Florida HEALTH

Florida Onsite Sewage Nitrogen Reduction Strategies Study

Task B.16 B-HS6 PNRS Effluent Testing for FDOH Additives Rule

June 2014

In association with:

Otis Environmental Consultants, LLC

Florida Onsite Sewage Nitrogen Reduction Strategies Study

TASK B.16

B-HS6 PNRS Effluent Testing for FDOH Additives Rule

Prepared for:

Florida Department of Health Division of Disease Control and Health Protection Bureau of Environmental Health Onsite Sewage Programs 4042 Bald Cypress Way Bin #A-08 Tallahassee, FL 32399-1713

FDOH Contract CORCL

June 2014

Prepared by:

In Association With:

B-HS6 PNRS Effluent Testing for FDOH Additives Rule

Executive Summary

Effluent sampling and analyses were performed on the B-HS6 full-scale PNRS to evaluate the impact of expanded clay, elemental sulfur and lignocellulosic (a blended waste wood from AAA Tree Experts, Tallahassee, FL) media used in the system on effluent quality. Testing was done according to Florida's Additive Rule for Septic System Products established by the Florida Department of Health (FDOH). Each of these media were used in biofilters that enhance nitrogen removal in onsite wastewater treatment systems. Expanded clay is a porous media for aerobic biofilters, while elemental sulfur and lignocellu-losic materials are intended as reactive media in anoxic denitrifying biofilters.

Additives testing was conducted by performing chemical analyses and acute toxicity bioassays on effluent samples from the primary tank and Stage 2 biofilter that was actively operating at the passive nitrogen reduction system at home site B-HS6 in Wakulla County, Florida. Volatile organic compound (VOC) analyses were conducted using E.P.A. Methods 8260 and 504.1, and acute toxicity testing was performed by ninety-six hour bioassay with Cyprinella leedsi (Bannerfin Shiner) according to the E.P.A. Whole Effluent Toxicity (WET) protocol.

The concentrations of VOCs in both effluents were below Method Detection Limits for the majority of chemicals. None of the analytical results exceeded the Guidance Maximum Contaminant Level (GMCL) for VOCs established by the Florida Department of Health.

The primary tank (septic tank effluent) did exhibit toxicity by the WET protocol, with a Lethal Concentration 50 (LC50) of 13.2%. The Stage 2 biofilter effluent also exhibited toxicity by the WET protocol, as exhibited by LC50 of 56.1%. The Stage 2 effluent included contact with the following test media: expanded clay, lignocellulosic and elemental sulfur.

1.0 Background

1.1 Florida's Additive Rule for Septic System Products

Florida Department of Health has established specific testing and evaluation requirements for materials that are added to onsite wastewater systems in Florida (FDOH, 2013). Chapter 381.0065 (4) (m), Florida Statutes states: "No product sold in the state for use in onsite sewage treatment and disposal systems may contain any substance in concentrations or amounts that would interfere with or prevent the successful operation of such system, or that would cause discharges from such system to violate applicable water quality standards." The additives rule testing requirements generally include evaluation of volatile organic chemicals by U.S. E.P.A. Method 8260 and acute toxicity bioassay testing by the E.P.A. Whole Effluent Toxicity 96 hr. bioassay protocol (FDOH, 2013).

1.2 Media Evaluated

The B-HS6 system evaluated included three media: expanded clay, lignocellulosic material and elemental sulfur.

Expanded clay (Riverlite) is taken from a clay deposit, and calcining the clay at a temperature of approximately 2000°F in rotary kilns produces a structural grade lightweight aggregate used for concrete masonry (Big River, 2012). Riverlite has a unit weight of 48 lb/ft³ (Big River, 2012). Expanded clay is an excellent candidate for onsite wastewater treatment biofilters; they provide an excellent attachment surface for nitrifying microorganisms, significant sorption potential for ammonium ions and a high water retention. A number of studies have addressed the use of expanded clay for water, wastewater and stormwater treatment in various process configurations (Anderson et. al., 1998; Kietlinska and Renman 2005; Hinkle, Böhlke et al. 2008, Smith, 2006; Smith, 2011). Recent FDOH studies have also shown expanded clay to be highly effective as an unsaturated biofilter media for onsite wastewater treatment (Smith, 2009).

Lignocellulosic material is a structural component of woody plants and one of the most abundant biopolymers on earth. It is primarily composed of cellulose, hemicellulose and lignin. Cellulose is an organic compound with molecular formula (C6H10O5)n, a polysac-charide consisting of a linear chain of several hundred to over ten thousand $\beta(1\rightarrow 4)$ linked D-glucose units. Hemicellulose is a polysaccharide related to cellulose that comprises ca. 20% of the biomass of most plants. Hemicellulose, in contrast to cellulose, is derived from several sugars in addition to glucose, especially xylose. Lignin is a complex chemical and an integral part of the secondary cell walls of woody plants (Lebo et al.,2001). Lignin is

one of the most abundant organic polymers on Earth, exceeded only by cellulose, and constitutes from a quarter to a third of the dry mass of wood. As a biopolymer, lignin is unusual because of its heterogeneity and lack of a defined primary structure. Lignin is a cross-linked macromolecule composed of three types of substituted phenols (phenylpropanes) having guaiacyl, syringyl p-hydroxyphenyl and biphenyl nuclei, linked and polymerized through a variety of nonhydroxyl stable C-C and C-O-C bonds (Paul, and Clark, 1989). Its structure is based on the phenyl propanoid unit, which consists of an aromatic ring and 3-C side chain. Lignin fills the spaces in the cell wall between cellulose, hemicellulose, and pectin and is covalently linked to hemicellulose; it resembles a kind of phenolformaldehyde resin that acts like glue to hold the lignocellulose matrix together. The most commonly noted lignin function is the support through strengthening of wood (xylem cells) in trees (Wardrop, 1969). Lignin is generally associated with reduced digestibility of the overall plant biomass, which helps defend against pathogens and pests. As part of natural cycling, lignin degradation is facilitated by microorganisms including fungi and bacteria although the details of biodegradation are not well understood. Organic products of lignin degradation can be further processed by bacteria.

Southern Yellow Pine (SYP) is a collective term that refers to a group of coniferous species which are classified as yellow pine (as opposed to white pine) and which are native to the Southern United States. Pines are a common feature of the Florida landscape. There are seven species of pines that are native to Florida and three other commonly planted non-native species (Amy and Flinchum, (2011). They grow very well in the acidic soil found in the region. The varieties principally include Longleaf (Pinus palustris), Loblolly (Pinus taeda), Shortleaf (Pinus echinata), and Slash (Pinus elliotti) pine (Forest Products Laboratory, 1936). There are generally no fundamental differences among southern pines for lumber production and Longleaf and Slash pines have historically been responsible for 60% of the world's turpentine supply.

The use of lignocellulosic material has been generally recognized as a viable approach to engineered denitrification (Schipper et al., 2010a; Collins et al., 2010). Successful application of lignocellulosic materials as electron donor in passive denitrification systems has been reported in many studies (Cameron and Schipper, 2010; Elgood et al., 2010; Moorman et al., 2010; Oakley et al. 2010; Schipper et al., 2010b; Woli et al., 2010). Several studies have successfully applied pine based lignocellulosics in denitrification biofilters (Cameron and Schipper, 2010; Robertson, 2010; Schipper et al., 2010; Noorman et al., 2010; Difference et al., 2010; Woli et al., 2010).

Elemental sulfur is a non-metallic element on the periodic chart, with an atomic number of 16 and atomic weight of 32.065. It is known as Brimstone in its natural state. It is insoluble in water, tasteless and odorless, and often occurs as a light yellow solid. Sulfur is distributed widely over the earth's surface and occurs in both combined and free states. A significant amount of the world's supply of sulfur for human uses formerly came from sulfur-bearing limestone deposits found in the Gulf Coast region of North America.

Currently, elemental sulfur is produced primarily through its recovery from the hydrogen sulfide (H2S) in "sour" natural gas and by refining of petroleum (Claus process). The rhombic structure is the most commonly found sulfur form and consists of eight sulfur atoms (S8) arranged in a puckered-ring structure. Rhombic elemental sulfur has a molecular weight of 256.50 Da, a specific gravity of 2.07 at 70°F. The rhombic structure is the stable crystalline form at one atmosphere pressure and temperature less than 95.4°C, while the monoclinic crystalline structure is thermodynamically dominant from 95.4°C up to the melt temperature of 118.9°C. Elemental sulfur is not readily wetted or dissolved by water.

Numerous studies have addressed the use of elemental sulfur for denitrification in laboratory and field studies in a variety of biofilter configurations (Aoi et al., (2005); Batchelor et al., 1978; Bisogni et al., 1977; Darbi et al., 2003b; Darbi et al., 2002; Darbi et al., 2003a; Flere and Zhang, 1998; Furumai et al., 1996; Hasegawa and Hanaki, 2001; Hwang et al., 2005; Kanter et al., 1998; Kim et al., 2004; Kim and Bae, 2000; Kim et al., 2003; Koenig and Liu, 2002; Koenig and Liu, 2004; Koenig et al., 2005; Kuai and Verstraete, 1999; Lampe and Zhang, 1996; Li et al., 2009; Moon et al., 2004; Moon et al., 2006; Moon et al., 2008; Nugroho et al., 2002; Oh et al., 2002; Oh et al., 2001; Park et al., 2002; Shan and Zhang, 1998; Sierra-Alvarez et al., 2007; Soares, 2002; Tanaka et al., 2007; Wang et al., 2005; Yamamoto-Ikemoto and Komori, 2003; Zeng and Zhang, 2005; Zhang, 2002; Zhang, 2004; Zhang and Lampe, 1999; Zhang and Shan, 1999). Recently, elemental sulfur was shown to be highly effective in supporting onsite wastewater denitrification in saturated anoxic biofilters (Smith, 2009).

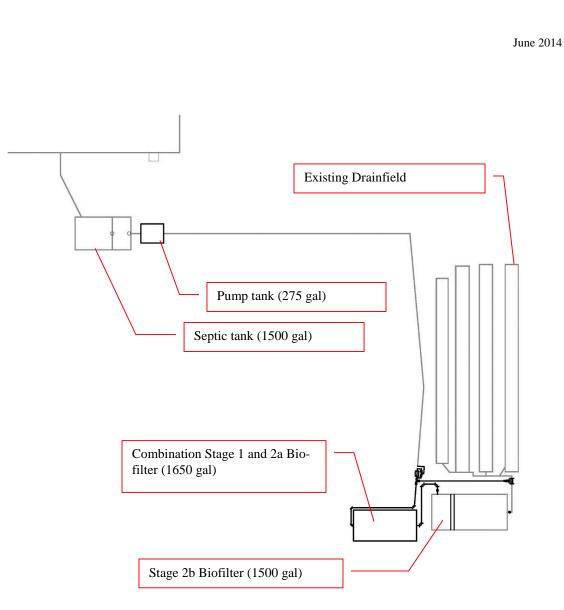
1.3 Known and Expected Reactions

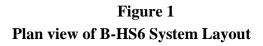
Expanded clay serves as a support media for microorganisms that catalyze many types of biochemical reactions without necessarily participating directly in them. Lignocellulosic media is expected to degrade through hydrolytic reactions which may be enhanced by microbial processes, thereby releasing organic carbon which may undergo possible subsequent reactions to produce labile organic carbon compounds that can be used by heterotrophic denitrifying microorganisms. Elemental sulfur is expected to undergo oxidative dissolution catalyzed by autotrophic microbial processes when external electron donors are present, including molecular oxygen, nitrate, and nitrite.

2.0 TestingMethods

2.1 Source of Media

Expanded clay media was purchased from Big River Industries, Inc., Irwinville, LA in Riverlite G 1/4 and 3/16 size gradations, which were used directly in the biofilters. The expanded clay has a bulk density of approximately 48 lbs/ft³. A Material Safety Data Sheet (MSDS) for Riverlite is included in Appendix A. Lignocellulosic material was procured in November 2013 from a blended waste wood facility AAA Tree Experts, Tallahassee, FL. The material was a mulch material from the internal sections of wood waste and did not include bark, small limbs, and leaf components. A Material Safety Data Sheet (MSDS) for lignocellulosic material is included in Appendix B. Pastille elemental sulfur was supplied by CoreAgri, Arroya Grande, CA. The ES99 material has a bulk density of 76 lbs/ft³ and a minimum elemental sulfur content of 99.5%. The MSDS for ES99 pastille sulfur is included in Appendix C.


2.2 Biofilter Configuration and Sample Collection


The nitrogen reducing onsite treatment system for the single family residence was installed in November 2013. Design and construction details were presented previously in the Task B.6 document. Figure 1 is a system schematic showing the system components and layout of the installation. The PNRS system consists of a 1,500 gallon dual chamber concrete primary tank; 275 gallon concrete pump tank; 1,650 gallon concrete tank Stage 1 unsaturated media filter; and 1,500 gallon concrete Stage 2 saturated media biofilter. The treated effluent is discharged into the soil via the existing drainfield (standard trenches).

The PNRS system had been operating for approximately thirty-one weeks when samples were collected for additives testing. A sample of septic tank effluent (STE) was collected for chemical analysis. Household wastewater enters the primary tank and exits as septic tank effluent through an effluent filter screen into the pump tank. The effluent was sampled from a sample port on the pump discharge line which is referred to as primary effluent or STE. Samples are representative of the whole household wastewater and represent the influent to the remainder of the onsite nitrogen reduction system. The Stage 2 biofilter effluent was collected from the second chamber of the Stage 2 biofilter sampled approximately 1 foot below the surface of the effluent baffle tee. This sample location is after

passage through the expanded clay media within the Stage 1 biofilter, lignocellulosic media underlying the expanded clay media, and the sulfur media in the Stage 2 biofilter. It is the final effluent from the treatment system prior to being discharged to the soil infiltration system, or drainfield.

Biofilter characteristics are listed in Table 1. Samples were collected into specific sample containers for chemical and bioassay analysis, immediately placed in coolers on ice, and transported to laboratories in Oldsmar and Sarasota, FL. As a part of the Passive Nitrogen Removal Study, a water quality monitoring event was conducted on June 23, 2014. The water quality data (Table 2) represent conditions when the bioassay samples were collected and can be used to provide insight into biofilter performance when the effluent samples were collected for the Additives Testing.

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS6 PNRS EFFLUENT TESTING FOR FDOH ADDITIVES RULE PAGE 1-7 HAZEN AND SAWYER, P.C.

Passive Nitrogen Reduction System Components							
	Influent	Tank	Surface	Media	Media		
		Volume	Area		Saturated or		
		(gal)	(ft ²)		Unsaturated		
Primary Tank	Wastewater from home	1,500	67	none	N/A		
Pump tank	Primary tank effluent	275	13	none	N/A		
Stage 1 Biofilter and Stage 2a Biofilter	Primary tank effluent	1,650	67	30" Riverlite 1/4 12" Lignocellulosic	-Riverlite Unsaturated -Lignocellu- losic bottom 4" saturated		
Stage 2b Biofilter, upflow	Stage 2a effluent	~500 (1,500 total)	~20 (61 total)	12" Elemental sulfur (90%) & oyster shell mixture (10%)	Saturated		

Table 1Passive Nitrogen Reduction System Components

Biofilter Effluent Water Quality June 23, 2014					
Parameter	Primary	Stage 2			
	tank (STE)	effluent			
Temperature, °C	24.2	24.1			
Dissolved oxygen, mg/L	0.23	0.34			
Specific conductance, umhos/cm	1278	1085			
рН	7.13	6.60			
Total alkalinity, mg/L as CaCO ₃	530	350			
Total suspended solids, mg/L	16	2			
Volatile suspended solids, mg/L	15	2			
Carbonaceous five day biochemical oxygen demand, mg/L	61	5			
Chemical oxygen demand, mg/L	200	58			
Total kjeldahl nitrogen, mg/L	7.4 ¹	5.9			
Ammonia nitrogen, mg/L ¹	95 ¹	4.9			
Nitrate nitrogen, mg/L	0.01	0.01			
Nitrite nitrogen, mg/L	0.01	0.01			
Sulfate, mg/L	6.9	140			
Sulfide, mg/L	4.9	2.2			
Hydrogen sulfide, unionized, mg/L	2.2	1.6			
Total phosphorus, mg/L	6.3	3.6			
Orthophosphate phosphorus, mg/L	6.3	2.5			
Fecal coliform, Ct/100 mL	600,000	1000			
e-coli, Ct/100 mL	580,000	1000			

Table 2Biofilter Effluent Water Quality June 23, 2014

¹Ammonia N and TKN values are likely an analytical error and have been requested to be re-run by the laboratory.

2.3 Chemical Analyses

Chemical analyses were conducted by Southern Analytical Laboratories Inc., 110 Bayview Boulevard, Oldsmar, Florida. Southern Analytical Laboratory, Inc. is NELAP accredited through the Florida Department of Health. Florida's Additive Rule for Septic System Products specifies that E.P.A. Method 8260 be used to analyze for volatile organic chemicals.

The organic chemicals quantified by Method 8260 are listed in Table 3 along with Guidance Maximum Contaminant Levels (MCLs) established by FDOH and Method Detection Limits (MDLs). E.P.A. Method 504.1 was additionally employed to achieve lower MDLs for the two chemicals listed in Table 4. Analytical MDLs were less than the FDOH Guidance Maximum Contaminant Levels (MCLs) for all chemicals.

June 2014

	Guidance MCLs and Method Detection Limits for E.P.A. 8260 Parameters						
#	Chemical Parameter (EPA 8260)	CAS #	FDOH VOC Guidance MCL, ug/L ¹	MDL, ug/L			
1	1,1,1,2-Tetrachloroethane	630-20-6	1	0.5			
2	1,1,1-Trichloroethane	71-55-6	200	0.5			
3	1,1,2,2-Tetrachloroethane	79-34-5	0.2	0.18			
4	1,1,2-Trichloroethane	79-00-5	5	0.5			
5	1,1-Dichloroethane	75-34-3	700	0.5			
6	1,1-Dichloroethene (Vinylidene Chloride)	75-35-4	7	0.5			
7	1,1-Dichloropropene	563-58-6	1	0.5			
8	1,2,3-Trichlorobenzene	87-61-6	70	0.5			
9	1,2,3-Trichloropropane	96-18-4	42	0.36			
10	1,2,4-Trichlorobenzene	120-82-1	70	0.5			
11	1,2,4-Trimethylbenzene	95-63-6	10	0.5			
12	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	0.2	0.3			
13	1,2-Dibromoethane (EDB,Ethylene dibromide)	106-93-4	0.02	0.2			
14	1,2-Dichlorobenzene (o-Dichlorobenzene)	95-50-1	600	0.5			
15	1,2-Dichloroethane (Ethylene dichloride)	107-06-2	3	0.5			
16	1,2-Dichloropropane	78-87-5	5	0.5			
17	1,3,5-Trimethylbenzene	108-67-8	10	0.5			
18	1,3-Dichlorobenzene (m-Dichlorobenzene)	541-73-1	10	0.5			
19	1,4-Dichlorobenzene (p-Dichlorobenzene)	106-46-7	75	0.5			
20	2,2-Dichloropropane	594-20-7	5	0.5			
21	2-Butanone (Methyl ethyl ketone) (MEK)	78-93-3	4200	5			
22	2-Chloroethyl Vinyl Ether	110-75-8	1	0.5			
23	o-Chlorotoluene	95-49-8	140	0.5			
24	Hexachlorobutadiene	87-68-3	0.5	0.5			
25	p-Chlorotoluene	106-43-4	140	0.5			
26	4-Isopropyltoluene (p-Cymene)	99-87-6	70	0.5			
27	4-Methyl-2-pentanone (Methyl isobutyl ketone) [MIBK]	108-10-1	350	5			
28	Acetone	67-64-1	700	5			
29	Benzene	71-43-2	1	0.5			
30	Bromobenzene	108-86-1		0.5			
31	Bromochloromethane	74-97-5	91	0.5			
32	Bromodichloromethane	75-27-4	0.6	0.27			
33	Bromoform	75-25-2	4	0.5			
34	Bromomethane (Methyl bromide)	74-83-9	9.8	0.5			
35	Carbon disulfide	75-15-0	700	0.5			
36	Carbon Tetrachloride (Tetrachloromethane)	56-23-5	3	0.5			
37	Chlorobenzene	108-90-7	100	0.5			
38	Chloroethane (Ethyl chloride)	75-00-3	12	0.5			
39	Chloroform	67-66-3	70	0.5			
40	Chloromethane (Methyl chloride)	74-87-3	2.7	0.62			

Table 3 Guidance MCI s and Method Detection Limits for F P A 8260 Parameters

#	Chemical Parameter (EPA 8260)	CAS #	FDOH VOC Guidance MCL, ug/L ¹	MDL, ug/L
41	cis-1,2-Dichloroethene	156-59-2	70	0.5
42	cis-1,3-Dichloropropene (DCP, Telone)	10061-02-5	1	0.25
43	Dibromochloromethane	124-48-1	0.4	0.26
44	Dibromomethane	74-95-3		0.5
45	Dichlorodifluoromethane (CFC 12)	75-71-8	1400	0.5
46	Ethylbenzene	100-41-4	30	0.5
47	Isopropylbenzene (Cumene)	98-82-8	0.8	0.5
48	m,p-Xylenes	1330-20-7	20	0.5
49	Methylene Chloride (Dichloromethane)	75-09-2	5	2.5
50	Methyl-tert-Butyl-Ether (MTBE)	1634-04-4	20	0.5
51	Naphthalene	91-20-3	14	0.5
52	n-Butyl Benzene	104-51-8	280	0.5
53	n-Propyl Benzene	103-65-1	280	0.5
54	o-Xylene	95-47-6	20	0.5
55	sec-Butylbenzene	135-98-8	280	0.5
56	Styrene (Vinyl benzene)	100-42-5	100	0.5
57	tert-Butylbenzene	98-06-6	280	0.5
58	Tetrachloroethene	127-18-4	3	0.5
59	Toluene	108-88-3	40	0.5
60	trans-1,2-Dichloroethene	156-60-5	100	0.5
61	trans-1,3-Dichloropropene	10061-01-5	0.4	0.25
62	Trichloroethene (TCE)	79-01-6	3	0.5
63	Trichlorofluoromethane (CFC 11)	75-69-4	2100	0.5
64	Vinyl chloride	75-01-4	1	0.5
65	Xylenes (Total)	1330-20-07	20	0.5
66	2-Hexanone	591-78-6		2.1
67	Acrylonitrile	107-13-1		1.3
68	lodomethane	74-88-4		0.2
69	trans-1,4-Dichloro-2-butene	110-57-6		0.3
70	Vinyl acetate	108-05-4		0.4

Table 3 (con't) Guidance MCLs and Method Detection Limits for E.P.A. 8260 Parameters

¹Provided by Sonia Cruz, FDOH

Table 4					
Guidance MCLs and Method Detection Limits for E.P.A. 504.1 Parameters					
		FDOH VOC			

#	Chemical Parameter (EPA 504.1)	CAS #	Guidance MCL, ug/L ¹	MDL, ug/L
71	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	0.2	0.0048 - 0.0050
72	1,2-Dibromoethane (EDB,Ethylene dibromide)	106-93-4	0.02	0.0061 - 0.0063
1D,	ovided by Senia Cruz, EDOH			

¹Provided by Sonia Cruz, FDOH

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS6 PNRS EFFLUENT TESTING FOR FDOH ADDITIVES RULE ٦

...

2.4 Acute Toxicity Bioassays

Acute toxicity bioassays were conducted by Marinco Bioassay Laboratory, Inc., 4569 Samual Street, Sarasota, Florida. Marinco Bioassay Laboratory, Inc. is NELAP accredited through the Florida Department of Health. The bioassay tests followed standard protocols for whole effluent toxicity testing (U.S. Environmental Protection Agency, 2002). Ten day old *Cyprinella leedsi* (Bannerfin Shiner) were the sensitive test organisms used in the bioassays (Figure 2).

Figure 2 Cyprinella leedsi

3.0 Results and Discussion

3.1 Chemical Analyses

The concentrations of VOCs in both effluents are shown in Table 5. VOCs were below Method Detection Limits for the majority of chemicals. A full laboratory report of VOC analytical results is included in Appendix D. The reported VOC analytical results reported for both effluents show that none exceeded the Guidance Maximum Contaminant Level (GMCL) for VOCs established by the Florida Department of Health.

	Effluent Analyte Concentrations and	d FDOH Guidan	ce Level	S		
#	Chemical	CAS #	FDOH	Effluent		
	Parameter		Guid-		ntration	
			ance		′L) ^{1,2}	
			MCL,	Pri-	Stage	
			ug/L	mary	2	
				Tank	effluent	
				(STE)		
1	1,1,1,2-Tetrachloroethane	630-20-6	1	0.2	0.2	
2	1,1,1-Trichloroethane	71-55-6	200	0.2	0.2	
3	1,1,2,2-Tetrachloroethane	79-34-5	0.2	0.2	0.2	
4	1,1,2-Trichloroethane	79-00-5	5	0.2	0.2	
5	1,1-Dichloroethane	75-34-3	700	0.2	0.2	
6	1,1-Dichloroethene (Vinylidene Chloride)	75-35-4	7	0.2	0.2	
7	1,1-Dichloropropene	563-58-6	1	0.2	0.2	
8	1,2,3-Trichlorobenzene	87-61-6	70	0.2	0.2	
9	1,2,3-Trichloropropane	96-18-4	42	0.4	0.4	
10	1,2,4-Trichlorobenzene	120-82-1	70	0.3	0.3	
11	1,2,4-Trimethylbenzene	95-63-6	10	0.1	0.1	
12	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	0.2	0.3	0.3	
13	1,2-Dibromoethane (EDB,Ethylene dibromide)	106-93-4	0.02	0.2	0.2	
14	1,2-Dichlorobenzene (o-Dichlorobenzene)	95-50-1	600	0.1	0.1	
15	1,2-Dichloroethane (Ethylene dichloride)	107-06-2	3	0.1	0.1	
16	1,2-Dichloropropane	78-87-5	5	0.2	0.2	
17	1,3,5-Trimethylbenzene	108-67-8	10	0.1	0.1	
18	1,3-Dichlorobenzene (m-Dichlorobenzene)	541-73-1	10	0.07	0.07	
19	1,4-Dichlorobenzene (p-Dichlorobenzene)	106-46-7	75	0.2	0.2	
20	2,2-Dichloropropane	594-20-7	5	0.3	0.3	
21	2-Butanone (Methyl ethyl ketone) (MEK)	78-93-3	4200	6.8	7.2	
22	2-Chloroethyl Vinyl Ether	110-75-8	1	0.5	0.5	
23	o-Chlorotoluene	95-49-8	140	0.1	0.1	
24	Hexachlorobutadiene	87-68-3	0.5	0.4	0.4	
25	p-Chlorotoluene	106-43-4	140	0.1	0.1	
26	4-Isopropyltoluene (p-Cymene)	99-87-6	70	0.2	1.2	
	4-Methyl-2-pentanone (Methyl isobutyl ketone)	100 10 1	250			
27	[MIBK]	108-10-1	350	2.6	2.6	
28	Acetone	67-64-1	700	41	6.7	
29	Benzene	71-43-2	1	0.1	0.1	
30	Bromobenzene	108-86-1		0.2	0.2	
31	Bromochloromethane	74-97-5	91	0.1	0.1	
32	Bromodichloromethane	75-27-4	0.6	0.2	0.2	
33	Bromoform	75-25-2	4	0.2	0.2	
34	Bromomethane (Methyl bromide)	74-83-9	9.8	0.4	0.4	
35	Carbon disulfide	75-15-0	700	0.2	0.8	
36	Carbon Tetrachloride (Tetrachloromethane)	56-23-5	3	0.2	0.2	
37	Chlorobenzene	108-90-7	100	0.1	0.1	
38	Chloroethane (Ethyl chloride)	75-00-3	12	0.4	0.4	
39	Chloroform	67-66-3	70	0.2	0.2	

Table 5 Effluent Analyte Concentrations and FDOH Guidance Levels

#	Chemical	CAS #	FDOH	E ffi	uent
#	Parameter	UA3 #	Guid-		ntration
	raiameter		ance		(L) ^{1,2}
			MCL,	Pri-	Stage
			ug/L	mary	2
			ug/∟	Tank	effluent
				(STE)	omaoni
40	Chloromethane (Methyl chloride)	74-87-3	2.7	0.4	0.4
41	cis-1,2-Dichloroethene	156-59-2	70	0.09	0.09
42	cis-1,3-Dichloropropene (DCP, Telone)	10061-02-5	1	0.2	0.2
43	Dibromochloromethane	124-48-1	0.4	0.1	0.1
44	Dibromomethane	74-95-3		0.2	0.2
45	Dichlorodifluoromethane (CFC 12)	75-71-8	1400	0.5	0.5
46	Ethylbenzene	100-41-4	30	0.08	0.08
47	Isopropylbenzene (Cumene)	98-82-8	0.8	0.1	0.1
48	m,p-Xylenes	1330-20-7	20	0.2	0.2
49	Methylene Chloride (Dichloromethane)	75-09-2	5	0.2	0.2
50	Methyl-tert-Butyl-Ether (MTBE)	1634-04-4	20	0.2	0.2
51	Naphthalene	91-20-3	14	0.2	0.2
52	n-Butyl Benzene	104-51-8	280	0.2	0.2
53	n-Propyl Benzene	103-65-1	280	0.1	0.1
54	o-Xylene	95-47-6	20	0.2	0.2
55	sec-Butylbenzene	135-98-8	280	0.2	0.2
56	Styrene (Vinyl benzene)	100-42-5	100	0.05	0.05
57	tert-Butylbenzene	98-06-6	280	0.1	0.1
58	Tetrachloroethene	127-18-4	3	0.1	0.1
59	Toluene	108-88-3	40	5.7	3.5
60	trans-1,2-Dichloroethene	156-60-5	100	0.2	0.2
61	trans-1,3-Dichloropropene	10061-01-5	0.4	0.1	0.1
62	Trichloroethene (TCE)	79-01-6	3	0.2	0.2
63	Trichlorofluoromethane (CFC 11)	75-69-4	2100	0.2	0.2
64	Vinyl chloride	75-01-4	1	0.3	0.3
65	Xylenes (Total)	1330-20-07	20	0.1	0.1
66	2-Hexanone	591-78-6		2.1	2.1
67	Acrylonitrile	107-13-1		1.3	1.3
68	lodomethane	74-88-4		0.2	0.2
69	trans-1,4-Dichloro-2-butene	110-57-6		0.3	0.3
70	Vinyl acetate	108-05-4			
	E.P.A. 504.1 Para				
71	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	0.2	0.0052	0.0052
72	1,2-Dibromoethane (EDB,Ethylene dibromide)	106-93-4	0.02	0.0052	0.0052

¹Gray-shaded data points indicate values below method detection level (mdl), mdl value used for statistical analyses. ²Yellow-shaded data points indicate the reported value is between the laboratory method detection limit and the laboratory practical quantitation limit, value used for statistical analysis.

3.2 Acute Toxicity Bioassays

Results of acute bioassay testing with *Cyprinella leedsi* are summarized in Table 6. A full laboratory report of acute bioassay testing is included in Appendix E. The primary tank (septic tank effluent) did exhibit toxicity by the WET protocol, with a Lethal Concentration

50 (LC50) of 13.2%. The Stage 2 biofilter effluent also exhibited toxicity by the WET protocol, as exhibited by Lethal Concentration 50 (LC50) of 56.1%.

