMP/2093	SM 9222D SM 9222D	TAMP/2094 TAMP/2094
3524876001	DENIT-LS1	SM 2320B	WET/6874		
3524876002 3524876003	UNSAT-EC3 PNRSII STE-T1	SM 2320B SM 2320B	WET/6901 WET/6901		
3524876001 3524876002 3524876003	DENIT-LS1 UNSAT-EC3 PNRSII STE-T1	SM 2540C SM 2540C SM 2540C	WET/6855 WET/6855 WET/6855		
3524876001 3524876002 3524876003	DENIT-LS1 UNSAT-EC3 PNRSII STE-T1	SM 2540D SM 2540D SM 2540D	WET/6841 WET/6841 WET/6841		
3524876001 3524876002 3524876003	DENIT-LS1 UNSAT-EC3 PNRSII STE-T1	SM 5210B SM 5210B SM 5210B	WET/6832 WET/6832 WET/6832	SM 5210B SM 5210B SM 5210B	WET/6896 WET/6896 WET/6896
3524876001 3524876002 3524876003	DENIT-LS1 UNSAT-EC3 PNRSII STE-T1	EPA 300.0 EPA 300.0 EPA 300.0	WETA/8171 WETA/8171 WETA/8171		
3524876001 3524876002 3524876003	DENIT-LS1 UNSAT-EC3 PNRSII STE-T1	EPA 300.0 EPA 300.0 EPA 300.0	WETA/8172 WETA/8172 WETA/8172		
3524876001 3524876002	DENIT-LS1 UNSAT-EC3	EPA 350.1 EPA 350.1	WETA/8258 WETA/8258		
3524876003	PNRSII STE-T1	EPA 350.1	WETA/8259		
3524876001 3524876002	DENIT-LS1 UNSAT-EC3	EPA 351.2 EPA 351.2	WETA/8206 WETA/8206	EPA 351.2 EPA 351.2	WETA/8216 WETA/8216
3524876003	PNRSII STE-T1	EPA 351.2	WETA/8208	EPA 351.2	WETA/8218
3524876001 3524876002	DENIT-LS1 UNSAT-EC3	EPA 365.4 EPA 365.4	WETA/8207 WETA/8207	EPA 365.4 EPA 365.4	WETA/8217 WETA/8217
3524876003	PNRSII STE-T1	EPA 365.4	WETA/8209	EPA 365.4	WETA/8219
3524876001 3524876002	DENIT-LS1 UNSAT-EC3	EPA 410.4 EPA 410.4	WETA/8276 WETA/8276		
3524876003	PNRSII STE-T1	EPA 410.4	WETA/8365		

Date: 01/28/2011 04:31 PM

REPORT OF LABORATORY ANALYSIS

Page 37 of 37

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

3524876

Pace Analytical "

Pace Project No./ Lab I.D. (N/A) DRINKING WATER SAMPLE CONDITIONS 455806 OTHER (N/A) Sealed Cool Custody ₽ Received on Ice (Y/N) GROUND WATER Residual Chlorine (Y/N) 0000 O° ni qmeT Page: REGULATORY AGENCY RCRA 1:00m 2:30 とのか Requested Analysis Filtered (Y/N) TIME Site Location STATE]]-[311] NPDES DATE 1-7-11 UST DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION える taeT sisylsnA TN/A Other 3 Methanol Preservatives $Na_2S_2O_3$ HOBN HCI Invoice Information: [€]ONH Company Name: Pace Quote Reference: Pace Project Manager: Pace Profile #: [†]OS^zH 2:30 3 3,04 Section C TIME Unpreserved Address: # OF CONTAINERS 9 SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION 12.11 1-13-11 11-11 DATE **1-13-4** TIME COMPOSITE END/GRAB DATE COLLECTED 200 RELINQUISHED BY / AFFILIATION TIME COMPOSITE START DATE Required Project Information: 3 (G=GRAB C=COMP) SAMPLE TYPE urchase Order No.: 1000 ş £ T T Project Number: MATRIX CODE Project Name: Report To: Section B ORIGINAL Copy To: Matrix Codes Drinking Water
Water
Waste Water
Product
Soil/Solid
Oil
Wipe
Arr
Tissue
Other Company Hazen and Sawyer Enjoy Cellaren ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE MESI STE - T DENIT: LS4 UMAT - EC3 SAMPLE ID Fax: Section A Required Client Information: Required Client Information Requested Due Date/TAT: Section D =mail To: Address: hone: 9 2 m 'n 9 œ 0 # MHLI

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

Sample Condition Upon Receipt Form

TAMPA

Page<u>1</u> of <u>1</u>

Face Analytical Client Nam	e: <u>Hazen</u>	and Sawyer Pr	oject#
	Commercial	□Pace □B&B	Project Name:
. —		☐ Other_	· · · · · · · · · · · · · · · · · · ·
Tracking #Custody Seal on Cooler/Box Present:	no Seals		no
•	_	_	
Packing Material: Bubble Wrap Bubble B Thermometer Used T-11		L_bther ☑ Blue ☐ None ☐	ROI Cooling process has begun
	Received Date:	01/13/10	VRW
2.5 Temp should be above freezing to 6°C	Heceived Date:	Comments:	
Chain of Custody Present:	√Yes No N/A	1.	
Chain of Custody Filled Out:	Yes ☑No ☐N/A	2.	
Chain of Custody Relinquished:	✓Yes No N/A	3.	
Sampler Name & Signature on COC:	Yes No N/A	4.	
Samples Arrived within Hold Time:	✓Yes No N/A	5.	
Short Hold Time Analysis (<72hr):	✓Yes No N/A	6. FECAL MF DON	E IN TAMPA
Rush Turn Around Time Requested:	Yes ✓NoN/A	7.	
Sufficient Volume:	✓Yes ☐No ☐N/A	8.	
Correct Containers Used:	√YesNo	9.	
-Pace Containers Used:	Yes No N/A		
Containers Intact:	✓Yes ☐No ☐N/A	10.	
Filtered volume received for Dissolved tests	YesNo	11.	
Sample Labels match COC:	☑Yes ☐No ☐N/A	12.	
-Includes date/time/ID/Analysis Matrix:			
All containers needing preservation have been checked.	YesNo ☑N/A	13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	YesNoN/A		
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	Yes No	Initial when completed	
Samples checked for dechlorination:	✓Yes No N/A	14.	
Headspace in VOA Vials (>6mm):	YesNo ✓N/A	15.	
Trip Blank Present:	YesNo ✓N/A	16.	<u></u>
Trip Blank Custody Seals Present	_YesNo ✓N/A		
Pace Trip Blank Lot # (if purchased): N/A	<u></u>		
Reviewed by :VRW			
Client Notification/ Resolution client did not filled Person Contacted:	Date/ MF containers	Time: Reured O	Field Data Required? Y / N / N/A
Project Manager Review:			Date:

