Florida HEALTH

Florida Onsite Sewage Nitrogen Reduction Strategies Study

Task B.7 B-HS2 Field System Monitoring Report No. 8

Progress Report

April 2014

In association with:

Otis Environmental Consultants, LLC

Florida Onsite Sewage Nitrogen Reduction Strategies Study

TASK B.7 PROGRESS REPORT

B-HS2 Field System Monitoring Report No. 8

Prepared for:

Florida Department of Health Division of Disease Control and Health Protection Bureau of Environmental Health Onsite Sewage Programs 4042 Bald Cypress Way Bin #A-08 Tallahassee, FL 32399-1713

FDOH Contract CORCL

April 2014

Prepared by:

In Association With:

B-HS2 Field System Monitoring Report No. 8

1.0 Background

Task B of the Florida Onsite Sewage Nitrogen Reduction Strategies Study (FOSNRS) includes performing field experiments to critically evaluate the performance of nitrogen removal technologies that were identified in FOSNRS Task A.9 and pilot tested in PNRS II. To meet this objective, full scale treatment systems are being installed at various residential sites in Florida and monitored over an extended timeframe under actual onsite conditions. The Task B Quality Assurance Project Plan (Task B.5) documents the objectives, monitoring framework, sample frequency and duration, and analytical methods to be used at the home sites. This report documents the eighth sample event of the passive nitrogen reduction system at a home site B-HS2 in Hillsborough County, Florida.

2.0 Purpose

This monitoring report documents data collected from the eighth B-HS2 monitoring and sampling event conducted on March 10, 2014 (Experimental Day 531). This monitoring event consisted of conducting flow measurements from the household water use meter and the treatment system internal water meters, recording electricity use, monitoring of field parameters, collection of water samples from five points in the treatment system, and chemical analyses of water samples by a NELAC certified laboratory. In addition, daily samples were collected March 11th through March 14th, 2014 to evaluate daily variation of the treatment system.

3.0 Materials and Methods

3.1 Project Site

The B-HS2 field site is located in Hillsborough County, FL. The nitrogen reducing onsite treatment system for the single family residence was installed in September 2012. Design and construction details were presented previously in the Task B.6 document. Figure 1 is a system schematic showing the system components and layout of the installation. A flow schematic of the system is shown in Figure 2. The B-HS2 system

tankage consists of a 1,050 gallon two chamber concrete primary tank; 300 gallon concrete recirculation tank; 900 gallon concrete Stage 1 unsaturated media biofilter; 300 gallon concrete pump tank; and 1,500 gallon two chamber concrete Stage 2 saturated media biofilter. Based on measured average wastewater flow and tank volumes, there is over a ten day transit time through the treatment system prior to dispersal. The denitrified treated effluent is discharged into the soil via the existing mounded drainfield (P.T.I.[™] bundles).

3.2 PNRS System Modification

As recommended in the fifth sample event report, the recirculation mode of operation was modified prior to the sixth sample event. The pump tank discharge is split via two throttling globe valves which allow for a portion of the Stage 1 biofilter effluent to be sent back for recirculation with the rest proceeding to the Stage 2 biofilter. The system was designed with two recirculation modes of operation. The first option (which was initially tested) is to have the recirculated effluent return to the recirculation tank for mixing with incoming septic tank effluent. Following the fifth sample event, the recirculation mode of operation was modified to test the second option. In the second option, recirculated effluent does not pass through the recirculation tank, but is dispersed by three spray nozzles directly to the top of the Stage 1 biofilter along with recirculation tank effluent (STE).

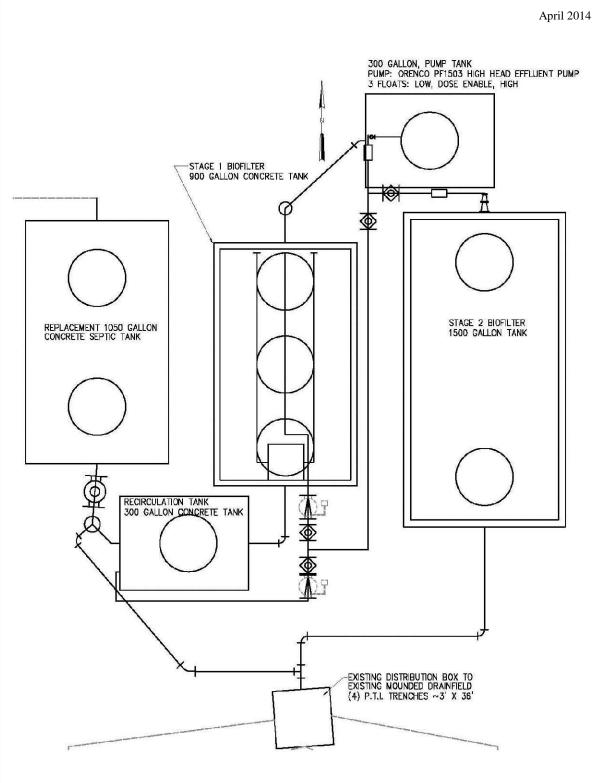
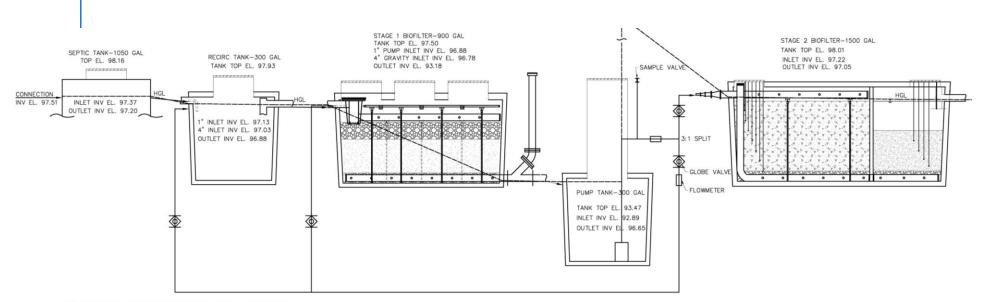
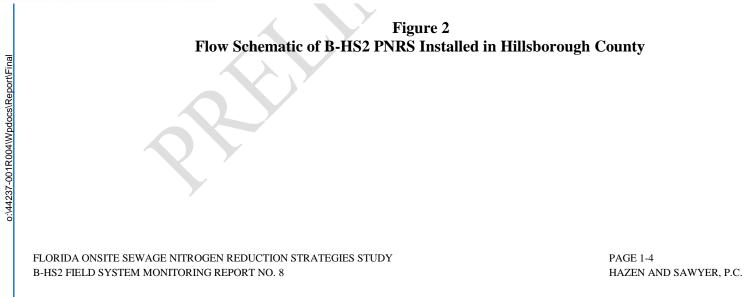
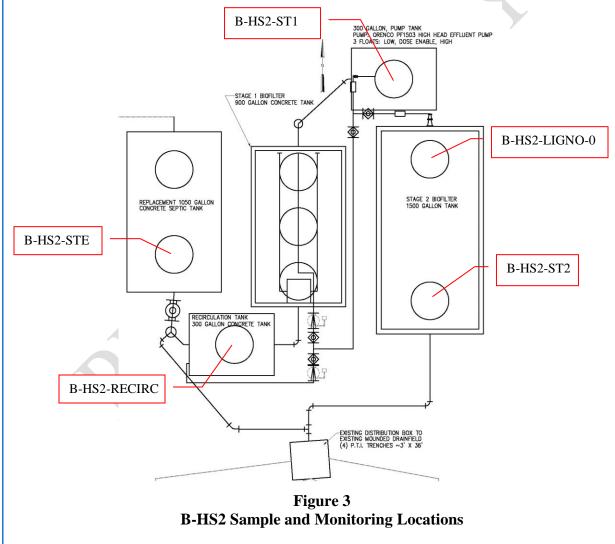



Figure 1 Plan view of B-HS2 System Layout


FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8 PAGE 1-3 HAZEN AND SAWYER, P.C.

o:\44237-001R004\Wpdocs\Report\Final



NOTE: HGL SHOWN IS FOR RECIRCULATION TANK MODE OF OPERATION

3.3 Monitoring and Sample Locations and Identification

The five primary monitoring points for this sample event are shown in Figure 3. Household wastewater enters the 1st chamber of the primary tank and exits the second chamber as septic tank effluent through an effluent screen into the recirculation tank. The first primary monitoring point, B-HS2-STE, is the effluent sampled approximately 1.5 feet below the surface of the second chamber of the primary tank (Figure 4), which is referred to as primary effluent or septic tank effluent (STE). Samples from monitoring point B-HS2-STE are the whole household wastewater after it has had some residence time in the primary tank.

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS5 FIELD SYSTEM MONITORING REPORT NO. 3

April 2014

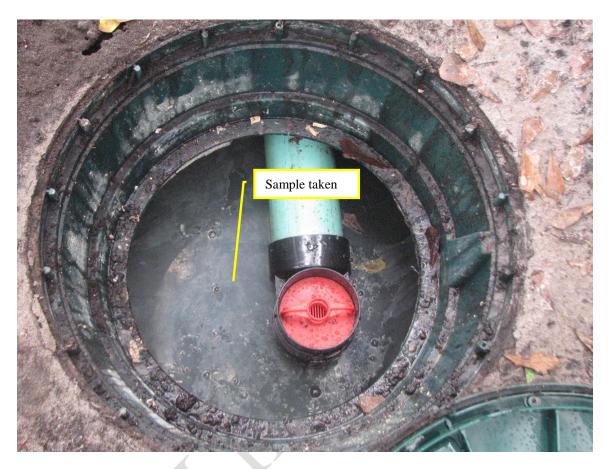


Figure 4 Second chamber of Primary Tank (B-HS2-STE sample)

Following the modification to the recirculation mode of operation, the recirculation tank only receives septic tank effluent. Therefore, the recirculation tank currently provides additional residence time for STE, before it enters the Stage 1 biofilter. The second primary monitoring point, B-HS2-RECIRC, represents the household wastewater after passage through the septic tank and recirculation tank.

Recirculation tank effluent is discharged by gravity to a distribution box located inside the Stage 1 biofilter, which splits the flow between two perforated distribution pipes along the top of the unsaturated Stage 1 biofilter media. In the Stage 1 biofilter, wastewater percolates downward through the unsaturated expanded clay media where nitrification occurs. Stage 1 biofilter effluent flows into the pump tank (which contains the pump and float switches). The third primary monitoring point, B-HS2-ST1, is the Stage 1 effluent sampled approximately 1.5 feet below the surface of the pump tank (Figure 5).

April 2014

Figure 5 Stage 1 effluent sample taken in pump tank (B-HS2-ST1 sample)

The pump tank discharge is split via two throttling globe valves which allow for a portion of the Stage 1 biofilter effluent to be sent back for recirculation with the rest proceeding to the Stage 2 biofilter. The system was designed with two recirculation modes of operation. The first option (which was initially tested) is to have the recirculated effluent return to the recirculation tank for mixing with incoming septic tank effluent. The second option, which is currently being tested, is to have the recirculated effluent return to the top of the Stage 1 biofilter, dispersed by three spray nozzles. Effluent from the unsaturated (Stage 1) media tank enters the saturated denitrification (Stage 2) biofilter into a standing water column lying above the media in the first chamber (lignocellulosic

media), flows downward through the media, moves laterally in a perforated 4-inch pipe through the baffle wall to the bottom of the second chamber, and upward through the media in the second chamber (elemental sulfur and oyster shell).

The first chamber of the Stage 2 biofilter contains 42-inches of lignocellulosic media. Stainless steel samplers are positioned at 6-inch increments for vertical profiling throughout the lignocellulosic media. The fourth primary sampling point is a stainless steel sampler positioned at the bottom of the lignocellulosic media (B-HS2-LIGNO-0). The B-HS2-LIGNO-0 sample represents the lignocellulosic media effluent (Figure 6).