Acute Bioassay Results with Cyprinella leedsi					
Biofilter Effluent LC 50					
BHS6-STE	13.2%				
BHS6-ST2 56.1%					

Table 6

Whole Effluent Toxicity Test Permit requirement of LC50 > 100%

4.0 Summary

Testing was conducted on the full-scale PNRS at site B-HS6 to evaluate expanded clay, elemental sulfur and lignocellulosic (a blended waste wood from AAA Tree Experts, Tallahassee, FL) media on effluent quality. Testing was done according to Florida's Additive Rule For Septic System Products established by the Florida Department of Health (FDOH). Each material is a media for biofilters that enhance nitrogen removal in onsite wastewater treatment systems. Expanded clay is a porous media for aerobic biofilters, while elemental sulfur and lignocellulosic materials are intended as reactive media in anoxic denitrifying biofilters. Additives testing was conducted by performing chemical analyses and acute toxicity bioassays on effluent samples from the primary tank and Stage 2 biofilter that was actively operating at the passive nitrogen reduction system at home site B-HS6 in Wakulla County, Florida.

Analysis of volatile organic compounds (VOCs) employed E.P.A. Methods 8260 and 504.1. The VOC concentrations were below Method Detection Limits for the majority of chemicals in both effluents. None of the analytical results exceeded the Guidance Maximum Contaminant Level (GMCL) for VOCs established by the Florida Department of Health.

Acute toxicity testing was performed by ninety-six hour bioassays using Cyprinella leedsi (Bannerfin Shiner) according to the E.P.A. Whole Effluent Toxicity (WET) protocol. The primary tank (septic tank effluent) did exhibit toxicity by the WET protocol, with a Lethal Concentration 50 (LC50) of 13.2%. The Stage 2 biofilter effluent also exhibited toxicity by the WET protocol, as exhibited by Lethal Concentration 50 (LC50) of 56.1%. However, effluent from the PNRS exhibited a reduction in toxicity compared to the primary effluent.

5.0 References

- Aoi,Y., Y. Shiramasa, E. Kakimoto, S. Tsuneda, A. Hirate, and T. Nagamune (2005) Single-stage autotrophic nitrogen-removal process using a composite matrix immobilizing nitrifying and sulfur-denitrifying bacteria. Applied Microbiology and Biotechnology, 68: 124-130.
- Amy, N. and D. Flinchum (2011). Common Pines of Florida. Institute of Food and Agriculture Science Extension, FOR21, University of Florida, Gainesville, FL. <u>http://edis.ifas.ufl.edu/pdffiles/FR/FR00300.pdf</u>
- Anderson, D. L., M.B. Tyl, R.J. Otis, T.G. Mayer, and K.M. Sherman. 1998. Onsite Wastewater Nutrient Reduction Systems (OWNRS) for Nutrient Sensitive Environments. <u>In</u>: On-Site Wastewater Treatment, Vol. 8. D. M. Sievers, Ed. ASAE Publ. 03-98, American Society of Agricultural Engineers, St. Joseph, MI. pp. 436-445.
- Batchelor, B. and Lawrence, A. (1978) Autotrophic denitrification using elemental sulfur. J. Water Pollut. Control Fed, 50: 1986-2001.
- Bertrand-Krajewski, J. -L.; Lefebvre, M.; Barker, J. (1997) Ammonia Removal and Discharges During Storm Events: Integrated Approach for a Small WWTP and Associated CSOs. *Water Sci. Technol.*, **36(8-9)**, 229–234.
- Big River Industries (2012) Riverlite[®] MSDS Sheet, LA Division. <u>http://www.bigriver-industries.com</u>.
- Bisogni, J., J.J. and Driscoll, J., C.T. (1977) Denitrification Using Thiosulfate and Sulfide. Journal of Environmental Engineering, 103(EE4): 593-604.
- Cameron, S.G., Schipper, L.A. (2010) Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds. Ecological Engineering 36, 1588-1595.
- Celik, M.; Ozdemir, B.; Turan, M.; Koyuncu, I.; Atesok, G.; Sarikaya, H. (2001) Removal of Ammonia By Natural Clay Minerals Using Fixed and Fluidised Bed Column Reactors. *Water Sci. Technol.*, **1**, 81–88.
- Collins, K.A., Lawrence, T.J., Stander, E.K., Jontos, R.J., Kaushal, S.S., Newcomer, T.A., Grimm, N.B., Cole Ekberg, M.L. (2010) Opportunities and challenges for managing nitrogen in urban stormwater: A review and synthesis. Ecological Engineering 36, 15071519.
- Darbi, A., Viraraghavan, T., Butler, R. and Corkal, D. (2002) Batch studies on nitrate removal from potable water. Water SA, 28(3).
- Darbi, A., Viraraghavan, T., Butler, R. and Corkal, D. (2003a) Pilot-Scale Evaluation of Select Nitrate Removal Technologies. Journal of Environmental Science and Health Part A— Toxic/Hazardous Substances & Environmental Engineering, A38(9): 1703-1715.

- Darbi, A. and Viraraghavan, T. (2003b) A Kinetic Model for Autotrophic Denitrification using Sulphur:Limestone Reactors. Water Qual. Res. J. Canada, 38(1): 183-193.
- Elgood, Z., Robertson, W.D., Schiff, S.L., Elgood, R. (2010) Nitrate removal and greenhouse gas in a stream-bed denitrifying bioreactor. Ecological Engineering 36, 1575-1580.
- Flere, J. and Zhang, T. (1998) Sulfur-Based Autotrophic Denitrification Pond Systems for In-Situ Remediation if Nitrate-Contaminated Surface Water. Water Science and Technology, 38(1): 15-22.
- Florida Department of Health (2013) *Florida's Additive Rule For Septic System Products.<u>http://www.doh.state.fl.us/environment/ostds/additives/additives.html</u>, Florida Department of Health Onsite Sewage Program, Tallahassee, Florida.*
- <u>Forest Products Laboratory (1936).</u> Southern Yellow Pine, Technical Note 214, United States Forest Service, Madison, Wisconsin.
- Furumai, H., Tagui, H. and Fujita, K. (1996). Effects of pH and alkalinity on sulfurdenitrification in a biological granular filter. Water Science and Technology, 34(1-2): 355-362.
- Haneke, K. (2002) Turpentine (Turpentine Oil, Wood Turpentine, Sulfate Turpentine, Sulfite Turpentine) [8006-64-2] Review of Toxicological Literature. *Prepared for* National Institute of Research, Triangle Park, North Carolina 27709, Contract No. N01-ES-65402, February 2002.
- Hasegawa, K. and Hanaki, K. (2001) Nitrous oxide and nitric oxide emissions during sulfur denitrification in soil-water system. Advances in Water and Wastewater Treatment Technology. Molecular Technology, Nutrient Removal, Sludge Reduction and Environmental Health. : 185-196.
- Hazen and Sawyer (2009) Passive Nitrogen Removal Study II Quality Assurance Project Plan Final Report, November 2009, Revised and Amended June 2010, Florida Onsite Sewage Nitrogen Reduction Strategies Study Task A.15, submitted to Florida Department of Health, Tallahassee, Florida.
- Hinkle, S. R., J. K. Böhlke, et al. (2008). "Mass balance and isotope effects during nitrogen transport through septic tank systems with packed-bed (sand) filters." <u>Science of The Total Environment</u> 407(1): 324-332.
- Howard, P. (1991). Handbook of Environmental Fate and Exposure Data for Organic Chemicals. CRC Press, Boca Raton, FL.
- Hwang, Y., Kim, C. and Choo, I. (2005) Simultaneous Nitrification/Denitrification in a Single Reactor using Ciliated Columns Packed with Granular Sulfur. Water Qual Res. J. Canada, 40(1): 91-96.
- Jenssen, P.D., Krogstad, T., Paruch, A.M., Mæhlum, T., Adam, K., Arias, C.A., Heistad, A., Jonsson, L., Hellström, D., Brix, H., Yli-Halla, M., Vråle, L., Valve,

June 2014

M. (2010) Filter bed systems treating domestic wastewater in the Nordic countries - Performance and reuse of filter media. Ecological Engineering 36, 1651-1659.

- Kanter, R.D., Tyler, E.J. and Converse, J.C. (1998). A denitrification system for domestic wastewater using sulfur oxidizing bacteria. In: D.M. Sievers (Editor), On-Site Wastewater Treatment - Eighth National Symposium on Individual and Small Community Sewage Systems. American Society of Agricultural Engineers, Orlando, Florida, pp. 509-519.
- Kellogg, D.Q., Gold, A.J., Cox, S., Addy, K., August, P.V. (2010) A geospatial approach for assessing denitrification sinks within lower-order catchments. Ecological Engineering 36, 1596-1606.
- Kietlinska, A. and G. Renman (2005). "An evaluation of reactive filter media for treating landfill leachate." <u>Chemosphere</u> **61**(7): 933-940.
- Kim, C., Jung, H., Kim, K. and Kim, I. (2004) Treatment of High Nitrate-Containing Wastewaters by Sequential Heterotrophic and Autotrophic Denitrification. Journal of Environmental Engineering, 130(12): 1475-1480.
- Kim, E. and Bae, J. (2000) Alkalinity requirements and the possibility of simultaneous heterotrophic denitrification during sulfur-utilizing autotrophic denitrification. Water Sci. Technol, 42(3-4): 233-238.
- Kim, J., Hwang, Y., Kim, C. and Bae, J. (2003) Nitrification and denitrification using a single biofilter packed with granular sulfur. Water Science and Technology, 47(11): 153-156.
- Koenig, A. and Liu, L. (2002) Use of limestone for pH control in autotrophic denitrification: continuous flow experiments in pilot-scale packed bed reactors. Journal of Biotechnology, 99(10/267630): 161-171.
- Koenig, A. and Liu, L. (2004) Autotrophic Denitrification of High-Salinity Wastewater Using Elemental Sulfur: Batch Tests. Water Environment Research, 76(1): 37-46.
- Koenig, A., Zhang, T., Liu, L. and Fang, H. (2005) Microbial community and biochemistry process in autosulfurotrophic denitrifying biofilm. Chemosphere, 58: 1041-1047.
- Kuai, L. and Verstraete, W. (1999) Autotrophic denitrification with elemental sulphur in small-scale wastewater treatment facilities. Environmental Technology 20(2): 201-209.
- Lampe, D. and Zhang, T. (1996) Evaluation of nitrogen removal systems for on-site sewage disposal, Proceedings of the 1996 HSRC/WERC Joint Conference on the Environment, Albuquerque, NM.
- Lebo, Stuart E. Jr.; Gargulak, Jerry D. and McNally, Timothy J. (2001). Lignin. *Kirk Othmer Encyclopedia of Chemical Technology*. John Wiley & Sons, Inc.

- Li, W., Zhao, Q.-I. and Liu, H. (2009) Sulfide removal by simultaneous autotrophic and heterotrophic desulfurization-denitrification process. Journal of Hazardous Materials, 162(23): 848-853.
- Madhyastha, K. and P. Bhattacharyya (1968) Microbiological transformations of terpenes. 13. Pathways for degradation of p-cymene in a soil pseudomonad (PLstrain). Indian J Biochem. 5, 4, 161-167.
- Madhyastha, K., P. Rangachari, R. Raghabendra, and P. Bhattacharyya (1968) Microbial transformation of terpenes. XV. Enzyme systems in the catabolism of pcymene in PL-strain. Indian J Biochem. 5, 4, 167-173.
- Moon, H.S., Ahn, K.H., Lee, S., Nam, K. and Kim, J.Y. (2004) Use of autotrophic sulfur-oxidizers to remove nitrate from bank filtrate in a permeable reactive barrier system. Environmental Pollution, 129(3): 499-507.
- Moon, H.S., Chang, S.W., Nam, K., Choe, J. and Kim, J.Y. (2006) Effect of reactive media composition and co-contaminants on sulfur-based autotrophic denitrification. Environmental Pollution, 144(3): 802-807.
- Moon, H.S., Shin, D.Y., Nam, K. and Kim, J.Y. (2008) A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier. Chemosphere, 73(5): 723-728.
- Moorman, T.B., Parkin, T.B., Kaspar, T.C., Jaynes, D.B. (2010) Denitrification activity, wood loss, and N2O emissions over 9 years from a wood chip bioreactor. Ecological Engineering 36, 1567-1574.
- Nakhla, G.; Farooq, S. (2003) Simultaneous Nitrification-Denitrification in Slow Sand Filters. *J. Hazard. Mater.*, **96**, 291–303.
- Nugroho, R., Takanashi, H., Hirata, M. and Hano, T. (2002) Denitrification of industrial wastewater with sulfur and limestone packed column. Water Science and Technology, 46(11-12): 99-104.
- Oakley, S.M., Gold, A.J., Oczkowski, A.J. (2010) Nitrogen control through decentralized wastewater treatment: Process performance and alternative management strategies. Ecological Engineering 36, 1520-1531.
- Oh, S., Burn, M., Yoo, Y., Zubair, A. and Kim, I. (2002) Nitrate removal by simultaneous sulfur utilizing autotrophic and heterotrophic denitrification under different organics and alkalinity conditions: batch experiments. Water Science and Technology, 47(1): 237-244.
- Oh, S., Yoo, Y., Young, J. and Kim, I. (2001) Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions. Journal of Biotechnology, 92: 1-8.
- Paul, E. and F. Clark (1989) Soil Microbiology and Biochemistry, 2nd Edition, pp. 136-137, Academic Press, New York.

- Park, J., Shin, H., Lee, I. and Bae, J. (2002) Denitrification of high NO3(-)-N containing wastewater using elemental sulfur; nitrogen loading rate and N2O production. Environ. Technology, 23(1): 56-65.
- Robertson, W.D. (2010) Nitrate removal rates in woodchip media of varying age. Ecological Engineering 36, 1581-1587.
- Schipper, L.A., Gold, A.J., Davidson, E.A. (2010a) Managing denitrification in humandominated landscapes. Ecological Engineering 36, 1503-1506.
- Schipper, L.A., Robertson, W.D., Gold, A.J., Jaynes, D.B., Cameron, S.C. (2010b) Denitrifying bioreactors--An approach for reducing nitrate loads to receiving waters. Ecological Engineering 36, 1532-1543.
- Schipper, L.A., Cameron, S.C., Warneke, S. (2010c) Nitrate removal from three different effluents using large-scale denitrification beds. Ecological Engineering 36, 1552-1557.
- Shan, J. and Zhang, T. (1998) Septic Tank Effluent Denitrification with Sulfur/Limestone Processes, Proceedings of the 1998 Conference on Hazardous Waste Research.
- Sierra-Alvarez, R., Beristain-Cardoso, R., Salazar, M., Gómez, J., Razo-Flores, E., Field, J. (2007) Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Research, 41(6): 1253-1262.
- Smith, D. (2006) *Nitrogen Removal from Stormwater: A Pilot Plant Research Project, World Environmental and Water Resources Congress.* American Society of Civil Engineers, Environment and Water Institute: Omaha, Nebraska.
- Smith, D. (2009) *Modular Nitrogen Removal in Distributed Sanitation Water Treatment Systems*. Environmental Engineer American Academy of Environmental Engineers: Annapolis, Maryland.
- Smith, D. (2011) Chabazite Biofilter for Enhanced Stormwater Nitrogen Removal. Water Environment Research, 83, 4, April 2011, 373-384, Water Environment Federation, Alexandria, VA.
- Soares, M. (2002) Denitrification of groundwater with elemental sulfur. Water Research, 36(5): 1392-1395.
- Stumm, W. and J. Morgan (1996) Aquatic Chemistry Chemical Equilibria and Rates in Natural Waters, Third Edition. Environmental Science and Technology Series, John Wiley & Sons, New York.
- Tanaka, Y., Yatagai, A., Masujima, H., Waki, M. and Yokoyama, H. (2007) Autotrophic denitrification and chemical phosphate removal of agro-industrial wastewater by filtration with granular medium. Bioresource Technology, 98: 787-791.

- U.S. Environmental Protection Agency (2002) *Methods for Measuring Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms (5th Edition)*. EPA-821-R-02-012 October 2002.
- Wardrop, A. (1969) The structure of the cell wall in lignified collenchyma of *Eryngium* sp. Aust. J. Botany, 17, 229-240.
- Wang, A., Du, D., Ren, N. and van Groenestijn, J. (2005) An Innovative Process of Simultaneous Desulfurization and Denitrification by Thiobacillus denitrificans. Journal of Environmental Science and Health, 40: 1939-1949.
- Woli, K.P., David, M.B., Cooke, R.A., McIsaac, G.F., Mitchell, C.A. (2010) Nitrogen balance in and export from agricultural fields associated with controlled drainage systems and denitrifying bioreactors. Ecological Engineering 36, 1558-1566.
- Yamamoto-Ikemoto, R. and Komori, T. (2003) Effects of C/N, C/S and S/N Ratios on TOC and Nitrogen Removal in the Sulfate Reduction-Sulfur Denitrification Process. Journal of Water and Environment Technology 1(1): 7-12.
- Zeng, H. and Zhang, T. (2005) Evaluation of kinetic parameters of a sulfur–limestone autotrophic denitrification biofilm process. Water Research, 39(20): 4941-4952.
- Zhang, T. (2002) Nitrate Removal in Sulfur: Limestone Pond Reactors Journal of Environmental Engineering, 128(1): 73-84.
- Zhang, T. (2004) Development of Sulfur-Limestone Autotrophic Denitrification Processes for Treatment of Nitrate-Contaminated Groundwater in Small Communities, Midwest Technology Assistance Center (MTAC), Illinois State Water Survey, Champaigne, Illinois.
- Zhang, T. and Lampe, D. (1999) Sulfur: Limestone Autotrophic Denitrification Processes for Treatment of Nitrate-Contaminated Water: Batch Experiments. Water Research, 33(3): 599608.
- Zhang, T.C. and Shan, J. (1999) In Situ Septic Tank Effluent Denitrification Using a Sulfur-Limestone Process Water Environment Research, 71, 7, 1283-1291.

o:\44237-001R004\Wpdocs\Report\Final

Appendix A: Expanded Clay (Riverlite) Material Data Safety Sheet

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS6 PNRS EFFLUENT TESTING FOR FDOH ADDITIVES RULE

PAGE A-1 HAZEN AND SAWYER, P.C.

Material Safety Data Sheet This complies with OSHA'S Hazard Communication Standard 29 CFR 1910.1200

IDENTITY (As used on Label and List)	Note: Blank spaces are not permitted. If any item
Expanded Clay Lightweight Aggregate	is not applicable, or no information is available, the
	space must be marked to indicate that.

Section I

Manufacturer's Name	Emergency Telephone Number
Big River Industries, Inc.	(225) 627-4242
Louisiana Division	
Address (Number, Street, City, State, and ZIP Code)	Telephone Number for Information
U.S. Highway 190 W	(225) 627-4242
12652 Airline Hwy	
	Date Prepared
Erwinville, LA 70729	01/15/12
	Signature of Preparer (optional)

Section II – Hazard Ingredients/Identity Information

Hazardous Components (Specific Chemical	OSHA	ACGIH TLV	Other Limits	%
Identity; Common Name(s))	PEL		Recommended	(optional)
SiO ₂ SILICON DIOXIDE		10*		64.60
Fe ₂ O ₃ FERRIC OXIDE		10*		6.55
Al ₂ O ₃ ALUMINUM OXIDE		10*		20.57
CaO CALCIUM OXIDE		3*		0.84
MgO MAGNESIUM OXIDE		10*		2.91
* Milligrams per cubic meter (Mg/M ³)				

Section III – Physical/Chemical Characteristics

Boiling Point		Specific Gravity $(H_2O = 1)$	1.32
	N/A		(SSD)
Vapor Pressure (mm Hg.)		Melting Point	
	N/A		2100 F
Vapor Density (AIR = 1)		Evaporation Rate (Butyl Acetate = 1)	
	N/A		Not Available
Solubility in Water			
N/A			
Appearance and Odor Reddish, brown angular with no odor			

Section IV – Fire and Explosion Hazard Data

Flash Point (Method Used)	Flammable Limits	LEL	UEL	
N/A	N/A	N/A	N/A	
Extinguishing Media				
8 8	N/A			
Special Fire Fighting Procee	lures			
N/A				
Unusual Fire and Explosion Hazards				
None known				

Section V – Reactivity Data

Stability			Conditions to Avoid	
	Unstable		None Known	
	Stable	X		
Incompatibilit	t y (Materia	ls to	Avoid)	
			None Known	
Hazardous De	Hazardous Decomposition or Byproducts			
			None Known	
Hazardous Polymonization	May		Conditions to Avoid	
Polymerization	Occur		None Known	
	Will Not			
	Occur	Х		

Section VI – Health Hazard Data

Route(s) of Entry :	Inhalation?	Skin?	Ingestion?
() U	Х	Х	X
Health Hazards (A	cute and Chronic)		
Exposure to dust ma	y irritate respiratory	system, eyes and skin	
Carcinogenicity:	NTP?	IARC Monographs?	OSHA Regulated?
No	No	No	No
Madical Condition	s Generally Aggrava	ated by Eunogung	
	irritated eyes or open		
	ning water. Dust Inh	alation-Move to fresh air.	Skin-Wash with soap
Eyes-Flush with run			Skin-Wash with soap
Eyes-Flush with run	ning water. Dust Inh		Skin-Wash with soap

Section VII – Precautions for Safe Handling and Use

Steps to Be Taken in Case Material is Released or Spilled Spilled material may generate dust. Wetting will help reduce dust levels. Respiratory protective equipment may be necessary.

Waste Disposal Method

Pickup and reuse clean material. Dispose of waste material in accordance with applicable federal, state and local regulations.

Precautions to be Taken in Handling and Storing

Respirable dust may be generated during processing, handling or storage. Control measures as outlined in section VIII should be followed.

Other Precautions		
	None Known	

Section VIII – Control Measures

Respiratory Protection (<i>Specify Type</i>) NIOSH – MSHA Approved Dust Respirators			
Ventilation	Local Exhaust		Special
	2	K	N/A
	Mechanical (General)		Other
	X		N/A
Protective GlovesEye PrRecommended but not requiredSafety			n with side shields
Other Protective Clothing or Equipment Long sleeves and trousers recommended, but not required.			
Work/Hygienic Practices Wash exposed skin with soap and water. Wash work cloths as necessary.			

Appendix B: Lignocellulosic Material Data Safety Sheet

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS6 PNRS EFFLUENT TESTING FOR FDOH ADDITIVES RULE

PAGE B-1 HAZEN AND SAWYER, P.C.

MATERIAL SAFETY DATA SHEET

SECTION I: IDENTIFICATION OF PRODUCT

COMPANY:	Diversity Technologies Corp.	DATE:	Apr. 1, 2002
	8750 – 53 rd Ave.	PHONE:	780-468-4064
	Edmonton, AB T6E 5G2	FAX:	780-469-1899
PRODUCT NAME:	SAWDUST		
PRODUCT USE: CHEMICAL FAMILY:	Oil well drilling fluid additive Wood by-product	CAS #:	None

WORKPLACE HAZARDOUS MATERIALS INFORMATION SYSTEM (WHMIS)

WHMIS CLASSIFICATION:	Not a controlled product under WHMIS.
WORKPLACE HAZARD:	Not applicable.

TRANSPORTATION OF DANGEROUS GOODS (TDG)

PROPER SHIPPING NAME:	Not regulated under TDG
TDG CLASSIFICATION:	Not applicable
UN NUMBER (PIN):	Not applicable
PACKING GROUP:	Not applicable

SECTION II: HAZARDOUS INGREDIENTS

INGREDIENT	PERCENT	CAS NUMBER	<u>LD50Oral-Rat</u>	<u>LC50Inhal-Rat</u>	ACGIH-TLV
	(Contains no WHMIS co	ntrolled ingredients	—	

SECTION III: HEALTH HAZARDS

ROUTE OF ENTRY:	[] EYE CONTACT [] SKIN [] INHALATION [] INGESTION
EYE CONTACT:	Mechanical irritant.
SKIN CONTACT:	No effects expected. Abrasion may occur with prolonged contact.
INGESTION:	No toxic effects expected.
INHALATION:	Possible irritation of nasal passages, throat and bronchial passages.
	People with existing respiratory problems should avoid wood dust.
CARCINOGENICTY:	Not applicable
TERATOGENICITY:	Not applicable
REPRODUCTIVE	Not applicable
TOXICITY:	
MUTAGENICTY:	Not applicable

SYNERGISTIC	Not applicable
PRODUCTS:	

SECTION IV: FIRST AID MEASURES

SKIN CONTACT:	Wash with soap and water. If irritation develops, obtain medical attention.
EYE CONTACT:	Flush eye to remove debris. If irritation persists, obtain medical attention.
INGESTION:	If a large amount is ingested, consult a physician.
INHALATION:	Move patient from dusty environment. Apply oxygen or artificial respiration if required. If breathing difficulties or distress continues obtain medical attention.

SECTION V: PHYSICAL DATA

APPEARANCE AND ODOUR:	Yellow granular flake; woody odour
SPECIFIC GRAVITY:	Variable
BOILING POINT (C):	Not applicable
MELTING POINT (C):	Not applicable
SOLUBILITY IN WATER:	Insoluble pH: No data
PERCENT VOLATILE BY VOLUME:	Not applicable
EVAPORATION RATE:	Not applicable
VAPOUR PRESSURE (mmHg):	Not applicable
VAPOUR DENSITY (air $= 1$)	Not applicable
BULK DENSITY:	Not applicable

SECTION VI: FIRE AND EXPLOSION HAZARD DATA

FLASH POINT: FLAMMABLE LIMITS:	Not applicable LEL: 40 gm/m ³ UEL: Variable
EXTINGUISHING MEDIA:	Dry chemical, carbon dioxide, water spray or foam. Suggest water spray for large fires.
SPECIAL FIRE FIGHTING PRODCEDURES:	Self-contained breathing apparatus required for fire fighting personnel. Move containers from fire area, or cool with water spray, if possible.
UNUSUAL FIRE AND EXPLOSION HAZARDS:	Material will burn under fire conditions. Autoignition temperature = $400-500$ F.

SECTION VII: REACTIVITY DATA

STABILITY:

STABLE [XX] UNSTABLE []

INCOMPATIBILITY (CONDITIONS TO AVOID):	Incompatible with oxidizers. Avoid open flames and high temperatures.
CONDITIONS OF REACTIVITY:	Contact with strong oxidizers. May undergo
	autoignition at high temperatures.
HAZARDOUS DECOMPOSITION	Thermal decomposition will result in the following:
PRODUCTS:	Water, carbon dioxide, formaic acid, acetic acid,
	carbon monoxide, methane, wood coal and
	aldehydes.
HAZARDOUS POLYMERIZATION:	WILL NOT OCCUR [XX] MAY OCCUR []

SECTION VIII: PREVENTATIVE MEASURES

SPECIAL PROTECTION INFORMATION

RESPIRATORY PROTECTION:Suggest NIOSH approved dust mask. OEL = 5 mg/m³ for
non-allergenic wood dust.VENTILATION:General mechanical sufficient for normal conditions of use.PROTECTIVE GLOVES:Suggest PVC or rubber.EYE PROTECTION:Suggest goggles.OTHER PROTECTIVELong-sleeve shirt and coveralls. Ensure eye wash station and
emergency shower available.

PRECAUTIONS TO BE TAKEN IN HANDLING AND STORING

Eye and respiratory protection suggested when handling this material. Store in a cool dry area away from incompatibles and open flames.

STEPS TO BE TAKEN IN CASE THE MATERIAL IS SPILLED OR RELEASED

Wear suitable protective equipment. Eliminate ignition sources. Sweep up and collect uncontaminated material for repackaging. Sweep up and collect contaminated material in approved containers for disposal.

WASTE DISPOSAL METHOD

Dispose/incinerate in accordance with all federal, provincial and local regulations. It is the responsibility of the user to determine if material meets the criteria of hazardous waste at the time of disposal.

SECTION IX: PREPARATION

THE INFORMATION CONTAINED HEREIN IS GIVEN IN GOOD FAITH, BUT NO WARRANTY EXPRESSED OR IMPLIED, IS MADE.

DATE ISSUED:	April 1, 2002	BY:	Product safety committee
SUPERSEDES:	March 29, 1999		

Diversity Technologies Corp. is the parent company of Canamara-United Supply Ltd., Hollimex Products Ltd. and Canamara SDS

MATERIAL SAFETY DATA SHEET WOOD DUST

Company Name, Address

TRADE NAME:	Wood Dust
SYNONYMS: None	
CAS. NO.:	None
DESCRIPTION:	Particles generated by any manual or mechanical
	cutting or abrasion process performed on wood.

PHYSICAL DATA

Boiling Point	Not Applicable
Specific Gravity	Variable
	(Dependent on wood species
	and moisture content).
Vapor Density	Not Applicable
% Volatiles by Volume	eNot Applicable
Melting Point	Not Applicable
Vapor Pressure	Not Applicable
Solubility in H ₂ O (% b	y wt.)Insoluble
Evaporation Rate -	
(Butyl Acetate=1)	Not Applicable
pH	Not Applicable
Appearance & Odor	
	granular solid
	Color and odor are dependent
(on the wood species and time
S	since dust was generated.

FIRE & EXPLOSION DATA

Flash PointNot Applicable	
Autoignition TemperatureVariable	
(typically 400-500°F)	
Explosive Limits in Air40 grams/m ³ (LEL)	
Extinguishing MediaWater, CO ₂ , Sand	
Special Fire Fighting	
ProceduresWet down with water	
Wet down wood dust to reduce likelihood of	
ignition or dispersion of dust into the air.	
Remove burned or wet dust to open area	
after fire is extinguished.	
Unusual Fire &	
Explosion HazardStrong to severe	
explosion hazard	
(if wood dust "cloud" contacts	
an ignition source)	
HEALTH EFFECTS DATA	
Exposure LimitACGIH TLV ^(R) :	

TWA - 5.0 mg/m^3 ;

STEL_(15 min.) - 10 mg/m³ (softwood) TWA - 1.0 mg/m³; (certain hardwoods such as beech and oak) OSHA PEL: TWA (see Footnote 1) -(total dust) - 15.0 mg/m³

(respirable factor) - 5.0 mg/m^3 Skin & Eye Contact.....Eye Irritation & Allergic Contact Dermatitis (Wood dust can cause eye irritation. Various species of wood dust can elicit allergic contact dermatitis in sensitized individuals) Ingestion.....Not Applicable Skin Absorption.....Not known to occur Inhalation......May cause: nasal dryness, irritation & obstruction. Coughing, wheezing, & sneezing: sinusitis & prolonged colds have also been reported. Chronic Effects......May cause: Wood Dust, depending on species, may cause dermatitis on prolonged repetitive contact; may cause respiratory sensitization and/or irritation. IARC classifies wood dust as a carcinogen to humans (Group 1). This classification is based primarily on IARC's evaluation of increased risk in the occurrence of adenocarcinomas of the nasal cavities and paranasal sinuses associated with exposure to wood dust. IARC did not find sufficient evidence to associate cancers of the oropharynx, hypopharynx, lung, lymphatic and hematopoietic systems, stomach, colon, or rectum with exposure to wood dust.