Item#			er	Othe	ᅚ				,	nL	40 ñ		_	_		5 mL	1125								ml i	250	_					wl .	EOA						es	od	e C	ott	e B	npļ	Sa
Client's Sample ID(s) Sample Discrepancy L Client's Sample ID(s)	TP5U=Bac-T	_				DG9E	DG9U	VG9M	3				מ אני	BP41				AG34	AG3E	AG3S	AG3U	BP3N	вРЗН	BP3S				AG2S	AG2U	BP2N	BP2S			_	AG1S	AG1U	AP1S	AP1U							
Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy Client's Sample ID(s) Sample Discrepancy	+	\dashv	╀		╀	_		4	+	╀	L	4	4	╀			-		_	_		_							-					_				i						n#	lte
Client's Sample ID(s) Sample Discrepancy L C D TP = Tampa Plas BP = Clear Plast AP = Amber Plas AG = Amber Gla VG = Clear Glass DG = Amber Gla 1 = Liter 2 = 500 mL 3 = 250 mL 4 = 125 mL 5 = 100 mL 9 = 40 mL U = Unpreserved S = H2SO4 Z = ZnAc / NaOh N = HNO3 T = Na2S2O3 (CH = HCL)	+	\dashv	╀		╀	_		\dashv	+	╀	L	4	+	lacksquare	_	3	3							_								•		4					_				_	-3	
Client's Sample ID(s) Sample Discrepancy L C D TP = Tampa Plas BP = Clear Plast AP = Amber Plas AG = Amber Gla VG = Clear Glass DG = Amber Gla 1 = Liter 2 = 500 mL 3 = 250 mL 4 = 125 mL 5 = 100 mL 9 = 40 mL U = Unpreserved S = H2SO4 Z = ZnAc / NaOh N = HNO3 T = Na2S2O3 (CH = HCL)	┽┤	\dashv	╀		+	\vdash	_		+	╁	┝	\dashv	+	╀			-	H		_	-						_			_				-		!			_	_			_		L
Client's Sample ID(s) Sample Discrepancy L C D TP = Tampa Plas BP = Clear Plast AP = Amber Plas AG = Amber Gla VG = Clear Glass DG = Amber Gla 1 = Liter 2 = 500 mL 3 = 250 mL 4 = 125 mL 5 = 100 mL 9 = 40 mL U = Unpreserved S = H2SO4 Z = ZnAc / NaOh N = HNO3 T = Na2S2O3 (CH = HCL)	+	\dashv	╁		\dagger	\vdash			+	\dagger	-	_	+	╁	┝		┢					i					Н							\dashv	_						\dashv	_	_		-
Client's Sample ID(s) Sample Discrepancy L C D TP = Tampa Plas BP = Clear Plast AP = Amber Plas AG = Amber Gla VG = Clear Glass DG = Amber Gla 1 = Liter 2 = 500 mL 3 = 250 mL 4 = 125 mL 5 = 100 mL 9 = 40 mL U = Unpreserved S = H2SO4 Z = ZnAc / NaOh N = HNO3 T = Na2S2O3 (CH = HCL)	+	\dashv	╁		\dagger	H			1	\dagger	┢		1	十	<u> </u>		┢	-							_	_	Н							\dashv		Н									\vdash
Client's Sample ID(s) Sample Discrepancy L C D TP = Tampa Plas BP = Clear Plast AP = Amber Plas AG = Amber Gla VG = Clear Glass DG = Amber Gla 1 = Liter 2 = 500 mL 3 = 250 mL 4 = 125 mL 5 = 100 mL 9 = 40 mL U = Unpreserved S = H2SO4 Z = ZnAc / NaOh N = HNO3 T = Na2S2O3 (CH = HCL)	1		T		†	T			1	+	┢		7	\dagger	T					_					_					-				\neg										-	
Client's Sample ID(s) Sample Discrepancy L C D TP = Tampa Plas BP = Clear Plast AP = Amber Plas AG = Amber Gla VG = Clear Glass DG = Amber Gla 1 = Liter 2 = 500 mL 3 = 250 mL 4 = 125 mL 5 = 100 mL 9 = 40 mL U = Unpreserved S = H2SO4 Z = ZnAc / NaOh N = HNO3 T = Na2S2O3 (CH = HCL)			I		1					1			Ì	T	T		T									_		_																	\vdash
Client's Sample ID(s) Sample Discrepancy L C			floor											I																															
Client's Sample ID(s) Sample Discrepancy L C			\perp		1	L				ļ	L			floor																															
Client's Sample ID(s) Sample Discrepancy L C			\downarrow	<u> </u>	1	Ļ					L	<u> </u>		\downarrow					_		L	_																							
Client's Sample ID(s) Sample Discrepancy L C D TP = Tampa Plas BP = Clear Plast AP = Amber Plas AG = Amber Gla VG = Clear Glass DG = Amber Gla 1 = Liter 2 = 500 mL 3 = 250 mL 4 = 125 mL 5 = 100 mL 9 = 40 mL U = Unpreserved S = H2SO4 Z = ZnAc / NaOh N = HNO3 T = Na2S2O3 (CH = HCL)	_		\downarrow		4	igdash			_	\downarrow	Ļ	_		\downarrow	╀	-	1		L		L	_			_											_									
Client's Sample ID(s) Sample Discrepancy L C D TP = Tampa Plas BP = Clear Plast AP = Amber Plas AG = Amber Gla VG = Clear Glass DG = Amber Gla 1 = Liter 2 = 500 mL 3 = 250 mL 4 = 125 mL 5 = 100 mL 9 = 40 mL U = Unpreserved S = H2SO4 Z = ZnAc / NaOh N = HNO3 T = Na2S2O3 (CH = HCL)			\perp	<u></u>	Ţ	L					L						L				L	_				L.			L.																
C = NaOH E = EDA 4 = NH4CL M = MCAA	ic stic ss s Vial ss Via	astic assic ass ass ss \ lass	las las las las slas	Pla Pla Pla Gla Gla	Per Cer LLL se 4 N 2O L	earnbeenbeenbeenbeenbeenbeenbeenbeenbeenbe	Cle Am An Cle En En En En En En En En En En En En En		TP																																-				
WG43 = 4oz Jar + 3 WG9O = 9oz Soil Ja TP5U = 100mL Colif T = Tedlar Air Bag	r	Jar liforr	Jai olife	oil . Co	z So nL	9oz 00n) = ! = 1!	390 5U	W(,							_												•			_													