A collection pipe along the bottom transfers the first chamber (lignocellulosic media) effluent to the second chamber, which contains 24-inches of elemental sulfur mixed with oyster shell media. The fifth primary sampling point, B-HS2-ST2, is the second chamber of the Stage 2 biofilter effluent which is sampled approximately 1 foot below the surface of the effluent baffle tee. This sample location is after passage through the sulfur media; it is the final effluent from the treatment system prior to being discharged to the existing soil infiltration system, or drainfield (Figure 7).

April 2014

Figure 6 First Chamber of Stage 2 Biofilter (B-HS2-LIGNO-0 Sample)

Figure 7 Second Chamber of Stage 2 Biofilter (B-HS2-ST2 Sample)

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8 PAGE 1-9 HAZEN AND SAWYER, P.C.

3.4 Operational Monitoring

Start-up of the system occurred on September 25, 2012 (Experimental Day 0) and the system has operated continually since that date. For this eighth formal sampling event, the water meter for the house and the treatment system flow meters were read and recorded on March 10, 2014 (Experimental Day 531). As previously discussed, the pump tank discharge is split via two throttling globe valves which allow for a portion of the Stage 1 biofilter effluent to be sent back for recirculation with the rest proceeding to the Stage 2 biofilter. The combined flow meter is located on the pump tank discharge line prior to the split, and records the cumulative flow in gallons pumped from the pump chamber. Therefore the measurement of the combined flow meter includes both the forward wastewater flow from the household and the recirculation flow. The Stage 2 flow meter is located following the split on the line from the pump tank to the Stage 2 biofilter. The control panel includes telemetry where reports are generated regarding alarms, pump cycles, and other information using a Vericomm control panel system.

3.5 Energy Consumption

Energy consumption was monitored using an electrical meter installed between the main power box for the house and the control panel. The electrical meter records the cumulative power usage of the system in kilowatt-hours. The power usage of the system is primarily due to the single recirculation pump in the pump chamber, although a small amount of power is used by the control panel itself. There are no chemicals added to the system. However, the Stage 2 biofilter media (lignocellulosic and sulfur) are "reactive" media which will be consumed during operation. The Stage 2 biofilter was initially filled with 42 inches of lignocellulosic media and 24 inches of sulfur media, which ostensibly will last for many years without replenishment or replacement.

3.6 Water Quality Sample Collection and Analyses

A full suite of influent, intermediate and effluent water quality samples from the system were collected for the eighth formal sample event on March 10, 2014 for water quality analysis. Samples were collected at each of the five monitoring points described in Section 3.2: B-HS2-STE, B-HS2-RECIRC, B-HS2-PUMP, B-HS2-LIGNO-0, and B-HS2-ST2. A peristaltic pump was used to collect samples and route them directly into analysis-specific containers after sufficient flushing of the tubing had occurred. Field parameters were then recorded.

In addition, equipment blank (B-HS2-EB) sample was taken. The equipment blank was collected by pumping deionized water through the cleaned pump tubing. This sample was then analyzed for the same parameters as the monitoring samples.

The analysis-specific containers were supplied by the analytical laboratory and contained appropriate preservatives. The analysis-specific containers were labeled, placed in coolers and transported on ice to the analytical laboratories. Each sample container was secured in packing material as appropriate to prevent damage and spills, and was recorded on chain-of-custody forms supplied by the laboratory. Chain of custody forms, provided in Appendix A, were used to document the transfer of samples from field personnel to the analytical laboratory.

Field parameters were measured using portable electronic probes and included temperature (Temp), dissolved oxygen (DO), oxidation-reduction potential (ORP), pH, and specific conductance. The field parameters were measured by placing the analytical probes in a container overflowing with sample water. The influent, intermediate, and effluent samples were analyzed by the laboratory for: total alkalinity, chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH₃-N), nitrate nitrogen (NO₂-N), total phosphorus (TP), orthophosphate (Ortho P), total suspended solids (TSS), volatile suspended solids (VSS), total organic carbon (TOC), fecal coliform (fecal), and E.coli. The influent and sulfur media samples included sulfate, sulfide, and hydrogen sulfide (unionized). All analyses were performed by independent and fully NELAC certified analytical laboratory (Southern Analytical Laboratory). Table 1 lists the analytical parameters, analytical methods, and detection limits for laboratory analyses.

Analytical Parameter	Method of Analysis	Method Detection Limit (mg/L)
Total Alkalinity as CaCO ₃	SM 2320B	2 mg/L
Chemical Oxygen Demand (COD)	EPA 410.4	10 mg/L
Total Kjeldahl Nitrogen (TKN-N)	EPA 351.2	0.05 mg/L
Ammonia Nitrogen (NH ₃ -N)	EPA 350.1	0.005 mg/L
Nitrate Nitrogen (NO ₃ -N)	EPA 300.0	0.01 mg/L
Nitrite Nitrogen (NO ₂ -N)	EPA 300.0	0.01 mg/L
Nitrate+Nitrite Nitrogen (NOX-N)	EPA 300.0	0.02 mg/L
Total Phosphorus (TP)	SM 4500P-E	0.01 mg/L
Orthophosphate as P (Ortho P)	EPA 300.0	0.01 mg/L
Carbonaceous Biological Oxygen Demand (CBOD ₅)	SM5210B	2 mg/L
Total Solids (TS)	EPA 160.3	.01 % by wt
Total Suspended Solids (TSS)	SM 2540D	1 mg/L
Volatile Suspended Solids (VSS)	SM 2540E	1 mg/L
Total Organic Carbon (TOC)	SM5310B	0.06 mg/L
Sulfate	EPA 300.0	2.0 mg/L
Sulfide	SM 4500SF	0.10 mg/L
Hydrogen Sulfide (unionized)	SM 4550SF	0.01 mg/L
Fecal Coliform (fecal)	SM9222D	2 ct/100mL
E.coli	SM9223B	2 ct/100mL

Table 1
Analytical Parameters, Method of Analysis, and Detection Limits

Similar methods were used for the daily sample collection and analysis that was conducted on March 11th through March 14th, 2014.

4.0 Results and Discussion

4.1 Operational Monitoring

Table 2 provides a summary of the household water use since water meter installation on March 6, 2012. The treatment system flow meter readings and corresponding recirculation ratio for the B-HS2 field site are summarized in Table 3. The operation and maintenance log which includes actions taken since start-up is provided in Appendix B. Summary tables of the Vericomm PLC recorded data are provided in Appendix C. These include daily and cumulative pump runtime and system alarms that are used to check general pump operation and performance.

April 2014

Date	Cumulative Volume (gallons)	Average Daily Household Flow btwn readings, Q (gpd)
3/6/2012	7,790	INSTALLED
4/3/2012	11,490	132
5/1/2012	14,960	124
6/5/2012	19,560	131
7/3/2012	23,120	127
8/7/2012	26,730	103
9/4/2012	29,800	110
10/2/2012	33,240	123
11/6/2012	36,510	93
12/4/2012	40,080	128
1/1/13	43,240	113
2/5/13	47,741	129
3/5/2013	50,000	81
4/16/2013	54,010	95
5/7/2013	55,940	92
5/28/2013	57,620	80
6/11/2013	58,620	71
7/24/2013	62,422	88
8/7/2013	63,964	109
Avg. during R to recirc tank operation	e	108.1
9/7/2013	66,830	94
10/7/2013	69,070	73
11/5/2013	71,600	89
11/27/2013	73,925	106
12/3/2013	75,360	239
12/5/2013	75,674	157
12/17/2013	76,646	81
12/24/2013	77,600	136
1/7/2014	79,020	101
1/14/2014	79,870	121
1/21/2014	80,390	74
1/28/2014	81,000	87
2/4/2014	81,610	87
2/13/2014	82,588	109
3/10/2014	84,541	78
3/14/2014	84,884	86
Avg. during R to Stage 1 sprayers operation		95.8
Total average start-up to 3/14/14		104.5

Table 2Summary of Household Water Use

PAGE 1-13 HAZEN AND SAWYER, P.C.

Summary of System Flow Average Average Average Combined Daily Daily age Pumped Com- Stage 2, Q Daily age													
Date and Time Read	Combined Pumped Flow, Q+R Water Meter Reading	-	Stage 2, Q Flow Meter Reading		-	Average Recycle Ratio							
	Cumulative Volume (gallons)	gpd	Cumula- tive Volume (gallons)	gpd	gpd	Recycle: Forward Flow							
Recirculation mode	of operation: to	recirculation											
9/25/2012 11:00	351.9	Installed	102.2	Installed									
9/27/2012 9:45	570.5	Valves set	149.5	Valves set									
10/5/2012 8:07	3,898.3	419.5	880.6	92.2	327.4	3.55							
10/11/2012 7:55	7,888.5	666.0	1,716.6	139.5	526.4	3.77							
10/23/2012 9:00	15,092.9	598.1	3,228.2	125.5	472.6	3.77							
10/30/2012 14:30	18,090.1	414.6	3,904.7	93.6	321.0	3.43							
11/13/2012 14:00	22,944.4	347.3	5,007.3	78.9	268.4	3.40							
12/3/2012 8:00	35,555.0	638.5	7,886.8	145.8	492.7	3.38							
1/3/2013 8:00	51,563.3	516.4	11,542.3	117.9	398.5	3.38							
2/5/2013 8:23	72,069.0	621.1	16,185.3	140.6	480.5	3.42							
2/27/2013 11:00	81,937.3	446.3	18,441.6	102.1	344.3	3.37							
4/16/13 10:15	105,376.0	488.6	23,809.3	111.9	376.7	3.37							
6/4/13 7:30	126,085.7	423.6	28,513.7	96.2	327.4	3.40							
7/8/2013 8:30	140,549.5	424.9	31,800.5	96.6	328.3	3.40							
7/24/2013 8:39	145,987.7	339.8	33,032.0	76.9	262.8	3.42							
8/7/2013 7:45	152,531.6	468.7	34,570.7	110.2	358.5	3.25							
Average when R to recirc tank op- eration (8/7/13)		484.1		109.7	374.4	3.41:1							
Recirculation mode	of operation: to	Stage 1 spra	ayers										
8/7/2013 13:04	152,720.1		34,616.4										
9/6/2013 9:15	163,910.2	375.0	37,404.3	93.4	281.6	3.01							
10/7/2013 10:10	174,601.7	344.5	40,102.7	86.9	257.5	2.96							
11/27/2013 9:40	195,934.7	418.5	45,595.0	107.7	310.7	2.88							
12/3/2013 11:37	201,887.3	978.8	47,181.4	260.9	718.0	2.75							
12/5/2013 8:50	203,129.2	659.2	47,518.9	179.1	480.1	2.68							
12/30/2013 12:15	215,153.5	478.2	50,799.2	130.5	347.8	2.67							
2/13/2014 8:20	231,849.7	372.4	55,393.9	102.5	269.9	2.63							
3/10/2014 8:30	239,504.8	306.1	57,528.7	85.4	220.8	2.59							
3/11/2014 10:15	239,723.5	203.8	57,589.8	57.0	146.8	2.58							
3/12/2014 7:50	239,903.2	199.9	57,640.1	55.9	144.0	2.58							

Table 3 Summary of System Flow

PAGE 1-14 HAZEN AND SAWYER, P.C.