REACTIVITY DATA

Conditions Contributing

to Instability.....Stable (under normal Conditions) Incompatibility.....Avoid Contact with: flame. Product may ignite at temperatures in excess of 400° F. Hazardous Decomposition Products......Thermal-oxidative degradation of wood produces: irritating & toxic fumes and gases, including CO, aldehydes and organic acids. Conditions Contributing to Polymerization......Not Applicable

oxidizing agents, drying oils and

PRECAUTIONS AND SAFE Handling

Eye Contact.....Avoid

Skin Contact	Avoid:
	Repeated or Prolonged Contact
	with Skin. Careful bathing and
	Clean clothes are indicated after
	exposure.
Inhalation	Avoid:
	Prolonged or Repeated breathing of
	Wood Dust in Air.
Oxidizing agents	
and drying oils	Avoid contact

Open flame.....Avoid

GENERALLY APPLICABLE CONTROL MEASURES

Ventilation.....Provide: adequate general and local exhaust ventilation to maintain healthful working conditions.

Safety Equipment.....Wear goggles or

safety glasses. Other protective equipment such as gloves and approved dust respirators may be needed depending upon dust conditions.

EMERGENCY AND FIRST AID PROCEDURES

Eyes	Flush with water
	to remove dust particles. If irritation persists, get medical attention.
Skin	Get Medical advice
	If a rash or persistent irritation or
	dermatitis occur, get medical advice
	where applicable before returning to
	work where wood dust is present.
Inhalation	Remove to fresh air.
	If persistent irritation, severe coughing,
	breathing difficulties occur, get
	medical advice before returning to
	work where wood dust is present.
Ingestion	Not Applicable

SPILL/LEAK CLEAN-UP PROCEDURES

Recovery or Disposal.....Clean-up: Sweep or vacuum spills for recovery or disposal; avoid creating dust conditions. Provide good ventilation where dust conditions may occur. Place recovered wood dust in a container for proper disposal.

FOOTNOTE

Footnote 1: In AFL-CIO v. OSHA 965 F. 2d 962 (11th Cir. 1992), the court overturned OSHA's 1989 Air Contaminants Rule, including the specific PELs for wood dust that OSHA had established at that time. The 1989 PELs were: TWA - 5.0 mg/m³; STEL (15 MIN.) - 10.0 mg/m³ (ALL SOFT AND HARD WOODS, EXCEPT WESTERN RED CEDAR); WESTERN RED CEDAR: TWA - 2.5 mg/m³. Wood dust is now officially regulated as an organic dust under the Particulates Not Otherwise Regulated (PNOR) or Inert or Nuisance Dust categories at PELs noted under Health Effects Information section of this MSDS. However, a number of states have incorporated provisions of the 1989 standard in their state plans.

IMPORTANT

The information and data herein are believed to be accurate and have been compiled from sources believed to be reliable. It is offered for your consideration, investigation and verification. There is no warranty of any kind, express or implied, concerning the accuracy or completeness of the information and data herein. The supplier of this form will not be liable for claims relating to any party's use of or reliance on information and data contained herein regardless of whether it is claimed that the information and data are inaccurate, incomplete or otherwise misleading.

Sawdust & Shavings

Material Safety Data Sheet

Product Name: Screened Sawdust, Screened Shavings

SECTION I--DIVISION AND LOCATION

Pioneer Sawdust 621 Fulton Street Salt Lake City, Utah 84104 Telephone: (801) 972-4432

SECTION II--HAZARDOUS INGREDIENTS/IDENTITY INFORMATION

Ingredients in Product: Kiln Dried White Pine Wood Chemical Name and Synonyms: Cellulosic Wood Fibre Chemical Family: Cellulose Molecular Formula: Complex

SECTION III--PHYSICAL/CHEMICAL CHARACTERISTICS

Boiling Point: N/A Vapor Pressure: N/A Vapor Density: N/A Solubility in Water: Insoluble Specific Gravity: (WATER = 1): <1 Melting Point: N/A Evaporation Rate: N/A Appearance: Yellowish particles of wood/sawdust Odor: None to typical wood smell

SECTION IV--FIRE AND EXPLOSION DATA

Flash Point: N/A Flammable Limits: Slight when exposed to flames Extinguishing Media: Drychemical, Waterspray, Foam Special Fire Fighting Procedures: None Unusual Fire and Explosion Hazards: Avoid CO2 blast. Spontaneous heating possible. Avoid hot, humid storage. Do not disperse in air, as this could lend to dust explosion.

SECTION V--REACTIVITY DATA

Stability: Stable Incompatibility (Material to Avoid): Strong oxidizing agents Hazardous Decomposition or By-products: Unknown Hazardous Polymerization: Will not occur

SECTION VI--HEALTH HAZARD DATA

Permissible Concentrations (AIR): Unknown Effects of Overexposure: Allergies, dermatitis (skin irritation) Toxicological Properties: Unknown

EMERGENCY FIRST AID PROCEDURES

Eyes: Flush with large amounts of water, consult an eye physician Skin Contact: Wipe off excess, wash with soap and water Inhalation: Remove from area If Swallowed: Call physician immediately

TEL (801) 972-4432 Toll Free: (800) 962-7632

FAX (801) 975-7076

EMAIL info@pioneersawdust.com

Salt Lake City, UT Headquarters/Distribution Center 621 Fulton Street Salt Lake City, UT 84104-4327 PO Box 27861 Salt Lake City, UT 84127-0861

San Leandro, CA DMS Warehouse 1956 Williams Street San Leandro, CA 94577

www.pioneersawdust.com

SECTION VII--PRECAUTIONS FOR SAFE HANDLING AND USE

Procedures for Clean-up: Handle as normal solid waste. Scoop up and place in waste container, vacuum, or wet clean. Waste Disposal Method: Waste material can be buried in an approved landfill or handled as inert waste in accordance with Federal, State, and Local Environmental Regulations

SECTION VIII--SPECIAL PROTECTION INFORMATION

Ventilation Type Required (Local, Mechanical, Special): Use adequate ventilation in volume to keep dust concentration below TLV (5mg/m3).

Respiratory Protection: NIOSH approved Dust to Mist Respirator Eye Protection: Safety glasses or goggles Other Protective Equipment: N/A

SECTION IX--SPECIAL PRECAUTIONS

Precautions to be Taken in Handling and Storing: Store dry at ambient temperature. Avoid moisture. Other Precautions: None

We believe the statements, technical information and recommendations contained herein are reliable, but they are given without warranty or guarantee of any kind, express or implied, and we assume no responsibility for any loss, damage, or expense, direct or consequential, arising out of their use.

Preparer: Duncan H. Brockbank Original Date: 12/04/85 (by Norman L. Brockbank) Revision Date: Supersedes:

Appendix C: Elemental Sulfur Material Data Safety Sheet

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS6 PNRS EFFLUENT TESTING FOR FDOH ADDITIVES RULE

PAGE C-1 HAZEN AND SAWYER, P.C.

MATERIAL SAFETY DATA SHEET

SECTION 1. PRODUCT AND COMPANY INFORMATION

Trade Name (as labeled):	CoreSulphur ES99
<u>Common Name:</u>	Elemental Sulfur 99.5%
Manufactured By:	CoreSulphur, Inc. PO Box 1027 Arroyo Grande, CA 93421
Business Phone:	(805) 202-4371
Emergency Phone:	INFOTRAC – (800) 535-5053
Date of Preparation:	December, 2009 Updated September, 2011

SECTION 2. COMPOSITION AND INFORMATION ON INGREDIENTS

		Exposure Limits In Air					
Chemical Name	CAS #	ACGIH TVL (ppm)	OSHA PEL (ppm)				
Sulfur	7704-34-9	NA	NA				
	NE = Not Established	NA = Not Available					

SECTION 3. EMERGENCY/HAZARDS OVERVIEW

Emergency Overview: Bright yellow colored, free flowing pastille with a possible slight sulfur odor. Dust may cause mild irritation. Sulfur trioxide fumes at temperatures above 1067 °F. Not D.O.T. regulated.

Symptoms Of Over Exposure:

Eyes:	Sulfur dust may cause severe irritation with prolonged exposure.
Skin:	Prolonged or repeated exposure to sulfur dust may cause skin irritation.
Inhalation:	Sulfur dust may cause breathing difficulties and irritation of mucous membranes.
Ingestion:	Solid sulfur can be digested in fairly large amounts without injury.
Injection:	Not possible.

SECTION 4. FIRST-AID MEASURES

<u>lf Inhaled:</u>	Remove to fresh air. If breathing becomes difficult, contact a medical physician. Give artificial respiration if victim is not breathing and obtain immediate medical attention.
<u>If Ingested:</u>	Seek Medical Attention. Do not induce vomiting unless directed to do so by a medical professional. Never induce vomiting or give diluents (milk or water) to someone who is unconscious, having convulsions, or who cannot swallow. If vomiting occurs, keep head lower than hips to prevent introduction of fluid into the lungs.

In Case Of Skin Contact:	Wash thoroughly with soap and water. Remove contaminated clothing and wash before reuse. Seek medical attention if skin becomes irritated.
In Case Of Eye Contact:	Flush immediately with water for at least 15 minutes, lifting the upper and lower eyelids occasionally. Call a physician if eye irritation persists.
Victims of chemical exposure and all res	cuers must be taken for medical attention. Take a copy of label

Victims of chemical exposure and all rescuers must be taken for medical attention. Take a copy of label and MSDS to physician or health professional with victim.

SECTION 5. FIRE-FIGHTING MEASURES

Flash Point:	Pure liquid sulfur, 370 °F.
	Impure liguid sulfur, 428 °F.
LEL Flammable Limits:	35 gm/m ³ .
UEL Flammable Limits:	1400 gm/m ³ .
Auto Ignition Temperature:	Dust Clouds, 374 °F.
Extinguishing Media:	Use any standard agent suitable for surrounding structural fire or for other chemicals that may be involved. Fine water sprays and/or dry chemical agent. CO ₂ , dry chemicals, or sand.
Fire Extinguishing Media to Avoid:	Hoses and extinguishers with pressure streams should be avoided where solid sulfur is dusty or where it may create a further hazard by raising more dust clouds.
Unusual Fire And Explosion Hazards:	Sulfur trioxide fumes at temperatures above 1067 °F. Dust suspended in air is readily ignited by flame, static electricity, or friction spark. Every reasonable step must be taken to minimize dust formation. Dust tight casings should be equipped with explosion relief vents. Sparkless electrical equipment is recommended. Handling equiqment must be grounded or bonded to avoid static electricity. Keep away from sources of flame or sparks. Detailed recommendations in Manufacturing Chemists Association SD-74 and National Safety Council 612 Bulletins covering "Sulfur" should be followed when handling GreenSun ES 99.5%.
Special Firefighting Procedures:	Wear positive pressure, self-contained breathing apparatus (SCBA) and goggles. Avoid exposure to smoke or fumes.

SECTION 6. ACCIDENTAL RELEASE MEASURES

Spill And Leak Response: Pick up dry spills by scooping, shoveling, or vacuuming and place into containers for reuse or disposal. The minimum personal protective equipment should include rubber gloves, rubber apron, and chemical goggles. Gas masks or SCBA gear may be required. Uncontrolled releases should be responded to by trained personnel using pre-planned procedures. Keep material out of sewers, storm drains, and surface waters. Comply with all applicable government regulations on spill reporting, handling, and waste disposal. For landfill disposal, mix with limestone 3 times the weight of sulfur.

SECTION 7. STORAGE AND HANDLING

Storage Practices:

Store in a cool (above 40 °F), dry, well-ventilated area away from incompatible materials. Solid becomes corrosive to metals when stored wet. Product will physically break down when exposed to moisture.

Handling Practices:Wash thoroughly after handling. Avoid contact with eyes, skin, and
clothing. Wash with soap and water after handling.Work/Hygiene Practices:Avoid getting chemicals ON YOU or IN YOU. Wash hands with soap and
water after handling chemicals. Do not eat or drink around or while
handling chemicals. Keep out of reach of children.

SECTION 8. EXPOSURE CONTROLS AND PERSONAL PROTECTION

<u>Ventilation/Engineering Controls:</u> Use of local exhaust is recommended at product transfer points and where dusty conditions exist.

<u>Respiratory Protection</u>: For normal product handling, use any NIOSH approved air-purifying dust respirator. For extremely dusty conditions, a full facepiece purifying particulate respirator is recommended.

Eye Protection: Chemical dust/splash goggles or full-face shield to prevent eye contact. As a general rule, contact lenses should not be worn when working with chemicals because they contribute to the severity of an eye injury.

Hand Protection: Wear cotton or canvas protective glove to prevent contact. Rubber gloves may be used if product may become wet or moist.

Body Protection: Use body protection appropriate for task. Chemical-resistant coveralls and rubber aprons are generally acceptable.

Other Protective Measures: An eyewash and safety shower should be nearby and ready for use.

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

<u>Appearance:</u>	Bright yellow colored pastille.	Boiling Point:	832 °F.
<u>Odor:</u>	May have slight sulfur odor.	Crystallization Point:	NA.
<u>pH:</u>	Neutral when dry.	Freezing Point:	246 °F.
<u>Water Solubility:</u>	Insoluble	<u>Vapor Pressure:</u>	Solid, less than 0.0001 mm. hg at 68 °F
<u>Density:</u>	76 lbs/ft ³ .	<u>Vapor Density (air = 1):</u>	>1.
Specific Gravity (H ₂ O = 1):	Solid, 2.07 gm/ml	NA = Not Available.	
SECTIO	N 10. STABILITY / Stable.	AND REACTIVITY	

<u>Conditions To Avoid:</u> Fire and dust explosions.

Incompatibility: Alkaline materials, or mixtures with chlorates, nitrates, or other oxidizing agents.

Hazardous Polymerization: Will not occur.

Stability:

SECTION 11. TOXICOLOGICAL INFORMATION

Toxicity Data: NA.

Acute Effects:Eyes:Mild irritant. May cause redness, tearing and/or burning.Skin:Mild irritant. especially with prolonged exposure or when in contact with moisture.Ingestion:Nausea and upset stomachInhalation:Moderate irritation of nose and throat from dust. May cause dry coughing, wheezing, chest
tightness, and burning of mucous membranes.

Chronic Effects: None known.

SECTION 12. ECOLOGICAL INFORMATION

Environmental Stability: Sulfur, is stable in the environment. Its transport in the environment depends upon the exact compound, the pH, the soil type, and the salinity. All work practices should be aimed at eliminating environmental contamination.

SECTION 13. DISPOSAL CONSIDERATIONS

Do not contaminate lakes, streams, ponds, estuaries, oceans, or other waters by discharge of waste effluents or equipment rinsate. Dispose of waste effluents according to federal, state, and local regulations. For landfill disposal, mix with limestone 3 times the weight of sulfur.

SECTION 14. TRANSPORTATION INFORMATION

This product is not regulated per CFR 49 (Special Provisions 172.102 pt 30

SECTION 15. REGULATORY INFORMATION

<u>SARA Reporting Requirements</u>: This material does not contain toxic chemicals subject to reporting requirements of Section 313, Title III of the Superfund Amendments and Reauthorization Act of 1986.

<u>California Proposition 65:</u> WARNING. This product contains chemicals known to the State of California to cause cancer and birth defects or other reproductive harm.

SECTION 16. OTHER INFORMATION

The information and recommendations herein are taken from data contained in independent, industry recognized references including NIOSH, OSHA, ANSI, and NFPA. This information is, as of date listed above, true and accurate to the best of CoreSulphur, Inc. knowledge. It is intended for use by persons possessing technical knowledge and at their own discretion and risk. Since actual use is beyond our control, no guarantee, express or implied, and no liability is assumed by CoreSulphur, Inc. in conjunction with the use of this information. Actual conditions of use and handling may require consideration of information other than, or in addition to, that which is provided herein.

Appendix D: EPA Methods 8260 and 504.1 Laboratory Report

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS6 PNRS EFFLUENT TESTING FOR FDOH ADDITIVES RULE

PAGE D-1 HAZEN AND SAWYER, P.C.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 July 22, 2014 Work Order: 1406489

Project Name		BHS6	SE#5					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Dilution
Sample Description		BHS6-STE						
Matrix		Wastewater						
SAL Sample Number		1406489-01						
Date/Time Collected		06/23/14 10:48						
Collected by		Harmon Harden						
Date/Time Received		06/24/14 09:25						
Volatile Organic Compounds								
Acetone	ug/L	41 J5	EPA 8260b	4.0	2.0		07/01/14 22:3	3 1
Acrylonitrile	ug/L	1.3 U	EPA 8260b	4.0	1.3		07/01/14 22:3	3 1
Benzene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 22:3	3 1
Bromobenzene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	3 1
Bromochloromethane	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 22:3	31
Bromodichloromethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	3 1
Bromoform	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	3 1
Bromomethane	ug/L	0.4 U,J5	EPA 8260b	0.8	0.4		07/01/14 22:3	3 1
2-Butanone	ug/L	6.8	EPA 8260b	4.0	2.0		07/01/14 22:3	3 1
n-Butylbenzene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	3 1
sec-Butylbenzene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	3 1
t-Butylbenzene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 22:3	3 1
Carbon disulfide	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	3 1
Carbon tetrachloride	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	3 1
Chlorobenzene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 22:3	3 1
Chloroethane	ug/L	0.4 U,J5	EPA 8260b	1.6	0.4		07/01/14 22:3	3 1
Chloroform	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	3 1
Chloromethane	ug/L	0.4 U	EPA 8260b	1.6	0.4		07/01/14 22:3	
1,2-Dibromoethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	
1,2-Dibromo-3-chloropropane	ug/L	0.3 U	EPA 8260b	0.8	0.3		07/01/14 22:3	
2-Chlorotoluene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 22:3	
2-Chloroethylvinyl Ether	ug/L	0.5 U	EPA 8260b	1.6	0.5		07/01/14 22:3	
4-Chlorotoluene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 22:3	
Dibromochloromethane	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 22:3	
Dibromomethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	
1,2-Dichlorobenzene	ug/L	0.2 U 0.1 U	EPA 8260b	0.8	0.2		07/01/14 22:3	
1,3-Dichlorobenzene	ug/L	0.07 U	EPA 8260b	0.8	0.07		07/01/14 22:3	•
1,4-Dichlorobenzene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	
trans-1,4-Dichloro-2-butene	ug/L	0.2 U 0.3 U,J5	EPA 8260b	0.8	0.2		07/01/14 22:3	
		0.5 U	EPA 8260b				07/01/14 22:3	
Dichlorodifluoromethane	ug/L		EPA 82000 EPA 8260b	1.6 0.8	0.5			
1,1-Dichloroethane	ug/L	0.2 U	EPA 8260b EPA 8260b	0.8	0.2		07/01/14 22:3	
1,2-Dichloroethane	ug/L	0.1 U		0.8	0.1		07/01/14 22:3	
1,1-Dichloroethene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	
cis-1,2-Dichloroethene	ug/L	0.09 U	EPA 8260b	0.8	0.09		07/01/14 22:3	
trans-1,2-Dichloroethene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	
1,2-Dichloropropane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	
2,2-Dichloropropane	ug/L	0.3 U	EPA 8260b	0.8	0.3		07/01/14 22:3	3 1

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

July 22, 2014 Work Order: 1406489

Laboratory Report

Project Name		BHS	6 SE#5					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Dilution
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS6-STE Wastewater 1406489-01 06/23/14 10:48 Harmon Harden						
		06/24/14 09:25						
1,1-Dichloropropene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	33 1
cis-1,3-Dichloropropene	ug/L	0.2 U,J5	EPA 8260b	0.8	0.2		07/01/14 22:3	33 1
trans-1,3-Dichloropropene	ug/L	0.1 U,J5	EPA 8260b	0.8	0.1		07/01/14 22:3	33 1
Ethylbenzene	ug/L	0.08 U	EPA 8260b	0.8	0.08		07/01/14 22:3	33 1
Hexachlorobutadiene	ug/L	0.4 U	EPA 8260b	0.8	0.4		07/01/14 22:3	33 1
2-Hexanone	ug/L	2.1 U	EPA 8260b	4.0	2.1		07/01/14 22:3	33 1
lodomethane	ug/L	0.2 U,J5	EPA 8260b	0.8	0.2		07/01/14 22:3	33 1
Isopropylbenzene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 22:3	33 1
4-Isopropyltoluene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	33 1
Methyl-t-butyl ether	ug/L	0.2 U	EPA 8260b	1.6	0.2		07/01/14 22:3	33 1
Methylene Chloride	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	33 1
4-Methyl-2-pentanone	ug/L	2.6 U	EPA 8260b	4.0	2.6		07/01/14 22:3	33 1
Naphthalene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	33 1
n-Propylbenzene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 22:3	33 1
Styrene	ug/L	0.05 U	EPA 8260b	0.8	0.05		07/01/14 22:3	33 1
1,1,2-Tetrachloroethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	33 1
1,1,2,2-Tetrachloroethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	33 1
Tetrachloroethene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 22:3	
Toluene	ug/L	5.7	EPA 8260b	0.8	0.09		07/01/14 22:3	
1,2,3-Trichlorobenzene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	
1,2,4-Trichlorobenzene	ug/L	0.3 U	EPA 8260b	0.8	0.3		07/01/14 22:3	
1,1,1-Trichloroethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	
1,1,2-Trichloroethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	
Trichloroethene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	0.6 U	EPA 8260b**	1.6	0.6		07/01/14 22:3	-
Trichlorofluoromethane	ug/L	0.2 U	EPA 8260b	0.8	0.0		07/01/14 22:3	
1,2,3-Trichloropropane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 22:3	
1,2,4-Trimethylbenzene	ug/L	0.4 U	EPA 8260b	0.8	0.1		07/01/14 22:3	
1,3,5-Trimethylbenzene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 22:3	
Vinyl chloride		0.1 U	EPA 8260b	1.6	0.3		07/01/14 22:3	
•	ug/L		EPA 8260b					
Xylene-m,p	ug/L	0.2 U	EPA 8260b	1.6	0.2		07/01/14 22:3	
Xylene-o	ug/L	0.2 U		0.8	0.2			
Xylenes- Total	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 22:3	
Total Trihalomethanes	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 22:3	
1,4-Dioxane	ug/L	0.0	EPA 8260b**				07/01/14 22:3	33 1
Surrogate for EPA 8260b	Dibromoflu	oromethane	103 % Limit	S	65-13	5		

Pesticide Analyses

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

July 22, 2014 Work Order: 1406489

Project Name		BH	S6 SE#5					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Dil	ution
Sample Description		BHS6-STE						
Matrix		Wastewater						
SAL Sample Number		1406489-01						
Date/Time Collected		06/23/14 10:48						
Collected by		Harmon Harden						
Date/Time Received		06/24/14 09:25						
1,2-Dibromo-3-chloropropane	ug/L	0.0052 U	EPA 504.1	0.021	0.0052	06/30/14 09:53	06/30/14 20:07	1
1,2-Dibromoethane	ug/L	0.0052 U	EPA 504.1	0.021	0.0052	06/30/14 09:53	06/30/14 20:07	1
Surrogate for EPA 504.1	2-Bromo-1-	chloropropane	115 % Limit	s	70-	130		
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	2.2	SM 4550SF	0.04	0.01		06/30/14 09:29	1
Carbonaceous BOD	mg/L	61	SM 5210B	2	2	06/25/14 09:07	06/30/14 15:55	1
Chemical Oxygen Demand	mg/L	200	EPA 410.4	25	10	06/30/14 13:20	07/01/14 14:58	1
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		06/25/14 09:56	1
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		06/25/14 09:56	1
Orthophosphate as P	mg/L	6.3	EPA 300.0	0.040	0.010		06/25/14 09:56	1
Sulfate	mg/L	6.9	EPA 300.0	0.60	0.20		06/25/14 09:56	1
Sulfide	mg/L	4.9	SM 4500SF	0.40	0.10		06/30/14 09:29	1
Total Alkalinity	mg/L	530	SM 2320B	8.0	2.0		06/27/14 12:52	1
Total Suspended Solids	mg/L	16	SM 2540D	1	1	06/27/14 12:35	06/30/14 15:58	1
Volatile Suspended Solids	mg/L	15	EPA 160.4	1	1	06/27/14 12:35	06/30/14 15:58	1
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02		06/25/14 09:56	1
		TestAr	nerica Savannah					
Nitrogen, Ammonia								
Ammonia (as N)	mg/L	95	350.1	2.5	1.3		07/15/14 10:42	50
<u>Nitrogen, Total Kjeldahl</u>								
Nitrogen, Kjeldahl	mg/L	7.4	351.2	2.0	1.5	07/14/14 15:00	07/18/14 18:25	10
Phosphorus, Total								
Phosphorus	mg/L	6.3	365.4	1.0	0.41	07/14/14 15:00	07/18/14 09:44	10
Sample Description		BHS6-DP01						
Matrix		Wastewater						
SAL Sample Number		1406489-02						
Date/Time Collected		06/23/14 11:56						
Collected by		Harmon Harden						
Date/Time Received		06/24/14 09:25						
Inorganics								
Carbonaceous BOD	mg/L	5	SM 5210B	2	2	06/25/14 09:07	06/30/14 15:55	1
Nitrite (as N)	mg/L	0.11	EPA 300.0	0.04	0.01	55/25/14 03.07	06/25/14 10:07	1
Nitrate+Nitrite (N)	mg/L	0.11	EPA 300.0	0.04	0.01		06/25/14 10:07	1
					0.01		0.01	
		TestAr	nerica Savannah					

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tompo El 22640

Tampa, FL 33619

Laboratory Report

Project Name		BHS	6 SE#5					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Dilu	ution
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS6-DP01 Wastewater 1406489-02 06/23/14 11:56 Harmon Harden 06/24/14 09:25						
		TestAme	erica Savannah	1				
<u>Nitrogen, Ammonia</u> Ammonia (as N)	mg/L	3.1	350.1	0.10	0.052		07/15/14 09:45	2
<u>Nitrogen, Total Kjeldahl</u> Nitrogen, Kjeldahl	mg/L	3.2	351.2	0.20	0.15	07/14/14 15:00	07/17/14 19:33	1
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS6-DP02 Wastewater 1406489-03 06/23/14 12:12 Harmon Harden 06/24/14 09:25						
Inorganics								
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	06/25/14 09:07	06/30/14 15:55	1
Nitrite (as N) Nitrate+Nitrite (N)	mg/L mg/L	0.01 U 0.01 U	EPA 300.0 EPA 300.0	0.04 0.04	0.01 0.01		06/25/14 10:18 06/25/14 10:18	1 1
	mg/E		erica Savannah		0.01		00/20/14 10:10	
<u>Nitrogen, Ammonia</u>		TestAme	anca Savannan					
Ammonia (as N)	mg/L	5.6	350.1	0.25	0.13		07/15/14 09:56	5
Nitrogen, Total Kjeldahl								
Nitrogen, Kjeldahl	mg/L	7.4	351.2	2.0	1.5	07/14/14 15:00	07/18/14 09:46	10
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS6-DP03 Wastewater 1406489-04 06/23/14 11:26 Harmon Harden 06/24/14 09:25						
Inorganics								
Carbonaceous BOD	mg/L	33	SM 5210B	2	2	06/25/14 09:07	06/30/14 15:55	1
Nitrate (as N)	mg/L	1.8	EPA 300.0	0.04	0.01		06/25/14 10:29	1
Total Alkalinity	mg/L	360	SM 2320B	8.0	2.0	00/07/44 40:05	06/27/14 13:05	1
Total Suspended Solids	mg/L	4	SM 2540D	1	1	06/27/14 12:35	06/30/14 15:58	1
Volatile Suspended Solids	mg/L	3 1.8	EPA 160.4 EPA 300.0	1 0.04	1 0.01	06/27/14 12:35	06/30/14 15:58 06/25/14 10:29	1
Nitrate+Nitrite (N)	mg/L	1.0	LI A 300.0	0.04	0.01		00/23/14 10.29	1

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Project Name		BHS	6 SE#5					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Dilu	ution
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS6-DP03 Wastewater 1406489-04 06/23/14 11:26 Harmon Harden 06/24/14 09:25						
		TestAme	erica Savannał	ı				
Nitrogen, Ammonia								
Ammonia (as N)	mg/L	2.0	350.1	0.050	0.026		07/15/14 09:01	1
<u>Nitrogen, Total Kjeldahl</u> Nitrogen, Kjeldahl	mg/L	3.8	351.2	0.20	0.15	07/14/14 15:00	07/17/14 19:35	1
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS6-DP04 Wastewater 1406489-05 06/23/14 11:36 Harmon Harden 06/24/14 09:25						
Inorganics								
Carbonaceous BOD	mg/L	26	SM 5210B	2	2	06/25/14 09:07	06/30/14 15:55	1
Chemical Oxygen Demand	mg/L	110	EPA 410.4	25	10	06/30/14 13:20	07/01/14 14:58	1
Nitrate (as N)	mg/L	0.56	EPA 300.0	0.04	0.01		06/25/14 11:03	1
Nitrite (as N)	mg/L	0.27	EPA 300.0	0.04	0.01		06/25/14 11:03	1
Sulfate	mg/L	3.5	EPA 300.0	0.60	0.20		06/25/14 11:03	1
Total Alkalinity	mg/L	400	SM 2320B	8.0	2.0		07/05/14 15:47	1
Total Suspended Solids	mg/L	9	SM 2540D	1	1	06/27/14 12:35	06/30/14 15:58	1
Volatile Suspended Solids Nitrate+Nitrite (N)	mg/L mg/L	9 0.83	EPA 160.4 EPA 300.0	1 0.08	1 0.02	06/27/14 12:35	06/30/14 15:58 06/25/14 11:03	1 1
	mg/L				0.02		00/25/14 11:05	1
Nitrogen, Ammonia		lestAme	erica Savannał	ו				
Ammonia (as N)	mg/L	0.38	350.1	0.050	0.026		07/15/14 09:01	1
<u>Nitrogen, Total Kjeldahl</u> Nitrogen, Kjeldahl	mg/L	3.0	351.2	0.20	0.15	07/14/14 15:00	07/17/14 19:38	1
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS6-ST1&2a Wastewater 1406489-06 06/23/14 11:06 Harmon Harden 06/24/14 09:25						
Inorganics								