BOTTLE ORDER # 7005

1/6/2011 4:46:21 PM

Pace Analytical Services, Inc. 8 East Tower Circle

> Ormand Beach, FL321"4 (386) 672-5668

	and the second s	The second secon		1 WEST 1872 177 July 1217 2323
Contact: Edeback-Hirs	t, P.E., Josefin	Ship To:		Return To:
Company: Hazen and Sa	wyer, P.C. Contact: B	deback-Hirst, P.E., Josefin	Contact:	
Address: 10002 Princes	ss Palm Ave Suite Company:	lazen and Sawyer, P.C.	Lab Name: 3	PACE - FL
City, St, Zip: Tampa	Address: 1	0002 Princess Palm Ave., Sute	Address: §	8 East Tower Circle
Phone: 813-630-4498	Ext. City, St. Zip: [ampa , FL , 33619	City, St. Zip: \	Ormond Beach , FL , 32174
Initiator: Sakina McKer			Phone: (386) 672-5668 Ext.
Proj. Description: FDOH	Quote Numbe	er: Pro	file Number:	
Needs Bottles by: 01/10/20		et: Ship)	ping Method: §	Other - Tampa
Return Shipping Labels			Bottles	
No Shipper	Blank I B	lank	Boxed C	ases
	Preprinted Y P	re-Printed - With Sample II)	s Individi	ually Wrapped
		re-Printed - No Sample 1Ds		d By Sample ID / Matrix
Mise Sampling Instructions	Coolers:	in a company of the second	T_i	rip Blank
Custody Seat	Extra Bubble Wrap	- Short Hold / Rush Stic	kers	
Temp. Blank	10 mL Cut-Off Syringes	DI Water © Liter(s)		
Qty Total Matrix	Method	BottleType -	LotNumbe	r Note
3 3 Water	Fecal Coliform MF	1-100mL Coliform w/ Sodium Thiosulfate Pellet	and the control of th	
3 9 Water	CBOD, TDS, TSS, Nitrate, Nitrite, Alk	3-Liter Plastic Unpreserved		
3 3 Water	Ammonia, COD, TKN, TP	1-250mL Plastic w/ H2SO4		
1 1 Water	Sulfate	1-250mL Plastic Unpreserved		
1 1 Water	Sulfide	1-1L Plastic NaOH & Zinc Acetate		Need Ph. Temp Cond

Notes: SAMPLE IDS PNRS 11 STE-TI, DENIT-SU3, DENIT-LS3 (ONLY DENIT-SU3 NEEDS SULFATE AND HYDROGEN SULFIDE)

Hazard Shipping Placard In Place: NA

*Sample receiving hours are Monday through I riday 8300 am to 6:00 pand Samrday. Irom 9:00 am to 12:00 pm unless special arrangements are made with you project manager.	Shipped Date:	1/7/2011
*Pace Analytical reserves the right to return hazardous, toxic, or radionee samples to you	Shipped By:	Bo Pollaro
*Page Analytical reserves the right to charge for omised bottles, as well cost associated with sample storage and	7.1	
disposal	Verified By:	
*Payment term are not 30 days.		
*Please include the proposal number on the chain of custody to insuppoper billing		
and the control of th	10.00	and the second

Sample Condition Upon Receip	t Form (SCUR)	Table Number:			
Pace Analytical Client Name: HTGU	1 9 SAWJE	Mect # 3524876			
Courier: Fed Ex UPS USPS Client Commercial	Pace B&B	Other			
Tracking #					
Custody Seal on Cooler/Box Present: yes no Seals intact: yes no		Date and Initials of person examining contents:			
Packing Material: Bubble Wrap Bubble Bags None					
Thermometer Used <u>L4</u> <u>B</u> <u>L6</u> <u>1</u> Type of Ice: Well Cooler Temperature (Actual) (Temp should be about	Secondary Review Initials:				
Receipt of samples satisfactory:	•	Rush TAT requested on COC:			
If yes, then all conditions below were met:	if no, then mark box	& describe issue (use comments area if necessary):			
Chain of Custody Present					
Chain of Custody Filled Out	В				
Relinquished Signature & Sampler Name COC					
Samples Arrived within Hold Time					
Sufficient Volume	×				
Correct Containers Used					
Containers Intact					
Sample Labels match COC (sample IDs & date/time of collection) No two or Dade of Collection No Labels: No Time/Date on Labels:					
All containers needing preservation are found to be in compliance with EPA recommendation.	0				
No Headspace in VOA Vials (>6mm):					
Comments/ Resolution (use back for additional comments):		has Theofficient Volume.			
Project Manager Review:		Date: 01/14/2011			
Finished Product I	Information Only				
F.P. Sample ID:	<u>s</u>	ze & Qty of Bottles Received			
		x 5 Gal			
Production Code:	_	x 2.5 Gal x 1 Gal			
Date/Time Opened:	_	x 1 Liter			
and inite operation	_	x 500 mL			
Number of Unopened Bottles Remaining:	<u> </u>	x 250 mL x Other:			
Extra Sample in Shed: Yes No					

January 25, 2011

Ms. Josefin Edebeck-Hirst Hazen and Sawyer, P.C 10002 Princess Palm Avenue Suite 200 Tampa, FL 33619

RE: Project: FDOH

Pace Project No.: 3524641

Dear Ms. Edebeck-Hirst:

Enclosed are the analytical results for sample(s) received by the laboratory on January 11, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sakina Mckenzie

Sa on one

sakina.mckenzie@pacelabs.com Project Manager

Enclosures

Pace Analytical Services, Inc.