Table 3 (continued)														
Summary of System Flow														
3/13/2014 9:00	240,262.8	342.9	57,741.0	96.2	246.7	2.56								
3/14/2014 9:30	240,604.5	334.7	57,836.8	93.9	240.8	2.56								
Average when R														
to Stage 1 spray-														
ers operation														
(3/14/14)		401.6		106.1	295.5	2.78:1								
Total average														
start-up to														
3/14/14		450.4		108.2	342.1	3.16:1								

The two throttling globe valves control the fraction of Stage 1 effluent that is recirculated and the fraction sent to the Stage 2 biofilter. As previously discussed, the recirculation mode of operation was modified following the fifth sample event (August 7, 2013). The globe valves were set so that 3 parts went back to the Stage 1 sprayers and 1 part went to the Stage 2 tank (3:1 recycle ratio). From start-up to March 14, 2014, the household flow average was 104.5 gallons per day with periods of higher and lower flows (Table 2). The average combined pumped flow (recirculation and forward flow to the Stage 2 biofilter) following the modification to the recirculation mode of operation to the Stage 1 sprayers was 401.6 gallons per day, and the average forward flow to the Stage 2 biofilter was 106.1 gallons per day. Therefore, the average recirculation flow was 305.4 gallons per day, with a corresponding average recirculation ratio of 2.88:1 following the modification to the recirculation mode of operation.

4.2 **Energy Consumption**

Energy consumption is monitored using an electrical meter installed between the main power box for the house and the control panel to record cumulative power usage of the pump in kilowatt-hours. The recorded electrical use for the system is summarized in Table 4.

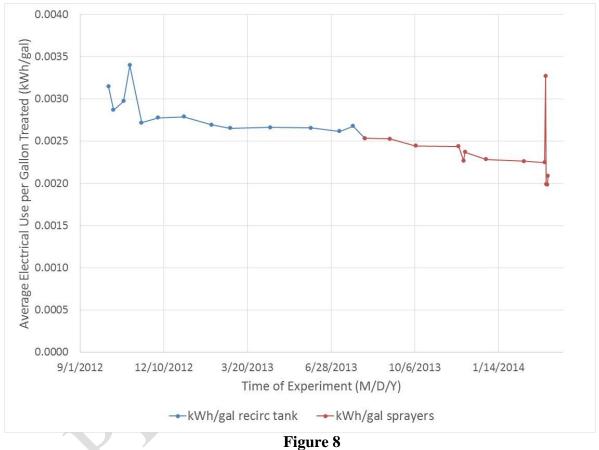
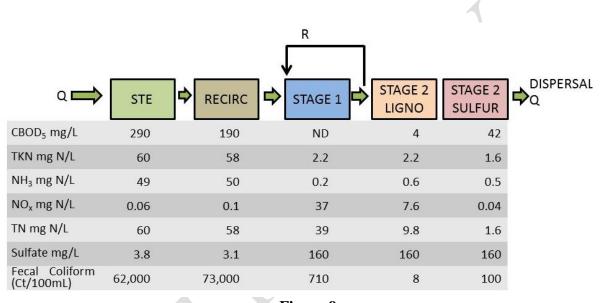

Summary of System Electrical UseAverageAverageAverageElectricalDailyElectrical													
Date and Time Read	Electrical Meter Reading												
	Cumulative (kWh)	(kWh/day)	(kWh/gal)	(kWh/ 1,000 gal)									
Recirculation mode of oper		ation tank											
9/25/2012 11:05	0.2	Installed											
9/27/2012 9:58	0.3	Start-up		Y									
10/5/2012 8:07	2.6	0.29	0.0031	3.15									
10/11/2012 7:55	5.0	0.40	0.0029	2.87									
10/23/2012 9:00	9.5	0.37	0.0030	2.98									
10/30/2012 14:30	11.8	0.32	0.0034	3.40									
11/13/2012 14:00	14.8	0.21	0.0027	2.72									
12/3/2012 8:00	22.8	0.41	0.0028	2.78									
1/3/2013 8:00	33.0	0.33	0.0028	2.79									
2/5/2013 7:45	45.5	0.38	0.0027	2.69									
2/27/2013 11:00	51.5	0.27	0.0027	2.66									
4/16/2013 10:15	65.8	0.30	0.0027	2.66									
6/4/2013 9:00	78.3	0.26	0.0027	2.66									
7/8/2013 8:30	86.9	0.25	0.0026	2.62									
7/24/2013 8:39	90.2	0.21	0.0027	2.68									
8/7/2013 7:45	94.1	0.28	0.0025	2.53									
Average when R to recirc tank (8/7/13)		0.30	0.0028	2.80									
Recirculation mode of oper													
9/6/2013 9:15	101.2	0.24	0.0025	2.53									
10/7/2013 10:10	107.8	0.21	0.0024	2.45									
11/27/2013 9:40	121.2	0.26	0.0024	2.44									
12/3/2013 11:37	124.8	0.59	0.0023	2.27									
12/5/2013 8:50	125.6	0.42	0.0024	2.37									
12/30/2013 12:15	133.1	0.30	0.0023	2.29									
2/13/2014 8:20	143.5	0.23	0.0023	2.26									
3/10/2014 8:30	148.3	0.19	0.0022	2.25									
3/11/2014 10:15	148.5	0.19	0.0033	3.27									
3/12/2014 7:50	148.6	0.11	0.0020	1.99									
3/13/2014 9:00	148.8	0.19	0.0020	1.98									
3/14/2014 9:30	149.0	0.20	0.0021	2.09									
Average when R to Stage 1 sprayers (3/14/14)		0.25	0.0024	2.36									
Total average start-up to 3/14/14		0.28	0.0027	2.58									

Table 4 ummary of System Electrical U

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8 PAGE 1-16 HAZEN AND SAWYER, P.C.

April 2014

The total average electrical use through March 14, 2014 was 0.28 kWh per day. The higher daily electrical use, prior to changing the recirculation operating mode from tank to the Stage 1 sprayers is attributed to the higher recirculation ratio. The average electrical use per gallon treated since start-up was 0.0027 kWh per gallon treated, and this parameter has been fairly stable since start-up. Figure 8 shows a plot of the average electrical use per gallon treated versus time of experiment.



Plot of Average Electrical Use per Gallon Treated

o:\44237-001R004\Wpdocs\Report\Final

4.3 Water Quality

Water quality analytical results for Sample Event No. 8 (Experimental Day 531) are listed in Table 5. Nitrogen results are graphically displayed in Figure 9. The laboratory report containing the raw analytical data is included in Appendix A. The following discussion summarizes the water quality analytical results. The performance of the various system components was compared by considering the changes through treatment of nitrogen species (TKN, NH₃-N, and NO_X-N), as well as supporting water quality parameters.

Figure 9 Graphical Representation of Nitrogen Results Sample Event No. 8, March 10, 2014 (Experimental Day 531)

Septic Tank Effluent (STE) Quality: The water quality characteristics of STE collected in Sample Event 8 were within the typical range generally expected for domestic STE. The measured STE total nitrogen (TN) concentration was 60 mg/L, which is within the range that has been typically reported for Florida single family residence STE.

Recirculation Tank (RECIRC): As previously discussed, following the modification to the recirculation mode of operation, the recirculation tank only receives septic tank effluent. Therefore, the recirculation tank currently provides some additional residence time for the STE. The measured total nitrogen (TN) concentration in the recirculation tank effluent was 58 mg/L, which was similar to TN in the STE sample.

Stage 1 Effluent (ST1): The Stage 1 effluent NH_3 -N levels was 0.2 mg/L with a DO level at 4.8 mg/L in the Stage 1 effluent (Table 5). The Stage 1 effluent TSS and $CBOD_5$ concentrations were below the method detection limit of 2 mg/L. The Stage 1 biofilter showed fairly complete nitrification with an effluent NH_3 -N concentration of 0.2 mg/L and TKN of 2.2 mg/L. The Stage 1 effluent NO_x -N was 37 mg/L. The Stage 1 effluent TN of 39 mg/L was 35% lower than that in STE, suggesting denitrification in the Stage 1 biofilter.

Stage 2 Biofilter Effluent (LIGNO-0 and ST2): The Stage 2 system produced a highly reducing environment and achieved essentially complete NO_x-N reduction. Effluent NO_x-N from the Stage 2 biofilter monitoring point was 0.04 mg/L. The low NO_x-N was accompanied by a measured 0.22 mg/L DO and -332.70 mV ORP. The lignocellulosic media effluent NO_x-N was 7.6 mg/L. Final total nitrogen (TN) in the treatment system effluent was 1.64 mg/L. The Stage 2 biofilter lignocellulosic media effluent CBOD₅ was 4 mg/L and the sulfur media effluent was 42 mg/L. The Stage 2 effluent sulfate concentration was 160 mg/L.

Equipment Blank (EB): The equipment blank (EB) was collected by pumping deionized water through the cleaned pump tubing. This sample was then analyzed for the same parameters as the monitoring samples. As expected, all parameters measured were at or below the method detection limit.

In addition during this monitoring event, daily samples were collected from the nitrogen reducing onsite treatment system to evaluate the variability of daily data. Water quality analytical results, for Sample Events No. 9 through 12 are summarized in Appendix A, Table A.1 through Table A.4. Key parameter mean and standard deviations for these five sample events are provided in Figure 10. In addition, the total nitrogen time series for these five sample events are graphically displayed in Figure 11 for the treatment sample locations.

Table 5 Water Quality Analytical Results

Sample ID	Sample Date/Time	Temp (°C)	рН	Specific Conductance (uS/cm)	DO (mg/L)	ORP (mV)	Total Alkalinity (mg/L)	TSS (mg/L)		CBOD ₅ (mg/L)	COD (mg/L)	TN (mg/L N) ¹	TKN (mg/L N)	Organic N (mg/L N) ²		NO₃-N (mg/L N)	NO ₂ -N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³		Ortho P (mg/L P)	Sulfate	Hydrogen Sulfide (mg/L)	Sulfide (mg/L)	Fecal (Ct/100 mL)	E-coli (Ct/100 mL)	TOC (mg/L)
BHS2-STE	3/10/14 10:00	22.0	7.18	1410	0.03	-364.9	560	30	12	290	410	60.06	60	11	49	0.06	0.01	0.06	49.06	7.4	3.2	3.8	28	66	62000	10000	120
BHS2-STE-FILTERED	3/10/14 10:05	22.0	7.18	1410	0.03	-364.9				160		55.06	55	10	45	0.06	0.01	0.06	45.06			р 1			[]	[
BHS2-RECIRC	3/10/14 9:50	21.5	7.34	1432	0.08	-366.5	600	20	18	190	270	58.1	58	8	50	0.1	0.01	0.1	50.1	6.8	6	3.1	19	56	73000	10000	59
BHS2-ST1	3/10/14 9:21	20.3	7.05	1216	4.80	83.5	220	1	1	2	18	39.2	2.2	1.99	0.21	37	0.01	37	37.21	4	3.8	160	0.4	0.8	710	610	10
BHS2-ST1-DUP	3/10/14 9:26	20.3	7.05	1216	4.80	83.5	220	1	1	2	. 20	39	2	1.78	0.22	37	0.01	37	37.22	4	3.8	150	0.3	0.6	740	730	11
BHS2-ST1-FILTERED	3/10/14 9:26	20.3	7.05	1216	4.80	83.5				2		40.7	2.7	2.5	0.2	38	0.01	38	38.2								
BHS2-LIGNO-0	3/10/14 9:02	20.6	7.01	1217	0.35	-267.7	330	2	1	4	25	9.77	2.2	1.65	0.55	6.7	0.87	7.57	7.5	3.5	3.3	160	1.2	2.2	8	7.5	14
BHS2-LIGNO-0-FILTERED	3/10/14 9:07	20.6	7.01	1217	0.35	-267.7				3		11.08	2.7	2.43	0.27	7.7	0.68	8.38	8.65								
BHS2-ST2	3/10/14 8:45	20.5	7.04	1209	0.22	-332.7	340	3	3	42	100	1.64	1.6	1.12	0.48	0.04	0.01	0.04	0.52	3.7	3.6	160	17	34	100	2	15
BHS2-ST2-FILTERED	3/10/14 8:50	20.5	7.04	1209	0.22	-332.7				14		1.22	1.2	0.84	0.36	0.01	0.01	0.02	0.38			160					
BHS2-EB	3/10/14 10:15	18.7	7.09	1.24	7.68	91.7	2	1	1	2	10	0.07	0.05	0.041	0.009	0.01	0.01	0.02	0.029	0.01	0.012	0.2	0.01	0.1	1	2	0.06

¹Total Nitrogen (TN) is a calculated value equal to the sum of TKN and NO_x.