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

July 22, 2014 Work Order: 1406489

s Results * BHS6-ST1&2a Wastewater 1406489-06 06/23/14 11:06 Harmon Harden 06/24/14 09:25 0.01 U 16 60 0.94 Q 2.7 Q 15 0.10 U 240 5 4	Method SM 4550SF SM 5210B EPA 410.4 EPA 300.0 EPA 300.0 SM 4500SF SM 2320B SM 2540D EPA 160.4	PQL 0.04 2 25 0.04 0.040 0.60 0.40 8.0	MDL 0.01 2 10 0.01 0.010 0.20 0.10 2.0	Prepared 06/25/14 09:07 06/30/14 13:20	Analyzed Dilu 06/30/14 09:29 06/30/14 15:55 07/01/14 14:58 06/25/14 11:14 06/25/14 11:14	1 1 1 1 1 1	
Wastewater 1406489-06 06/23/14 11:06 Harmon Harden 06/24/14 09:25 0.01 U 16 60 0.94 Q 2.7 Q 15 0.10 U 240 5	SM 5210B EPA 410.4 EPA 300.0 EPA 300.0 EPA 300.0 SM 4500SF SM 2320B SM 2540D	2 25 0.04 0.040 0.60 0.40 8.0	2 10 0.01 0.010 0.20 0.10		06/30/14 15:55 07/01/14 14:58 06/25/14 11:14 06/25/14 11:14	1 1 1	
1406489-06 06/23/14 11:06 Harmon Harden 06/24/14 09:25 0.01 U 16 60 0.94 Q 2.7 Q 15 0.10 U 240 5	SM 5210B EPA 410.4 EPA 300.0 EPA 300.0 EPA 300.0 SM 4500SF SM 2320B SM 2540D	2 25 0.04 0.040 0.60 0.40 8.0	2 10 0.01 0.010 0.20 0.10		06/30/14 15:55 07/01/14 14:58 06/25/14 11:14 06/25/14 11:14	1 1 1	
06/23/14 11:06 Harmon Harden 06/24/14 09:25 0.01 U 16 60 0.94 Q 2.7 Q 15 0.10 U 240 5	SM 5210B EPA 410.4 EPA 300.0 EPA 300.0 EPA 300.0 SM 4500SF SM 2320B SM 2540D	2 25 0.04 0.040 0.60 0.40 8.0	2 10 0.01 0.010 0.20 0.10		06/30/14 15:55 07/01/14 14:58 06/25/14 11:14 06/25/14 11:14	1 1 1	
Harmon Harden 06/24/14 09:25 0.01 U 16 60 0.94 Q 2.7 Q 15 0.10 U 240 5	SM 5210B EPA 410.4 EPA 300.0 EPA 300.0 EPA 300.0 SM 4500SF SM 2320B SM 2540D	2 25 0.04 0.040 0.60 0.40 8.0	2 10 0.01 0.010 0.20 0.10		06/30/14 15:55 07/01/14 14:58 06/25/14 11:14 06/25/14 11:14	1 1 1	
06/24/14 09:25 0.01 U 16 60 0.94 Q 2.7 Q 15 0.10 U 240 5	SM 5210B EPA 410.4 EPA 300.0 EPA 300.0 EPA 300.0 SM 4500SF SM 2320B SM 2540D	2 25 0.04 0.040 0.60 0.40 8.0	2 10 0.01 0.010 0.20 0.10		06/30/14 15:55 07/01/14 14:58 06/25/14 11:14 06/25/14 11:14	1 1 1	
0.01 U 16 60 0.94 Q 2.7 Q 15 0.10 U 240 5	SM 5210B EPA 410.4 EPA 300.0 EPA 300.0 EPA 300.0 SM 4500SF SM 2320B SM 2540D	2 25 0.04 0.040 0.60 0.40 8.0	2 10 0.01 0.010 0.20 0.10		06/30/14 15:55 07/01/14 14:58 06/25/14 11:14 06/25/14 11:14	1 1 1	
16 60 0.94 Q 2.7 Q 15 0.10 U 240 5	SM 5210B EPA 410.4 EPA 300.0 EPA 300.0 EPA 300.0 SM 4500SF SM 2320B SM 2540D	2 25 0.04 0.040 0.60 0.40 8.0	2 10 0.01 0.010 0.20 0.10		06/30/14 15:55 07/01/14 14:58 06/25/14 11:14 06/25/14 11:14	1 1 1	
60 0.94 Q 2.7 Q 15 0.10 U 240 5	EPA 410.4 EPA 300.0 EPA 300.0 EPA 300.0 SM 4500SF SM 2320B SM 2540D	25 0.04 0.040 0.60 0.40 8.0	10 0.01 0.010 0.20 0.10		07/01/14 14:58 06/25/14 11:14 06/25/14 11:14	1 1	
0.94 Q 2.7 Q 15 0.10 U 240 5	EPA 300.0 EPA 300.0 EPA 300.0 SM 4500SF SM 2320B SM 2540D	0.04 0.040 0.60 0.40 8.0	0.01 0.010 0.20 0.10	06/30/14 13:20	06/25/14 11:14 06/25/14 11:14	1	
2.7 Q 15 0.10 U 240 5	EPA 300.0 EPA 300.0 SM 4500SF SM 2320B SM 2540D	0.040 0.60 0.40 8.0	0.010 0.20 0.10		06/25/14 11:14		
15 0.10 U 240 5	EPA 300.0 SM 4500SF SM 2320B SM 2540D	0.60 0.40 8.0	0.20 0.10			1	
0.10 U 240 5	SM 4500SF SM 2320B SM 2540D	0.40 8.0	0.10		06/05/14 11:14		
240 5	SM 2320B SM 2540D	8.0			00/23/14 11.14	1	
5	SM 2540D		20		06/30/14 09:29	1	
			_		07/05/14 15:58	1	
4	FPA 160 4	1	1	06/27/14 12:35	06/30/14 15:58	1	
	LI/(100.4	1	1	06/27/14 12:35	06/30/14 15:58	1	
0.94	EPA 300.0	0.04	0.01		06/25/14 11:14	1	
TestAme	rica Savannah	n					
8.7	350.1	0.25	0.13		07/15/14 09:56	5	
0.0	254.0	2.0	4 5	07/14/14 4 5:00	07/40/44 00:47	40	
9.9	351.2	2.0	1.5	07/14/14 15:00	07/18/14 09:47	10	
4.5	365.4	0.10	0.041	07/14/14 15:00	07/17/14 19:39	1	
BHS6-ST1&2a-DUP							
Wastewater							
06/24/14 09:25							
0.01 U	SM 4550SF	0.04	0.01		06/30/14 09:29	1	
18	SM 5210B	2	2	06/25/14 09:07	06/30/14 15:55	1	
54	EPA 410.4	25	10	06/30/14 13:20	07/01/14 14:58	1	
1.1 Q	EPA 300.0	0.04	0.01		06/25/14 11:25	1	
2.5 Q	EPA 300.0	0.040	0.010		06/25/14 11:25	1	
16	EPA 300.0	0.60	0.20		06/25/14 11:25	1	
0.10 U	SM 4500SF	0.40	0.10		06/30/14 09:29	1	
250	SM 2320B	8.0	2.0		07/05/14 16:09	1	
	SM 2540D	1	1	06/27/14 12:35	06/30/14 15:58	1	
						1	
	TestAme 8.7 9.9 4.5 BHS6-ST1&2a-DUP Wastewater 1406489-07 06/23/14 11:08 Harmon Harden 06/24/14 09:25 0.01 U 18 54 1.1 Q 2.5 Q 16 0.10 U	8.7 350.1 9.9 351.2 4.5 365.4 BHS6-ST1&2a-DUP Wastewater 1406489-07 06/23/14 11:08 Harmon Harden 06/24/14 09:25 0.01 U SM 4550SF 18 SM 5210B 54 EPA 410.4 1.1 Q EPA 300.0 2.5 Q EPA 300.0 16 EPA 300.0 0.10 U SM 4500SF 250 SM 2320B 2 SM 2540D	TestAmerica Savannah 8.7 350.1 0.25 9.9 351.2 2.0 4.5 365.4 0.10 BHS6-ST1&2a-DUP Wastewater 1406489-07 06/23/14 11:08 Harmon Harden 06/24/14 09:25 0.04 2 54 EPA 410.4 25 1.1 Q EPA 300.0 0.040 16 EPA 300.0 0.040 250 SM 4550SF 0.40 250 SM 2320B 8.0 2 3.01 1.0	<t< td=""><td>8.7 9.9 4.5 4.5 4.5 <!--</td--><td><th colsect="" of="" second="" second<="" td="" the=""></th></td></td></t<>	8.7 9.9 4.5 4.5 4.5 </td <td><th colsect="" of="" second="" second<="" td="" the=""></th></td>	<th colsect="" of="" second="" second<="" td="" the=""></th>	

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Project Name		BHS6	SE#5					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Di	ilution
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS6-ST1&2a-DUP Wastewater 1406489-07 06/23/14 11:08 Harmon Harden 06/24/14 09:25						
Nitrate+Nitrite (N)	mg/L	1.1	EPA 300.0	0.04	0.01		06/25/14 11:25	1
		TestAmer	ica Savannah					
<u>Nitrogen, Ammonia</u>								
Ammonia (as N)	mg/L	7.8	350.1	0.25	0.13		07/15/14 09:56	5
<u>Nitrogen, Total Kjeldahl</u>								
Nitrogen, Kjeldahl	mg/L	10	351.2	2.0	1.5	07/14/14 15:00	07/18/14 09:48	10
Phosphorus, Total								
Phosphorus	mg/L	4.5	365.4	0.10	0.041	07/14/14 15:00	07/17/14 19:40) 1
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS6-ST2b-T Wastewater 1406489-08 06/23/14 10:30 Harmon Harden 06/24/14 09:25						
Volatile Organic Compounds								
Acetone	ug/L	6.7	EPA 8260b	4.0	2.0		07/01/14 23:05	5 1
Acrylonitrile	ug/L	1.3 U	EPA 8260b	4.0	1.3		07/01/14 23:05	5 1
Benzene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:05	i 1
Bromobenzene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:05	i 1
Bromochloromethane	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:05	i 1
Bromodichloromethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:05	5 1
Bromoform	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:05	5 1
Bromomethane	ug/L	0.4 U	EPA 8260b	0.8	0.4		07/01/14 23:05	5 1
2-Butanone	ug/L	7.2	EPA 8260b	4.0	2.0		07/01/14 23:05	
n-Butylbenzene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:05	5 1
sec-Butylbenzene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:05	5 1
t-Butylbenzene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:05	5 1
Carbon disulfide	ug/L	0.8	EPA 8260b	0.8	0.2		07/01/14 23:05	5 1
Carbon tetrachloride	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:05	5 1
Chlorobenzene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:05	5 1
Chloroethane	ug/L	0.4 U	EPA 8260b	1.6	0.4		07/01/14 23:05	i 1
Chloroform	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:05	i 1
Chloromethane	ug/L	0.4 U	EPA 8260b	1.6	0.4		07/01/14 23:05	5 1
1,2-Dibromoethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:05	5 1
1,2-Dibromo-3-chloropropane	ug/L	0.3 U	EPA 8260b	0.8	0.3		07/01/14 23:05	5 1

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

July 22, 2014 Work Order: 1406489

Project Name		BHS	6 SE#5					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Dilution
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS6-ST2b-T Wastewater 1406489-08 06/23/14 10:30 Harmon Harden 06/24/14 09:25						
2-Chlorotoluene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:	05 1
2-Chloroethylvinyl Ether	ug/L	0.5 U	EPA 8260b	1.6	0.5		07/01/14 23:	05 1
4-Chlorotoluene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:0	05 1
Dibromochloromethane	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:0	05 1
Dibromomethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:	05 1
1,2-Dichlorobenzene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:	05 1
1,3-Dichlorobenzene	ug/L	0.07 U	EPA 8260b	0.8	0.07		07/01/14 23:	05 1
1,4-Dichlorobenzene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:	05 1
trans-1,4-Dichloro-2-butene	ug/L	0.3 U	EPA 8260b	0.8	0.3		07/01/14 23:	05 1
Dichlorodifluoromethane	ug/L	0.5 U	EPA 8260b	1.6	0.5		07/01/14 23:0	05 1
1,1-Dichloroethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:	05 1
1,2-Dichloroethane	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:0	05 1
1,1-Dichloroethene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:0	05 1
cis-1,2-Dichloroethene	ug/L	0.09 U	EPA 8260b	0.8	0.09		07/01/14 23:0	05 1
trans-1,2-Dichloroethene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:0	05 1
1,2-Dichloropropane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:0	05 1
2,2-Dichloropropane	ug/L	0.3 U	EPA 8260b	0.8	0.3		07/01/14 23:0	05 1
1,1-Dichloropropene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:0	05 1
cis-1,3-Dichloropropene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:0	05 1
trans-1,3-Dichloropropene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:0	05 1
Ethylbenzene	ug/L	0.08 U	EPA 8260b	0.8	0.08		07/01/14 23:0	05 1
Hexachlorobutadiene	ug/L	0.4 U	EPA 8260b	0.8	0.4		07/01/14 23:	05 1
2-Hexanone	ug/L	2.1 U	EPA 8260b	4.0	2.1		07/01/14 23:	05 1
lodomethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:	05 1
Isopropylbenzene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:	05 1
4-Isopropyltoluene	ug/L	1.2	EPA 8260b	0.8	0.2		07/01/14 23:	05 1
Methyl-t-butyl ether	ug/L	0.2 U	EPA 8260b	1.6	0.2		07/01/14 23:0	05 1
Methylene Chloride	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:	05 1
4-Methyl-2-pentanone	ug/L	2.6 U	EPA 8260b	4.0	2.6		07/01/14 23:0	05 1
Naphthalene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:0	05 1
n-Propylbenzene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:0	05 1
Styrene	ug/L	0.05 U	EPA 8260b	0.8	0.05		07/01/14 23:0	05 1
1,1,1,2-Tetrachloroethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:0	05 1
1,1,2,2-Tetrachloroethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:0	05 1
Tetrachloroethene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:0	05 1
Toluene	ug/L	3.5	EPA 8260b	0.8	0.09		07/01/14 23:0	05 1
1,2,3-Trichlorobenzene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:0	
1,2,4-Trichlorobenzene	ug/L	0.3 U	EPA 8260b	0.8	0.3		07/01/14 23:	05 1

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

July 22, 2014 Work Order: 1406489

Project Name		BHS	6 SE#5					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	lilution
Sample Description	E	HS6-ST2b-T						
Matrix		Vastewater						
SAL Sample Number	1	406489-08						
Date/Time Collected	0	6/23/14 10:30						
Collected by	F	armon Harden						
Date/Time Received	C	6/24/14 09:25						
1,1,1-Trichloroethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:0	51
1,1,2-Trichloroethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:0	51
Trichloroethene	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:0	51
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	0.6 U	EPA 8260b*	1.6	0.6		07/01/14 23:0	51
Trichlorofluoromethane	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:0	51
1,2,3-Trichloropropane	ug/L	0.4 U	EPA 8260b	0.8	0.4		07/01/14 23:0	51
1,2,4-Trimethylbenzene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:0	5 1
1,3,5-Trimethylbenzene	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:0	
Vinyl chloride	ug/L	0.3 U	EPA 8260b	1.6	0.3		07/01/14 23:0	
Xylene-m,p	ug/L	0.2 U	EPA 8260b	1.6	0.2		07/01/14 23:0	
Xylene-o	ug/L	0.2 U	EPA 8260b	0.8	0.2		07/01/14 23:0	
Xylenes- Total	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:0	-
Total Trihalomethanes	ug/L	0.1 U	EPA 8260b	0.8	0.1		07/01/14 23:0	
1,4-Dioxane	ug/L	0.0	EPA 8260b*		0.1		07/01/14 23:0	
Surrogate for EPA 8260b	Dibromofluor			nits	65-	135	01/01/14 20:0	5 1
Pesticide Analyses								
1,2-Dibromo-3-chloropropane	ug/L	0.0052 U	EPA 504.1	0.021	0.0052	06/30/14 09:53	06/30/14 20:3	0 1
1,2-Dibromoethane	ug/L	0.0052 U	EPA 504.1	0.021	0.0052	06/30/14 09:53	06/30/14 20:3	0 1
Surrogate for EPA 504.1	2-Bromo-1-ci		114 % Lir	nits		130		-
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	1.6	SM 4550SF	0.04	0.01		06/30/14 09:2	91
Carbonaceous BOD	mg/L	5	SM 5210B	2	2	06/25/14 09:07	06/30/14 15:5	51
Chemical Oxygen Demand	mg/L	58	EPA 410.4	25	10	06/30/14 13:20	07/01/14 14:5	8 1
Nitrate (as N)	mg/L	0.01 U,Q	EPA 300.0	0.04	0.01		06/25/14 11:30	6 1
Nitrite (as N)	mg/L	0.01 U,Q	EPA 300.0	0.04	0.01		06/25/14 11:30	6 1
Orthophosphate as P	mg/L	2.5 Q	EPA 300.0	0.040	0.010		06/25/14 11:30	6 1
Sulfate	mg/L	140	EPA 300.0	6.0	2.0		07/10/14 13:4	7 10
Sulfide	mg/L	2.2	SM 4500SF		0.10		06/30/14 09:2	
Total Alkalinity	mg/L	350	SM 2320B	8.0	2.0		07/05/14 16:2	
Total Suspended Solids	mg/L	2	SM 2540D	1	1	06/27/14 12:35	06/30/14 15:5	
Volatile Suspended Solids	mg/L	2	EPA 160.4	1	1	06/27/14 12:35	06/30/14 15:5	
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02	00,21,11 12.00	06/25/14 11:30	
		TestAm	erica Savanna	ah				
Nitrogen, Ammonia								
Ammonia (as N)	mg/L	4.9	350.1	0.25	0.13		07/15/14 09:5	65
<u>Nitrogen, Total Kjeldahl</u>								

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Project Name		BHS	5 SE#5					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Dil	ution
Sample Description		BHS6-ST2b-T						
Matrix		Wastewater						
SAL Sample Number		1406489-08						
Date/Time Collected		06/23/14 10:30						
Collected by		Harmon Harden						
Date/Time Received		06/24/14 09:25						
		TestAme	rica Savannah	l				
Nitrogen, Kjeldahl	mg/L	5.9	351.2	2.0	1.5	07/14/14 15:00	07/18/14 09:49	10
Phosphorus, Total								
Phosphorus	mg/L	3.6	365.4	0.10	0.041	07/14/14 15:00	07/17/14 19:44	1
Sample Description		BHS6-EB						
Matrix		Reagent Water						
SAL Sample Number		1406489-09						
Date/Time Collected		06/23/14 11:48						
Collected by		Harmon Harden						
Date/Time Received		06/24/14 09:25						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01		06/30/14 09:29	1
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	06/25/14 09:07	06/30/14 15:55	1
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10	06/30/14 13:20	07/01/14 14:58	1
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		06/25/14 11:48	1
Nitrite (as N)	mg/L	0.04	EPA 300.0	0.04	0.01		06/25/14 11:48	1
Orthophosphate as P	mg/L	0.010 U	EPA 300.0	0.040	0.010		06/25/14 11:48	1
Sulfate	mg/L	0.31 I	EPA 300.0	0.60	0.20		06/25/14 11:48	1
Sulfide	mg/L	0.10 U	SM 4500SF	0.40	0.10		06/30/14 09:29	1
Total Alkalinity	mg/L	2.2	SM 2320B	8.0	2.0		07/05/14 16:24	1
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	06/27/14 12:35	06/30/14 15:58	1
Volatile Suspended Solids	mg/L	1 U	EPA 160.4	1	1	06/27/14 12:35	06/30/14 15:58	1
Nitrate+Nitrite (N)	mg/L	0.04 l	EPA 300.0	0.08	0.02		06/25/14 11:48	1
		TestAme	rica Savannah	l				
Nitrogen, Ammonia		o 47	050 4	0.050	0.000		074544000	
Ammonia (as N)	mg/L	0.17	350.1	0.050	0.026		07/15/14 09:01	1
<u>Nitrogen, Total Kjeldahl</u>								
Nitrogen, Kjeldahl	mg/L	0.15 U,U	351.2	0.20	0.15	07/14/14 15:00	07/17/14 19:45	1
<u>Phosphorus, Total</u>								
Phosphorus	mg/L	0.053 I,I	365.4	0.10	0.041	07/14/14 15:00	07/17/14 19:45	1

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BG40123 - VOC - Prep										
Blank (BG40123-BLK1)					Prepared 8	Analyzed:	07/01/14 18	:41		
Acetone	2.0 U	4.0	2.0	ug/L						
Acrylonitrile	1.3 U	4.0	1.3	ug/L						
Benzene	0.1 U	0.8	0.1	ug/L						
Bromobenzene	0.2 U	0.8	0.2	ug/L						
Bromochloromethane	0.1 U	0.8	0.1	ug/L						
Bromodichloromethane	0.2 U	0.8	0.2	ug/L						
Bromoform	0.2 U	0.8	0.2	ug/L						
Bromomethane	0.4 U	0.8	0.4	ug/L						
2-Butanone	2.0 U	4.0	2.0	ug/L						
n-Butylbenzene	0.2 U	0.8	0.2	ug/L						
sec-Butylbenzene	0.2 U	0.8	0.2	ug/L						
t-Butylbenzene	0.1 U	0.8	0.1	ug/L						
Carbon disulfide	0.2 U	0.8	0.2	ug/L						
Carbon tetrachloride	0.2 U	0.8	0.2	ug/L						
Chlorobenzene	0.1 U	0.8	0.1	ug/L						
Chloroethane	0.4 U	1.6	0.4	ug/L						
Chloroform	0.2 U	0.8	0.2	ug/L						
Chloromethane	0.4 U	1.6	0.4	ug/L						
1,2-Dibromoethane	0.2 U	0.8	0.2	ug/L						
1,2-Dibromo-3-chloropropane	0.2 U	0.8	0.2	ug/L						
2-Chlorotoluene	0.5 U 0.1 U	0.8	0.0	ug/L						
2-Chloroethylvinyl Ether	0.1 U	1.6	0.5	ug/L						
4-Chlorotoluene	0.0 U	0.8	0.0	ug/L						
Dibromochloromethane	0.1 U	0.8	0.1	ug/L						
Dibromomethane	0.1 U	0.8	0.1	ug/L						
1,2-Dichlorobenzene	0.2 U 0.1 U	0.8	0.2	ug/L						
1,3-Dichlorobenzene	0.07 U	0.8	0.07	ug/L						
1,4-Dichlorobenzene	0.2 U	0.8	0.07	ug/L						
trans-1,4-Dichloro-2-butene	0.2 U 0.3 U	0.8	0.2	ug/L						
Dichlorodifluoromethane	0.5 U	1.6	0.5	ug/L						
1,1-Dichloroethane	0.5 U	0.8	0.3	ug/L						
1,2-Dichloroethane	0.2 U 0.1 U	0.8	0.2	ug/L						
1,1-Dichloroethene	0.1 U	0.8	0.1	ug/L						
cis-1,2-Dichloroethene	0.2 U 0.09 U	0.8	0.2	ug/L						
trans-1,2-Dichloroethene	0.09 U	0.8	0.09	0						
	0.2 U 0.2 U	0.8	0.2	ug/L						
1,2-Dichloropropane 2,2-Dichloropropane	0.2 U 0.3 U	0.8	0.2	ug/L ug/L						
1,1-Dichloropropene	0.3 U 0.2 U	0.8	0.3	ug/L						
	0.2 U 0.2 U	0.8	0.2	ug/L ug/L						
cis-1,3-Dichloropropene	0.2 U 0.1 U	0.8	0.2	ug/L ug/L						
trans-1,3-Dichloropropene	0.1 U 0.08 U	0.8	0.1	-						
Ethylbenzene				ug/L						
Hexachlorobutadiene	0.4 U	0.8	0.4	ug/L						
2-Hexanone	2.1 U	4.0	2.1	ug/L						
Iodomethane	0.2 U	0.8	0.2	ug/L						
Isopropylbenzene	0.1 U	0.8	0.1	ug/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Result	I QL		Onito	Lever	rtcourt	/01/12/0	Linito		Linit
Batch BG40123 - VOC - Prep										
Blank (BG40123-BLK1)					Prepared 8	Analyzed:	07/01/14 18	8:41		
4-Isopropyltoluene	0.2 U	0.8	0.2	ug/L						
Methyl-t-butyl ether	0.2 U	1.6	0.2	ug/L						
Methylene Chloride	0.2 U	0.8	0.2	ug/L						
4-Methyl-2-pentanone	2.6 U	4.0	2.6	ug/L						
Naphthalene	0.2 U	0.8	0.2	ug/L						
n-Propylbenzene	0.1 U	0.8	0.1	ug/L						
Styrene	0.05 U	0.8	0.05	ug/L						
1,1,1,2-Tetrachloroethane	0.2 U	0.8	0.2	ug/L						
1,1,2,2-Tetrachloroethane	0.2 U	0.8	0.2	ug/L						
Tetrachloroethene	0.1 U	0.8	0.1	ug/L						
Toluene	0.09 U	0.8	0.09	ug/L						
1,2,3-Trichlorobenzene	0.2 U	0.8	0.2	ug/L						
1,2,4-Trichlorobenzene	0.3 U	0.8	0.3	ug/L						
1,1,1-Trichloroethane	0.2 U	0.8	0.2	ug/L						
1,1,2-Trichloroethane	0.2 U	0.8	0.2	ug/L						
Trichloroethene	0.2 U	0.8	0.2	ug/L						
1,1,2-Trichloro-1,2,2-trifluoroet	0.6 U	1.6	0.6	ug/L						
hane				•						
Trichlorofluoromethane	0.2 U	0.8	0.2	ug/L						
1,2,3-Trichloropropane	0.4 U	0.8	0.4	ug/L						
1,2,4-Trimethylbenzene	0.1 U	0.8	0.1	ug/L						
1,3,5-Trimethylbenzene	0.1 U	0.8	0.1	ug/L						
Vinyl chloride	0.3 U	1.6	0.3	ug/L						
Xylene-m,p	0.2 U	1.6	0.2	ug/L						
Xylene-o	0.2 U	0.8	0.2	ug/L						
Xylenes- Total	0.1 U	0.8	0.1	ug/L						
Total Trihalomethanes	0.1 U	0.8	0.1	ug/L						
1,4-Dioxane	0.00			ug/L						
Surrogate: 4-Bromofluorobenzene	20.3			ug/L	20		102	65-135		
Surrogate: 1,2-Dichloroethane-d4	20.5			ug/L	20		102	65-135		
Surrogate: Toluene-d8	19.5			ug/L	20		98	65-135		
Surrogate: Dibromofluoromethane	21.3			ug/L	20		106	65-135		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Volatile Organic Compounds - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BG40123 - VOC - Prep)									
LCS (BG40123-BS1)					Prepared 8	Analyzed:	07/01/14 19):15		
Acetone	128	4.0	2.0	ug/L	100		128	70-130		
Acrylonitrile	127	4.0	1.3	ug/L	100		127	70-130		
Benzene	21.6	0.8	0.1	ug/L	20		108	70-130		
Bromobenzene	19.7	0.8	0.2	ug/L	20		98	70-130		
Bromochloromethane	23.7	0.8	0.1	ug/L	20		119	70-130		
Bromodichloromethane	23.0	0.8	0.2	ug/L	20		115	70-130		
Bromoform	21.0	0.8	0.2	ug/L	20		105	70-130		
Bromomethane	41.7	0.8	0.4	ug/L	40		104	70-130		
2-Butanone	129	4.0	2.0	ug/L	100		129	70-130		
n-Butylbenzene	19.0	0.8	0.2	ug/L	20		95	70-130		
sec-Butylbenzene	18.7	0.8	0.2	ug/L	20		94	70-130		
-Butylbenzene	18.6	0.8	0.1	ug/L	20		93	70-130		
Carbon disulfide	22.6	0.8	0.2	ug/L	20		113	70-130		
Carbon tetrachloride	23.0	0.8	0.2	ug/L	20		115	70-130		
Chlorobenzene	20.7	0.8	0.1	ug/L	20		103	70-130		
Chloroethane	41.1	1.6	0.4	ug/L	40		103	70-130		
Chloroform	22.1	0.8	0.2	ug/L	20		111	70-130		
Chloromethane	42.0	1.6	0.4	ug/L	40		105	70-130		
2-Chlorotoluene	20.1	0.8	0.1	ug/L	20		100	70-130		
I-Chlorotoluene	20.1	0.8	0.1	ug/L	20		100	70-130		
Dibromochloromethane	21.9	0.8	0.1	ug/L	20		109	70-130		
Dibromomethane	23.2	0.8	0.2	ug/L	20		116	70-130		
,2-Dichlorobenzene	19.4	0.8	0.1	ug/L	20		97	70-130		
,3-Dichlorobenzene	19.6	0.8	0.07	ug/L	20		98	70-130		
,4-Dichlorobenzene	19.6	0.8	0.2	ug/L	20		98	70-130		
rans-1,4-Dichloro-2-butene	23.2	0.8	0.3	ug/L	20		116	70-130		
Dichlorodifluoromethane	51.3	1.6	0.5	ug/L	40		128	70-130		
,1-Dichloroethane	22.8	0.8	0.2	ug/L	20		114	70-130		
,2-Dichloroethane	24.1	0.8	0.1	ug/L	20		121	70-130		
I,1-Dichloroethene	22.7	0.8	0.2	ug/L	20		114	70-130		
cis-1,2-Dichloroethene	22.7	0.8	0.09	ug/L	20		113	70-130		
rans-1,2-Dichloroethene	22.7	0.8	0.2	ug/L	20		113	70-130		
I,2-Dichloropropane	22.6	0.8	0.2	ug/L	20		113	70-130		
2,2-Dichloropropane	23.9	0.8	0.3	ug/L	20		120	70-130		
I,1-Dichloropropene	23.6	0.8	0.2	ug/L	20		118	70-130		
sis-1,3-Dichloropropene	23.7	0.8	0.2	ug/L	20		119	70-130		
rans-1,3-Dichloropropene	22.7	0.8	0.1	ug/L	20		113	70-130		
Ethylbenzene	20.1	0.8	0.08	ug/L	20		101	70-130		
lexachlorobutadiene	17.6	0.8	0.4	ug/L	20		88	70-130		
-Hexanone	128	4.0	2.1	ug/L	100		128	70-130		
odomethane	25.2	0.8	0.2	ug/L	20		126	70-130		
sopropylbenzene	20.4	0.0	0.2	ug/L	20		102	70-130		
I-Isopropyltoluene	18.7	0.8	0.1	ug/L	20		93	70-130		
Methyl-t-butyl ether	23.6	1.6	0.2	ug/L	20		118	70-130		
Methylene Chloride	22.9	0.8	0.2	ug/L	20		115	70-130		

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BG40123 - VOC - Prep										
.CS (BG40123-BS1)					Prepared 8	Analyzed:	07/01/14 19	9:15		
-Methyl-2-pentanone	117	4.0	2.6	ug/L	100		117	70-130		
Japhthalene	20.2	0.8	0.2	ug/L	20		101	70-130		
-Propylbenzene	19.3	0.8	0.1	ug/L	20		96	70-130		
Styrene	20.8	0.8	0.05	ug/L	20		104	70-130		
,1,1,2-Tetrachloroethane	20.2	0.8	0.2	ug/L	20		101	70-130		
,1,2,2-Tetrachloroethane	20.6	0.8	0.2	ug/L	20		103	70-130		
etrachloroethene	20.0	0.8	0.1	ug/L	20		100	70-130		
oluene	20.2	0.8	0.09	ug/L	20		101	70-130		
,2,3-Trichlorobenzene	18.5	0.8	0.2	ug/L	20		93	70-130		
,2,4-Trichlorobenzene	18.5	0.8	0.3	ug/L	20		93	70-130		
,1,1-Trichloroethane	23.1	0.8	0.2	ug/L	20		115	70-130		
,1,2-Trichloroethane	21.2	0.8	0.2	ug/L	20		106	70-130		
richloroethene	21.2	0.8	0.2	ug/L	20		110	70-130		
richlorofluoromethane	22.0	0.8	0.2	ug/L	20		105	70-130		
,1,2-Trichloro-1,2,2-trifluoroet	23.0	1.6	0.2	ug/L	20		105	70-130		
ane		1.0		ug/L			115			
,2,3-Trichloropropane	21.2	0.8	0.4	ug/L	20		106	70-130		
,2,4-Trimethylbenzene	19.4	0.8	0.1	ug/L	20		97	70-130		
,3,5-Trimethylbenzene	19.5	0.8	0.1	ug/L	20		98	70-130		
/inyl chloride	37.6	1.6	0.3	ug/L	40		94	70-130		
(ylene-m,p	41.1	1.6	0.2	ug/L	40		103	70-130		
(ylene-o	20.4	0.8	0.2	ug/L	20		102	70-130		
Surrogate: 4-Bromofluorobenzene	19.7			ug/L	20		99	65-135		
Surrogate: 1,2-Dichloroethane-d4	20.3			ug/L	20		102	65-135		
Surrogate: Toluene-d8	19.1			ug/L	20		95	65-135		
Surrogate: Dibromofluoromethane	21.1			ug/L	20		105	65-135		
Duplicate (BG40123-DUP1)		Source: 1	406489-08	Ū.	Prepared 8	& Analyzed:	07/01/14 23	3:37		
Acetone	6.90	4.0	2.0	ug/L		6.72			3	20
Acrylonitrile	1.3 U	4.0	1.3	ug/L		ND				20
Benzene	0.1 U	0.8	0.1	ug/L		ND				20
Bromobenzene	0.2 U	0.8	0.2	ug/L		ND				20
Bromochloromethane	0.1 U	0.8	0.1	ug/L		ND				20
Bromodichloromethane	0.2 U	0.8	0.2	ug/L		ND				20
Bromoform	0.2 U	0.8	0.2	ug/L		ND				20
Bromomethane	0.4 U	0.8	0.4	ug/L		ND				20
2-Butanone	6.70	4.0	2.0	ug/L		7.19			7	20
-Butylbenzene	0.2 U	0.8	0.2	ug/L		ND				20
ec-Butylbenzene	0.2 U	0.8	0.2	ug/L		ND				20
-Butylbenzene	0.2 U 0.1 U	0.8	0.2	ug/L		ND				20
Carbon disulfide	0.710 I	0.8	0.1	ug/L		0.838			17	20
Carbon tetrachloride	0.7101 0.2 U	0.8 0.8	0.2	-		0.636 ND			17	20
Chlorobenzene	0.2 U 0.1 U			ug/L						
	0.1 0	0.8	0.1	ug/L		ND				20
	0 4 11	10	0 4	1101						
Chloroethane Chloroform	0.4 U 0.2 U	1.6 0.8	0.4 0.2	ug/L ug/L		ND ND				20 20