8 East Tower Circle Ormond Beach, FL 32174 (386)672-5668

CERTIFICATIONS

Project: FDOH
Pace Project No.: 3524641

Ormond Beach Certification IDs

8 East Tower Circle, Ormond Beach, FL 32174

Alabama Certification #: 41320 Arizona Certification #: AZ0735

Colorado Certification: FL NELAC Reciprocity

Connecticut Certification #: PH 0216 Florida Certification #: E83079 Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity

Kansas Certification #: E-10383 Kentucky Certification #: 90050

Louisiana Certification #: LA090012

Louisiana Environmental Certificate #: 05007

Maine Certification #: FL1264

Massachusetts Certification #: M-FL1264

Michigan Certification #: 9911

Mississippi Certification: FL NELAC Reciprocity

Montana Certification #: Cert 0074 Nevada Certification: FL NELAC Reciprocity

New Hampshire Certification #: 2958 New Jersey Certification #: FL765 New York Certification #: 11608

North Carolina Environmental Certificate #: 667

North Carolina Certification #: 12710 Pennsylvania Certification #: 68-547 Puerto Rico Certification #: FL01264 Tennessee Certification #: TN02974 Texas Certification: FL NELAC Reciprocity

Virginia Certification #: 00432

Wyoming Certification: FL NELAC Reciprocity

Tampa Certification IDs

1209 Tech Boulevard, Ste 207, Tampa FL 33619

Florida Certification #: E84973

SAMPLE SUMMARY

Project: FDOH
Pace Project No.: 3524641

Lab ID	Sample ID	Matrix	Date Collected	Date Received
3524641001	UNSAT-IS3	Water	01/11/11 08:20	01/11/11 11:11
3524641002	UNSAT-IS4	Water	01/11/11 08:30	01/11/11 11:11

SAMPLE ANALYTE COUNT

Project: FDOH
Pace Project No.: 3524641

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
3524641001	UNSAT-IS3	SM 9222D	VRW	1	PASI-T
		SM 2320B	HEM	1	PASI-O
		SM 2540C	AIS	1	PASI-O
		SM 2540D	AIS	1	PASI-O
		EPA 300.0	KDM	3	PASI-O
		EPA 300.0	KDM	1	PASI-O
		EPA 350.1	AMD	1	PASI-O
		EPA 351.2	AMD	1	PASI-O
		EPA 365.4	AMD	1	PASI-O
		EPA 410.4	MMD	1	PASI-O
3524641002	UNSAT-IS4	SM 9222D	VRW	1	PASI-T
		SM 2320B	HEM	1	PASI-O
		SM 2540C	AIS	1	PASI-O
		SM 2540D	AIS	1	PASI-O
	EPA 300.0	KDM	3	PASI-O	
	EPA 300.0	KDM	1	PASI-O	
	EPA 350.1	AMD	1	PASI-O	
		EPA 351.2	AMD	1	PASI-O
		EPA 365.4	AMD	1	PASI-O
		EPA 410.4	MMD	1	PASI-O

Project: FDOH
Pace Project No.: 3524641

Method: SM 9222D

Description: 9222D Fecal Coliform Tampa
Client: Hazen and Sawyer, P.C
Date: January 25, 2011

General Information:

2 samples were analyzed for SM 9222D. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SM 9222D with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: FDOH
Pace Project No.: 3524641

Method:SM 2320BDescription:2320B AlkalinityClient:Hazen and Sawyer, P.CDate:January 25, 2011

General Information:

2 samples were analyzed for SM 2320B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: WET/6798

J(D6): Estimated Value. The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 159341)
 - Alkalinity, Total as CaCO3

Project: FDOH
Pace Project No.: 3524641

Method: SM 2540C

Description:2540C Total Dissolved SolidsClient:Hazen and Sawyer, P.CDate:January 25, 2011

General Information:

2 samples were analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: FDOH
Pace Project No.: 3524641

Method: SM 2540D

Description: 2540D Total Suspended Solids
Client: Hazen and Sawyer, P.C
Date: January 25, 2011

General Information:

2 samples were analyzed for SM 2540D. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: FDOH
Pace Project No.: 3524641

Method: EPA 300.0

Description: 300.0 IC Anions

Client: Hazen and Sawyer, P.C

Date: January 25, 2011

General Information:

2 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Q: Sample held beyond the accepted holding time.

• UNSAT-IS3 (Lab ID: 3524641001)

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/8130

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3524702002,3524728001

J(M1): Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 159473)

- Orthophosphate as P
- MSD (Lab ID: 159474)
 - Orthophosphate as P

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: WETA/8130

1p: The recovery of the analyte in the CRDL standard (also known as the reporting limit verification) did not meet the acceptance criteria.

- BLANK (Lab ID: 159471)
 - Nitrite as N
 - Nitrate as N

REPORT OF LABORATORY ANALYSIS

Page 9 of 29

Project: FDOH
Pace Project No.: 3524641

Method:EPA 300.0Description:300.0 IC AnionsClient:Hazen and Sawyer, P.CDate:January 25, 2011

Analyte Comments:

QC Batch: WETA/8130

1p: The recovery of the analyte in the CRDL standard (also known as the reporting limit verification) did not meet the acceptance criteria

BLANK (Lab ID: 159471)Orthophosphate as P

2p: The sample was analyzed within hold for nitrate, however, the result was above the instrument calibration range and required a dilution. The dilution concentration confirmed the initial analysis, however, the analysis was outside the method hold criteria.