²Organic Nitrogen (ON) is a calculated value equal to the difference of TKN and NH_{3.}

 $^3\text{Total}$ Inorganic Nitrogen (TIN) is a calculated value equal to the sum of NH_3 and NO_{X}

Gray-shaded data points indicate values below method detection level (mdl), mdl value used for statistical analyses.

Yellow-shaded data points indicate the reported value is between the laboratory method detection limit and the laboratory practical quantitation limit, value used for statistical analysis.

Too many colonies were present. The numeric value represents the filtration volume.

Results based on colony counts outside the ideal range.

o:\44237-001R004\Wpdocs\Report\Final

Recirculation mode = to Stage 1 sprayers

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS5 FIELD SYSTEM MONITORING REPORT NO. 3

PAGE 1-20

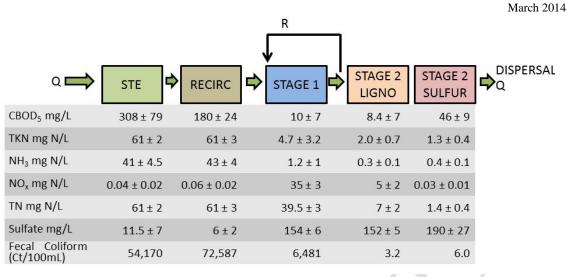
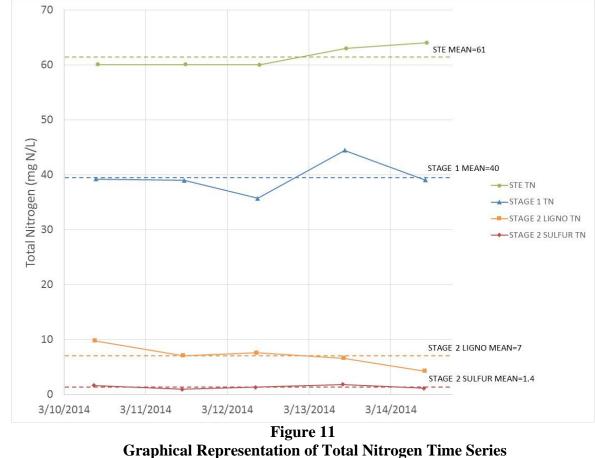
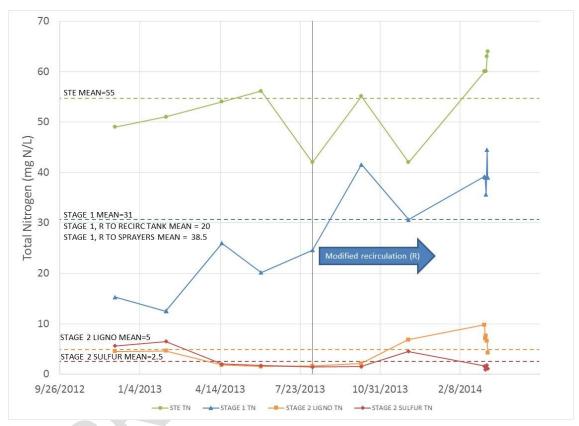



Figure 10 Mean and Standard Deviations from Daily Sample Events March 10th through March 14th, 2014


March 10th through March 14th, 2014

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS5 FIELD SYSTEM MONITORING REPORT NO. 3

o:\44237-001R004\Wpdocs\Report\Final

4.4 Water Quality Monitoring Summary

A summary of the water quality data collected for the test system is presented in Table 6. Figure 12 provides a time series of influent and effluent TN over the study period. Figures 13 through 19 show box and whisker plots of the various monitoring points for the key parameters measured during the study period.

Figure 12 Total Nitrogen Time Series Graph Sample Events No. 1 through 12 December 3, 2012 through March 14, 2014

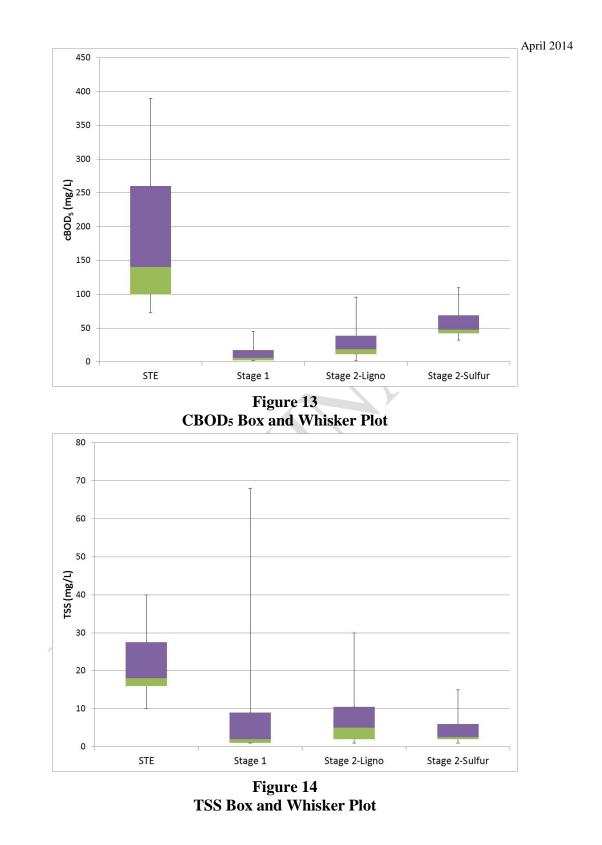
FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8

PAGE 1-22 HAZEN AND SAWYER, P.C.

 Table 6

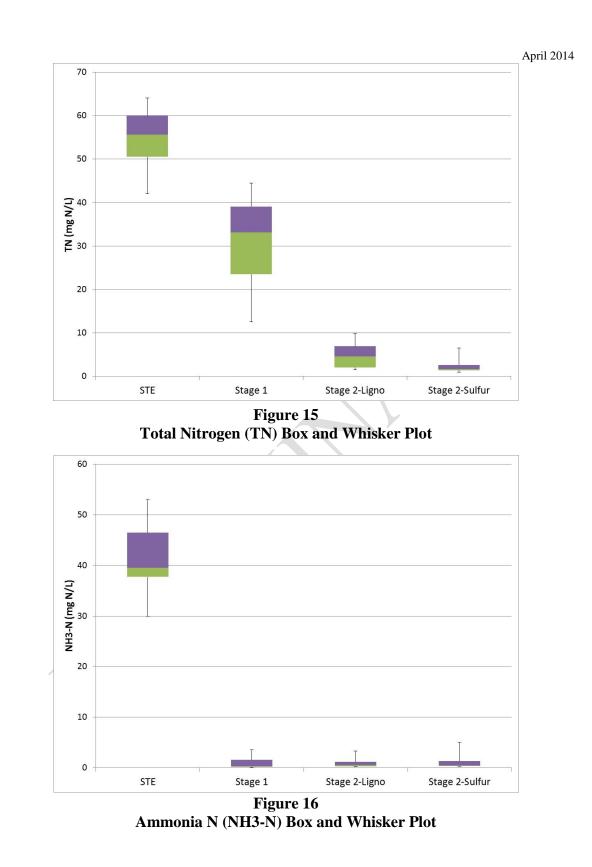
 Summary of Water Quality Analytical Results

Sample ID	Statistical Parameter	Temp (°C)	рН	Specific Conductance (uS/cm)	DO (mg/L)	ORP (mV)	Total Alkalinity (mg/L)	TSS (mg/L)	VSS (mg/L)	CBOD₅ (mg/L)	COD (mg/L)	TN (mg/L N) ¹	TKN (mg/L N)	Organic N (mg/L N) ²	NH3-N (mg/LN)	NO3-N (mg/L N)	NO ₂ -N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³	TP (mg/L)	Ortho P (mg/L P)		Hydrogen Sulfide (mg/L)	Sulfide (mg/L)	Fecal (Ct/100 mL)	E-coli (Ct/100 mL)	TOC (mg/L)
	n	12	12	12	12		12	12	12	12	12	12	12	12	12	12	12	12		12	12	12	12	12	12	12	10
Septic tank	MEAN	23.3	7.2	1381.4	0.1	-371.0	568.3	64.3	21.3	192.3	338.3	54.7	54.7	13.3	41.3	0.05	0.01	0.05		8.5	3.8	53.6	18.1	50.0	90159.5	59313.8	79.7
effluent (STE)	STD. DEV.	2.7		59.9	0.2	10.6	206.1	147.6	14.2	114.1	99.3	7.5	7.5		6.5	0.04	0.00	0.03		4.4	1.6	48.5	5.6	12.4			35.1
,	MIN	18.8	7.0	1248.0	0.0	-392.5		10.0	8.0	73.0		42.0	42.0	1.0	30.0	0.01	0.01	0.02		4.8	0.7	3.8	9.5		800	2,420	31.0
	MAX	27.8	7.6	1430.0	0.6				58.0	390.0	450.0	64.0	64.0	25.0	53.0	0.13	0.01	0.13		18.0	6.6	150.0	28.0	66.0	1,600,000	1,200,000	120.0
Stage 1	n MEAN	12 22.3	12 6.9	12 1,212	12	-48.6	12 225.8	12 12.4	12 6.3	12 11.3	12 19.9	-	12 3.9	12 3.0	12 0.9	12 26.5	12 0.3	12 26.8		5.5	12 2.8	5 154.0	0.10	0.3	11 1,297	11 762	10
Stage 1 effluent	STD. DEV.	22.3	0.9	34.2	4.0			21.5	9.8	11.5	7.8		2.4	1.6	1.1	10.5	0.3	10.4		2.6	1.4		0.10	0.3	1,297	702	3.5
(all events)	MIN	16.1	6.5	1,137	2.0	-180.0		1.0	1.0	2.0	10.0	10.0	1.6	1.3	0.1	6.3	0.01	6.3		3.5	0.7	150.0	0.01	0.1	6	3	8.3
(,	MAX	26.9	7.2	1,267	5.7			68	35	45		44.5	10.0	7.6	3.6	1		38.0		12.0	5.8	160.0	0.40	0.8	68,000	24,000	19.0
	n	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	11	12	12	12	9
Stage 2	MEAN	22.5	7.0	1165.3	0.5	-288.8	361.7	8.1	7.8	27.5	69.9	4.9	2.5	1.5	1.1	2.1	0.2	2.3	3.3	4.8	2.6	155.5	5.8	13.9	18.9	13	59.4
lignocellulosic effluent	STD. DEV.	2.2		50.9	0.4	53.9	42.2	9.1	9.3	26.8	56.6	2.7	1.3	0.5	1.1	2.5	0.3	2.7	2.4	2.8	1.0	32.8	7.0	15.7			131.5
(LIGNO-0)	MIN	18.7	6.7	1112.0	0.1	-362.1	290.0	1.0	1.0	2.0		1.5	1.4	1.0	0.3	0.01	0.01	0.02	-	2.6	0.7	86.0	0.3	0.6	1.0	1.0	12.0
(10110-0)	MAX	26.7	7.1	1230.0	1.2	-207.3	440.0	30.0	30.0	96.0	220.0	9.8	4.6		3.3	6.7	0.9	7.6		12.0	4.9	220.0	19.0	_	8,000	7,800	410
	n	12	12	12	12		12	12	12	12			12	2	12	12	22	12		12	12	12	11	12	12	12	10
Stage 2 sulfur	MEAN	21.9	6.9	1,211	0.1	-335.5		4.3	3.0	60.2	123	-	2.5	1.2	1.3	0.01	0.01	0.02		4.5	2.8	202	19.2	36.6	30.50	14.86	17.7
effluent (ST2)	STD. DEV. MIN	2.8 16.5	6.3	47.9 1,134	0.1	45.5	47.3	4.0	2.1	27.8 32.0	78	1.9 0.9	1.9 0.9	0.4	1.7 0.3	0.01	0.00	0.01	1	2.4	1.2 0.9	44.1 160	11.2	22.2	1	1	4.1 13.0
	MAX	26.1	7.1		0.1			15.0	8.0	32.0	260	6.5	6.5		5.0	0.01	0.01	0.02		2.4	5.1	320	40	83	20,000	9,600	25.0
		20.1	7.1	1,303	0.2	210.0	410.0	13.0	8.0	110	200	0.5	0.5	1.0	5.0	0.04	0.01	0.04	5.0	11.0	5.1	320	40	85	20,000	5,000	23.0