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Volatile Organic Compounds - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	result	I QL	MBE	Units	LCVCI	Result	JUILEO	Linito		Linit
Batch BG40123 - VOC - Prep										
Duplicate (BG40123-DUP1)		Source: 1	406489-08		Prepared 8	Analyzed:	07/01/14 23	3:37		
1,2-Dibromoethane	0.2 U	0.8	0.2	ug/L		ND				200
2-Chlorotoluene	0.1 U	0.8	0.1	ug/L		ND				20
1,2-Dibromo-3-chloropropane	0.3 U	0.8	0.3	ug/L		ND				200
2-Chloroethylvinyl Ether	0.5 U	1.6	0.5	ug/L		ND				200
4-Chlorotoluene	0.1 U	0.8	0.1	ug/L		ND				20
Dibromochloromethane	0.1 U	0.8	0.1	ug/L		ND				20
Dibromomethane	0.2 U	0.8	0.2	ug/L		ND				20
1,2-Dichlorobenzene	0.1 U	0.8	0.1	ug/L		ND				20
1,3-Dichlorobenzene	0.07 U	0.8	0.07	ug/L		ND				20
1,4-Dichlorobenzene	0.2 U	0.8	0.2	ug/L		ND				20
trans-1,4-Dichloro-2-butene	0.3 U	0.8	0.3	ug/L		ND				20
Dichlorodifluoromethane	0.5 U	1.6	0.5	ug/L		ND				20
1,1-Dichloroethane	0.2 U	0.8	0.2	ug/L		ND				20
1,2-Dichloroethane	0.1 U	0.8	0.1	ug/L		ND				20
1,1-Dichloroethene	0.2 U	0.8	0.2	ug/L		ND				20
cis-1,2-Dichloroethene	0.09 U	0.8	0.09	ug/L		ND				20
trans-1,2-Dichloroethene	0.2 U	0.8	0.2	ug/L		ND				20
1,2-Dichloropropane	0.2 U	0.8	0.2	ug/L		ND				20
2,2-Dichloropropane	0.3 U	0.8	0.3	ug/L		ND				20
1,1-Dichloropropene	0.2 U	0.8	0.2	ug/L		ND				20
cis-1,3-Dichloropropene	0.2 U	0.8	0.2	ug/L		ND				20
trans-1,3-Dichloropropene	0.1 U	0.8	0.1	ug/L		ND				20
Ethylbenzene	0.08 U	0.8	0.08	ug/L		ND				20
Hexachlorobutadiene	0.4 U	0.8	0.4	ug/L		ND				20
2-Hexanone	2.1 U	4.0	2.1	ug/L		ND				20
lodomethane	0.2 U	0.8	0.2	ug/L		ND				20
lsopropylbenzene	0.1 U	0.8	0.1	ug/L		ND				20
4-Isopropyltoluene	1.25	0.8	0.2	ug/L		1.25			0.3	20
Methyl-t-butyl ether	0.2 U	1.6	0.2	ug/L		ND				20
Methylene Chloride	0.2 U	0.8	0.2	ug/L		ND				20
4-Methyl-2-pentanone	2.6 U	4.0	2.6	ug/L		ND				20
Naphthalene	0.2 U	0.8	0.2	ug/L		ND				20
n-Propylbenzene	0.1 U	0.8	0.1	ug/L		ND				20
Styrene	0.05 U	0.8	0.05	ug/L		ND				20
1,1,1,2-Tetrachloroethane	0.2 U	0.8	0.2	ug/L		ND				20
1,1,2,2-Tetrachloroethane	0.2 U	0.8	0.2	ug/L		ND				20
Tetrachloroethene	0.1 U	0.8	0.1	ug/L		ND				20
Toluene	3.48	0.8	0.09	ug/L		3.51			0.7	20
1,2,3-Trichlorobenzene	0.2 U	0.8	0.2	ug/L		ND				20
1,2,4-Trichlorobenzene	0.3 U	0.8	0.3	ug/L		ND				20
1,1,1-Trichloroethane	0.2 U	0.8	0.2	ug/L		ND				20
1,1,2-Trichloroethane	0.2 U	0.8	0.2	ug/L		ND				20
Trichloroethene	0.2 U	0.8	0.2	ug/L		ND				20
Trichlorofluoromethane	0.2 U	0.8	0.2	ug/L		ND				20

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BG40123 - VOC - Prep										
Duplicate (BG40123-DUP1)		Source: 1	406489-08		Prepared 8	Analyzed:	07/01/14 23	3:37		
1,1,2-Trichloro-1,2,2-trifluoroet hane	0.6 U	1.6	0.6	ug/L		ND				20
1,2,3-Trichloropropane	0.4 U	0.8	0.4	ug/L		ND				20
1,2,4-Trimethylbenzene	0.1 U	0.8	0.1	ug/L		ND				20
1,3,5-Trimethylbenzene	0.1 U	0.8	0.1	ug/L		ND				20
Vinyl chloride	0.3 U	1.6	0.3	ug/L		ND				20
Xylene-m,p	0.2 U	1.6	0.2	ug/L		ND				20
Xylene-o	0.2 U	0.8	0.2	ug/L		ND				20
Kylenes- Total	0.1 U	0.8	0.1	ug/L		ND				20
Total Trihalomethanes	0.1 U	0.8	0.1	ug/L		ND				200
1,4-Dioxane	0.00			ug/L		0.00				200
Surrogate: 4-Bromofluorobenzene	20.6			ug/L	20		103	65-135		
Surrogate: 1,2-Dichloroethane-d4	20.0			ug/L	20		103	65-135		
Surrogate: Toluene-d8	19.2			ug/L	20		96	65-135		
Surrogate: Dibromofluoromethane	20.8			ug/L	20		30 104	65-135		
-	20.0	0	400700 00	ug/L		Analyzed:				
Matrix Spike (BG40123-MS1)	407		406708-02							
Acetone	137	4.0	2.0	ug/L	100	ND	137	65-135		
Acrylonitrile	124	4.0	1.3	ug/L	100	ND	124	65-135		
Benzene	21.1	0.8	0.1	ug/L	20	ND	105	65-135		
Bromobenzene	20.4	0.8	0.2	ug/L	20	ND	102	65-135		
Bromochloromethane	23.4	0.8	0.1	ug/L	20	ND	117	65-135		
Bromodichloromethane	36.2	0.8	0.2	ug/L	20	13.2	115	65-135		
Bromoform	31.0	0.8	0.2	ug/L	20	7.47	118	65-135		
Bromomethane	7.96	0.8	0.4	ug/L	40	ND	20	65-135		
2-Butanone	136	4.0	2.0	ug/L	100	ND	136	65-135		
n-Butylbenzene	19.6	0.8	0.2	ug/L	20	ND	98	65-135		
sec-Butylbenzene	19.4	0.8	0.2	ug/L	20	ND	97	65-135		
-Butylbenzene	19.1	0.8	0.1	ug/L	20	ND	95	65-135		
Carbon disulfide	22.2	0.8	0.2	ug/L	20	ND	111	65-135		
Carbon tetrachloride	23.2	0.8	0.2	ug/L	20	ND	116	65-135		
Chlorobenzene	21.1	0.8	0.1	ug/L	20	ND	105	65-135		
Chloroethane	42.8	1.6	0.4	ug/L	40	ND	107	65-135		
Chloroform	28.2	0.8	0.2	ug/L	20	6.48	109	65-135		
Chloromethane	37.4	1.6	0.4	ug/L	40	ND	94	65-135		
2-Chlorotoluene	20.5	0.8	0.1	ug/L	20	ND	103	65-135		
1-Chlorotoluene	20.8	0.8	0.1	ug/L	20	ND	104	65-135		
Dibromochloromethane	44.5	0.8	0.1	ug/L	20	21.2	117	65-135		
Dibromomethane	23.7	0.8	0.2	ug/L	20	ND	118	65-135		
,2-Dichlorobenzene	20.3	0.8	0.1	ug/L	20	ND	102	65-135		
,3-Dichlorobenzene	20.0	0.8	0.07	ug/L	20	ND	100	65-135		
,4-Dichlorobenzene	20.0	0.8	0.2	ug/L	20	ND	100	65-135		
rans-1,4-Dichloro-2-butene	10.9	0.8	0.3	ug/L	20	ND	54	65-135		
Dichlorodifluoromethane	42.2	1.6	0.5	ug/L	40	ND	105	65-135		
1,1-Dichloroethane	22.6	0.8	0.2	ug/L	20	ND	113	65-135		
1,2-Dichloroethane	23.8	0.8	0.1	ug/L	20	ND	119	65-135		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Batch BG40123 - VOC - Prep Batch BG40123 - VOC - Prep Matrix Spike (BG40123-MS1) Source: 1406708-02 Prepared & Analyzad: 07/01/14 20:23 1.1-Dichloroethene 22.8 0.8 0.2 ug/L 20 ND 114 65-135 cis-1,2-Dichloroethene 22.4 0.8 0.2 ug/L 20 ND 114 65-135 1,2-Dichloroethene 22.4 0.8 0.2 ug/L 20 ND 115 65-135 1,2-Dichloropropane 23.0 0.8 0.2 ug/L 20 ND 116 65-135 1,2-Dichloropropane 7.66 0.8 0.2 ug/L 20 ND 716 65-135 cis-1,3-Dichloropropene 7.66 0.8 0.2 ug/L 20 ND 79 65-135 Ethythenzene 20.8 0.8 0.8 ug/L 20 ND 92 65-135 Ethythenzene 12.8 4.0 2.1 ug/L 20 ND 92 </th <th></th> <th>-</th> <th>DOL</th> <th>MDI</th> <th></th> <th>Spike</th> <th>Source</th> <th>* 550</th> <th>%REC</th> <th></th> <th>RPD</th>		-	DOL	MDI		Spike	Source	* 550	%REC		RPD
Matrix Spike (BC40123-MS1) Source: 1406708-02 Prepared & Analyzet: 07/01/14 20:23 1,1-Dichloroethene 22.8 0.8 0.2 ugl. 20 ND 114 66-135 cis-1.2-Dichloroethene 22.4 0.8 0.09 ugl. 20 ND 113 66-135 1,2-Dichloroptopane 22.2 0.8 0.2 ugl. 20 ND 111 65-135 2,2-Dichloroptopane 23.2 0.8 0.2 ugl. 20 ND 116 65-135 1,1-Dichloroptopane 16.8 0.8 0.2 ugl. 20 ND 116 65-135 2.4/Exanone 16.8 0.8 0.08 ugl. 20 ND 128 65-135 10domethane 5.70 0.8 0.2 ugl. 20 ND 128 65-135 10domethane 5.70 0.8 0.2 ugl. 20 ND 148 65-135 10domethane 5.70 0.8 0.2	Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
1.1-Dichloroethene 22.8 0.8 0.2 ug/L 20 ND 114 65-135 cis-1.2-Dichloroethene 22.7 0.8 0.09 ug/L 20 ND 113 65-135 trans-1.2-Dichloroethene 22.4 0.8 0.2 ug/L 20 ND 111 65-135 1.2-Dichloropropane 23.0 0.8 0.2 ug/L 20 ND 111 65-135 1.1-Dichloropropene 7.66 0.8 0.2 ug/L 20 ND 186 65-135 trans-1.3-Dichloropropene 7.66 0.8 0.2 ug/L 20 ND 79 65-135 trans-1.3-Dichloropropene 16.8 0.8 0.1 ug/L 20 ND 124 65-135 trans-1.2-Dichloropropene 18.4 0.8 0.4 ug/L 20 ND 92 65-135 trans-1.2-Dichloropropene 18.4 0.8 0.1 ug/L 20 ND 148	Batch BG40123 - VOC - Prep										
ck-1,2-Dichloroethene 22.7 0.8 0.09 ug/L 20 ND 113 65-135 trans-1,2-Dichloroethene 22.4 0.8 0.2 ug/L 20 ND 111 65-135 1,2-Dichloropropane 23.0 0.8 0.3 ug/L 20 ND 111 65-135 2,2-Dichloropropane 7.66 0.8 0.2 ug/L 20 ND 116 65-135 is-3,3-Dichloropropene 1.5.8 0.8 0.1 ug/L 20 ND 79 65-135 Ethylenzene 2.8 0.8 0.4 ug/L 20 ND 104 65-135 Iddomethane 128 4.0 2.1 ug/L 20 ND 128 65-135 Isopropylbenzene 2.8 0.8 0.1 ug/L 20 ND 148 65-135 Hexabloroethane 2.3 0.8 0.2 ug/L 20 ND 1118 65-135	Matrix Spike (BG40123-MS1)		Source: 1	1406708-02		Prepared 8	Analyzed:	07/01/14 20):23		
trans-1,2-Dichloroethene22.40.80.2ug/L20ND11265-1351,2-Dichloropropane23.20.80.2ug/L20ND11665-1351,1-Dichloropropene23.20.80.2ug/L20ND11665-135cis-1.3-Dichloropropene7.660.80.2ug/L20ND17965-135Ethylbenzene20.80.80.1ug/L20ND10465-135Ethylbenzene1284.02.1ug/L20ND12865-1352-Hexanone1284.02.1ug/L20ND12865-135Isopropylbenzene20.80.80.1ug/L20ND12865-135Isopropylbenzene20.80.80.1ug/L20ND14465-135Hethyl-bulyl ether13.40.80.2ug/L20ND11865-135Methyl-bulyl ether23.61.60.2ug/L20ND11865-135Styrene19.60.80.1ug/L20ND10465-1351,1,12-Tetrachloroethane20.30.80.2ug/L20ND10765-1351,1,2-Tetrachloroethane20.30.80.2ug/L20ND10765-1351,1,2-Tetrachloroethane20.30.80.2ug/L20ND10265-1351,1,2-Tetrach	1,1-Dichloroethene	22.8	0.8	0.2	ug/L	20	ND	114	65-135		
1.2.Dichloropropane 2.2 0.8 0.2 ug/L 20 ND 111 65.135 2.2.Dichloropropane 23.0 0.8 0.2 ug/L 20 ND 115 65.135 cis-1.3.Dichloropropene 7.66 0.8 0.2 ug/L 20 ND 38 65.135 trans-1.3.Dichloropropene 15.8 0.8 0.01 ug/L 20 ND 140 65.135 trans-1.3.Dichloropropene 15.8 0.8 0.01 ug/L 20 ND 124 65.135 trans-1.3.Dichloropropene 12.8 4.0 2.1 ug/L 20 ND 128 65.135 Ledomethane 57.0 0.8 0.2 ug/L 20 ND 144 65.135 Isopropylbenzene 19.4 0.8 0.2 ug/L 20 ND 111 65.135 Hethyl-buly ether 23.6 1.6 0.2 ug/L 20 ND 111 65.135 Hethyl-buly ether 23.6 0.1 ug/L 20 ND <	cis-1,2-Dichloroethene	22.7	0.8	0.09		20	ND	113	65-135		
2.2-Dichloropropane 23.0 0.8 0.3 ug/L 20 ND 115 65-135 1,1-Dichloropropene 7.66 0.8 0.2 ug/L 20 ND 116 65-135 tans-1,3-Dichloropropene 15.8 0.8 0.1 ug/L 20 ND 79 65-135 Ethylbenzene 20.8 0.8 0.03 ug/L 20 ND 144 65-135 2-Hexanone 128 4.0 2.1 ug/L 20 ND 128 65-135 loporopylenzene 20.8 0.8 0.2 ug/L 20 ND 128 65-135 loporopylenzene 20.8 0.8 0.1 ug/L 20 ND 118 65-135 Hethylene 20.6 1.6 0.2 ug/L 20 ND 118 65-135 Hethylene 20.6 1.6 0.2 ug/L 20 ND 118 65-135 1.4 0.8 0.2 ug/L 20 ND 1112 65-135	trans-1,2-Dichloroethene	22.4	0.8	0.2	ug/L	20	ND	112	65-135		
1,1-Dichloropropene 23.2 0.8 0.2 ug/L 20 ND 116 65-135 cis-1,3-Dichloropropene 7.66 0.8 0.2 ug/L 20 ND 38 65-135 Ethylbenzene 20.8 0.8 0.08 ug/L 20 ND 104 65-135 Ethylbenzene 18.4 0.8 0.4 ug/L 20 ND 128 65-135 Idoomethane 18.4 0.8 0.2 ug/L 20 ND 128 65-135 Idoomethane 5.70 0.8 0.2 ug/L 20 ND 128 65-135 Idoomethane 20.8 0.8 0.1 ug/L 20 ND 148 65-135 Idoomethane 20.8 0.8 0.2 ug/L 20 ND 118 65-135 Idoomethane 21.6 0.8 0.2 ug/L 20 ND 118 65-135 Idoomethane 21.6 0.8 0.2 ug/L 20 ND 1116 65-135	1,2-Dichloropropane	22.2	0.8	0.2	ug/L	20	ND	111	65-135		
cis-1,3-Dichioropropene 7.66 0.8 0.2 ug/L 20 ND 38 65-135 trans-1,3-Dichioropropene 15.8 0.8 0.08 ug/L 20 ND 79 65-135 Hexachlorobutadiene 18.4 0.8 0.4 ug/L 20 ND 92 65-135 2-Hexanone 128 4.0 2.1 ug/L 20 ND 128 65-135 lodomethane 5.70 0.8 0.2 ug/L 20 ND 148 65-135 lodomethane 19.4 0.8 0.2 ug/L 20 ND 146 65-135 loborophylobenzene 20.8 0.8 0.1 ug/L 20 ND 114 65-135 Methyl-bulyl ether 23.6 1.6 0.2 ug/L 20 ND 111 65-135 Naphthalene 20.3 0.8 0.2 ug/L 20 ND 101 65-135 l,1,2-Zetrachloroethane 21.0 0.8 0.2 ug/L 20 ND 102	2,2-Dichloropropane	23.0	0.8	0.3	ug/L	20	ND	115	65-135		
trans.1.3.Dichloropropene 15.8 0.8 0.1 ug/L 20 ND 79 65-135 Ethylbenzene 20.8 0.8 0.08 ug/L 20 ND 104 65-135 Hexachlorobutadiene 18.4 0.8 0.4 ug/L 20 ND 92 65-135 Jedomethane 5.70 0.8 0.2 ug/L 20 ND 128 65-135 Isopropylbenzene 20.8 0.8 0.1 ug/L 20 ND 174 65-135 Hetnyl-bulyl ether 23.6 1.6 0.2 ug/L 20 ND 118 65-135 Naphthalene 20.3 0.8 0.2 ug/L 20 ND 112 65-135 Naphthalene 20.3 0.8 0.2 ug/L 20 ND 101 65-135 Styrene 21.4 0.8 0.2 ug/L 20 ND 102 65-135 1,1,2-Tetrachloroethane 20.3 0.8 0.2 ug/L 20 ND 102 65-1	1,1-Dichloropropene	23.2	0.8	0.2	ug/L	20	ND	116	65-135		
Ethylbenzene 20.8 0.8 0.08 ug/L 20 ND 104 65-135 Hexachlorobutadiene 18.4 0.8 0.4 ug/L 20 ND 92 65-135 2-Hexanone 128 4.0 2.1 ug/L 20 ND 28 65-135 Idomethane 5.70 0.8 0.2 ug/L 20 ND 28 65-135 Isopropylbenzene 20.8 0.8 0.1 ug/L 20 ND 114 65-135 4-Isopropylbenzene 23.6 1.6 0.2 ug/L 20 ND 118 65-135 Methyl-buly ether 23.6 0.8 0.2 ug/L 20 ND 101 65-135 Naphthalene 20.3 0.8 0.2 ug/L 20 ND 102 65-135 1,1,12-Tetrachloroethane 21.0 0.8 0.2 ug/L 20 ND 102 65-135 1,1,2.7:Tichlorob	cis-1,3-Dichloropropene	7.66	0.8	0.2	ug/L	20	ND	38	65-135		
Hexachlorobutadiene 18.4 0.8 0.4 ug/L 20 ND 92 65-135 2-Hexanone 128 4.0 2.1 ug/L 100 ND 128 65-135 lodomethane 5.70 0.8 0.2 ug/L 20 ND 104 65-135 4-Isopropylbenzene 20.8 0.8 0.1 ug/L 20 ND 104 65-135 4-Isopropylbulene 19.4 0.8 0.2 ug/L 20 ND 112 65-135 Methyl-L-buyl etter 23.6 1.6 0.2 ug/L 20 ND 113 65-135 4-Methyl-2-pentanone 119 4.0 2.6 ug/L 20 ND 101 65-135 Naphtalene 20.3 0.8 0.2 ug/L 20 ND 107 65-135 1,1,2.2 5 0.8 0.1 ug/L 20 ND 102 65-135 1,1,2.2	trans-1,3-Dichloropropene	15.8	0.8	0.1	ug/L	20	ND	79	65-135		
2-Hexanone 128 4.0 2.1 ug/L 100 ND 128 65-135 Iodomethane 5.70 0.8 0.2 ug/L 20 ND 28 65-135 Isopropylbenzene 20.8 0.8 0.1 ug/L 20 ND 104 65-135 Methyl-t-butyl ether 23.6 1.6 0.2 ug/L 20 ND 118 65-135 Methyl-t-butyl ether 23.6 1.6 0.2 ug/L 20 ND 112 65-135 4-Methyl-2-pentanone 119 4.0 2.6 ug/L 20 ND 119 65-135 Napthtalene 20.3 0.8 0.2 ug/L 20 ND 107 65-135 1,1,2-Ztetrachloroethane 21.0 0.8 0.2 ug/L 20 ND 102 65-135 1,1,2-Ztetrachloroethane 20.3 0.8 0.2 ug/L 20 ND 102 65-135 1,1,2-Ztetrachloroethane 20.5 0.8 0.9 ug/L 20 ND <	Ethylbenzene	20.8	0.8	0.08	ug/L	20	ND	104	65-135		
Iodomethane 5.70 0.8 0.2 ug/L 20 ND 28 65-135 Isopropylbenzene 20.8 0.8 0.1 ug/L 20 ND 104 65-135 4-Isopropylbenzene 19.4 0.8 0.2 ug/L 20 ND 97 65-135 Methyl-bulyl ether 23.6 1.6 0.2 ug/L 20 ND 118 65-135 Methyl-2-pentanone 119 4.0 2.6 ug/L 20 ND 101 65-135 Naphthalene 20.3 0.8 0.2 ug/L 20 ND 101 65-135 Styrene 21.4 0.8 0.05 ug/L 20 ND 102 65-135 1,1,2-Ztrachloroethane 20.3 0.8 0.2 ug/L 20 ND 102 65-135 1,1,2-Ztrachloroethane 20.4 0.8 0.2 ug/L 20 ND 102 65-135 1,2,3-Tric	Hexachlorobutadiene	18.4	0.8	0.4	ug/L	20	ND	92	65-135		
Isopropylbenzene 20.8 0.8 0.1 ug/L 20 ND 104 65-135 4-Isopropylboluene 19.4 0.8 0.2 ug/L 20 ND 97 65-135 Methyl-t-butyl ether 23.6 1.6 0.2 ug/L 20 ND 118 65-135 4-Methyl-2-pentanone 119 4.0 2.6 ug/L 20 ND 119 65-135 Naphthalene 20.3 0.8 0.2 ug/L 20 ND 101 65-135 1,1,2-Tetrachloroethane 21.4 0.8 0.1 ug/L 20 ND 102 65-135 1,1,2-Tetrachloroethane 20.3 0.8 0.2 ug/L 20 ND 102 65-135 1,1,2-Tetrachloroethane 20.3 0.8 0.2 ug/L 20 ND 102 65-135 1,2,3-Trichlorobenzene 19.0 0.8 0.2 ug/L 20 ND 195 65-135 <td>2-Hexanone</td> <td>128</td> <td>4.0</td> <td>2.1</td> <td>ug/L</td> <td>100</td> <td>ND</td> <td>128</td> <td>65-135</td> <td></td> <td></td>	2-Hexanone	128	4.0	2.1	ug/L	100	ND	128	65-135		
4-Isopropyltoluene 19.4 0.8 0.2 ug/L 20 ND 97 65-135 Methyl-t-butyl ether 23.6 1.6 0.2 ug/L 20 ND 118 65-135 Methylene Chloride 22.4 0.8 0.2 ug/L 20 ND 112 65-135 Naphthalene 20.3 0.8 0.2 ug/L 20 ND 101 65-135 Naphthalene 20.3 0.8 0.2 ug/L 20 ND 101 65-135 Styrene 21.4 0.8 0.05 ug/L 20 ND 107 65-135 1,1,2-Tetrachloroethane 20.3 0.8 0.2 ug/L 20 ND 102 65-135 1,2,2-Tetrachloroethane 20.4 0.8 0.1 ug/L 20 ND 102 65-135 12,3-Trichlorobenzene 19.0 0.8 0.2 ug/L 20 ND 102 65-135 1,2,3-Trichlorobenzene 19.0 0.8 0.2 ug/L 20 ND 1	lodomethane	5.70	0.8	0.2	ug/L	20	ND	28	65-135		
Methyl-t-butyl ether 23.6 1.6 0.2 ug/L 20 ND 118 65-135 Methyl-2-pentanone 119 4.0 2.6 ug/L 20 ND 112 65-135 Naphthalene 20.3 0.8 0.2 ug/L 20 ND 101 65-135 Naphthalene 20.3 0.8 0.1 ug/L 20 ND 101 65-135 Naphthalene 20.3 0.8 0.1 ug/L 20 ND 101 65-135 Styrene 21.4 0.8 0.05 ug/L 20 ND 102 65-135 1,1,2.7etrachloroethane 20.3 0.8 0.2 ug/L 20 ND 102 65-135 1,2.3-Trichloroethane 20.5 0.8 0.9 ug/L 20 ND 95 65-135 1,2.4-Trichloroetnane 23.0 0.8 0.2 ug/L 20 ND 102 65-135 1,1.2-Tri	Isopropylbenzene	20.8	0.8	0.1	ug/L	20	ND	104	65-135		
Methylene Chloride 22.4 0.8 0.2 ug/L 20 ND 112 65-135 4-Methyl-2-pentanone 119 4.0 2.6 ug/L 100 ND 119 65-135 Naphthalene 20.3 0.8 0.2 ug/L 20 ND 101 65-135 n-Propylbenzene 19.6 0.8 0.1 ug/L 20 ND 98 65-135 Styrene 21.4 0.8 0.05 ug/L 20 ND 105 65-135 1,1,2.7-Tetrachloroethane 20.3 0.8 0.2 ug/L 20 ND 102 65-135 1,1,2.7-Tetrachloroethane 20.3 0.8 0.2 ug/L 20 ND 102 65-135 1,2,3-Trichlorobenzene 19.0 0.8 0.2 ug/L 20 ND 95 65-135 1,2,4-Trichlorobenzene 18.9 0.8 0.2 ug/L 20 ND 115 65-135	4-Isopropyltoluene	19.4	0.8	0.2	ug/L	20	ND	97	65-135		
4-Methyl-2-pentanone 119 4.0 2.6 ug/L 100 ND 119 65-135 Naphthalene 20.3 0.8 0.2 ug/L 20 ND 101 65-135 Naphthalene 19.6 0.8 0.1 ug/L 20 ND 98 65-135 Styrene 21.4 0.8 0.05 ug/L 20 ND 107 65-135 1,1,2-Tetrachloroethane 20.3 0.8 0.2 ug/L 20 ND 102 65-135 Tetrachloroethane 20.3 0.8 0.2 ug/L 20 ND 102 65-135 Toluene 20.4 0.8 0.1 ug/L 20 ND 102 65-135 1,2,3-Trichlorobenzene 19.0 0.8 0.2 ug/L 20 ND 95 65-135 1,1,2-Trichlorobenzene 18.9 0.8 0.2 ug/L 20 ND 105 65-135 1,1,1-Trichloroethane 21.6 0.8 0.2 ug/L 20 ND 111	Methyl-t-butyl ether	23.6	1.6	0.2	ug/L	20	ND	118	65-135		
Naphthalene20.30.80.2ug/L20ND10165-135n-Propylbenzene19.60.80.1ug/L20ND9865-135Styrene21.40.80.05ug/L20ND10765-1351,1,2Tetrachloroethane21.00.80.2ug/L20ND10265-1351,1,2Tetrachloroethane20.30.80.2ug/L20ND10265-135Tetrachloroethane20.40.80.1ug/L20ND10265-1351,2,3-Trichlorobenzene19.00.80.2ug/L20ND10265-1351,2,4-Trichloroethane23.00.80.2ug/L20ND9565-1351,1,1-Trichloroethane21.60.80.2ug/L20ND11565-1351,1,1-Trichloroethane21.60.80.2ug/L20ND10265-1351,1,2-Trichloroethane21.60.80.2ug/L20ND11565-1351,1,2-Trichloroethane21.60.80.2ug/L20ND11665-1351,1,2-Trichloroptane21.60.80.4ug/L20ND10765-1351,1,2-Trichloroptopane21.60.80.4ug/L20ND10865-1351,2,3-Trichloroptopane21.60.80.4ug/L20ND10165-135	Methylene Chloride	22.4	0.8	0.2	ug/L	20	ND	112	65-135		
n-Propylbenzene19.60.80.1ug/L20ND9865-135Styrene21.40.80.05ug/L20ND10765-1351,1,1,2-Tetrachloroethane21.00.80.2ug/L20ND10265-1351,1,2-Tetrachloroethane20.30.80.2ug/L20ND10265-135Tetrachloroethane20.40.80.1ug/L20ND10265-135Toluene20.50.80.09ug/L20ND10265-1351,2,3-Trichlorobenzene19.00.80.2ug/L20ND9565-1351,2,4-Trichloroethane23.00.80.2ug/L20ND10265-1351,1,1-Trichloroethane21.60.80.2ug/L20ND11565-1351,1,2-Trichloroethane21.60.80.2ug/L20ND11865-135Trichlorofluoromethane21.50.80.2ug/L20ND11865-1351,1,2-Trichloro-1,2,2-trifluoroet23.01.60.6ug/L20ND10865-1351,2,3-Trichloroppane21.60.80.4ug/L20ND10865-1351,2,4-Trimethylbenzene20.00.80.1ug/L20ND10165-1351,1,2-Trichloro-1,2,2-trifluoroet23.01.60.6ug/L20ND10	4-Methyl-2-pentanone	119	4.0	2.6	ug/L	100	ND	119	65-135		
Styrene21.40.80.05ug/L20ND10765-1351,1,1,2-Tetrachloroethane21.00.80.2ug/L20ND10565-1351,1,2,2-Tetrachloroethane20.30.80.2ug/L20ND10265-135Tetrachloroethane20.40.80.1ug/L20ND10265-135Toluene20.50.80.09ug/L20ND10265-1351,2,3-Trichlorobenzene19.00.80.2ug/L20ND9565-1351,2,4-Trichlorobenzene18.90.80.3ug/L20ND11565-1351,1,1-Trichloroethane23.00.80.2ug/L20ND11565-1351,1,2-Trichloroethane21.60.80.2ug/L20ND11665-1351,1,2-Trichloroethane21.30.80.2ug/L20ND11565-135Trichlorofluoromethane21.50.80.2ug/L20ND11165-1351,1,2-Trichloro-1,2,2-trifluoroet23.01.60.6ug/L20ND11565-1351,2,3-Trichloroptopane21.60.80.1ug/L20ND10765-1351,2,4-Trimethylbenzene20.10.80.1ug/L20ND10165-1351,2,4-Trimethylbenzene20.00.80.1ug/L20ND1	Naphthalene	20.3	0.8	0.2	ug/L	20	ND	101	65-135		
1,1,1,2-Tetrachloroethane21.00.80.2ug/L20ND10565-1351,1,2,2-Tetrachloroethane20.30.80.2ug/L20ND10265-135Tetrachloroethane20.40.80.1ug/L20ND10265-135Toluene20.50.80.09ug/L20ND10265-1351,2,3-Trichlorobenzene19.00.80.2ug/L20ND9565-1351,2,4-Trichlorobenzene18.90.80.3ug/L20ND11565-1351,1,1-Trichloroethane23.00.80.2ug/L20ND10865-1351,1,2-Trichloroethane21.60.80.2ug/L20ND10865-1351,1,2-Trichloroethane21.50.80.2ug/L20ND10765-1351,1,2-Trichloroethane21.60.80.2ug/L20ND10765-1351,1,2-Trichloro-1,2,2-trifluoroet23.01.60.6ug/L20ND10765-1351,2,3-Trichloropopane21.60.80.4ug/L20ND10165-1351,2,4-Trimethylbenzene20.00.80.1ug/L20ND10165-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-1351,3,5-Trimethylbenzene20.00.80.1ug/L20	n-Propylbenzene	19.6	0.8	0.1	ug/L	20	ND	98	65-135		
1,1,2,2-Tetrachloroethane20.30.80.2ug/L20ND10265-135Tetrachloroethene20.40.80.1ug/L20ND10265-135Toluene20.50.80.09ug/L20ND10265-1351,2,3-Trichlorobenzene19.00.80.2ug/L20ND9565-1351,2,4-Trichlorobenzene18.90.80.3ug/L20ND9565-1351,1,1-Trichloroethane23.00.80.2ug/L20ND11565-1351,1,2-Trichloroethane21.60.80.2ug/L20ND10865-1351,1,2-Trichloroethane21.60.80.2ug/L20ND11865-135Trichloroethane21.30.80.2ug/L20ND10865-1351,1,2-Trichloroethane21.50.80.2ug/L20ND10765-1351,1,2-Trichloroptopane21.60.80.4ug/L20ND10765-1351,2,3-Trichloroptopane21.60.80.4ug/L20ND10165-1351,2,4-Trimethylbenzene20.00.80.1ug/L20ND10165-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-135Vinyl chloride42.01.60.3ug/L40ND10565-135	Styrene	21.4	0.8	0.05	ug/L	20	ND	107	65-135		
Tetrachloroethene20.40.80.1ug/L20ND10265-135Toluene20.50.80.09ug/L20ND10265-1351,2,3-Trichlorobenzene19.00.80.2ug/L20ND9565-1351,2,4-Trichlorobenzene18.90.80.3ug/L20ND9565-1351,1,1-Trichloroethane23.00.80.2ug/L20ND11565-1351,1,2-Trichloroethane21.60.80.2ug/L20ND10865-135Trichloroethane22.30.80.2ug/L20ND11165-135Trichloroethane21.50.80.2ug/L20ND10765-1351,1,2-Trichloroethane21.50.80.2ug/L20ND10765-1351,1,2-Trichloro-1,2,2-trifluoroet23.01.60.6ug/L20ND10865-1351,2,3-Trichloropropane21.60.80.4ug/L20ND10865-1351,2,4-Trimethylbenzene20.00.80.1ug/L20ND10165-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-135Vinyl chloride42.01.60.3ug/L40ND10565-135Xylene-o20.50.80.2ug/L20ND10365-135 </td <td>1,1,1,2-Tetrachloroethane</td> <td>21.0</td> <td>0.8</td> <td>0.2</td> <td>ug/L</td> <td>20</td> <td>ND</td> <td>105</td> <td>65-135</td> <td></td> <td></td>	1,1,1,2-Tetrachloroethane	21.0	0.8	0.2	ug/L	20	ND	105	65-135		
Toluene20.50.80.09ug/L20ND10265-1351,2,3-Trichlorobenzene19.00.80.2ug/L20ND9565-1351,2,4-Trichlorobenzene18.90.80.3ug/L20ND9565-1351,1,1-Trichloroethane23.00.80.2ug/L20ND11565-1351,1,2-Trichloroethane21.60.80.2ug/L20ND10865-135Trichloroethane22.30.80.2ug/L20ND11165-135Trichlorofluoromethane21.50.80.2ug/L20ND10765-1351,1,2-Trichloro-1,2,2-trifluoroet23.01.60.6ug/L20ND11565-1351,2,3-Trichloropropane21.60.80.4ug/L20ND10865-1351,2,4-Trimethylbenzene20.00.80.1ug/L20ND10165-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-135Vinyl chloride42.01.60.3ug/L40ND10565-135Xylene-m,p42.91.60.2ug/L20ND10365-135Xylene-o20.50.80.2ug/L20ND10365-135	1,1,2,2-Tetrachloroethane	20.3	0.8	0.2	ug/L	20	ND	102	65-135		
1,2,3-Trichlorobenzene19.00.80.2ug/L20ND9565-1351,2,4-Trichlorobenzene18.90.80.3ug/L20ND9565-1351,1,1-Trichloroethane23.00.80.2ug/L20ND11565-1351,1,2-Trichloroethane21.60.80.2ug/L20ND10865-135Trichloroethane22.30.80.2ug/L20ND11165-135Trichloroethane21.50.80.2ug/L20ND10765-1351,1,2-Trichloro-1,2,2-trifluoroet23.01.60.6ug/L20ND10765-1351,2,3-Trichloroptopane21.60.80.4ug/L20ND10865-1351,2,4-Trimethylbenzene20.10.80.1ug/L20ND10165-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10565-135Vinyl chloride42.01.60.3ug/L40ND10565-135Xylene-m,p42.91.60.2ug/L20ND10365-135Xylene-o20.50.80.2ug/L20ND10365-135 <td>Tetrachloroethene</td> <td>20.4</td> <td>0.8</td> <td>0.1</td> <td>ug/L</td> <td>20</td> <td>ND</td> <td>102</td> <td>65-135</td> <td></td> <td></td>	Tetrachloroethene	20.4	0.8	0.1	ug/L	20	ND	102	65-135		
1,2,4-Trichlorobenzene18.90.80.3ug/L20ND9565-1351,1,1-Trichloroethane23.00.80.2ug/L20ND11565-1351,1,2-Trichloroethane21.60.80.2ug/L20ND10865-135Trichloroethane22.30.80.2ug/L20ND11165-135Trichlorofluoromethane21.50.80.2ug/L20ND10765-1351,1,2-Trichloro-1,2,2-trifluoroet23.01.60.6ug/L20ND11565-1351,2,3-Trichloropropane21.60.80.4ug/L20ND10865-1351,2,4-Trimethylbenzene20.10.80.1ug/L20ND10165-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-135Vinyl chloride42.01.60.3ug/L40ND10565-135Xylene-n,p42.91.60.2ug/L40ND10765-135Xylene-o20.50.80.2ug/L20ND10365-135	Toluene	20.5	0.8	0.09	ug/L	20	ND	102	65-135		
1,1,1-Trichloroethane23.00.80.2ug/L20ND11565-1351,1,2-Trichloroethane21.60.80.2ug/L20ND10865-135Trichloroethene22.30.80.2ug/L20ND11165-135Trichlorofluoromethane21.50.80.2ug/L20ND10765-1351,1,2-Trichloro-1,2,2-trifluoroet23.01.60.6ug/L20ND11565-1351,2,3-Trichloropropane21.60.80.4ug/L20ND10865-1351,2,4-Trimethylbenzene20.10.80.1ug/L20ND10165-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-135Vinyl chloride42.01.60.3ug/L40ND10565-135Xylene-m,p42.91.60.2ug/L20ND10365-135Xylene-o20.50.80.2ug/L20ND10365-135	1,2,3-Trichlorobenzene	19.0	0.8	0.2	ug/L	20	ND	95	65-135		
1,1,2-Trichloroethane21.60.80.2ug/L20ND10865-135Trichloroethane22.30.80.2ug/L20ND11165-135Trichlorofluoromethane21.50.80.2ug/L20ND10765-1351,1,2-Trichloro-1,2,2-trifluoroet23.01.60.6ug/L20ND11565-135hane	1,2,4-Trichlorobenzene	18.9	0.8	0.3	ug/L	20	ND	95	65-135		
Trichloroethene22.30.80.2ug/L20ND11165-135Trichlorofluoromethane21.50.80.2ug/L20ND10765-1351,1,2-Trichloro-1,2,2-trifluoroet23.01.60.6ug/L20ND11565-135hane11,2,3-Trichloropropane21.60.80.4ug/L20ND10865-1351,2,4-Trimethylbenzene20.10.80.1ug/L20ND10165-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-135Vinyl chloride42.01.60.3ug/L40ND10565-135Xylene-m,p42.91.60.2ug/L20ND10365-135Xylene-o20.50.80.2ug/L20ND10365-135	1,1,1-Trichloroethane	23.0	0.8	0.2	ug/L	20	ND	115	65-135		
Trichlorofluoromethane21.50.80.2ug/L20ND10765-1351,1,2-Trichloro-1,2,2-trifluoroet23.01.60.6ug/L20ND11565-135hane1,2,3-Trichloropropane21.60.80.4ug/L20ND10865-1351,2,4-Trimethylbenzene20.10.80.1ug/L20ND10165-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-135Vinyl chloride42.01.60.3ug/L40ND10565-135Xylene-m,p42.91.60.2ug/L40ND10765-135Xylene-o20.50.80.2ug/L20ND10365-135	1,1,2-Trichloroethane	21.6	0.8	0.2	ug/L	20	ND	108	65-135		
1,1,2-Trichloro-1,2,2-trifluoroet23.01.60.6ug/L20ND11565-135hane1,2,3-Trichloropropane21.60.80.4ug/L20ND10865-1351,2,4-Trimethylbenzene20.10.80.1ug/L20ND10165-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-135Vinyl chloride42.01.60.3ug/L40ND10565-135Xylene-m,p42.91.60.2ug/L40ND10765-135Xylene-o20.50.80.2ug/L20ND10365-135	Trichloroethene	22.3	0.8	0.2	ug/L	20	ND	111	65-135		
hane1,2,3-Trichloropropane21.60.80.4ug/L20ND10865-1351,2,4-Trimethylbenzene20.10.80.1ug/L20ND10165-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-135Vinyl chloride42.01.60.3ug/L40ND10565-135Xylene-m,p42.91.60.2ug/L40ND10765-135Xylene-o20.50.80.2ug/L20ND10365-135	Trichlorofluoromethane	21.5	0.8	0.2	ug/L	20	ND	107	65-135		
1,2,3-Trichloropropane21.60.80.4ug/L20ND10865-1351,2,4-Trimethylbenzene20.10.80.1ug/L20ND10165-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-135Vinyl chloride42.01.60.3ug/L40ND10565-135Xylene-m,p42.91.60.2ug/L40ND10765-135Xylene-o20.50.80.2ug/L20ND10365-135	1,1,2-Trichloro-1,2,2-trifluoroet	23.0	1.6	0.6	ug/L	20	ND	115	65-135		
1,2,4-Trimethylbenzene20.10.80.1ug/L20ND10165-1351,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-135Vinyl chloride42.01.60.3ug/L40ND10565-135Xylene-m,p42.91.60.2ug/L40ND10765-135Xylene-o20.50.80.2ug/L20ND10365-135	hane										
1,3,5-Trimethylbenzene20.00.80.1ug/L20ND10065-135Vinyl chloride42.01.60.3ug/L40ND10565-135Xylene-m,p42.91.60.2ug/L40ND10765-135Xylene-o20.50.80.2ug/L20ND10365-135	1,2,3-Trichloropropane	21.6	0.8	0.4	ug/L	20	ND	108	65-135		
Vinyl chloride42.01.60.3ug/L40ND10565-135Xylene-m,p42.91.60.2ug/L40ND10765-135Xylene-o20.50.80.2ug/L20ND10365-135		20.1			0	20	ND	101	65-135		
Xylene-m,p42.91.60.2ug/L40ND10765-135Xylene-o20.50.80.2ug/L20ND10365-135	1,3,5-Trimethylbenzene		0.8	0.1	ug/L	20	ND	100	65-135		
Xylene-o 20.5 0.8 0.2 ug/L 20 ND 103 65-135	Vinyl chloride				-	40	ND				
	Xylene-m,p					40		107			
	Xylene-o	20.5	0.8	0.2	ug/L	20	ND	103	65-135		
Surrogate: 4-Bromotiuorobenzene 20.1 ug/L 20 100 65-135	Surrogate: 4-Bromofluorobenzene	20.1			ug/L	20		100	65-135		
Surrogate: 1,2-Dichloroethane-d4 20.5 ug/L 20 102 65-135		20.5			-	20		102	65-135		
Surrogate: Toluene-d8 19.1 ug/L 20 96 65-135	Surrogate: Toluene-d8				-			96			
Surrogate: Dibromofluoromethane 20.7 ug/L 20 104 65-135	Surrogate: Dibromofluoromethane	20.7			ug/L	20		104	65-135		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BG40123 - VOC - Prep										
Matrix Spike (BG40123-MS2)		Source: 1	406489-01		Prepared 8	Analyzed:	07/01/14 20):56		
Acetone	184 J2	4.0	2.0	ug/L	100	40.5	143	65-135		
Acrylonitrile	119	4.0	1.3	ug/L	100	ND	119	65-135		
Benzene	22.3	0.8	0.1	ug/L	20	ND	111	65-135		
Bromobenzene	20.4	0.8	0.2	ug/L	20	ND	102	65-135		
Bromochloromethane	25.4	0.8	0.1	ug/L	20	ND	127	65-135		
Bromodichloromethane	22.0	0.8	0.2	ug/L	20	ND	110	65-135		
Bromoform	17.5	0.8	0.2	ug/L	20	ND	87	65-135		
Bromomethane	2.09 J2	0.8	0.4	ug/L	40	ND	5	65-135		
2-Butanone	139	4.0	2.0	ug/L	100	6.76	132	65-135		
n-Butylbenzene	20.2	0.8	0.2	ug/L	20	ND	101	65-135		
sec-Butylbenzene	19.5	0.8	0.2	ug/L	20	ND	97	65-135		
-Butylbenzene	19.4	0.8	0.1	ug/L	20	ND	97	65-135		
Carbon disulfide	22.5	0.8	0.2	ug/L	20	ND	112	65-135		
Carbon tetrachloride	21.5	0.8	0.2	ug/L	20	ND	107	65-135		
Chlorobenzene	21.3	0.8	0.1	ug/L	20	ND	107	65-135		
Chloroethane	56.3 J2	1.6	0.4	ug/L	40	ND	141	65-135		
Chloroform	23.6	0.8	0.2	ug/L	20	ND	118	65-135		
Chloromethane	39.3	1.6	0.4	ug/L	40	ND	98	65-135		
-Chlorotoluene	20.4	0.8	0.1	ug/L	20	ND	102	65-135		
-Chlorotoluene	20.8	0.8	0.1	ug/L	20	ND	104	65-135		
Dibromochloromethane	19.4	0.8	0.1	ug/L	20	ND	97	65-135		
Dibromomethane	25.6	0.8	0.2	ug/L	20	ND	128	65-135		
,2-Dichlorobenzene	20.5	0.8	0.1	ug/L	20	ND	102	65-135		
,3-Dichlorobenzene	20.1	0.8	0.07	ug/L	20	ND	101	65-135		
,4-Dichlorobenzene	20.5	0.8	0.2	ug/L	20	ND	101	65-135		
rans-1,4-Dichloro-2-butene	4.72 J2	0.0	0.2	ug/L	20	ND	24	65-135		
Dichlorodifluoromethane	47.9	1.6	0.5	ug/L	40	ND	120	65-135		
,1-Dichloroethane	23.0	0.8	0.2	ug/L	40 20	ND	115	65-135		
,2-Dichloroethane	23.8	0.8	0.2	ug/L	20	ND	119	65-135		
,1-Dichloroethene	23.8	0.8	0.1	ug/L	20	ND	113	65-135		
is-1,2-Dichloroethene	23.4	0.8	0.2	ug/L	20	ND	117	65-135		
rans-1,2-Dichloroethene	23.4	0.8	0.09	-	20 20	ND	117	65-135 65-135		
1,2-Dichloropropane	23.0	0.8 0.8	0.2	ug/L	20 20	ND	115	65-135 65-135		
	23.1	0.8 0.8	0.2	ug/L	20 20	ND	115	65-135 65-135		
2,2-Dichloropropane	22.1	0.8 0.8	0.3 0.2	ug/L	20 20	ND	119	65-135 65-135		
				ug/L						
is-1,3-Dichloropropene	2.15 J2	0.8	0.2	ug/L	20		11 51	65-135		
ans-1,3-Dichloropropene	10.2 J2 20.9	0.8	0.1	ug/L	20 20		51 105	65-135 65-135		
Ethylbenzene Loveeblerebutediene		0.8	0.08	ug/L	20	ND	105	65-135		
lexachlorobutadiene	20.6	0.8	0.4	ug/L	20	ND	103	65-135		
-Hexanone	122	4.0	2.1	ug/L	100		122	65-135		
odomethane	3.17 J2	0.8	0.2	ug/L	20	ND	16	65-135		
sopropylbenzene	21.0	0.8	0.1	ug/L	20	ND	105	65-135		
-Isopropyltoluene	19.4	0.8	0.2	ug/L	20	ND	97	65-135		
Methyl-t-butyl ether	23.6	1.6	0.2	ug/L	20	ND	118	65-135		
Methylene Chloride	23.7	0.8	0.2	ug/L	20	ND	119	65-135		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