• UNSAT-IS3 (Lab ID: 3524641001)

• Nitrate as N

Project: FDOH
Pace Project No.: 3524641

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: Hazen and Sawyer, P.C
Date: January 25, 2011

General Information:

2 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: FDOH
Pace Project No.: 3524641

Method:EPA 350.1Description:350.1 AmmoniaClient:Hazen and Sawyer, P.CDate:January 25, 2011

General Information:

2 samples were analyzed for EPA 350.1. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: **FDOH** Pace Project No.: 3524641

Method: EPA 351.2

Description: 351.2 Total Kieldahl Nitrogen Client: Hazen and Sawyer, P.C Date: January 25, 2011

General Information:

2 samples were analyzed for EPA 351.2. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/8123

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3524680001

J(M1): Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS)

- MS (Lab ID: 159229)
 - Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: FDOH
Pace Project No.: 3524641

Method: EPA 365.4

Description:365.4 Phosphorus, TotalClient:Hazen and Sawyer, P.CDate:January 25, 2011

General Information:

2 samples were analyzed for EPA 365.4. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 365.4 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: **FDOH** Pace Project No.: 3524641

Method: **EPA 410.4** Description: 410.4 COD

Client: Hazen and Sawyer, P.C Date: January 25, 2011

General Information:

2 samples were analyzed for EPA 410.4. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/8276

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 3524641001

J(M1): Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 163023)
 - Chemical Oxygen Demand

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: FDOH Pace Project No.: 3524641

Sample: UNSAT-IS3	Lab ID: 3524641001	Collected	d: 01/11/11	08:20	Received: 01/	/11/11 11:11 Ma	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
9222D Fecal Coliform Tampa	Analytical Method: SM	9222D Prepa	aration Meth	od: SM	1 9222D			
Fecal Coliforms	1.0U CFU/100 mL	1.0	1.0	1	01/11/11 11:32	01/12/11 11:35		
2320B Alkalinity	Analytical Method: SM	2320B						
Alkalinity, Total as CaCO3	280 mg/L	5.0	5.0	1		01/12/11 17:55		
2540C Total Dissolved Solids	Analytical Method: SM	2540C						
Total Dissolved Solids	868 mg/L	10.0	10.0	1		01/13/11 09:32		
2540D Total Suspended Solids	Analytical Method: SM	2540D						
Total Suspended Solids	10.0 mg/L	5.0	5.0	1		01/13/11 09:14		
300.0 IC Anions	Analytical Method: EPA	300.0						
Nitrate as N Nitrite as N Orthophosphate as P	31.3 mg/L 8.6 mg/L 0.10U mg/L	0.25 0.10 0.20	0.12 0.050 0.10	5 2 2		01/14/11 02:22 01/12/11 12:02 01/12/11 12:02		2p,Q
300.0 IC Anions 28 Days	Analytical Method: EPA	300.0						
Sulfate	116 mg/L	10.0	5.0	2		01/12/11 12:02	14808-79-8	
350.1 Ammonia	Analytical Method: EPA	350.1						
Nitrogen, Ammonia	1.1 mg/L	0.050	0.020	1		01/14/11 12:54	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Method: EPA	351.2 Prepa	ration Meth	od: EP	A 351.2			
Nitrogen, Kjeldahl, Total	1.9 mg/L	0.50	0.25	1	01/12/11 09:30	01/13/11 12:54	7727-37-9	
365.4 Phosphorus, Total	Analytical Method: EPA	365.4 Prepa	ration Meth	od: EP	A 365.4			
Phosphorus, Total (as P)	0.050U mg/L	0.10	0.050	1	01/12/11 09:30	01/13/11 12:54	7723-14-0	
410.4 COD	Analytical Method: EPA	410.4						
Chemical Oxygen Demand	24.2 I mg/L	25.0	12.5	1		01/25/11 09:56		J(M1)

Date: 01/25/2011 01:53 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 16 of 29

ANALYTICAL RESULTS

Project: FDOH
Pace Project No.: 3524641

	Lab ID. 3	524641002	Collected	d: 01/11/11	08:30	Received: 01/	/11/11 11:11 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
9222D Fecal Coliform Tampa	Analytical Mo	222D Prepa	ration Meth	nod: SM	1 9222D				
Fecal Coliforms	1.0U CFU	J/100 mL	1.0	1.0	1	01/11/11 11:32	01/12/11 11:35		
2320B Alkalinity	Analytical Mo	ethod: SM 23	320B						
Alkalinity, Total as CaCO3	264 mg/	Ľ	5.0	5.0	1		01/12/11 18:02		
2540C Total Dissolved Solids	Analytical Mo	540C							
Total Dissolved Solids	637 mg/	L	5.0	5.0	1		01/13/11 09:32		
2540D Total Suspended Solids	Analytical Mo	540D							
Total Suspended Solids	5.0U mg/	L	5.0	5.0	1		01/13/11 09:14		
300.0 IC Anions	Analytical Mo	ethod: EPA 3	300.0						
Nitrate as N Nitrite as N Orthophosphate as P	0.050U mg/ 0.050U mg/ 3.3 mg/	L	0.10 0.10 0.20	0.050 0.050 0.10	2 2 2		01/12/11 12:14 01/12/11 12:14 01/12/11 12:14		
300.0 IC Anions 28 Days	Analytical Mo	ethod: EPA 3	300.0						
Sulfate	119 mg/	Ľ	10.0	5.0	2		01/12/11 12:14	14808-79-8	
350.1 Ammonia	Analytical Mo	ethod: EPA 3	350.1						
Nitrogen, Ammonia	0.052 mg/	L	0.050	0.020	1		01/14/11 12:58	7664-41-7	
351.2 Total Kjeldahl Nitrogen	Analytical Mo	ethod: EPA 3	351.2 Prepa	ration Meth	nod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	1.0 mg/	L	0.50	0.25	1	01/12/11 09:30	01/13/11 12:56	7727-37-9	
365.4 Phosphorus, Total	Analytical Mo	ethod: EPA 3	865.4 Prepa	ration Meth	nod: EP	A 365.4			
Phosphorus, Total (as P)	3.9 mg/	L	0.10	0.050	1	01/12/11 09:30	01/13/11 12:56	7723-14-0	
410.4 COD	Analytical Mo	ethod: EPA 4	110.4						
Chemical Oxygen Demand	29.5 mg/	L	25.0	12.5	1		01/25/11 09:56		