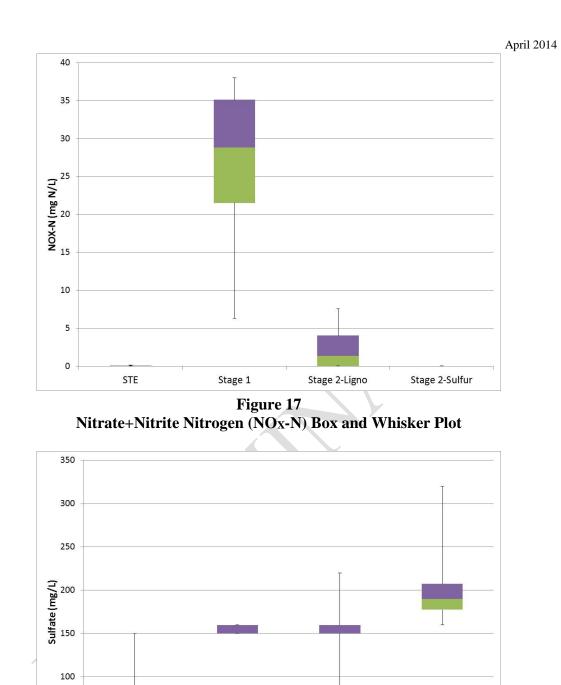

Notes:

 1 Total Nitrogen (TN) is a calculated value equal to the sum of TKN and $\text{NO}_{\chi_{\text{c}}}$

 $^2 \text{Organic Nitrogen}$ (ON) is a calculated value equal to the difference of TKN and $\text{NH}_{3.}$


 3 Total Inorganic Nitrogen (TIN) is a calculated value equal to the sum of NH $_{3}$ and NO $_{X}$

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8



FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8

PAGE 1-24 HAZEN AND SAWYER, P.C.

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8

o:\44237-001R004\\Vvpdocs\Report\Final

50

0

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8

Stage 1

Figure 18 Sulfate (SO4) Box and Whisker Plot

Stage 2-Ligno

STE

PAGE 1-26 HAZEN AND SAWYER, P.C.

Stage 2-Sulfur

April 2014

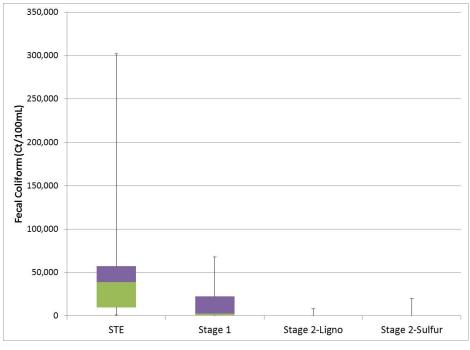


Figure 19 Fecal Coliform Box and Whisker Plot

4.5 Performance Comparison of Recirculation Mode of Operation

As previously discussed, the recirculation mode of operation was modified prior to the sixth sample event. The system was designed with two recirculation modes of operation. The first option (which was initially tested) is to have the recirculated effluent return to the recirculation tank for mixing with incoming septic tank effluent. A summary of the water quality data collected for the test system during testing of the first option (which was initially tested) is presented in Table 7. Following the fifth sample event, the recirculation mode of operation was modified to test the second option. In the second option, recirculated effluent does not pass through the recirculation tank, but is dispersed by three spray nozzles directly to the top of the Stage 1 biofilter along with recirculation tank effluent (STE). A summary of the water quality data collected for the test system during testing of the second option is presented in Table 8. A comparison of the two recirculation modes of operation for key parameters is provided in Table 9.

Table 7
Summary of Water Quality Data
Option 1: Recirculation to Recirc Tank

Sample ID	Statistical Parameter	Temp (°C)	рН	Specific Conductance (uS/cm)	DO (mg/L)	ORP (mV)	Total Alkalinity (mg/L)	TSS (mg/L)	VSS (mg/L)	CBOD₅ (mg/L)	COD (mg/L)	TN (mg/L N) ¹		Organic N (mg/L N) ²	NH3-N (mg/LN)	NO ₃ -N (mg/L N)	NO ₂ -N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³	TP (mg/L)	Ortho P (mg/L P)		Sulfide	Sulfide (mg/L)	Fecal (Ct/100 mL)	E-coli (Ct/100 mL)	TOC (mg/L)
	n	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	, 4
Septic tank	MEAN	23.8	7.3	1,360.0	0.2	(370.1)	462.0	28.2	24.6	105.6	320.0	50.5	50.4	8.8	41.6	0.05	0.01	0.05	41.7	8.2	3.9	83.4	14.8	53.4	115,416	118,949	48.3
effluent (STE)	STD. DEV.	3.3	-	48.3	0.2	13.2	39.6	9.4	8.5	25.5	109.3	5.4	5.4	7.7	5.3	0.05	-	0.04	5.3	5.5	0.4	44.6	2.9	10.0			23.4
cindent (SIL)	MIN	18.8	7.2	1,296.0	0.1	(392.5)	410.0	18.0	15.0	73.0	150.0	42.0	42.0	1.0	36.0	0.01	0.01	0.02	36.0	4.8	3.5	31.0	10.0	41.0	800	2,420	
	MAX	27.8	7.6	1,398.0	0.6	(360.0)	510.0	40.0	35.0	140.0	430.0	56.1	56.0	18.0	48.0	0.13	0.01	0.13	48.0	18.0	4.3	150.0	17.0	65.0	1,600,000	1,200,000	82.0
	n	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	0	0	0	5	5	4
Recirculation	MEAN	23.2	7.0	1,217.6	1.0	(127.9)	286.0	20.6	16.0	25.2	69.6	18.9	12.8	3.8	9.0	5.52	1.08	6.13	15.1	6.0	2.3	-	-	-	38,350	34,064	19.3
tank (DBOX)	STD. DEV.	3.8	0.2	32.1	0.8	43.2	18.2	11.2	13.8	31.9	40.9	5.3	2.8	1.8	1.9	5.97	1.26	6.34	4.6	4.0	1.1	-	-	-			8.4
,	MIN	17.4	6.8	1,173.0	0.1	(181.8)	270.0	12.0	6.0	2.0	10.0	14.4	8.8	0.7	7.1	0.01	0.01	0.02	11.0	3.7	1.1	-	-	-	1,000	2,420	
	MAX	27.7	7.2	1,245.0	1.8	(71.2)	310.0	40.0	40.0	77.0	110.0	26.0	16.0	5.0	11.0	14.00	2.80	14.00	21.1	13.0	3.6	-	-	-	790,000	345,000	31.0
Stage 1	n	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	0	0	0	4	4	4
effluent	MEAN	22.7	6.8	1,209.4	3.6	(86.1)	232.0	27.2	12.8	15.2	22.8	19.7	3.1	2.1	0.9	16.26	0.28	16.66	17.6	5.6	1.6	-	-	-	269	141	12.3
(ST1 and	STD. DEV.	4.0	0.2	47.5	1.7	88.0	14.8	28.4	13.1	18.6	10.6	5.8	1.9	0.6	1.5	7.26	0.30	7.33	6.2	3.6	0.7	-	-	-			3.6
PUMP)	MIN	16.1	6.7	1,137.0	2.0	(180.0)	210.0	1.0	1.0	2.0	11.0	12.5	1.6	1.3	0.1	6.30	0.01	6.30	9.9	3.5	0.7	-	-	-	6	3	8.3
	MAX	26.9	7.1	1,259.0	5.7	50.8	250.0	68.0	35.0	45.0	36.0	26.0	6.2	2.7	3.6	24.00	0.77	24.00	24.1	12.0	2.6	-	-	-	4,200	4,611	17.0
Stage 2	n	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	4	5	5	5	3
lignocellulosic	MEAN	22.9	7.0	1,193.2	0.5	(332.4)	386.0	9.2	8.8	47.6	118.6	2.8	2.8	1.3	1.5	0.01	0.01	0.02	1.5	5.0	2.0	159.2	12.8	28.9	38	21	18.7
effluent	STD. DEV.	3.0	-	45.1	0.3	33.2	56.8	11.8	11.9	30.1	57.9	1.6	1.6	0.3	1.4	0.01	-	0.00	1.4	4.0	0.8	53.8	7.0	13.1	-	-	2.3
(LIGNO-0)	MIN MAX	18.7	6.8	1,141.0 1.230.0	0.2	(362.1)	290.0 440.0	1.0	1.0	20.0	81.0	1.5	1.5	1.0	0.4	0.01	0.01	0.02	0.4	2.6	0.7	86.0	4.2	7.3	10	1,986	16.0 20.0
		26.7	7.1	1,230.0	0.8	(279.4)	440.0	30.0	30.0	96.0	220.0	4.6	4.6	1.8	3.3	0.03	0.01	0.03	3.3	12.0	2.7	220.0	19.0	40.0	1,300	1,986	20.0
		22.5	5	1,222.0	0.1	(323.3)	334.0	5 6.8	4.2	67.6	5 170.0	5	3.4	12	5	0.01	5	0.02	5	5	25	5 192.0	24.8	41.8	5	25	22.0
Stage 2 sulfur	MEAN STD. DEV.	3.7	6.8	1,222.0	0.1	(323.3) 61.5	334.0			32.3	1/0.0	3.5 2.4	3.4	1.3 0.2	2.2		0.01	0.02	2.2	4.9	2.5 1.3	27.7	24.8	41.8 21.2	53	25	22.0
effluent (ST2)	STD. DEV.		-		0.1		-	5.2	2.5							-	-	-		3.5					10	1	
	MAX	16.5 26.1	6.5	1,135.0 1.303.0	0.1	(372.0)	220.0 410.0	2.0	2.0	32.0	10.0 260.0	1.4	1.4	1.0 1.5	0.4	0.01	0.01	0.02	0.4	2.4	0.9	170.0 240.0	14.0 40.0	23.0	10 300	1	20.0
	IVIAX	20.1	7.0	1,303.0	0.2	(218.8)	410.0	15.0	8.0	110.0	200.0	6.5	6.5	1.5	5.0	0.01	0.01	0.02	5.0	11.0	4.1	240.0	40.0	73.0	300	155	25.0

FLOR DA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8 April 2014

Table 8
Summary of Water Quality Data
Option 2: Recirculation to Stage 1 Sprayers