		5.01	MDI		Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BG40123 - VOC - Prep										
Matrix Spike (BG40123-MS2)		Source: 1	406489-01		Prepared 8	Analyzed: (07/01/14 20):56		
4-Methyl-2-pentanone	119	4.0	2.6	ug/L	100	ND	119	65-135		
Naphthalene	20.9	0.8	0.2	ug/L	20	ND	105	65-135		
n-Propylbenzene	20.0	0.8	0.1	ug/L	20	ND	100	65-135		
Styrene	22.0	0.8	0.05	ug/L	20	ND	110	65-135		
1,1,1,2-Tetrachloroethane	21.2	0.8	0.2	ug/L	20	ND	106	65-135		
1,1,2,2-Tetrachloroethane	20.5	0.8	0.2	ug/L	20	ND	102	65-135		
Tetrachloroethene	20.5	0.8	0.1	ug/L	20	ND	102	65-135		
Toluene	26.3	0.8	0.09	ug/L	20	5.71	103	65-135		
1,2,3-Trichlorobenzene	18.7	0.8	0.2	ug/L	20	ND	94	65-135		
1,2,4-Trichlorobenzene	18.9	0.8	0.3	ug/L	20	ND	95	65-135		
1,1,1-Trichloroethane	23.4	0.8	0.2	ug/L	20	ND	117	65-135		
1,1,2-Trichloroethane	21.4	0.8	0.2	ug/L	20	ND	107	65-135		
Trichloroethene	22.8	0.8	0.2	ug/L	20	ND	114	65-135		
1,1,2-Trichloro-1,2,2-trifluoroet	23.1	1.6	0.6	ug/L	20	ND	116	65-135		
hane										
Trichlorofluoromethane	21.4	0.8	0.2	ug/L	20	ND	107	65-135		
1,2,3-Trichloropropane	20.9	0.8	0.4	ug/L	20	ND	104	65-135		
1,2,4-Trimethylbenzene	20.4	0.8	0.1	ug/L	20	ND	102	65-135		
1,3,5-Trimethylbenzene	20.0	0.8	0.1	ug/L	20	ND	100	65-135		
Vinyl chloride	46.6	1.6	0.3	ug/L	40	ND	116	65-135		
Xylene-m,p	42.4	1.6	0.2	ug/L	40	ND	106	65-135		
Xylene-o	21.0	0.8	0.2	ug/L	20	ND	105	65-135		
Surrogate: 4-Bromofluorobenzene	20.1			ug/L	20		101	65-135		
Surrogate: 1,2-Dichloroethane-d4	20.1			ug/L	20		100	65-135		
Surrogate: Toluene-d8	19.4			ug/L	20		97	65-135		
Surrogate: Dibromofluoromethane	20.5			ug/L	20		103	65-135		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Pesticide Analyses - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BF43006 - 8011 microextra	action for ED									-
Blank (BF43006-BLK1)		<i>D/DD()</i>			Prepared 8	Analyzed: (06/30/14 18	3:12		
1,2-Dibromo-3-chloropropane	0.0050 U	0.020	0.0050	ug/L						
1,2-Dibromoethane	0.0050 U	0.020	0.0050	ug/L						
Surrogate: 2-Bromo-1-chloropropane	0.111			ug/L	0.10		111	70-130		
LCS (BF43006-BS1)					Prepared 8	Analyzed:	06/30/14 18	3:35		
1,2-Dibromoethane	0.0869	0.020	0.0050	ug/L	0.10		87	70-130		
1,2-Dibromo-3-chloropropane	0.102	0.020	0.0050	ug/L	0.10		102	70-130		
Surrogate: 2-Bromo-1-chloropropane	0.100			ug/L	0.10		100	70-130		
LCS Dup (BF43006-BSD1)					Prepared 8	Analyzed:	06/30/14 18	8:58		
1,2-Dibromoethane	0.0877	0.020	0.0050	ug/L	0.10		88	70-130	0.9	20
1,2-Dibromo-3-chloropropane	0.105	0.020	0.0050	ug/L	0.10		105	70-130	3	20
Surrogate: 2-Bromo-1-chloropropane	0.101			ug/L	0.10		101	70-130		
Matrix Spike (BF43006-MS1)		Source: 1	406553-03		Prepared 8	Analyzed: (06/30/14 19	9:21		
1,2-Dibromoethane	0.0977	0.022	0.0054	ug/L	0.11	ND	91	65-135		
1,2-Dibromo-3-chloropropane	0.101	0.022	0.0054	ug/L	0.11	ND	94	65-135		
Surrogate: 2-Bromo-1-chloropropane	0.0926			ug/L	0.11		86	70-130		
Matrix Spike Dup (BF43006-MSD1)		Source: 1	406553-03		Prepared 8	Analyzed: (06/30/14 19	9:44		
1,2-Dibromo-3-chloropropane	0.119	0.021	0.0052	ug/L	0.10	ND	114	65-135	16	20
1,2-Dibromoethane	0.106	0.021	0.0052	ug/L	0.10	ND	102	65-135	8	20
Surrogate: 2-Bromo-1-chloropropane	0.112			ug/L	0.10		108	70-130		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BF42425 - Ion Chroma							,			
Blank (BF42425-BLK1)		•			Prepared 8	Analyzed:	06/24/14 18	3:42		
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Sulfate	0.20 U	0.60	0.20	mg/L						
Orthophosphate as P	0.010 U	0.040	0.010	mg/L						
Surrogate: Dichloroacetate	0.826			mg/L	1.0		83	78-120		
Surrogate: Dichloroacetate	0.826			mg/L	1.0		83	78-120		
Surrogate: Dichloroacetate	0.826			mg/L	1.0		83	78-120		
Surrogate: Dichloroacetate	0.826			mg/L	1.0		83	78-120		
LCS (BF42425-BS1)					Prepared 8	Analyzed:	06/24/14 18	3:54		
Sulfate	8.44	0.60	0.20	mg/L	9.0		94	85-115		
Nitrite (as N)	1.31	0.04	0.01	mg/L	1.4		94	85-115		
Orthophosphate as P	0.896	0.040	0.010	mg/L	0.90		100	85-115		
Nitrate (as N)	1.50	0.04	0.01	mg/L	1.7		88	85-115		
Surrogate: Dichloroacetate	0.917			mg/L	1.0		92	78-120		
Surrogate: Dichloroacetate	0.917			mg/L	1.0		92	78-120		
Surrogate: Dichloroacetate	0.917			mg/L	1.0		92	78-120		
Surrogate: Dichloroacetate	0.917			mg/L	1.0		92	78-120		
LCS Dup (BF42425-BSD1)					Prepared 8	Analyzed:	06/24/14 19	9:05		
Nitrite (as N)	1.28	0.04	0.01	mg/L	1.4		92	85-115	2	200
Sulfate	8.36	0.60	0.20	mg/L	9.0		93	85-115	1	200
Orthophosphate as P	0.810	0.040	0.010	mg/L	0.90		90	85-115	10	200
Nitrate (as N)	1.52	0.04	0.01	mg/L	1.7		89	85-115	0.9	200
Surrogate: Dichloroacetate	0.961			mg/L	1.0		96	78-120		
Surrogate: Dichloroacetate	0.961			mg/L	1.0		96	78-120		
Surrogate: Dichloroacetate	0.961			mg/L	1.0		96	78-120		
Surrogate: Dichloroacetate	0.961			mg/L	1.0		96	78-120		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
				•••••	2010.	rtooun	/01.20			
Batch BF42425 - Ion Chromato	graphy 300.0 P	rep								
Matrix Spike (BF42425-MS1)		Source: 1	406502-01		Prepared 8	Analyzed: (06/25/14 09):44		
Orthophosphate as P	0.801	0.040	0.010	mg/L	0.90	ND	89	85-115		
Sulfate	8.29 J2,J6	0.60	0.20	mg/L	9.0	1.31	78	85-115		
Nitrite (as N)	0.666 J2,J6	0.04	0.01	mg/L	1.4	ND	48	85-115		
Nitrate (as N)	1.38 J2	0.04	0.01	mg/L	1.7	ND	81	85-115		
Surrogate: Dichloroacetate	0.809			mg/L	1.0		81	78-120		
Surrogate: Dichloroacetate	0.809			mg/L	1.0		81	78-120		
Surrogate: Dichloroacetate	0.809			mg/L	1.0		81	78-120		
Surrogate: Dichloroacetate	0.809			mg/L	1.0		81	78-120		
Matrix Spike (BF42425-MS2)		Source: 1	405693-03		Prepared 8	Analyzed:	06/25/14 12	2:55		
Nitrate (as N)	1.34 J2	0.04	0.01	mg/L	1.7	ND	79	85-115		
Nitrite (as N)	1.52	0.04	0.01	mg/L	1.4	ND	108	85-115		
Orthophosphate as P	0.834	0.040	0.010	mg/L	0.90	ND	93	85-115		
Sulfate	9.09	0.60	0.20	mg/L	9.0	1.16	88	85-115		
Surrogate: Dichloroacetate	0.834			mg/L	1.0		83	78-120		
Surrogate: Dichloroacetate	0.834			mg/L	1.0		83	78-120		
Surrogate: Dichloroacetate	0.834			mg/L	1.0		83	78-120		
Surrogate: Dichloroacetate	0.834			mg/L	1.0		83	78-120		
Batch BF42532 - BOD										
Blank (BF42532-BLK1)					Prepared: (06/25/14 An	alyzed: 06/3	30/14 15:55		
Carbonaceous BOD	2 U	2	2	mg/L						
LCS (BF42532-BS1)					Prepared: ()6/25/14 Ana	alyzed: 06/3	30/14 15:55		
Carbonaceous BOD	182	2	2	mg/L	200		91	85-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BF42532 - BOD										
LCS Dup (BF42532-BSD1)					Prepared:	06/25/14 An	alyzed: 06/	30/14 15:55		
Carbonaceous BOD	182	2	2	mg/L	200		91	85-115	0	200
Duplicate (BF42532-DUP1)		Source: 1	406489-01		Prepared:	06/25/14 An	alyzed: 06/	30/14 15:55		
Carbonaceous BOD	55	2	2	mg/L		61			9	25
Batch BF42629 - alkalinity										
Blank (BF42629-BLK1)					Prepared 8	Analyzed:	06/27/14 09	9:37		
Total Alkalinity	2.0 U	8.0	2.0	mg/L						
LCS (BF42629-BS1)					Prepared 8	& Analyzed:	06/27/14 09	9:44		
Total Alkalinity	120	8.0	2.0	mg/L	120		95	90-110		
Matrix Spike (BF42629-MS1)		Source: 1	406210-05		Prepared 8	& Analyzed:	06/27/14 10	0:19		
Total Alkalinity	130	8.0	2.0	mg/L	120	9.8	92	80-120		
Matrix Spike Dup (BF42629-MSD1)		Source: 1	406210-05		Prepared &	Analyzed:	06/27/14 10):25		
Total Alkalinity	130	8.0	2.0	mg/L	120	9.8	92	80-120	0	26
Batch BF42707 - TSS prep										
Blank (BF42707-BLK1)					Prepared:	06/27/14 An	alyzed: 06/	30/14 15:58		
Total Suspended Solids	1 U	1	1	mg/L						
Volatile Suspended Solids	1 U	1		mg/L						
Blank (BF42707-BLK2)					Prepared:	06/27/14 An	alyzed: 06/	30/14 15:58		
Total Suspended Solids	1 U	1	1	mg/L						
Volatile Suspended Solids	1 U	1		mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BF42707 - TSS prep										
LCS (BF42707-BS1)					Prepared:	06/27/14 An	alyzed: 06/	30/14 15:58		
Total Suspended Solids	45.5	1	1	mg/L	50		91	85-115		
LCS (BF42707-BS2)					Prepared:	06/27/14 An	alyzed: 06/	30/14 15:58		
Total Suspended Solids	50.0	1	1	mg/L	50		100	85-115		
Duplicate (BF42707-DUP1)		Source: 1	406550-07		Prepared:	06/27/14 An	alyzed: 06/	30/14 15:58		
Total Suspended Solids	8.00	1	1	mg/L		18.2			78	30
Volatile Suspended Solids	8.00	1		mg/L		4.00			67	20
Batch BF43015 - COD prep										
Blank (BF43015-BLK1)					Prepared:	06/30/14 An	alyzed: 07/	01/14 14:58		
Chemical Oxygen Demand	10 U	25	10	mg/L						
LCS (BF43015-BS1)					Prepared:	06/30/14 An	alyzed: 07/	01/14 14:58		
Chemical Oxygen Demand	45	25	10	mg/L	50		90	90-110		
Matrix Spike (BF43015-MS1)		Source: 1	406427-01		Prepared:	06/30/14 An	alyzed: 07/	01/14 14:58		
Chemical Oxygen Demand	530	25	10	mg/L	250	310	88	85-115		
Matrix Spike Dup (BF43015-MSD1)		Source: 1	406427-01		Prepared:	06/30/14 An	alyzed: 07/	01/14 14:58		
Chemical Oxygen Demand	530	25	10	mg/L	250	310	88	85-115	0	32
Batch BF43037 - Sulfide prep										
Blank (BF43037-BLK1)					Prepared &	& Analyzed:	06/30/14 09	9:29		
Sulfide	0.10 U	0.40	0.10	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BF43037 - Sulfide prep				2.110						
.										
LCS (BF43037-BS1)						Analyzed:				
Sulfide	9.33	0.40	0.10	mg/L	10		93	85-115		
Matrix Spike (BF43037-MS1)		Source: 1	406553-01		Prepared &	& Analyzed:	06/30/14 09	9:29		
Sulfide	15.6	0.40	0.10	mg/L	10	ND	156	85-115		
Matrix Spike Dup (BF43037-MSD1)		Source: 1	406553-01		Prepared &	Analyzed:	06/30/14 09	9:29		
Sulfide	15.6	0.40	0.10	mg/L	10	ND	156	85-115	0	14
Batch BG40502 - alkalinity										
Blank (BG40502-BLK1)					Prepared &	& Analyzed:	07/05/14 1	5:24		
Total Alkalinity	2.0 U	8.0	2.0	mg/L						
LCS (BG40502-BS1)					Prepared &	Analyzed:	07/05/14 1	5:30		
Total Alkalinity	120	8.0	2.0	mg/L	120		95	90-110		
Matrix Spike (BG40502-MS1)		Source: 1	406654-06		Prepared &	& Analyzed:	07/05/14 17	7:48		
Total Alkalinity	220	8.0	2.0	mg/L	120	110	93	80-120		
Matrix Spike Dup (BG40502-MSD1)		Source: 1	406654-06		Prepared &	Analyzed:	07/05/14 17	7:56		
Total Alkalinity	220	8.0	2.0	mg/L	120	110	92	80-120	0.4	26
Batch BG40907 - Ion Chromatog	graphy 300.0	Prep								
Blank (BG40907-BLK1)					Prepared &	Analyzed:	07/09/14 17	7:23		
Sulfate	0.20 U	0.60	0.20	mg/L						
Surrogate: Dichloroacetate	0.892			mg/L	1.0		89	78-120		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Result	POI	MDI	l Inits	Spike	Source Result	%REC	%REC	RPD	RPD Limit
			Onito	20701	rtcourt	/01120	Linito		Linit
tography 300.0	Prep								
				Prepared 8	Analyzed:	07/09/14 17	':34		
9.33	0.60	0.20	mg/L	9.0		104	85-115		
0.998			mg/L	1.0		100	78-120		
				Prepared &	Analyzed:	07/09/14 17	' :45		
9.15	0.60	0.20	mg/L	9.0		102	85-115	2	200
1.02			mg/L	1.0		102	78-120		
	Source: 1	407014-06		Prepared 8	Analyzed:	07/09/14 18	3:30		
113 L	0.60	0.20	mg/L	9.0	104	95	85-115		
0.877			mg/L	1.0		88	78-120		
	Source: 1	406866-02		Prepared 8	Analyzed:	07/09/14 19	9:48		
18.0	0.60	0.20	mg/L	9.0	8.44	107	85-115		
1.00			mg/L	1.0		100	78-120		
	9.33 0.998 9.15 1.02 113 L 0.877 18.0	Source: 1 113 L 0.60 0.877 Source: 1 18.0 0.60	Source: 1406866-02 18.0 0.60 0.20	9.33 0.60 0.20 mg/L 9.15 0.60 0.20 mg/L 9.15 0.60 0.20 mg/L 1.02 mg/L mg/L 113 L 0.60 0.20 mg/L 0.877 mg/L mg/L 18.0 0.60 0.20 mg/L	Result PQL MDL Units Level tography 300.0 Prep Prepared 8 Prepare	Result PQL MDL Units Level Result tography 300.0 Prep Prepared & Analyzed: Prepared & Analyzed: Prepared & Analyzed: 9.33 0.60 0.20 mg/L 9.0 Prepared & Analyzed: 9.33 0.60 0.20 mg/L 1.0 Prepared & Analyzed: 9.15 0.60 0.20 mg/L 9.0 1.0 9.15 0.60 0.20 mg/L 1.0 Prepared & Analyzed: 9.15 0.60 0.20 mg/L 9.0 104 1.02 mg/L 1.0 Prepared & Analyzed: 104 0.8077 mg/L 1.0 104 104 0.8077 mg/L 9.0 104 104 18.0 0.60 0.20 mg/L 9.0 8.44	Result PQL MDL Units Level Result %REC tography 300.0 Prep Prepared & Analyzed: 07/09/14 17 9.33 0.60 0.20 mg/L 9.0 104 9.33 0.60 0.20 mg/L 1.0 100 0.998 Image: Compared & Analyzed: 07/09/14 17 100 100 9.15 0.60 0.20 mg/L 9.0 102 1.02 mg/L 1.0 102 102 1.02 mg/L 1.0 88 107 0.877 mg/L 1.0 88 107 18.0 0.60 0.20 mg/L 9.0 8.44 107	Result PQL MDL Units Level Result %REC Limits tography 300.0 Prep Prepared & Analyzed: 07/09/14 17:34 9.33 0.60 0.20 mg/L 9.0 104 85-115 9.98	Result PQL MDL Units Level Result %REC Limits RPD tography 300.0 Prep Prepared & Analyzed: 07/09/14 17:34 Prepared & Analyzed: 07/09/14 17:45 Prepared & Analyzed: 07/09/14 18:30 Prepared & Analyzed: 07/09/14 18:40 Prepared & Anal