Date: 01/25/2011 01:53 PM

REPORT OF LABORATORY ANALYSIS

Page 17 of 29

Project: FDOH
Pace Project No.: 3524641

QC Batch: TAMP/2089 Analysis Method: SM 9222D

QC Batch Method: SM 9222D Analysis Description: 9222D MBIO Fecal Coliform Tampa

Associated Lab Samples: 3524641001, 3524641002

METHOD BLANK: 159216 Matrix: Water

Associated Lab Samples: 3524641001, 3524641002

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Fecal Coliforms CFU/100 mL 1.0U 1.0 01/12/11 11:35

Date: 01/25/2011 01:53 PM

REPORT OF LABORATORY ANALYSIS

Page 18 of 29

SM 2320B

2320B Alkalinity

Project: FDOH
Pace Project No.: 3524641

QC Batch: WET/6798 Analysis Method:
QC Batch Method: SM 2320B Analysis Description:

Associated Lab Samples: 3524641001, 3524641002

METHOD BLANK: 159337 Matrix: Water

Associated Lab Samples: 3524641001, 3524641002

Parameter Units Blank Reporting
Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L 5.0U 5.0 01/12/11 15:31

LABORATORY CONTROL SAMPLE: 159338

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 250 250 100 90-110

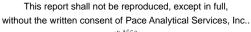
MATRIX SPIKE SAMPLE: 159340 3524583002 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 383 608 Alkalinity, Total as CaCO3 250 90 90-110 mg/L

MATRIX SPIKE SAMPLE: 159342

3524595003 Spike MS MS % Rec
Parameter Units Result Conc. Result % Rec Limits Qualifiers

Alkalinity, Total as CaCO3 mg/L 391 250 650 104 90-110

SAMPLE DUPLICATE: 159339 3524583002 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers Alkalinity, Total as CaCO3 383 377 2 20 mg/L


Alkalinity, Total as CaCO3 mg/L 383 377 2 20

SAMPLE DUPLICATE: 159341 3524595003 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers mg/L 391 Alkalinity, Total as CaCO3 513 27 20 J(D6)

Date: 01/25/2011 01:53 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 29

Qualifiers

QUALITY CONTROL DATA

Project: FDOH
Pace Project No.: 3524641

QC Batch: WET/6807 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 3524641001, 3524641002

METHOD BLANK: 159657 Matrix: Water

Associated Lab Samples: 3524641001, 3524641002

Blank Reporting
Parameter Units Result Limit Analyzed

Total Dissolved Solids mg/L 5.0U 5.0 01/13/11 09:29

LABORATORY CONTROL SAMPLE: 159658

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 300 298 90-110

SAMPLE DUPLICATE: 159659

3524669001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 338 3 20 **Total Dissolved Solids** 348 mg/L

SAMPLE DUPLICATE: 159660

Parameter Units Sesult Dup Max Result RPD Qualifiers
Total Dissolved Solids mg/L 1730 1670 4 20

Project: FDOH
Pace Project No.: 3524641

QC Batch: WET/6808 Analysis Method: SM 2540D

QC Batch Method: SM 2540D Analysis Description: 2540D Total Suspended Solids

Associated Lab Samples: 3524641001, 3524641002

METHOD BLANK: 159663 Matrix: Water

Associated Lab Samples: 3524641001, 3524641002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Suspended Solids mg/L 5.0U 5.0 01/13/11 09:14

LABORATORY CONTROL SAMPLE: 159664

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Suspended Solids** mg/L 80 85.0 106 90-110

SAMPLE DUPLICATE: 159665

Parameter Units Result Result RPD AND Qualifiers

Total Suspended Solids mg/L 5.0U 5.0U 20

SAMPLE DUPLICATE: 159666

3524641001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 10.0 Total Suspended Solids mg/L 9.0 11 20

Project: FDOH
Pace Project No.: 3524641

QC Batch: WETA/8130 Analysis Method: EPA 300.0
QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 3524641001, 3524641002

METHOD BLANK: 159471 Matrix: Water

Associated Lab Samples: 3524641001, 3524641002

		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
Nitrate as N	mg/L	0.025U	0.050	01/12/11 09:37	1p	
Nitrite as N	mg/L	0.025U	0.050	01/12/11 09:37	1p	
Orthophosphate as P	mg/L	0.050U	0.10	01/12/11 09:37	1p	

LABORATORY CONTROL SAMPLE:	159472					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Nitrate as N	mg/L		4.8	97	90-110	
Nitrite as N	mg/L	5	4.9	98	90-110	
Orthophosphate as P	mg/L	10	9.8	98	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 159473 159474												
			MS	MSD								
	35	524702002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrate as N	mg/L	0.025U	5	5	4.5	4.6	91	91	90-110	.3	20	
Nitrite as N	mg/L	0.025U	5	5	4.6	4.6	91	91	90-110	.05	20	
Orthophosphate as P	mg/L	0.050U	10	10	8.9	8.9	89	89	90-110	.3	20	J(M1)

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1594/5												
	35	524728001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrate as N	mg/L	0.025U	5	5	4.7	4.7	94	95	90-110	.08	20	
Nitrite as N	mg/L	0.025U	5	5	4.8	4.8	96	96	90-110	.05	20	
Orthophosphate as P	mg/L	0.58	10	10	10.0	10.0	94	95	90-110	.1	20	

Date: 01/25/2011 01:53 PM

REPORT OF LABORATORY ANALYSIS

Page 22 of 29

FDOH Project: Pace Project No.: 3524641

QC Batch: WETA/8132 Analysis Method: Analysis Description: EPA 300.0

QC Batch Method: EPA 300.0

300.0 IC Anions

Associated Lab Samples: 3524641001, 3524641002

METHOD BLANK: 159484

Associated Lab Samples:

3524641001, 3524641002

Blank

Reporting

Parameter

Units

Limit Result

Matrix: Water

Analyzed

Qualifiers

Sulfate

mg/L

2.5U

5.0 01/12/11 09:37

LABORATORY CONTROL SAMPLE: 159485

Parameter

Parameter

Parameter

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Sulfate

mg/L

Units

Units

mg/L

mg/L

Units

159487

MS

Result

48.7

47.6

90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

159486

MS MSD Spike Spike

50

MSD

Result

48.7

MS MSD % Rec % Rec

91

% Rec Limits

90-110

Max RPD RPD

20

.03

Qual

Qual

Sulfate

3524728001

Result

2.5U

3524702002

Result

3.4 I

159713

159714

50

MSD

Conc.