Sample ID	Statistical Parameter	Temp (°C)	рН	Specific Conductance (uS/cm)	DO (mg/L)	ORP (mV)	Total Alkalinity (mg/L)	TSS (mg/L)		CBOD₅ (mg/L)	COD (mg/L)	TN (mg/L N) ¹		Organic N (mg/L N) ²	NH₃-N (mg/L N)	NO ₃ -N (mg/L N)	NO ₂ -N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³	TP (mg/L)	Ortho P (mg/L P)		Sulfide	Sulfide (mg/L)	Fecal (Ct/100 mL)	E-coli (Ct/100 mL)	TOC (mg/L)
	n	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	6
Septic tank	MEAN	22.9	7.2	1,396.7	0.0	(371.6)	644.3	90.0	18.9	254.3	351.4	57.8	57.7	16.6	41.1	0.05	0.01	0.05	41.2	8.7	3.7	32.4	20.5	47.6	75,579	36,082	100.7
effluent (STE)	STD. DEV.	2.4	0.1	66.1	0.0	9.5	246.4	195.0	17.5	112.7	98.2	7.5	7.5	8.5	7.6	0.03	-	0.03	7.6	3.8	2.2	41.5	6.0	14.1	-	-	23.8
,	MIN	20.7	7.0	1,248.0	0.0	(390.9)	500.0	10.0	8.0	100.0	190.0	42.0	42.0	2.0	30.0	0.01	0.01	0.02	30.0	6.5	0.7	3.8	9.5	26.0	27,000	10,000	56.0
	MAX	27.0	7.2	1,430.0	0.1	(363.4)	1,200.0	532.0	58.0	390.0	450.0	64.0	64.0	25.0	53.0	0.11	0.01	0.11	53.1	17.0	6.6	120.0	28.0	66.0	302,000	240,000	120.0
	n	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Recirculation	MEAN	21.8	7.2	1,398.2	0.1	(370.9)	585.0	13.5	12.8	171.7	273.3	58.6	58.5	17.2	41.3	0.05	0.01	0.06	41.4	6.0	4.5	8.1	20.7	49.7	92,508	24,760	69.2
tank	STD. DEV.	1.4	0.2	53.1	0.0	6.0	28.8	6.4	6.1	29.3	32.0	5.8	5.8	5.7	4.9	0.03	-	0.03	4.9	0.7	1.8	5.3	10.1	13.4	-	-	15.5
	MIN	20.5	6.9	1,292.0 1.432.0	0.0	(382.5)	530.0 610.0	4.0	4.0	130.0	230.0	48.0 63.1	48.0 63.0	8.0	35.0	0.01	0.01	0.02	35.0 50.1	4.7	1.6	3.1	15.0 41.0	39.0	51,000	10,000	53.0
	MAX	24.5	7.3	1,432.0	0.1	(366.5)	010.0	21.0	21.0	200.0	310.0	63.1	63.0	23.0	50.0	0.10	0.01	0.10	50.1	6.8	6.0	18.0	41.0	74.0	311,000	240,000	93.0
Stage 1	MEAN	22.0	7.0	1.213.1	4.2	(21.7)	221.4	1.9	1.6	8.4	17.9	38.5	4.5	3.6	0.9	33.86	0.24	34.05	35.0	5.4	3.6	5 154.0	0.1	0.3	4,997	2,548	13.8
effluent	STD. DEV.	22.0	0.2	25.1	4.2	65.1	221.4	1.9	0.8	6.6	5.1	4.4	2.7	1.9	0.9	4.22	0.24	4.03	4.0	1.8	1.2	5.5	0.1	0.3	4,997	2,340	3.6
(ST1 and	MIN	20.3	6.5	1,197.0	3.3	(80.7)	190.0	1.1	1.0	2.0	10.0	30.7	2.7	1.9	0.3	26.00	0.20	26.65	26.9	3.8	2.2	150.0	0.2	0.3	100	31	9.9
PUMP)	MAX	25.6	7.2	1,157.0	4.9	83.5	250.0	4.0	3.0	18.0	23.0	44.5	10.0	7.6	2.4	38.00	0.65	38.00	38.2	7.6	5.8	160.0	0.0	0.1	68,000	24,000	19.0
	n	23.0	7.2	7	7	7	230.0	7	7	7	23.0	7	7	7.0	7	7	7	7	7	7.0	7	7	7	0.0	7	24,000	15.0
Stage 2	MEAN	22.2	6.9	1,145.4	0.5	(257.6)	344.3	7.3	7.1	13.1	35.1	6.3	2.4	1.6	0.7	3.54	0.42	3.96	4.6	4.6	3.0	152.9	1.9	3.2	. 11	9	79.8
lignocellulosic	STD. DEV.	1.7	0.1	47.7	0.4	43.1	16.2	7.7	7.8	11.8	16.0	2.5	1.1	0.6	0.9	2.26	0.26	2.50	2.2	2.0	1.0	4.9	2.5	4.0	-	-	161.8
effluent	MIN	20.6	6.7	1,112.0	0.1	(323.7)	330.0	1.0	1.0	2.0	22.0	2.1	1.4	1.1	0.3	0.40	0.01	0.40	1.1	3.4	1.9	150.0	0.3	0.6	1	1	12.0
(LIGNO-0)	MAX	25.5	7.1	1,217.0	1.2	(207.3)	370.0	18.0	18.0	36.0	67.0	9.8	4.6	2.8	2.7	6.70	0.87	7.57	7.5	7.9	4.9	160.0	7.4	12.0	8,000	7,800	410.0
	n	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	6
Store 2 cultur	MEAN	21.4	6.9	1,203.7	0.1	(344.1)	340.0	2.4	2.1	54.9	88.7	1.8	1.8	1.1	0.7	0.02	0.01	0.02	0.8	4.3	3.0	208.6	16.1	32.8	21	10	14.8
Stage 2 sulfur	STD. DEV.	2.1	0.3	34.5	0.1	32.7	12.9	1.7	1.5	25.4	30.1	1.2	1.2	0.4	0.9	0.01	-	0.01	0.9	1.5	1.2	54.0	9.9	23.8	-	-	1.6
effluent (ST2)	MIN	20.0	6.3	1,134.0	0.1	(368.6)	320.0	1.0	1.0	38.0	35.0	0.9	0.9	0.6	0.3	0.01	0.01	0.02	0.3	3.0	1.7	160.0	5.7	6.8	1	1	13.0
	MAX	25.8	7.1	1,250.0	0.2	(275.5)	360.0	6.0	5.0	110.0	130.0	4.5	4.5	1.8	2.7	0.04	0.01	0.04	2.7	6.5	5.1	320.0	37.0	83.0	20,000	9,600	17.0

FLOR DA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8

27

April 2014

								0011	1941130				2010										
Sample ID	Statistical Parameter	Total Al (ma	kalinity g/L)	TS (mį		CBC (m	DD5 g/L)	T (mg,	'N /L N)		(N /L N)	Orga (mg,	nic N /L N)	NH (mg/	-	NC (mg/		Ti (mg/		T (mg		Sulf (mg	
		Recirc tank	Sprayers	Recirc tank	Sprayers	Recirc tank	Sprayers	Recirc tank	Sprayers	Recirc tank	Sprayers	Recirc tank	Sprayers	Recirc tank	Sprayers	Recirc tank	Sprayers	Recirc tank	Sprayers	Recirc tank	Sprayers	Recirc tank	Sprayers
Septic	n	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7
tank	MEAN	462.0	644.3	28.2	90.0	105.6	254.3	50.5	57.8	50.4	57.7	8.8	16.6	41.6	41.1	0.05	0.05	41.7	41.2	8.2	8.7	83.4	32.4
effluent	STD. DEV.	39.6	246.4	9.4	195.0	25.5	112.7	5.4	7.5	5.4	7.5	7.7	8.5	5.3	7.6	0.04	0.03	5.3	7.6	5.5	3.8	44.6	41.5
(STE)	MIN	410.0	500.0	18.0	10.0	73.0	100.0	42.0	42.0	42.0	42.0	1.0	2.0	36.0	30.0	0.02	0.02	36.0	30.0	4.8	6.5	31.0	3.8
(312)	MAX	510.0	1,200.0	40.0	532.0	140.0	390.0	56.1	64.0	56.0	64.0	18.0	25.0	48.0	53.0	0.13	0.11	48.0	53.1	18.0	17.0	150.0	120.0
	n	5	6	5	6	5	6	5	6	5	6	5	6	5	6	5	6	5	6	5	6	0	6
Recircula	MEAN	286.0	585.0	20.6	13.5	25.2	171.7	18.9	58.6	12.8	58.5	3.8	17.2	9.0	41.3	6.13	0.06	15.1	41.4	6.0	6.0	-	8.1
tion tank	STD. DEV.	18.2	28.8	11.2	6.4	31.9	29.3	5.3	5.8	2.8	5.8	1.8	5.7	1.9	4.9	6.34	0.03	4.6	4.9	4.0	0.7	-	5.3
cron cank	MIN	270.0	530.0	12.0	4.0	2.0	130.0	14.4	48.0	8.8	48.0	0.7	8.0	7.1	35.0	0.02	0.02	11.0	35.0	3.7	4.7	-	3.1
	MAX	310.0	610.0	40.0	21.0	77.0	200.0	26.0	63.1	16.0	63.0	5.0	23.0	11.0	50.0	14.00	0.10	21.1	50.1	13.0	6.8	-	18.0
	n	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7	0	5
Stage 1	MEAN	232.0	221.4	27.2	1.9	15.2	8.4	19.7	38.5	3.1	4.5	2.1	3.6	0.9	0.9	16.66	34.05	17.6	35.0	5.6	5.4	-	154.0
effluent	STD. DEV.	14.8	21.2	28.4	1.1	18.6	6.6	5.8	4.4	1.9	2.7	0.6	1.9	1.5	0.9	7.33	4.03	6.2	4.0	3.6	1.8	-	5.5
	MIN	210.0	190.0	1.0	1.0	2.0	2.0	12.5	30.7	1.6	2.0	1.3	1.8	0.1	0.2	6.30	26.65	9.9	26.9	3.5	3.8	-	150.0
	MAX	250.0	250.0	68.0	4.0	45.0	18.0	26.0	44.5	6.2	10.0	2.7	7.6	3.6	2.4	24.00	38.00	24.1	38.2	12.0	7.6	-	160.0
Stage 2	n	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7
lignocell	MEAN	386.0	344.3	9.2	7.3	47.6	13.1	2.8	6.3	2.8	2.4	1.3	1.6	1.5	0.7	0.02	3.96	1.5	4.6	5.0	4.6	159.2	152.9
ulosic	STD. DEV.	56.8	16.2	11.8	7.7	30.1	11.8	1.6	2.5	1.6	1.1	0.3	0.6	1.4	0.9	0.00	2.50	1.4	2.2	4.0	2.0	53.8	4.9
effluent	MIN	290.0	330.0	1.0	1.0	20.0	2.0	1.5	2.1	1.5	1.4	1.0	1.1	0.4	0.3	0.02	0.40	0.4	1.1	2.6	3.4	86.0	150.0
	MAX	440.0	370.0	30.0	18.0	96.0	36.0	4.6	9.8	4.6	4.6	1.8	2.8	3.3	2.7	0.03	7.57	3.3	7.5	12.0	7.9	220.0	160.0
	n	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7	5	7
Stage 2	MEAN	334.0	340.0	6.8	2.4	67.6	54.9	3.5	1.8	3.4	1.8	1.3	1.1	2.2	0.7	0.02	0.02	2.2	0.8	4.9	4.3	192.0	208.6
sulfur	STD. DEV.	76.7	12.9	5.2	1.7	32.3	25.4	2.4	1.2	2.4	1.2	0.2	0.4	2.2	0.9	-	0.01	2.2	0.9	3.5	1.5	27.7	54.0
effluent	MIN	220.0	320.0	2.0	1.0	32.0	38.0	1.4	0.9	1.4	0.9	1.0	0.6	0.4	0.3	0.02	0.02	0.4	0.3	2.4	3.0	170.0	160.0
	MAX	410.0	360.0	15.0	6.0	110.0	110.0	6.5	4.5	6.5	4.5	1.5	1.8	5.0	2.7	0.02	0.04	5.0	2.7	11.0	6.5	240.0	320.0

Table 9Comparison of Water Quality Data

FLOR DA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8 April 2014

5.0 B-HS2 Sample Event No. 8: Summary and Recommendations

5.1 Summary

The eighth and final sampling results indicate that:

- Septic tank effluent (STE) quality is characteristic of typical household STE quality. The total nitrogen concentration of 60 mg/L is within the range of values typically reported for Florida single family residence STE.
- The Stage 1 biofilter converted most of the ammonia N to oxidized nitrogen; effluent contained 2.2 mg/L TKN, of which 0.21 mg/L was ammonia.
- The Stage 2 biofilter effluent NOx-N was 0.04 mg N/L.
- The total nitrogen concentration in the final effluent from the total treatment system was 1.64 mg/L, an approximately 97% reduction in STE TN.