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Nitrogen, Ammonia - Quality Control

A se a h da	Desult	DOI	MDL	11	Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Matrix Spike Dup (339110-10)		Source: 6	80-339110	-8	Prepared &	& Analyzed:	07/15/14 08	3:50		
Ammonia (as N)	1.63 J3	0.050	0.026	mg/L	1.00		129	90-110	6	30
Duplicate (339110-25)		Source: 6	80-339110	-24	Prepared &	& Analyzed:	07/15/14 09	9:22		
Ammonia (as N)	30.8	1.0	0.52	mg/L				-	7	30
LCS (339110-35)					Prepared &	& Analyzed:	07/15/14 09	9:45		
Ammonia (as N)	1.00	0.050	0.026	mg/L	1.00		100	90-110		
Blank (339110-46)					Prepared &	& Analyzed:	07/15/14 10):43		
Ammonia (as N)	0.026 U,U	0.050	0.026	mg/L				-		
Matrix Spike (339110-9)		Source: 6	80-339110	-8	Prepared &	& Analyzed:	07/15/14 08	3:50		
Ammonia (as N)	1.53 J3	0.050	0.026	mg/L	1.00		119	90-110		
Matrix Spike (339111-23)		Source: 6	80-339111	-22	Prepared &	& Analyzed:	07/15/14 09	9:45		
Ammonia (as N)	3.18 J3	0.10	0.052	mg/L	1.00		123	90-110		
LCS (339111-24)					Prepared &	& Analyzed:	07/15/14 09	9:45		
Ammonia (as N)	1.00	0.050	0.026	mg/L	1.00		100	90-110		
Matrix Spike Dup (339111-26)		Source: 6	80-339111	-22	Prepared &	& Analyzed:	07/15/14 09	9:45		
Ammonia (as N)	3.15 J3	0.10	0.052	mg/L	1.00		121	90-110	1	30
Blank (339111-44)					Prepared &	& Analyzed:	07/15/14 10):43		
Ammonia (as N)	0.026 U,U	0.050	0.026	mg/L				-		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Nitrogen, Ammonia - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Duplicate (616182X)		Source: 1	406489-02		Prepared &	Analyzed:	07/15/14 09	:56		
Ammonia (as N)	3.22	0.10	0.052	mg/L		3.1		-	3	30

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Nitrogen, Total Kjeldahl - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
LCS (339754-28)					Prepared:	07/14/14 An	alyzed: 07/	17/14 19:19		
Nitrogen, Kjeldahl	2.29	0.20	0.15	mg/L	2.00		114	75-125		
Blank (339754-29)					Prepared:	07/14/14 An	alyzed: 07/	17/14 19:20		
Nitrogen, Kjeldahl	0.15 U,U	0.20	0.15	mg/L				-		
Matrix Spike (339754-31)		Source: 6	80-339754	-30	Prepared:	07/14/14 An	alyzed: 07/	17/14 19:22		
Nitrogen, Kjeldahl	3.40	0.20	0.15	mg/L	2.00		88	75-125		
Matrix Spike Dup (339754-32)		Source: 6	80-339754	-30	Prepared:	07/14/14 An	alyzed: 07/	17/14 19:23		
Nitrogen, Kjeldahl	3.71	0.20	0.15	mg/L	2.00		104	75-125	9	40
Duplicate (339754-34)		Source: 6	80-339754	-33	Prepared:	07/14/14 An	alyzed: 07/	17/14 19:27		
Nitrogen, Kjeldahl	1.13	0.20	0.15	mg/L				-	3	40

SOUTHERN ANALYTICAL LABORATORIES, INC.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Phosphorus, Total - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Matrix Spike (339753-107)		Source: 6	80-339753	-106	Prepared:	07/14/14 An	alyzed: 07/	18/14 09:42		
Phosphorus	6.73	1.0	0.41	mg/L	2.00		69	60-140		
Matrix Spike Dup (339753-108)		Source: 6	80-339753	-106	Prepared:	07/14/14 An	alyzed: 07/	18/14 09:43		
Phosphorus	6.87	1.0	0.41	mg/L	2.00		76	60-140	2	40
LCS (339753-28)					Prepared:	07/14/14 An	alyzed: 07/	17/14 19:19		
Phosphorus	2.21	0.10	0.041	mg/L	2.00		110	60-140		
Duplicate (339753-34)		Source: 6	80-339753	-33	Prepared:	07/14/14 An	alyzed: 07/	17/14 19:27		
Phosphorus	0.237	0.10	0.041	mg/L				-	18	40
Blank (339930-95)					Prepared:	07/14/14 An	alyzed: 07/	19/14 17:03		
Phosphorus	0.041 U,U	0.10	0.041	mg/L				-		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1406489

July 22, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

* Qualifiers, Notes and Definitions

Results followed by a "U" indicate that the sample was analyzed but the compound was not detected. Results followed by "I" indicate that the reported value is between the laboratory method detection limts and the laboratory practical quantitation limit.

A statement of estimated uncertainty of test results is available upon request.

For methods marked with **, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Test results in this report meet all the requirements of the NELAC standards. Any applicable qualifiers are shown below.

- U Indicates that the compound was analyzed for but not detected.
- Q Sample held beyond the accepted holding time.
- L Off-scale high. Result exceeded highest calibration standard.
- J6 The sample matrix interfered with the ability to make any accurate determination.
- J5 Matrix spike of this sample was outside typical range. All other QC criteria were acceptable.
- J3 Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.
- J2 Quality control value for accuracy was outside control limits.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

Questions regarding this report should be directed to :

Kathryn Nordmark Telephone (813) 855-1844 FAX (813) 855-2218 Kathryn@southernanalyticallabs.com

Finbail

SOUTHERN ANALYTICAL LABORATORIES, INC. 110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax B13-855-2218

Client	Name Hazen	and S	Sawve	er.									Contact	/ Phone:									
Projec	ct Name / Location																						
Samp	BHS6 S	SE#5			~~~~~																		
	TS/A	T										PARA	METER		NER DES	CRIPTIC	N			_			
SAL Use Only Sample No.	Matrix Codes: DW-Drinking Water WW-Wastewater SW-SurfaceWater SL-Sludge SO-Soil GW-Groundwater SA-Saline Water O-Other R-Reagent Water Sample Description		Date	Time	Matrix	Composite	Grab	40mLV, Na ₂ S ₂ O ₃ 504.1, 8260	500mLP, Cool Total Alkalinity, TSS, VSS, CBOD, NOX, OP, SO4	125mLP, H ₂ SO ₄ COD, TKN, NH ₃ , TP	500mLP, NaOH, Zn Acetate H ₂ S	125mLP, Cool Total Alkalinity, TSS, VSS, CBOD, NOx	125mLP, H ₂ SO₄ TKN, NH ₃	500mLP, Cool Total Alkalinity, TSS, VSS, CBOD, NOX	500mLP, Cool Total Alkalinity, TSS, VSS, CBOD, NOx, SO ₄	125mLP, H₂SO₄ COD, TKN, NH₃	Field pH	Field Temperature	Field Conductivity	Field DO			No. of Containers (Total per each location)
01	BHS6-STE	61	23/14	10:48	ww		x	5	2	1	1						7.13	24,2	1278	,23			
02	BHS6-DP01		1	11:56	ww	Π	x					1	1									[
03	BHS6-DP02		Γ	12:12	ww		x					1	1				~	Y					
04	BHS6-DP03			11:26	ww		x				1		1	2			253,	6.36	898	30	30		
05	BHS6-DP04			11:36	ww	$\uparrow \uparrow$	x								2	1	6.39	25,4	930	,16		;l	
06	BHS6-ST1&2a			11:06	ww	11	x		2	1	1						6.28	25.9	946	.29		 	
07	BHS6-ST1&2a-DUP	1	\mathbf{T}	11:08	ww	++	x		2	1	1						6.28		745	30			<u> </u>
08	BHS6-ST2b-T		1	10:30	ww	++	x	5	2	1	1						6.60	24.1	108	.34			
09	BHS6-EB		ケ	11:48	R		x		2	1	1						5,26	25.9	2.1	161			
		612	3/14	11.10	R	11	x	1															
		-7-	×μ. μ				Ť	i											<u> </u>				
						11																	
Contail Relinge Relinge Relinge	Alf	Rece Rece	eived: eived: eived: eived:	14 5	:00	Date Oate Date Date	/Time /Time /Time	146	-24-4 93 97	5	Receive Proper Rec'd v Volatile	s intact upo ad on ice? ' preservativ rithin holdin s rec'd w/o	temp <u>1</u> ,9 es indicate g time? ut headsp	:d?		NVA NVA NVA NVA		Ship to Harmo 1825 C	I ons / Rem o: n Harde ottage (ssee, Fl	n Grove		212-4	378
											Proper	containers	used?		Ю N	N/A							

Chain of Gustody xi Rev.Date 11/19/01

Page 32 of 32

Chain of Custody

SAL Project No. 146489

Appendix E: Acute Toxicity Bioassay Report

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS6 PNRS EFFLUENT TESTING FOR FDOH ADDITIVES RULE PAGE E-1 HAZEN AND SAWYER, P.C.

Whole Effluent Toxicity Testing Summary Page

Client name: Hazen & Sawyer BHS6-STE

MBL Project/Report # 140676

MBL Sample #	Species	Product Name	Test Results	Passing or Failure
140676-1	Cyprinella leedsi	LC50>/=100%	LC50 = 13.2%	Failure
			127	

Additional Testing Required: N/A

Comments:

QA/QC Officer/Reviewer: Signature

1-1 Date:

Page _ 2 of 12.

Effluent Toxicity Testing Report Form

		e following items	to this report form				
1. All Chain-of-Cus	tody Forms					· · · · · · · · · · · · · · · · · · ·	x
2. Standard Refere	nce Toxicant (SRT) Repo	rts attached. 1 SRT R	eports attached.			· · · · · · · · · · · · · · · · · · ·	x
3. All Raw Data (B	ench Sheets) Pertaining t	o the Tests (i.e., all phy	sical, chemical and biolo	gical measure	ements)		X
4. All Result Calcul	ations						X
Facility/ Indust Client Name a address:	nd Registry	azen & Sawyer Princess Palm A One Bldg. Suite npa, FL 33619	200 Non-N	er:	N/A Yes P		borough N/A
lame,Address,& none Number of Consultant Company:	4569 Samuel Stree (941) 925-3594 Certification #E841	aboratory, Inc. (MB t Sarasota, Florida 91 eks Laboratory Dire	L) 34233 End	rt Date:	Conducted: 06/24/2014 06/28/2014	Start 1545 Time:	hrs.
e(s) of Person(s) acting Test(s):(P QC Officer/Revie	N92		avka Mihajlovic, S Singivipulya, Pre			el Young	
Signature		1- Cm	2			7/9/201	φ
poratory port #/ ject #:	140676	Sampler's Name: (Print)	or failed routine tes		mmon Harden		φ
poratory port #/	140676 X Addition	Name: (Print)	or failed routine te				<u>φ</u>
poratory port #/ ject #:]	Name: (Print)	For failed routine tes		mmon Harden		<i>φ</i>
Poratory port #/ ject #:]	Name: (Print)			mmon Harden		<u> </u>
poratory port #/ ject #: Routine Test	X Addition	Name: (Print) nal N/A F	Samples Sample Type:	st dated: Arrival	nrmon Harden	A	Chemics
poratory port #/ ject #: Routine Test # Pr 1 06/23/	X Addition	Name: (Print) hal N/A F	Samples Sample Type: Grab or Composite	st dated: Arrival Temp oC	Initial Residual Chlorine (mg/L)	A Lab Dechlorination	Chemica Used
reporatory port #/ ject #: Routine Test [# Pr 1 06/23/ 	X Addition oduct Name 2014 1050 hrs.	Name: (Print) Dal N/A F Lab Sample # 140676-1	Samples Sample Type: Grab or Composite Grab	Arrival Temp oC	Initial Residual Chlorine (mg/L)	A Lab Dechlorination	Chemica Used
poratory port #/ ject #: Routine Test # Pr 1 06/23/	X Addition oduct Name 2014 1050 hrs.	Name: (Print) hal N/A F Lab Sample # 140676-1	Samples Sample Type: Grab or Composite Grab	Arrival Temp oC 1	Initial Residual Chlorine (mg/L)	A Lab Dechlorination	Chemica Used
poratory port #/ ject #: Routine Test # Pr 1 06/23/	X Addition oduct Name 2014 1050 hrs.	Name: (Print) aal N/A F Lab Sample # 140676-1	Samples Sample Type: Grab or Composite Grab	Arrival Temp oC 1 	Initial Residual Chlorine (mg/L)	A Lab Dechlormation	Chemica Used
poratory port #/ ject #: Routine Test # Pr 1 06/23/	X Addition oduct Name 2014 1050 hrs.	Name: (Print) hal N/A F Lab Sample # 140676-1 	Samples Sample Type: Grab or Composite Grab	Arrival Temp oC 1 	Initial Residual Chlorine (mg/L)	Lab Dechlorination	Chemica Used
poratory port #/ ject #: Routine Test # Pr 1 06/23/	X Addition oduct Name 2014 1050 hrs.	Name: (Print) bal N/A F Lab Sample # 140676-1 	Samples Sample Type: Grab or Composite Grab	Arrival Temp oC 1 	Initial Residual Chlorine (mg/L)	A Lab Dechlormation	Chemics Used
poratory port #/ ject #: Routine Test # Pr 1 06/23/	X Addition oduct Name 2014 1050 hrs.	Name: (Print) hal N/A F Lab Sample # 140676-1 	Samples Sample Type: Grab or Composite Grab	Arrival Temp oC 1 	Initial Residual Chlorine (mg/L)	A	Chemica Used
poratory port #/ ject #: Routine Test # Pr 1 06/23/	X Addition	Name: (Print) hal N/A F Lab Sample # 140676-1 	Samples Sample Type: Grab or Composite Grab	Arrival Temp oC 1 Samp Aerato	Initial Residual Chlorine (mg/L)	A Lab Dechlorination	Chemics Used

(1) If toxicity testing data are reported for any project other than permit compliance testing, mark "yes" and identify the reason that toxicity data are being submitted, e.g., Consent Order, ambient monitoring, mixing zone evaluation.

Page <u>3</u> of D

Type of Test (1)	Test Conc (cm sq)	Age of Test Organism	Test Species Used (3)	Amount & Type Food	How Often Fed	Test Chamber Volume	Volume of Effluent Used	Type of Chamber	# of Organism/ Chamber	# of Replicates	Temp Range (Degrees Celsius)
D	0, 6.25, 12.5, 25, 50, 100	11 days	CL	0.04 mL1200 Artemia nauplii/0.1 mL per replicate	Once at renewal	1000 mL	250 mL	Beaker	10	2	25
•										1.00	
										-	
-										2	
e										-	

Description of Control Water:

Synthetic Moderately Hard (Reconstituted)

16 Hrs. Light : 8 Hrs. Dark

Photoperiod During Test:

Reference Toxicant Data (4) In-House or Commercially Dates of Test Obtained Name of Toxicant **Begin and End** Species (3) LC50/IC25 NaCl 06/20/2014-06/24/2014 CL In-House 3.11 g/L NaCl _____ -----*** ---

(1) Please fill the "Type of Test" Box with the Appropriate Letter:

- A. 48-Hr/Non-Renewal/Single Concentration (Screen)
- B. 48-Hr/Non-Renewal/Multi-Concentration (Definitive)
- C. 96-Hr/Renewed Every 48-Hrs/Single Concentration (Screen)
- D. 96-Hr/Renewed Every 48-Hrs/Multi-Concentration (Definitive)
- E. 7-Day Chronic/Single Concentration (Screen)/Renewed Daily
- F. 7-Day Chronic/Multi-Concentration (Definitive)/Renewed Daily
- G. Other Describe in the "G" Box

(2) List all concentrations of effluent used (i.e., 0%, 6.25%, 12.5%, 25%, 50%, 100%)

- (3) Write Appropriate Letters for the following species in this column: CD Ceriodaphnia dubia
 - FM Pimephales promelas (fathead minnow)
 - SS Menidia beryllina (inland silverside)
 - MS Mysidopsis bahia (mysid shrimp)
 - DP Daphnia pulex
 - DM Daphnia magna
 - CL Cyprinella leedsi (bannerfin shiner)
 - Other Please Describe

(4) Attach all reference toxicant raw data and control charts for each organism/reference toxicant used for the test.

QA/QC Officer/Reviewer: Signature

1- 0

9/2014 Date:

	ACU Test conducted in acc	TE Test Results ordance with E		02-012.		
Test Species	Test Concentration (cm sq)	Sample # (3) & Sample I D.	% Mortality 24 Hrs (4)	% Mortality 48 Hrs (4)	% Mortality 96 Hrs (4)	LC50 (5
CL-Control	0				10	
CL	6.25, 12.5, 25, 50, 100	140676-1				13.2%
						()(
					·	

(1) List % control mortality in appropriate column (48 or 96 hr.) for organisms (use abbreviations shown on footnote 3, Page 2) that you list under the word "Control."

(2) List all concentrations of effluent used (i.e., 0%, 6.25%, 12.5%, 25%, 50%, 100%).

LC50 (6)

.....

(3) Record number that corresponds with the number of the sample in the "Date and Time Collected" column in sample section on Page 1. (4) List % Mortality for each organism and control if you are conducting a single concentration (Screen) test.

(5) If multi-concentration (Definitive) tests are conducted on grab or composite samples, record the calculated LC50 in this column for each sample. Enter "N/A" in all % Mortality columns and LC50 box at bottom of this table.

(6) If a single concentration (Screen) test is conducted and >50% mortality occurs in any one of the four grab or composites, record <100% in this box. If < = 50% mortality occurs in all four grabs or composites, record > 100% in this box. Draw a line through the LC50 column in above table.

F = Flagged data, see page 5.

* No statistical test was used in endpoint determination as the data either did not appropriately fit the requirements of any point estimate techniques presented in EPA/600/4-90/027F or these methods provided an ugrealistic or unrealiable result as demonstrated herein.

QA/QC Officer/Reviewer: Signature

Species

--

--

9/2014 Date:

Page 5 of

Standard violation	Yes/No
	163/10
Improper container	No
36-hour holding time	No
exceeded	
Temperature above 6 degrees Celsius	No

Specify any deviations from, additions to, or exclusions from the test method or any non-standard conditions that may have affected the quality of the results, and include any data qualifiers.

All calculated statistical endpoints were calculated using ToxCalc version 5.0.21 - Tidepool Scientific Software.

The results contained in this report relate only to the items tested or to the samples as received by the laboratory. MBL certifies the results contained in this report meet NELAC standards.

This report shall not be reproduced except in full, without the written approval of MBL.

QA/QC Officer/Reviewer: Signature

19/2014 Date:

Reviewed by: PM

Page 0 of 12

140676-1

ToxCa	c	v5.0	
10/000			

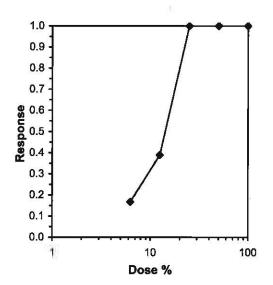
Page 1

End Date: 6/28/2014 Lab ID: MBL-Marinco Bioassay Lab. Sample Type: Sample Date: Protocol: EPA Method #2000.0 **Test Species:** CL-Cyprinella leedsi Comments: This analysis was performed by Marlena Beck at MBL. Conc-% 2 0.9000 Control 0.9000 6.25 0.6000 0.9000 12.5 0.5000 0.6000 25 0.0000 0.0000 50 0.0000 0.0000 100 0.0000 0.0000

Test ID: 140676CL

Acute Fish Test-96 Hr Survival

Sample ID:


				Transform	n: Untran	sformed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp	Number
Control	0.9000	1.0000	0.9000	0.9000	0.9000	0.000	2	2	20
6.25	0.7500	0.8333	0.7500	0.6000	0.9000	28.284	2	5	20
12.5	0.5500	0.6111	0.5500	0.5000	0.6000	12.856	2	9	20
25	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	2	20	20
50	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	2	20	20
100	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	2	20	20

Trim Level	EC50	95%	CL	
0.0%				
5.0%				
10.0%				
20.0%	13.366	10.399	17.180	
Auto-16.7%	13.174	10.417	16.661	

Start Date:

6/24/2014

Trimmed Spearman-Karber

SURVIVAL BENCH SHEET

Project #:	1400	076				Test	Start:	6	1 24/14	154	5	
Test Orga	nism: (Cyprii	nella	leeds	i	Test	End:	6	28/14	15.	38	
Organism	Age:			Brood #: CL140613								
Concentration	Survival: Replicate							Surviv	/al: Repli	cate B	<u></u>	
%	Sample Number	0 Hours	24 Hours	48 Hours	72 Hours	96 Hours	0 Hours	24 Hours	48 Hours	72 Hours	96 Hours	A & B %
100	140676-1	10	0				10	I	•			0
50	Λ /	10	0				10	0				Ο
25	\bigvee	10	0	<u>_</u>			10	0				0
12.5	\square	10	10	7	6	5	10	9	9	8	6	55
6.25	$/ \setminus$	10	10	Ş	B	6	10	10	10	10	9	75
Cont	trol	10	פו	10	(0	9	10	10	10	9	9	90
Organisms (Initials &		-	-	PM 0810	1	-	-	~	8M 0810)	-
0 Hours started 24, 72, 96 Hours 48 Hours renewe	s counted by:	W1 SS	M	PM	51(S	ms	<u>Nu</u>	PM	3K	22	25

Comments or Corrections:

Reviewed by: MB Date: 72/14

ACU		y tes Epa N	T PHY lethoo	SICAL	. AND 2000.(CHEN	711		IEASU	Page REME	NTS	of <u>18</u> .
Project #:	140670	e			Те	st Sta	rt	(0/11/11	+ 15	245	-
Test Orga	nism: <u>Cyp</u> r	rinella	lee	dsi	Те	st End	:	6	28/14	15	538	5)
Effluent			Dissolve	en (mg/L)				pH				
Concentration %	Sample Number	0 Hours	24 Hours	48 Hours	72 Hours	96 Hours		0 Hours	24 Hours	48 Hours	72 Hours	96 Hours
100	140676-1	8.D	4.4	7-	1—	-	5	8.0	83	1		
50.0	\backslash	82	50	1-	[8.0	8:2	7-	1	(
25.0	\square	8.7	6.5	1-	-	_		8.0	8.1			-
12.5	X	82	2.2	50 8.2	53	5.5		79	PO	1378	77	7.8
6.25		8.1	77	01	60	6.0		7.9	80	77.8	7.6	7.7
Control	$/ \land$	8.1	78	7.0%.1	70	6.2		7.7	7.8	7.2	7.7	7.6
Measu	red by:	SK	SIC	SUAM	SIC	m		SIC	SIC	7 SM	SIC	m
Effluent		Те	Temperature (Degrees Celsius)					0	on duc-	fivity	Cuislo	(14)
Concentration %	Sample Number	0 Hours	24 Hours	48 Hours	72 Hours	96 Hours		0 Hours	24 Hours	48 Hours	72 Hours	96 Hours
100	140676-1	25	as	1/-	/	1		1-239	1.153	7-		~
50.0	\setminus /	дś	25	-/-	-	-			0.760	-/-	/	-
25.0	\backslash	25	25		-	-		6535	0.532	-/_	1	-
12.5	X	əś	K	2/25	ðś	25		0427	1	0.428	_	0.451
6.25	$/ \setminus$	२९	25	25	25	25		0366	-	-0.366		0.395
Control		25	25	25/25	əś	25		0.305	1	0.305		0.340
Measur	ed by:	SK	51	31 PM	SK	ny		sK	5K	PM	-	ny

Comments or corrections: _

SAMPLE/CONTROL WATER INFORMATION

Project #: 140676

Control Water and Sample Analysis

	Laboratory Number	Alkalinity (mg/L)	Date	Name and	Hardness (mg/L)	Date	bounseewy.	Chiorine (mg/L)	Date	Meanured by:	Cond. (mS/cm)*	Date	sylicatory;ed
nalysis	40676-1	494	61251k	· M4	318	6/2514	e Au				1239	66414	1
Initial A	6414149622	55	6175711	M	84	6[2011	en		<i>6.1</i> ×		0.305	6.0400	54
	Sha 149622	55	6125114	<u>N4</u>	84	612574	chy				0,305.	6/26/14	Pr
Renewal													
		Number 140676-1 140676-1 540149622 Эна 149622	Number (mg/L) 140676-1 494 140676-1 494 5000 55 5000 55 5000 55 5000 55	Number (mg/L) 140676-1 494 61?51k 140676 1494 61?51k 140676 1494 61?51k 1407 1496 1496 1407 1496 1496 1408 1496 1496 1408 1496 1496 1408 1496 1496 1408 1496 1496 1408 1496 1496 1408 1496 1496 1408 1496 155 1408 1496 1496 1408 1496 1496 1408 1496 1496 1408 1496 1496 1408 1496 1496	Number (mg/L) 5 140676-1 494 6/2514/4 140676-1 494 6/2514/4 140676-1 494 6/2514/4 140676-1 494 6/2514/4 140676-1 494 6/2514/4 14067622 55 6/2514/4 140 140622 55 140 140622 55 140 140622 55	Number (mg/L) Img/L Img/L 140676-1 494 617514 M 318 140676-1 494 617514 M 318 Img/L Img/L Img/L Img/L Img/L	Number (mg/L) $\overline{\overline{5}}$ (mg/L) $\overline{\overline{5}}$ 140676-1 494 6/2514 M 318 6/2514 140 140676 140 140 140 140 141 140672 55 6/2514 M 84 6/2514 141 140622 55 6/2514 M 84 6/2514 141 140622 55 6/2514 M 84 6/2514	Number (mg/L) $\overline{0}$ (mg/L) $\overline{0}$ (mg/L) $\overline{0}$ $\overline{140676-1}$ 494 $61751k_{1}M_{2}$ 318 $61251k_{2}M_{4}$ Image: 100 - 1 494 $61751k_{2}M_{4}$ 318 $61251k_{2}M_{4}$ Image: 100 - 1 494 $61751k_{2}M_{4}$ 318 $61251k_{2}M_{4}$ Image: 100 - 1 494 $61751k_{2}M_{4}$ 318 $61251k_{2}M_{4}$ Image: 100 - 1 55 $61751k_{2}M_{4}$ 84 $61251k_{2}M_{4}$ Image: 100 - 1 55 $61251k_{2}M_{4}$ $61251k_{2}M_{4}$ Image: 100 - 1 55 $61251k_{2}M_{4}$ $61253k_{2}M_{4}$ Image: 100 - 1 55 $61251k_{2}M_{4}$ $61253k_{2}M_{4}$	Number (mg/L) * (mg/L) * (mg/L) 140676-1 494 617514 M4 318 612514 M4 140676 494 617514 M4 318 612514 M4 140676 494 617514 M4 318 612514 M4 140676 494 617514 M4 318 612514 M4 140 140676 1494 617514 M4 318 612514 M4 111 5 55 617514 M4 84 612514 M4 111 5 55 617514 M4 84 612514 M4	Number (mg/L) * (mg/L) * (mg/L) * 140676-1 494 612514 M 318 612514 M 318 612514 M 140676-2 55 612514 M 318 612514 M 318 612514 M 140676-1 494 612514 M 318 612514 M 318 612514 M 140 612514 M 84 612514 M 612514 M 612514 M 11 61441426622 55 612514 M 84 612514 M 612514 M 14 612514 M 84 612514 M 612514 M 612514 M 612514 M	Number (mg/L) Img/L <	Number Img/L) 3 Img/L) 3 Img/L) 3 Img/L) 3 <	Number (mg/L) $\overline{3}$ (mg/L) $\overline{3}$ (mg/L) $\overline{3}$ (mg/L) $\overline{3}$ (ms/cm)* $\overline{3}$ 140676-1 494 612514 M 318 612514 M 1.339 624 140676-2 55 612514 M 318 612514 M 1.339 624 1939 612514 M 318 612514 M 1.339 624 1939 612514 M 318 612514 M 1.339 624 1939 612514 M 84 612514 M 0.305 624 1939 55 612514 M 84 612514 M 0.305 624 1940 318 612514 M 84 612514 M 0.305 624 1941 55 612514 M 84 612514 M 0.305 6126

*Conductivity values indicated at a reference temperature of 25 degrees celsius. Values in this column for salt-control-water, SWyymmdd, are for salinity determined at the time of initial use in the test.