Spike

MS Result

MS % Rec

MSD % Rec

91

% Rec

Max RPD RPD

Sulfate

MS Spike Conc.

50

Conc.

Conc. 50

Result 46.4 46.4

MSD

92

Limits 92 90-110

.01

20

Date: 01/25/2011 01:53 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: FDOH
Pace Project No.: 3524641

QC Batch: WETA/8153 Analysis Method: EPA 350.1

QC Batch Method: EPA 350.1 Analysis Description: 350.1 Ammonia

Associated Lab Samples: 3524641001, 3524641002

METHOD BLANK: 160050 Matrix: Water

Associated Lab Samples: 3524641001, 3524641002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Spike

Nitrogen, Ammonia mg/L 0.020U 0.050 01/14/11 12:48

LABORATORY CONTROL SAMPLE: 160051

ParameterUnitsConc.Result% RecLimitsQualifiersNitrogen, Ammoniamg/L11.010490-110

MATRIX SPIKE SAMPLE: 160053

MS 3524641001 Spike MS % Rec Qualifiers Parameter Units Result Conc. Result % Rec Limits 1.1 2.1 101 Nitrogen, Ammonia 1 90-110 mg/L

LCS

LCS

% Rec

SAMPLE DUPLICATE: 160052

 Parameter
 Units
 Result Result Result
 RPD
 Max RPD
 Qualifiers

 Nitrogen, Ammonia
 mg/L
 1.1
 1.1
 1
 20

Project: FDOH
Pace Project No.: 3524641

QC Batch: WETA/8123
QC Batch Method: EPA 351.2

WETA/8123 Analysis Method: EPA 351.2 EPA 351.2 Analysis Description: 351.2 TKN

Associated Lab Samples: 3524641001, 3524641002

METHOD BLANK: 159226 Matrix: Water

Associated Lab Samples: 3524641001, 3524641002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Kjeldahl, Total mg/L 0.25U 0.50 01/13/11 12:31

LABORATORY CONTROL SAMPLE: 159227

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total mg/L 20 20.9 104 90-110

MATRIX SPIKE SAMPLE: 159229

3524680001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 3.1 Nitrogen, Kjeldahl, Total 20 25.6 113 90-110 J(M1) mg/L

SAMPLE DUPLICATE: 159228

3524680001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 3.1 Nitrogen, Kjeldahl, Total mg/L 3.0 2 20

Project: **FDOH** Pace Project No.: 3524641

QC Batch: WETA/8124

QC Batch Method: EPA 365.4 Analysis Method:

EPA 365.4

Analysis Description:

365.4 Phosphorus

Associated Lab Samples: 3524641001, 3524641002

METHOD BLANK: 159230

Matrix: Water

Associated Lab Samples:

3524641001, 3524641002

Blank

Reporting

Parameter

Result

Limit

Analyzed

Qualifiers

Phosphorus, Total (as P)

mg/L

Units

Units

Units

Units

0.050U

0.10 01/13/11 13:11

LABORATORY CONTROL SAMPLE: 159231

Parameter

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Phosphorus, Total (as P)

mg/L

mg/L

mg/L

0.50

0.50

100

90-110

MATRIX SPIKE SAMPLE:

159233

Parameter

3524680001 Result

Spike Conc.

4

0.49

4.0

MS Result

4.8

3

MS % Rec % Rec Limits

Qualifiers

Phosphorus, Total (as P)

3524680001 Result

Dup Result RPD

Max

107

20

80-120

Parameter Phosphorus, Total (as P)

SAMPLE DUPLICATE: 159232

RPD

Qualifiers

Date: 01/25/2011 01:53 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: **FDOH** Pace Project No.: 3524641

QC Batch: WETA/8276

QC Batch Method: EPA 410.4

Associated Lab Samples: 3524641001, 3524641002

METHOD BLANK: 163020

Associated Lab Samples:

3524641001, 3524641002

Blank Result Reporting Limit

Parameter Units

Matrix: Water

Analyzed

Qualifiers

Chemical Oxygen Demand

mg/L

12.5U

Analysis Method:

Analysis Description:

25.0 01/25/11 09:56

EPA 410.4

410.4 COD

LABORATORY CONTROL SAMPLE: 163021

Parameter Chemical Oxygen Demand

Units mg/L

Spike Conc. 500

LCS Result 498

LCS % Rec 100 % Rec Limits

Qualifiers

MATRIX SPIKE SAMPLE:

163023

Parameter

Units mg/L

mg/L

3524641001 Result 24.2 I Spike Conc. 500

MS Result

400

MS % Rec

75

20

90-110

% Rec Limits

Qualifiers

SAMPLE DUPLICATE: 163022

Chemical Oxygen Demand

Parameter Chemical Oxygen Demand

3524641001 Units Result

Dup Result 24.2 I 29.4

RPD

Max RPD

Qualifiers

90-110 J(M1)

Date: 01/25/2011 01:53 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 27 of 29

QUALIFIERS

Project: FDOH
Pace Project No.: 3524641

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-O	Pace Analytical Services - Ormond Beach
PASI-T	Pace Analytical Services - Tampa

ANALYTE QUALIFIERS

Date: 01/25/2011 01:53 PM

I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
1p	The recovery of the analyte in the CRDL standard (also known as the reporting limit verification) did not meet the
•	acceptance criteria

The sample was analyzed within hold for nitrate, however, the result was above the instrument calibration range and required a dilution. The dilution concentration confirmed the initial analysis, however, the analysis was outside the method hold criteria.