5.2 Conclusions

Sample Event 8 was the last funded sample event for the B-HS2 treatment system. Section 4.4 summarized the water quality data collected over the 1.5 year monitoring period for this system. These results indicate that:

- The septic tank effluent average total nitrogen concentration of 54.7 mg/L is in the upper range of values typically reported for Florida single family residence STE.
- The Stage 1 biofilter with recirculation provided significant nitrification with an average NH₃-N concentration of 0.9 mg/L and average TKN of 3.9 mg/L. The Stage 1 biofilter effluent average NO_x-N was 26.8 mg/L. These results indicate significant denitrification (approximately 44% total nitrogen reduction) was occurring.
- The Stage 2 biofilter was effective in producing a reducing environment and achieving the NO_x-N reduction goals (average NO_x-N concentration of 0.02 mg/L). The average final total nitrogen (TN) in the treatment system effluent was 2.5 mg/L, primarily TKN (average TKN concentration of 2.5 mg/L).

Further analysis of the results obtained at this site will occur as Task B results are compiled and summarized. The results of the data collected to date have provided insights into the performance of a full-scale passive nitrogen reduction system monitored over an extended timeframe (535 experimental days) under actual onsite conditions.

Appendix A: Laboratory Report

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8

PAGE A-1 HAZEN AND SAWYER, P.C.

Table A.1 Water Quality Analytical Results Manual 44, 2014

March 11, 2014

Sample ID	Sample Date/Time	Temp (°C)	рН	Specific Conductance (uS/cm)	DO (mg/L)	ORP (mV)	Total Alkalinity (mg/L)	TSS (mg/L)	VSS (mg/L)	CBOD ₅ (mg/L)	COD (mg/L)	TN (mg/L N) ¹	TKN (mg/L N)	Organic N (mg/L N) ²		NO ₃ -N (mg/L N)	NO ₂ -N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³	TP (mg/L)	Ortho P (mg/L P)		Hydrogen Sulfide (mg/L)	Sulfide (mg/L)	Fecal (Ct/100 mL)	E-coli (Ct/100 mL)	TOC (mg/L)
BHS2-STE	3/11/14 11:45	21.8	7.15	1425	0.03	-365.5	570	16	15	390	450	60.05	60	20	40	0.05	0.01	0.05	40.05	7.2	6.5	4.9	22	50	27000	24000	120
BHS2-RECIRC	3/11/14 11:30	21.8	7.28	1430	0.07	-367.2	580	12	12	150	270	57.05	57	17	40	0.05	0.01	0.05	40.05	6.4	5.9	3.9	17	45	51000	10000	71
BHS2-ST1	3/11/14 11:15	20.7	6.91	1197	4.64	-37.6	220	2	1	17	14	39	2	1.76	0.24	37	0.01	37	37.24	4.1	3.8	160	0.01	0.1	2030	2000	15
BHS2-LIGNO-0	3/11/14 11:00	20.8	7.04	1115	0.12	-288.0	330	2	2	15	29	7.07	1.4	1.09	0.31	5.1	0.57	5.67	5.98	3.4	3.3	150	0.6	1.2	2	2	12
BHS2-ST2	3/11/14 10:40	20.4	7.01	1210	0.15	-368.6	340	2	2	44	35	0.93	0.91	0.61	0.3	0.01	0.01	0.02	0.32	3.5	3.4	170	15	28	1	2	13
BHS2-ST2-DUP	3/11/14 10:45	20.4	7.01	1210	0.15	-368.6	330	2	2	43	31	0.9	0.88	0.55	0.33	0.01	0.01	0.02	0.35	3.5	3.4	170	17	32	1	2	14
BHS2-EB	3/11/14 10:30	22.7	6.24	1.4	6.88	104.8	2	1	1	2	10	0.07	0.05	0.041	0.009	0.01	0.01	0.02	0.029	0.01	0.012	0.2	0.01	0.1	1	2	0.06

¹Total Nitrogen (TN) is a calculated value equal to the sum of TKN and NO_X.

²Organic Nitrogen (ON) is a calculated value equal to the difference of TKN and NH₃.

³Total Inorganic Nitrogen (TIN) is a calculated value equal to the sum of NH₃ and NO_X.

Gray-shaded data points indicate values below method detection level (mdl), mdl value used for statistical analyses.

Yellow-shaded data points indicate the reported value is between the laboratory method detection limit and the laboratory practical quantitation limit, value used for statistical analysis.

Too many colonies were present. The numeric value represents the filtration volume.

Results based on colony counts outside the ideal range.

Recirculation mode = to Stage 1 sprayers

Table A.2 Water Quality Analytical Results March 12, 2014

Sample ID	Sample Date/Time	Temp (°C)	pН	Specific Conductance (uS/cm)	DO (mg/L)	ORP (mV)	Total Alkalinity (mg/L)	TSS (mg/L)	VSS (mg/L)	CBOD ₅ (mg/L)	COD (mg/L)	TN (mg/L N) ¹	TKN (mg/L N)	Organic N (mg/L N) ²	NH ₃ -N (mg/L N)	NO ₃ -N (mg/L N)	NO ₂ -N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³	TP (mg/L)	Ortho P (mg/L P)	Sulfate (mg/L)	Sulfide	Sulfide	Fecal (Ct/100 mL)	E-coli (Ct/100 mL)	TOC (mg/L)
BHS2-STE	3/12/14 9:30	21.9	7.20	1411	0.01	-375.4	550	16	16	390	390	60.02	60	21	39	0.01	0.01	0.02	39.02	6.7	6.6	15	21	52	43000	24000	98
BHS2-RECIRC	3/12/14 9:15	21.6	7.25	1418	0.04	-371.8	590	14	13	200	310	63.05	63	23	40	0.05	0.01	0.05	40.05	6.2	5.9	7.8	15	39	66000	20000	58
BHS2-ST1	3/12/14 8:55	21.8	7.09	1215	4.85	-70.9	240	2	2	18	23	35.7	4.7	3.1	1.6	31	0.32	31	32.6	4	3.9	150	0.01	0.1	11300	10000	9.9
BHS2-LIGNO-0	3/12/14 8:35	21.4	7.08	1116	1.19	-207.3	340	1	1	17	25	7.56	1.7	1.42	0.28	5.4	0.46	5.86	6.14	3.6	3.3	150	0.28	0.6	1	2	410
BHS2-ST2	3/12/14 8:15	20.5	6.96	1208	0.06	-358.5	320	2	1	61	93	1.32	1.3	0.92	0.38	0.01	0.01	0.02	0.4	3.6	3.4	230	12	23	1	2	13
BHS2-ST2-DUP	3/12/14 8:20	20.5	6.96	1208	0.06	-358.5	320	1	1	65	97	1.34	1.3	0.93	0.37	0.04	0.01	0.04	0.41	3.5	3.4	210	14	26	1	2	13
BHS2-EB	3/12/14 8:00	19.0	6.55	1.7	7.10	109.8	2	1	1	2	10	0.27	0.25	0.241	0.009	0.01	0.01	0.02	0.029	0.05	0.012	0.2	0.01	0.1	1	2	0.06

¹Total Nitrogen (TN) is a calculated value equal to the sum of TKN and NO_X.

²Organic Nitrogen (ON) is a calculated value equal to the difference of TKN and NH_{3.}

 3 Total Inorganic Nitrogen (TIN) is a calculated value equal to the sum of NH $_{3}$ and NO $_{\chi}$.

Gray-shaded data points indicate values below method detection level (mdl), mdl value used for statistical analyses.

Yellow-shaded data points indicate the reported value is between the laboratory method detection limit and the laboratory practical quantitation limit, value used for statistical analysis.

Too many colonies were present. The numeric value represents the filtration volume.

Results based on colony counts outside the ideal range.

Recirculation mode = to Stage 1 sprayers

eport\Draft

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8 PAGE A-2 HAZEN AND SAWYER, P.C.

Table A.3 Water Quality Analytical Results March 40, 2014

March 13, 2014

Sample ID	Sample Date/Time	Temp (°C)	pН	Specific Conductance (uS/cm)	DO (mg/L)	ORP (mV)	Total Alkalinity (mg/L)	TSS (mg/L)	VSS (mg/L)	CBOD ₅ (mg/L)	COD (mg/L)	TN (mg/L N) ¹		Organic N (mg/L N) ²	5	NO ₃ -N (mg/L N)	NO ₂ -N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³	TP (mg/L)	Ortho P (mg/L P)		Sulfide	Sulfide (mg/L)	Fecal (Ct/100 mL)	E-coli (Ct/100 mL)	TOC (mg/L)
BHS2-STE	3/13/14 10:55	20.7	7.17	1428	0.03	-370.1	550	10	8	220	420	63.04	63	25	38	0.04	0.01	0.04	38.04	6.6	3.4	20	24	55	36000	24000	110
BHS2-RECIRC	3/13/14 10:40	20.5	7.22	1415	0.05	-368.4	600	4	4	160	250	62.05	62	21	41	0.05	0.01	0.05	41.05	6	3.7	7.9	15	39	59000	20000	81
BHS2-ST1	3/13/14 10:30	20.4	7.10	1202	3.25	-80.7	250	4	3	8	22	44.48	10	7.6	2.4	34	0.48	34.48	36.88	7.6	5.8	150	0.09	0.2	26000	24000	16
BHS2-LIGNO-0	3/13/14 10:15	22.0	7.01	1120	0.88	-220.6	360	18	18	2	22	6.58	3.1	2.81	0.29	3.2	0.28	3.48	3.77	7.1	4.9	150	0.84	1.6	2	2	14
BHS2-ST2	3/13/14 9:55	20.2	7.05	1210	0.09	-364.9	340	6	5	38	97	1.82	1.8	1.51	0.29	0.01	0.01	0.02	0.31	6.2	5.1	200	12	24	1	2	16
BHS2-ST2-DUP	3/13/14 10:00	20.2	7.05	1210	0.09	-364.9	340	6	4	39	99	1.82	1.8	1.5	0.3	0.01	0.01	0.02	0.32	6.5	5.2	200	14	27	1	2	16
BHS2-EB	3/13/14 9:25	15.2	7.04	1.81	9.21	96.8	2	1	1	2	10	0.07	0.05	0.041	0.009	0.01	0.01	0.02	0.029	0.01	0.012	0.2	0.01	0.1	1	2	0.06

 1 Total Nitrogen (TN) is a calculated value equal to the sum of TKN and NO_X.

²Organic Nitrogen (ON) is a calculated value equal to the difference of TKN and NH_{3.}

 3 Total Inorganic Nitrogen (TIN) is a calculated value equal to the sum of NH $_3$ and NO $_{\chi}$.

Gray-shaded data points indicate values below method detection level (mdl), mdl value used for statistical analyses.

Yellow-shaded data points indicate the reported value is between the laboratory method detection limit and the laboratory practical quantitation limit, value used for statistical analysis.

Too many colonies were present. The numeric value represents the filtration volume.

Results based on colony counts outside the ideal range.