			Sample Ae	ration				
Sample #	initial D.O img/L)	Aeration Duration (min.)	Aeration Bate ImProit.1	Final D.O (mgA.i	Aeroted I Initials/Date/Tim		innial Sample pB	Measured by
149676-1	0,5	10	~500	3.0	Nec 6/24/14	1508	7,1	Ny
14 0676-1	7.9	NIA	NIA	NLA	M 6/26/14	1035	75	M
							1	
			HALANDER -					

Comments or corrections:

Reviewed b Date:

Page 10 of 12.

	AUUT			U I								
Project :	#: 140676 Clie CL 96 hr @ def	ent:					nental C		mbor #	Sta	<u></u>	■ CA
lest type:			lest	run (onn	nental C	nai	nper #	•	<u>h</u>	
Species Code (1)	Receipt Date and Supplier of Organism (if commercially obtained)	Init.	Amount & Type of Food (2)	Init.	How Often Fed (3)	Init.	Test Chamber Vol. (mL)	Init. 5	Vol. of Effluent Used (mL)	Intt.	Type of Chamber (4)	Init.
CL	NLA	85	E	9M	8	PM	1000	2	250	22	B	5
											and the second	
		+			No. of Concession, Name							
SS <i>Menidia be</i> MS <i>American</i> DP <i>Dephnie p</i> DM <i>Dephnie m</i>	es promelas (fathead minnow) erylline (inland silverside) ysis bahla (mysid shrimp) ulex agna leedsi (bannerfin shiner)		'R' 'F' 'D' 'T' 'O'	Once Once Once Twice Other	, at least two , at least four daily a daily f	hours t hours t	box with the ap before renewal pefore renewal " box with the					

ACLITE TEST CONDITIONS

(2) Please fill the "Amount & Type of Food" Box with the appropriate letter:

- 'AA' 0.1 mL Selenestrum per replicate, 0.1 mL YCT per replicate
- 'A' 0.2 mL Selenastrum per replicate, 0.2 mL YCTper replicate
- 'B' 1.4 mL Selenastrum/200 mL of sample, 1.4 mL YCT/200 mL of sample
- 0.1 mL of 1200 Artemia nauplii/0.1 mL per replicate 'C'
- 'D' 0.085 mL of 1200 Artemia nauplii/0.1 mL per replicate
- 'E' 0.04 mL of 1200 Artemia nauplii/0.1 mL per replicate ō' Other

- Plastic Beaker Plastic Medicine Cup 'M'
- 'P' Plastic Cup
- 'G' Glass Beaker 'C'

Photoperiod: SS

Plastic Container

Test(s) conducted in accordance with EPA-821-R-02-012

Randomization version:

Other _____

Method number

Т

2900.0

Physical and Chemical Measurement Equipment

Equipment type	Test start	24 hours	48 hours	72 hours	96 hours
Thermometer (A)	E	Ē	E/E	E	E
DO Meter (B)	4	ų	44	4	4
pH Meter (C)	7	5	74	7	7
Conductivity meter (D)	10	1Ø	70		10
Freshwater cond. checked by	1		1		
Used by (Initials)	sic	31	SIL	SIC	m

thermometer.		
(B)DO Meters:	"3"	Orion 830
	-4-	Hach Sension 6
	"5"	Orion 830A
	"6"	Orion 820
(C)pH Meters	"7"	Hach Sension 2
	"8"	Orion 290A
	"9"	Orion 720
(D)Conductivity	"10"	Orion 160
	"11"	Orion 126
"O" Other		

16 hours Light/8 hours dark

18

Comments or Corrections: ____

Reviewed Date:

Report Page 11 of 12

Marinco Bioassay Laboratory 4569 Samuel Street · Sarasota, FL 34233 · Phone: (941) 925-3594 · Fax: (941) 922-3874

			wyer			rmit #:			
Sample	ers (Print	Names)	: Harn	non Ha	rden		ate int		·····
		_			- 161				
1 q	Sample C	2 gt.	1 Gal.	Ac			sts Requi	red	
1 4		2	T SUPPLY	- <u>-</u>	De CL	96HR	DEF		
Sample	Cooler #:			Ch	ronic:				
		С	lient Prov	ided Inform	nation			Lab Use	Only
TRC	Location	Sample ID#	Date of Sampling	Time of Sampling	Grab or Composite	Numb of Bott			1 4
Gamp tant	B-H56	STE	6/3/14	10:50	Grab	1	V	140016-1	120
ST2 port			6/23/14		6mb	1	V		
		1	S	ampling	Kit Transf	ers			
	Relipquish	ed By:			ved By:		, Date	Time	Count
MBL:	AL	as	Carrie	red!	Ex,	1	6/18/14	1530	2
Carrier:	Fer	IEx	Client	: Harmon	Harden		6/19/14	1630	2
se ref	er to the	back d	of this pa		struction: Transfers		example	s.	
	Relinquish	od Br		the second s	ved By:		Date	Time	Count

42414 Person's Name: Person's Name Fadlity Name Feeliny Meme Person's Name: Person's Name: . Facility Name Facility Name -17 Person's Name: Person's Name: Facility Name Facility Name 10G

Shipped via

Busbill/Airbill #: 8047 93338016

MBL #0009. Ver. #10

Facility Name

Page D of D.

INTERNAL CHAIN OF CUSTODY MARINCO BIOASSAY LABORATORY, INC.

	Acute Toxicity	Test
S	Project # <u>40076</u> ample expiration date/time <u>6</u>	4/14-2250
Sample #(s)	14Dloxe-1	140676-1
Procedure	Test Start	Test Renewal
Sample(s) checked in by Initials/Date/Time	MBS6/24/14 10218	NIA
Sample(s) warmed by Initials/Date/Time	14 6124/14 1440	M 6126114 1030
Total Residual Chlorine measured by Initials/Date/Time	NIA	NIA
Sample(s) salted to test salinity using HW Marinemix by: Initials/Date/Time	NIA	NLA
Dilutions prepared by: Initials/Date/Time	SIG 6 84/14 1515	1044 1044
Test Start-test started by: Test renewal-test renewed by: Initials/Date/Time	my 6/24/14 1545	PM 0/20/14 1100
Remaining sample(s) returned to refrigerator by: Initials/Date/Time	5166124114	NIA
Samples disposed of by & disposal method Initials/Date/Time	NA	Sample countimed in test m 6126114 1044

All samples are stored in the laboratory refrigerator from just above freezing to 6 degrees Celsius unless noted on this Internal chain of custody.

Comments:

Reviewed by MB Date: 7614

Whole Effluent Toxicity Testing Summary Page

Client name: Hazen & Sawyer BHS6-ST2

MBL Project/Report # 140677

MBL Sample #	Species	Product Name	Test Results	Passing or Failure
140677-1	Cyprinella leedsi	LC50>/=100%	LC50 = 56.1%	Failure
				-

Additional Testing Required: N/A

Comments:

Page _____ of _____.

Effluent Toxicity Testing Report Form

	lease attach the	following items	to this report form	and indica	te with an "X" i	n box.	
1. All Chain-of-Custody F	orms				\$ \$.		x
2. Standard Reference To	oxicant (SRT) Reports	s attached. 1 SRT R	eports attached.				X
3. All Raw Data (Bench S	Sheets) Pertaining to	the Tests (i.e., all phy	sical, chemical and biolo	gical measure	ments}		×
4. All Result Calculations	1						X
Facility/ Industry/ Client Name and address:	10002 F Registry (zen & Sawyer Princess Palm A Dne Bldg. Suite pa, FL 33619	6 - <u>11 - 11 - 11 - 11 - 11 - 11 - 11 - </u>				borough N/A
Name,Address,& 45 hone Number of 694 Consultant Ce	69 Samuel Street 41) 925-3594 rtification #E8419	boratory, Inc. (MBI Sarasota, Florida 11 ks Laboratory Direc	L) 34233 Star End	rt Date:	Conducted: 06/24/2014 06/28/2014	Start 1555 Time:	i hrs.
e(s) of Person(s) ucting Test(s):(Printed QC Officer/Reviewer Signature	M92		avka Mihajlovic, S Singivipulya, Pre				4
						4	
poratory port #/ 140 ject #: Routine Test X	Additiona	Sampler's Name: (Print)	or failed routine te		urmon Harden		<u>.</u>
port #/ 14	0 677	Name: (Print)					<u>, </u>
port #/ 14	Additiona	Name: (Print)	or failed routine tes Samples Sample Type: Grab or Composite				· · · · · ·
port #/ 14	Additiona	Name: (Print)	Samples Sample Type:	st dated:	N//	A Lab	Chemica
port #/ 14	Additiona	Name: (Print)	Samples Sample Type: Grab or Composite	st dated: Arrival Temp oC	N// Initial Residual Chlorine (mg/L)	A Lab Dechlormation	Chemic Used
port #/ 140 pject #: X Routine Test X # Product 1 06/23/2014 	Additiona	Name: (Print) IN/A F Lab Sample # 140677-1	Samples Sample Type: Grab or Composite Grab	st dated: Arrival Temp oC 1	N// Initial Residual Chlorine (mg/L)	A Lab Dechlormation	Chemic Used
port #/ 140 nject #: X Routine Test X # Product 1 06/23/2014 	Additiona Additiona Name 1032 hrs.	Name: (Print)	Samples Sample Type: Grab or Composite Grab	st dated: Arrival Temp oC 1 	N// Initial Residual Chlorine (mg/L)	A Lab Dechlorination	Chemic Used
port #/ 140 pject #: X Routine Test X # Product 1 06/23/2014 	Additiona Additiona Name 1032 hrs.	Name: (Print)	Samples Sample Type: Grab or Composite Grab	Arrival Temp oC 1 	N// Initial Residual Chlorine (mg/L)	A Lab Dechlormation	Chemic Used
port #/ 140 nject #: 140 Routine Test X # Product 1 06/23/2014	Additiona Additiona Name 1032 hrs.	Name: (Print) IN/A F Lab Sample # 140677-1	Samples Sample Type: Grab or Composite Grab 	Arrival Temp oC 1 	N// Initial Residual Chlorine (mg/L)	Lab Dechlorination	Chemica Used
port #/ 140 pject #: X Routine Test X # Product 1 06/23/2014 	0677 Additional t Name 1032 hrs.	Name: (Print) N/A F Lab Sample # 140677-1	Samples Sample Type: Grab or Composite Grab 	st dated: Arrival Temp oC 1 	N// Initial Residual Chlorine (mg/L)	A Lab Dechlorination	Chemica Used
port #/ 140 nject #: 140 Routine Test X # Product 1 06/23/2014	0677Additiona	Name: (Print) N/A F Lab Sample # 140677-1	Samples Sample Type: Grab or Composite Grab 	Arrival Temp oC 1 	N// Initial Residual Chlorine (mg/L)	A Lab Dechlorination	Chemica Used
port #/ 140 nject #: 140 Routine Test X # Product 1 06/23/2014	0677 Additional t Name 1032 hrs. 1032 hrs.	Name: (Print) IN/A F Lab Sample # 140677-1 	Samples Sample Type: Grab or Composite Grab 	Arrival Temp oC 1 Samp Aerate	N// Initial Residual Chlorine (mg/L)	A Lab Dechlorination	Chemica Used

(1) If toxicity testing data are reported for any project other than permit compliance testing, mark "yes" and identify the reason that toxicity data are being submitted, e.g., Consent Order, ambient monitoring, mixing zone evaluation.

Page 3 of D.

Type of Test (1)	Test Conc (em sq)	Age of Test Organism	Test Species Used (3)	Amount & Type Food	How Often Fed	Test Chamber Volume	Volume of Effluent Used	Type of Chamber	# of Organism/ Chamber	# of Replicates	Temp Range (Degrees Celsius)
D	0, 6.25, 12.5, 25, 50, 100	11 days	CL	0.04 mL1200 Artemia nauplii/0.1 mL per replicate	Once at renewal	1000 mL	250 mL	Beaker	10	2	25
-											
-			-							-	
-		1									
Π.			-							-	carrippiae con Researcher

Description of Control Water:

Synthetic Moderately Hard (Reconstituted)

16 Hrs. Light : 8 Hrs. Dark

Photoperiod During Test:

	Referen	ce Toxicant D	ata (4)	
Name of Toxicant	Dates of Test Begin and End	Species (3)	In-House or Commercially Obtained	LC50/IC25
NaCl	06/20/2014-06/24/2014	CL	In-House	3.11 g/L NaCl

	(

(1) Please fill the "Type of Test" Box with the Appropriate Letter:

- A. 48-Hr/Non-Renewal/Single Concentration (Screen)
- B. 48-Hr/Non-Renewal/Multi-Concentration (Definitive)
- C. 96-Hr/Renewed Every 48-Hrs/Single Concentration (Screen)
- D. 96-Hr/Renewed Every 48-Hrs/Multi-Concentration (Definitive)
- E. 7-Day Chronic/Single Concentration (Screen)/Renewed Daily
- F. 7-Day Chronic/Multi-Concentration (Definitive)/Renewed Daily
- G. Other Describe in the "G" Box

(2) List all concentrations of effluent used (i.e., 0%, 6.25%, 12.5%, 25%, 50%, 100%)

(3) Write Appropriate Letters for the following species in this column: CD Ceriodaphnia dubia

- FM Pimephales promelas (fathead minnow)
- SS Menidia beryllina (inland silverside)
- MS Mysidopsis bahia (mysid shrimp)
- DP Daphnia pulex
- DM Daphnia magna
- CL Cyprinella leedsi (bannerfin shiner)
- Other Please Describe

(4) Attach all reference toxicant raw data and control charts for each organism/reference toxicant used for the test.

QA/QC Officer/Reviewer: Signature

Date: 12014

		JTE Test Results cordance with E		02-012.		
Test Species	Test Concentration (cm sq)	Sample # (3) & Sample I D	% Mortality 24 Hrs (4)	% Mortality 48 Hrs (4)	% Mortality 96 Hrs (4)	LC50 (5)
CL-Control	0				10	
CL	6.25, 12.5, 25, 50, 100	140677-1				56.1%
			prototogy y Redeviced S.S.*			
			rantinus i ny Kaodim-Materi			
			81.54 F			

			Records and			
			12 v. de Tala Talanda Talanda		Without Charles and	
			1			725

(1) List % control mortality in appropriate column (48 or 96 hr.) for organisms (use abbreviations shown on footnote 3, Page 2) that you list under the word "Control."

(2) List all concentrations of effluent used (i.e., 0%, 6.25%, 12.5%, 25%, 50%, 100%).

(3) Record number that corresponds with the number of the sample in the "Date and Time Collected" column in sample section on Page 1.
(4) List % Mortality for each organism and control if you are conducting a single concentration (Screen) test.

Species	LC50 (6)	calculated
		box at bot (6) If a sir
>	3	the four gr grabs or co
	8 8	table. F = Flagge
-		* No statis

(5) If multi-concentration (Definitive) tests are conducted on grab or composite samples, record the calculated LC50 in this column for each sample. Enter "N/A" in all % Mortality columns and LC50 box at bottom of this table.

6) If a single concentration (Screen) test is conducted and >50% mortality occurs in any one of the four grab or composites, record <100% in this box. If <=50% mortality occurs in all four grabs or composites, record >100% in this box. Draw a line through the LC50 column in above table.

= Flagged data, see page 5.

* No statistical test was used in endpoint determination as the data either did not appropriately fit the requirements of any point estimate techniques presented in EPA/600/4-90/027F or these methods provided as usrealistic or unrealiable result as demonstrated herein.

QA/QC Officer/Reviewer: Signature

Date:

12014

Page 4 of D.

Specify if samples DO NOT m	eet NELAC standards:
Standard violation	Yes/No
Improper container	No
36-hour holding time exceeded	No
Temperature above 6 degrees Celsius	No

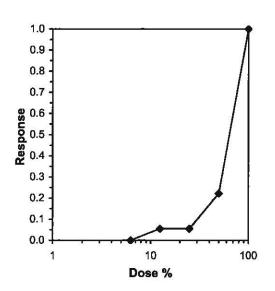
Specify any deviations from, additions to, or exclusions from the test method or any non-standard conditions that may have affected the quality of the results, and include any data qualifiers.

	AL 6758-0404

All calculated statistical endpoints were calculated using ToxCalc version 5.0.21 - Tidepool Scientific Software.

The results contained in this report relate only to the items tested or to the samples as received by the laboratory. MBL certifies the results contained in this report meet NELAC standards.

This report shall not be reproduced except in full, without the written approval of MBL.


19/2014 QA/QC Officer/Reviewer: Date: Signature

Page 6 of 17.

				Acute Fish Test-96	Hr Survival	
Start Date:	6/24/2014		Test ID:	140677CL	Sample ID:	140677-1
End Date:	6/28/2014		Lab ID:	MBL-Marinco Bioassay Lab.	Sample Type:	
Sample Date:			Protocol:	EPA Method #2000.0	Test Species:	CL-Cyprinella leedsi
Comments:	This analy	sis was	performed	by Marlena Beck at MBL.	-	- 20 <u>6</u> 72
Conc-%	1	2				
Control	0.9000	0.9000				
6.25	0.9000	0.9000				
12.5	0.8000	0.9000				
25	0.7000	1.0000				
50	0.7000	0.7000				
100	0.0000	0.0000				

		60	Transform: Untransformed		Nurr	iber	Total			
Сопс-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Re	sp	Number
Control	0.9000	1.0000	0.9000	0.9000	0.9000	0.000	2		2	20
6.25	0.9000	1.0000	0.9000	0.9000	0.9000	0.000	2		2	20
12.5	0.8500	0.9444	0.8500	0.8000	0.9000	8.319	2		3	20
25	0.8500	0.9444	0.8500	0.7000	1.0000	24.957	2		3	20
50	0.7000	0.7778	0.7000	0.7000	0.7000	0.000	2		6	20
100	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	2		20	20

Trimmed	Spearman-Karber
---------	-----------------

Trim Level

0.0%

5.0%

10.0% 20.0%

Auto-0.0%

EC50

56.123

60.419

62.120

63.958

56.123

95% CL

66.084

71.604

73.425

85.335

66.084

47.664

50.982

52.555

47.936

47.664

Page 7 of 12

SURVIVAL BENCH SHEET

Project #:	1406	77			Test	Start:	6	124/1	4_15	55			
Test Orga					Test End: 9/28/14 1540								
Organism	Age:		day	5		Broo	od #:	CLI	10613	5			
Concentration	Sample		Surviv	al: Repli	cate A			Surviv	al: Repli	cate B			
%	Number	0 Hours	24 Hours	48 Hours	72 Hours	96 Hours	0 Hours	24 Hours	48 Hours	72 Hours	96 Hours	A & B %	
100	140677-1	10	10	l	0	-	10	8	2	2	0	Ö	
50	/	10	10	10	10	7	10	10	9	8	7	70	
25		10	10	10	8	7	10	10	10	Ю	10	85	
12.5	\wedge	10	10	10	(0)	8	10	10	10	10	9	85	
6.25	$/ \setminus$	10	10	10	10	9	10	10	10	10	9	90	
Cont	rol	10	10	10	10	9	10	10	10	9	9	90	
Organisms (Initials &		-	-	PM 6810	1	-	-	-	PM	_		-	
0 Hours started 24, 72, 96 Hours 48 Hours renewe	s counted by:	255	M	PM	511	25	myss	M	PM	SIC	SS	SS	

Comments or Corrections:

x

Reviewed by: MB Date: 1214

ACU		Y TES	Т РНУ	SICA		CHEN	ЛЮ	CAL N	IEASU	Pag	NTS	of 18.		
1.00			lethoo	#	2000.	0								
Project #:	14267-	7			Те	st Sta	rt:	$t: 6 24 14 555 \\ 6 28 14 520$						
Test Orga	nism: <u>Cyp</u>	ninella	e lee	Те	st End	1:	6	1 28/11	4 19	240	e			
Effluent			Dissolve	ed Oxyge	n (mg/L	}	Γ			рН				
Concentration %	Sample Number	0 Hours	24 Hours	48 Hours	72 Hours	96 Hours		0 Hours	24 Hours	48 Hours	72 Hours	96 Hours		
100	140677 -1	7.9	77	3-8.1	7.7	7.3		77	8.4	8.072	86			
50.0	\wedge /	8.1	7.8	4.32	7.5	7.3		7.8	8.2	\$ 25	P.2	8.3		
25.0	\square	8.2	7.8	4182	78	7.4		7,8	8.1		90			
12.5	X	8.2	77	5.8	78	7.6		7.8	80	7-27	P.D	8.1		
6.25		8.1	17	62/1	78	7.4		77	79	5.247	8.0	7.9		
Control		8.1	17	7.81	7.7	7.5		77	7.9	7:27	7.8	7.9		
Measu	red by:	My	94	SIC	SIC	m	L	My	SK	SKA	SIC	m		
Effluent		Te	mperatu	re (Degre	ees Celsius)			C	onduc	tivity	ity (miston)			
Concentration %	Sample Number	0 Hours	24 Hours	48 Hours	72 Hours	96 Hours		0 Hours	24 Hours	48 Hours	72 Hours	96 Hours		
100	140677-1	25	25	F16	25	25		1.080		1.387		1.105		
50.0	\setminus /	25	25	25/25	25	25		0,691	1	5.637	-	0.745		
25.0	\setminus	25	25	25/25	25	25		0496	-	0,498	\smile	6.542		
12.5	X	25	əś	25/25	25	25		0,410	1	10407	~	6.450		
6.25		25	ZŚ	25/25	25	25	е - к	D 358	_	0.356	\checkmark	0.405		
Control				25/35	25	25		0.394	-	0.304	_	0.359		
Measur	ed by:	Ny	SIC	SICM	sic	m		Phy		- M	\checkmark	ny		

Comments or corrections: (1) Arotion firled an all concentration all replicites ~100 bubbles/min sk 6/20/14 0930

Reviewed by: MB____ Date: 7

Page 9 of 12 SAMPLE/CONTROL WATER INFORMATION

Project #: 143677

Control Water and Sample Analysis

		Laboratory Number	Alkalinity (mg/L)	Date	Winewood by:	Hardness (mg/L)	Date	Manasimed.	Chilorine (mg/L)	Date	Meseuret by:	Cond. (mS/cm)*	Date	jiliqaguted by
Initial Sample	Analysis	140677-1	346	612511	deu	478	6[251	ulu				1.080	61241	<u></u>
H	Initial	5mh 145622	55	612514	PH.	8.4	61757h	M	·			0.304	6124/1	ener
Water		544145622	55	6125714	M	84	6/25711	14		-		0.304	612G IK	My
Control Water	Renewal					>		$\langle \rangle$						
			~											

* Conductivity values indicated at a reference temperature of 25 degrees celsius. Values in this column for salt-control-water, SWyymmdd, are for salinity determined at the time of initial use in the test.

Sample Aeration

Sample #	Initial D.O ImgAJ	Aeration Duration (min.)	Aeration Rate Infilmin.1	Final Ø.0 (ingA.)	Aerated Initials Date/Tur	and the second se	bratial Sataple pH	Minashungd
149677-1	0.5	6	~500	7.9	M 6124114	1500	66	My
14.9677-1	8.1	NIA	NIA	NIA	M 6126114	1035	1 71	M
					·		1	
		I						-
Comments or	corrections							

ACLITE TEST CONDITIONS

est type	#: <u>14067</u> :: <u>CL 46</u>	hr a	o det			Test I	un	in Envi	ronn	nental C	ha	mber #	:	2	
Species Code (1)	Receipt Date an (if comm			ism	Туре с	unt & of Food 2)	lnit. ≰	How Often Fed (3)	Init.	Test Chamber Vol. (mL)	Ink.	Val of Effluent Used (mL)	Init	Type of Chamber : (4)	Init.
ci		NA		S	S E	E PM R PM 1000						250	U	B	51
											-				—
MS American DP Daphnia r CL Cyprinella Other - Please (2) Please fill the 'AA' 0.1 mL 'A' 0.2 mL 'B' 1.4 mL 'C' 0.1 mL 'D' 0.085 r 'E' 0.04 m O' Other_	magne leedsi (bannerfin shiner) a Describe "Amount & Type of Food" Selenestrum per replicate, Selenestrum/200 mL of si of 1200 Artemia nauplii/0. mL of 1200 Artemia nauplii/0 ducted in accord	Box with th 0.1 mL YCT 0.2 mL YCT ample, 1.4 m 1 mL per rep /0.1 mL per ro 0.1 mL per ro ance wi	per replicate per replicate L YCT/200 i blicate replicate aplicate	mL of sample	PI	'F' 'D' 'T' '6' '8' '9' '6' 'C'	Once Twice Other Plasti Plasti Glass Plasti	daily a daily me "Type of C c Beaker c Medicine C c Cup Beaker c Container	^{thember} ^{up} 6 ho Othe	* box with the ours Light r version:	^{approj}	ours da			
	Physical and	Chemic	al Meas	urement	Equipn	nent									
	Equipment type	Test start	24 hours	48 hours	72 hours	96 hour		r t	hermom			ол			
	Thermometer (A)	E	E	E/E	t	E			C}pH Me	"4" H "5" C "6" C	ach Se rion 8 rion 8	ension 6 30A			
	DO Meter (B)	4	4	44	4	4	_			"8" C	rion 2 rion 7 rion 1	90A 20 60			
	pH Meter (C)	7	7	27	7	7			O" Othe						
	Conductivity meter (D)	19	NIZ	- 10	-	10									
	Freshwater cond. checked by	~		7-											
	Used by (Initials)	3	SIL	SIM)بک	ny									
Co	mments or Co	orrectio	ons:						ata N						•
	34		18.184												
											Rev	viewed I	by:[NB	
MBL #0026a. Ve	r 19										Dat	te: 7	2	14	

Report Page	11	ofVS
nepult rage		01.0

Marinco	Bioassay	Laboratory
---------	----------	------------

4569 Samuel Street · Sarasota, FL 34233 · Phone: (941) 925-3594 · Fax: (941) 922-3874

					ustody black ink				
Client:	Huze,	1 + 50	wyer	.15	Pe	rmit #:			
Sample	ers (Print	Names)	: Harr	non Ho	rden		······		
	Sample_C	ontaine	rs			Tests	Require	d	en adorito
1 q	the st longest of the sector should be	2 gt.	1 Gal.	Ac	Acute CL 96HR DEF				
Sample	Cooler #:	2		Ch	ronic:	1011A			6 m
		С	lient Prov	ided Infor	mation			Lab Use	Only
TRC	Location	Sample 1D#	Date of Sempling	Time of Sampling	Grab or Composite	Nomber of Bottles	Sample on loe?	MBL Number (I:b use only)	Accival Temp.
Pumptant	B-H56	STE	6/23/14	10:50	Grab	1	V		
ST2 port	B-HS6	572	6/23/14	10132	6-25	1	V	140077-1	1%
								3	
				ompling	Kit Transf			-	

Religquished By:	Received By:	, Date	Time	Count
MBL: A Cab	Carrier: FedEx	6/18/14	1530	2
Carrier: FedEx	Client: Harman Hariten	6/19/14	1630	2.

Please refer to the back of this page for instructions and examples.

Sample Transfers

Relinquished By:	Received By:	Date	Time	Goum
Person's Name: Harring Cen Harton	Person's Name: Feel Ex	6/23/14	14:30	2
Person's Name: Jelly	Porson's terre: Relling	4/14	1048	3
Person's Name:	Person's Natne:			
Feeling Name	Feeliky Name			
Person's Name:	Person's Name:			
Facility Mains	Facility Name			
Person's Name:	Person's Name:			
Facility Name:	Ficility Name:			
Shipped via : <u>AUU</u>	Busbill/Airbill #	: SOUT 6	13238	$\omega \psi$

Shipped via :

Page 10 of 10.

INTERNAL CHAIN OF CUSTODY MARINCO BIOASSAY LABORATORY, INC.

Acute Toxicity Test

Project # 140677 Sample expiration date/time 6/24/14 0030

Sample #(s)	Man	140677-1
Procedure	Test Start	Test Renewal
Sample(s) checked in by Initials/Date/Time	MB 6 bulit 1048	NIA
Sample(s) warmed by Initials/Date/Time	Ny 612414 1440	Nu 6126/14 1030
Total Residual Chlorine measured by Initials/Date/Time	NU	NIA
Sample(s) salted to test salinity using HW Marinemix by: Initials/Date/Time	NIA	NIA
Dilutions prepared by: Initials/Date/Time	Ny 6124114 1505	M 6/26/14 1050
Test Start-test started by: Test renewal-test renewed by: Initials/Date/Time	my 6/24/14 1535	PM 6/26/14 1115
Remaining sample(s) returned to refrigerator by: Initials/Date/Time	Ny 6124114 1507	NIA
Samples disposed of by & disposal method Initials/Date/Time	NLA	Semple consumed in test in G126/14 1050

All samples are stored in the laboratory refrigerator from just above freezing to 6 degrees Celsius unless noted on this Internal chain of custody.

Comments:

Reviewed by: MB Date: 712/14