J(D6) Estimated Value. The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.

J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

Q Sample held beyond the accepted holding time.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: FDOH Pace Project No.: 3524641

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
3524641001	UNSAT-IS3	SM 9222D	TAMP/2088	SM 9222D	TAMP/2089
3524641002	UNSAT-IS4	SM 9222D	TAMP/2088	SM 9222D	TAMP/2089
3524641001	UNSAT-IS3	SM 2320B	WET/6798		
3524641002	UNSAT-IS4	SM 2320B	WET/6798		
3524641001	UNSAT-IS3	SM 2540C	WET/6807		
3524641002	UNSAT-IS4	SM 2540C	WET/6807		
3524641001	UNSAT-IS3	SM 2540D	WET/6808		
3524641002	UNSAT-IS4	SM 2540D	WET/6808		
3524641001	UNSAT-IS3	EPA 300.0	WETA/8130		
3524641002	UNSAT-IS4	EPA 300.0	WETA/8130		
3524641001	UNSAT-IS3	EPA 300.0	WETA/8132		
3524641002	UNSAT-IS4	EPA 300.0	WETA/8132		
3524641001	UNSAT-IS3	EPA 350.1	WETA/8153		
3524641002	UNSAT-IS4	EPA 350.1	WETA/8153		
3524641001	UNSAT-IS3	EPA 351.2	WETA/8123	EPA 351.2	WETA/8139
3524641002	UNSAT-IS4	EPA 351.2	WETA/8123	EPA 351.2	WETA/8139
3524641001	UNSAT-IS3	EPA 365.4	WETA/8124	EPA 365.4	WETA/8140
3524641002	UNSAT-IS4	EPA 365.4	WETA/8124	EPA 365.4	WETA/8140
3524641001	UNSAT-IS3	EPA 410.4	WETA/8276		
3524641002	UNSAT-IS4	EPA 410.4	WETA/8276		

Date: 01/25/2011 01:53 PM **REPORT OF LABORATORY ANALYSIS**

Company: Hate and

source Pale The

Copy To:

Report To:

Jose by

Section A
Required Client Information:

Address: 10007 /minut

and shing

Place of some

Email To: Tedebacks & Katty and story

Purchase Order No.:
Project Name:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Section C

Invoice Information

CLIENT: HAZSAW

Company Name:

ddress

ace Quote

TSU NPDES

RCRA

OTHER

GROUND WATER

DRINKING WATER

WO#:3524641

REGULATORY AGENCY Page: 455805 앜

Requested Due Date/TAT: Phone: 8()-CD-Cyapeax Section D Required Client Information (A-Z, 0-9 / ,-)
Sample IDs MUST BE UNIQUE HN SAT - ISY 1-1-153 SAMPLE ID ADDITIONAL COMMENTS Water
Waste Water
Product
Soil/Solid
Oil Wipe Air Tissue Other Drinking Water Matrix Codes
MATRIX / CODE ORIGINAL Project Number: 9788868 PWY PW 200 N۷ ¥ MATRIX CODE RELINQUISHED BY / AFFILIATION (see valid codes to left) SAMPLE TYPE (G=GRAB C=COMP) n n 1/W N からいって DATE COMPOSITE START Ham SAMPLER NAME AND SIGNATURE ٥٠:٠ ₹:30 Ħ COLLECTED PRINT Name of SAMPLER: SIGNATURE of SAMPLER: DATE COMPOSITE END/GRAB 1-11-1 1-11-11 1-7-11 DATE SAMPLE TEMP AT COLLECTION Reference: Pace Project Manager: 2200 # OF CONTAINERS 200 젊 Unpreserved H₂SO₄ Preservatives HNO₃ HCI 3 NaOH Na₂S₂O₃ ACCEPTED BY / AFFILIATION Methanol Other Analysis Test Y/N TOS, TSS, NO, NE, AL SU DATE Signed (MM/DD/YY): Requested Analysis Filtered (Y/N) COD, TKU FP 11 20 11 Site Location ーナー DATE STATE: ₹.000 7,00 11:11 ME 0.0 g,o Temp in °C Residual Chlorine (Y/N) Received on Pace Project No./ Lab I.D. Ice (Y/N) SAMPLE CONDITIONS Custody Sealed Cooler ζ (Y/N) Samples Intac (Y/N)

ITEM#

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

Pace Analytical Client Name: HAZS	AW Project # 3524641
Courier: Fed Ex UPS USPS Client Commercial	Pace B&B Other
Tracking #	
Custody Seal on Cooler/Box Present: yes no Seals	
Packing Material: Bubble Wrap Bubble Bags None	Other contents: JP 1/12
Thermometer Used L4 T-39 Type of ice: Wel	Blue None Secondary Review
Cooler Temperature (Actual) (Temp should be about	linitiale:
Receipt of samples satisfactory:	Rush TAT requested on COC:
If yes, then all conditions below were met:	If no, then mark box & describe issue (use comments area if necessary):
Chain of Custody Present	
Chain of Custody Filled Out	
Relinquished Signature & Sampler Name COC	
Samples Arrived within Hold Time	
Sufficient Volume	
Correct Containers Used	
Containers Intact	
Sample Labels match COC (sample IDs & date/time of collection)	
	No Labels: No Time/Date on Labels:
All containers needing preservation are found to be in compliance with EPA recommendation.	
No Headspace in VOA Vials (>6mm):	
Person Contacted: Date Comments/ Resolution (use back for additional comments):	/Time:
Project Manager Review:	Date: 01/12/201/
Finished Product I	nformation Only
F.P. Sample ID: Production Code: Date/Time Opened:	Size & Qty of Bottles Received
Number of Unopened Bottles Remaining:	x 500 mL x 250 mL x Other:
Extra Sample in Shed: Yes No	

Sample Condition Upon Receipt Form (SCUR)

Table Number: _