Recirculation mode = to Stage 1 sprayers

Table A.4	

Water Quality Analytical Results

March 14, 2014

Sample ID	Sample Date/Time	Temp (°C)	рН	Specific Conductance (uS/cm)	DO (mg/L)	ORP (mV)	Total Alkalinity (mg/L)	TSS (mg/L)		CBOD ₅ (mg/L)		TN (mg/L N) ¹		Organic N (mg/L N) ²		NO ₃ -N (mg/L N)	NO ₂ -N (mg/L N)	NOx (mg/L N)	TIN (mg/L N) ³	TP (mg/L)	Ortho P (mg/L P)		Hydrogen Sulfide (mg/L)	Sulfide (mg/L)	Fecal (Ct/100 mL)	E-coli (Ct/100 mL)	TOC (mg/L)
BHS2-STE	3/14/14 10:40	21.2	7.15	1430	0.02	-370.8	580	16	13	250	360	64.03	64	25	39	0.03	0.01	0.03	39.03	6.5	3.4	14	23	53	180000	24000	100
BHS2-RECIRC	3/14/14 10:25	20.8	7.27	1402	0.04	-368.7	610	21	21	200	310	63.06	63	21	42	0.06	0.01	0.06	42.06	5.9	3.8	7.9	17	45	139000	24000	93
BHS2-ST1	3/14/14 10:15	21.5	7.16	1198	3.32	-77.4	230	2	2	6	23	39.03	4.8	3.2	1.6	34	0.23	34.23	35.83	3.8	2.9	150	0.01	0.1	27000	24000	19
BHS2-LIGNO-0	3/14/14 10:00	22.2	7.02	1112	0.60	-218.9	350	18	18	4	33	4.27	1.8	1.54	0.26	2.1	0.37	2.47	2.73	3.4	1.9	150	0.92	1.8	10	8.5	14
BHS2-ST2	3/14/14 9:42	20.0	7.09	1205	0.07	-362.7	360	2	2	47	66	1.13	1.1	0.72	0.38	0.03	0.01	0.03	0.41	3	1.9	190	14	31	80	72	15
BHS2-ST2-DUP	3/14/14 9:47	20.0	7.09	1205	0.07	-362.7	350	2	2	42	72	1.12	1.1	0.72	0.38	0.01	0.01	0.02	0.4	3.1	1.7	210	14	31	60	52	15
BHS2-EB	3/14/14 9:15	16.8	7.05	1.39	8.35	101.4	2	1	1	2	10	0.07	0.05	0.041	0.009	0.01	0.01	0.02	0.029	0.01	0.01	0.2	0.01	0.1	1	2	0.06

¹Total Nitrogen (TN) is a calculated value equal to the sum of TKN and NO_x

 $^2 \text{Organic Nitrogen}$ (ON) is a calculated value equal to the difference of TKN and $\text{NH}_{3.}$

³Total Inorganic Nitrogen (TIN) is a calculated value equal to the sum of NH₃ and NO_X.

Gray-shaded data points indicate values below method detection level (mdl), mdl value used for statistical analyses.

Yellow-shaded data points indicate the reported value is between the laboratory method detection limit and the laboratory practical quantitation limit, value used for statistical analysis.

Too many colonies were present. The numeric value represents the filtration volume.

Results based on colony counts outside the ideal range.

Recirculation mode = to Stage 1 sprayers

pdocs/Report/Draft

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8

PAGE A-3 HAZEN AND SAWYER, P.C.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

March 28, 2014 Work Order: 1402492

Project Name		B-HS2	SE#8					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Dil	ution
Sample Description		BHS2-STE						
Matrix		Wastewater						
SAL Sample Number		1402492-01						
Date/Time Collected		03/10/14 10:00						
Collected by		Sean Schmidt						
Date/Time Received		03/10/14 11:40						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	28	SM 4550SF	0.04	0.01	03/11/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	49	EPA 350.1	2.0	0.47		03/18/14 12:18	50
Carbonaceous BOD	mg/L	290	SM 5210B	2	2	03/12/14 08:41	03/17/14 12:45	1
Chemical Oxygen Demand	mg/L	410	EPA 410.4	25	10	03/10/14 12:17	03/11/14 16:37	1
Nitrate (as N)	mg/L	0.06	EPA 300.0	0.04	0.01		03/11/14 14:06	1
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 14:06	1
Orthophosphate as P	mg/L	3.2	EPA 300.0	0.040	0.010		03/11/14 14:06	1
Phosphorous - Total as P	mg/L	7.4	SM 4500P-E	0.80	0.20	03/10/14 14:31	03/11/14 14:28	20
Sulfate	mg/L	3.8	EPA 300.0	0.60	0.20		03/11/14 14:06	1
Sulfide	mg/L	66	SM 4500SF	0.40	0.10		03/11/14 17:16	1
Total Alkalinity	mg/L	560	SM 2320B	8.0	2.0		03/18/14 10:54	1
Total Kjeldahl Nitrogen	mg/L	60	EPA 351.2	4.0	1.0	03/10/14 14:31	03/11/14 14:28	20
Total Organic Carbon	mg/L	120	SM 5310B	1.0	0.060		03/13/14 15:29	1
Total Suspended Solids	mg/L	30	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:06	1
Volatile Suspended Solids	mg/L	12	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:06	1
Nitrate+Nitrite (N)	mg/L	0.06	EPA 300.0	0.08	0.02		03/11/14 14:06	1
Microbiology	C C							
E. Coli	MPN/100 mL	10,000	SM 9223B	2.0	2.0	03/10/14 13:47	03/11/14 09:45	1
Fecal Coliforms	CFU/100 ml	62,000	SM 9222D	1	1	03/10/14 13:43	03/11/14 12:45	1
Sample Description		BHS2-STE-FILTERED						
Matrix		Wastewater						
SAL Sample Number		1402492-02						
Date/Time Collected		03/10/14 10:05						
Collected by		Sean Schmidt						
Date/Time Received		03/10/14 11:40						
Inorganic, Dissolved								
Ammonia as N	mg/L	45	EPA 350.1	2.0	0.47		03/21/14 09:48	50
Carbonaceous BOD	mg/L	160	SM 5210B	2	2	03/12/14 08:42	03/17/14 12:52	1
Nitrate (as N)	mg/L	0.06	EPA 300.0	0.04	0.01		03/11/14 14:17	1
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 14:17	1
Total Kjeldahl Nitrogen	mg/L	55	EPA 351.2	0.20	0.050	03/12/14 09:30	03/17/14 10:32	20
Nitrate+Nitrite (N)	mg/L	0.06 I	EPA 300.0	0.08	0.02		03/11/14 14:17	1
Lab filtration for diss. analytes	-						03/12/14 14:07	

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

March 28, 2014 Work Order: 1402492

Laboratory Report

Project Name		B-H	S2 SE#8					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Dil	ution
Sample Description		BHS2-RECIRC						
Matrix		Wastewater						
SAL Sample Number		1402492-03						
Date/Time Collected		03/10/14 09:50						
Collected by		Sean Schmidt						
Date/Time Received		03/10/14 11:40						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	19	SM 4550SF	0.04	0.01	03/11/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	50	EPA 350.1	2.0	0.47		03/18/14 12:19	50
Carbonaceous BOD	mg/L	190	SM 5210B	2	2	03/12/14 08:41	03/17/14 12:45	1
Chemical Oxygen Demand	mg/L	270	EPA 410.4	25	10	03/10/14 12:17	03/11/14 16:37	1
Nitrate (as N)	mg/L	0.10	EPA 300.0	0.04	0.01		03/11/14 14:29	1
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 14:29	1
Orthophosphate as P	mg/L	6.0	SM 4500P-E	0.20	0.060		03/11/14 09:24	5
Phosphorous - Total as P	mg/L	6.8	SM 4500P-E	0.40	0.10	03/10/14 14:31	03/11/14 14:29	10
Sulfate	mg/L	3.1	EPA 300.0	0.60	0.20		03/11/14 14:29	1
Sulfide	mg/L	56	SM 4500SF	0.40	0.10		03/11/14 17:16	1
Total Alkalinity	mg/L	600	SM 2320B	8.0	2.0		03/18/14 11:10	1
Total Kjeldahl Nitrogen	mg/L	58	EPA 351.2	4.0	1.0	03/10/14 14:31	03/11/14 14:29	20
Total Organic Carbon	mg/L	59	SM 5310B	1.0	0.060		03/13/14 15:29	1
Total Suspended Solids	mg/L	20	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:06	1
Volatile Suspended Solids	mg/L	18	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:06	1
Nitrate+Nitrite (N)	mg/L	0.10	EPA 300.0	0.08	0.02		03/11/14 14:29	1
Microbiology	5							
E. Coli	MPN/100 mL	10,000	SM 9223B	2.0	2.0	03/10/14 13:47	03/11/14 09:45	1
Fecal Coliforms	CFU/100 ml	73,000	SM 9222D	1	1	03/10/14 13:43	03/11/14 12:45	1
		51100.07/						
Sample Description Matrix		BHS2-ST1						
SAL Sample Number		Wastewater 1402492-04						
Date/Time Collected		03/10/14 09:21						
Collected by		Sean Schmidt						
Date/Time Received		03/10/14 11:40						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.40	SM 4550SF	0.04	0.01	03/11/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	0.21	EPA 350.1	0.040	0.009		03/14/14 15:17	1
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	03/12/14 08:41	03/17/14 12:45	1
Chemical Oxygen Demand	mg/L	18 I	EPA 410.4	25	10	03/10/14 12:17	03/11/14 16:37	1
Nitrate (as N)	mg/L	37	EPA 300.0	0.40	0.10		03/11/14 14:40	10
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 14:40	1
Orthophosphate as P	mg/L	3.8	SM 4500P-E	0.20	0.060		03/11/14 09:24	5
Phosphorous - Total as P	mg/L	4.0	SM 4500P-E	0.20	0.050	03/10/14 14:31	03/11/14 14:30	5
•	-							10
Sulfate	mg/L	160	EPA 300.0	6.0	2.0		03/12/14 19:24	

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

March 28, 2014 Work Order: 1402492

Project Name		B-H	S2 SE#8					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	ilution
Sample Description		BHS2-ST1						
Matrix		Wastewater						
SAL Sample Number		1402492-04						
Date/Time Collected Collected by		03/10/14 09:21						
Date/Time Received		Sean Schmidt						
		03/10/14 11:40						
Sulfide	mg/L	0.80	SM 4500SF	0.40	0.10		03/11/14 17:10	61
Total Alkalinity	mg/L	220	SM 2320B	8.0	2.0		03/18/14 11:1	71
Total Kjeldahl Nitrogen	mg/L	2.2	EPA 351.2	1.0	0.25	03/10/14 14:31	03/11/14 14:3	05
Total Organic Carbon	mg/L	10	SM 5310B	1.0	0.060		03/13/14 15:2	91
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:0	61
Volatile Suspended Solids	mg/L	1 U	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:0	61
Nitrate+Nitrite (N)	mg/L	37	EPA 300.0	0.44	0.11		03/11/14 14:4	0 10
<u>Microbiology</u>								
E. Coli	MPN/100 mL	610	SM 9223B	2.0	2.0	03/10/14 13:47	03/11/14 09:4	51
Fecal Coliforms	CFU/100 ml	710	SM 9222D	1	1	03/10/14 13:43	03/11/14 12:4	5 1
Sample Description Matrix		BHS2-ST1-DUP						
SAL Sample Number		Wastewater 1402492-05						
Date/Time Collected		03/10/14 09:26						
Collected by		Sean Schmidt						
Date/Time Received		03/10/14 11:40						
Inorganics		0.20	SM 4550SF	0.04	0.01	02/11/11 00:00	02/40/44 00:2	0 1
Hydrogen Sulfide (Unionized)	mg/L	0.30	SM 4550SF	0.04	0.01	03/11/14 08:26	03/18/14 08:3	
Ammonia as N	mg/L	0.22	EPA 350.1	0.040	0.009	00/40/44 00:44	03/14/14 15:1	
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	03/12/14 08:41	03/17/14 12:4	
Chemical Oxygen Demand	mg/L	20 1	EPA 410.4	25	10	03/10/14 12:17	03/11/14 16:3	
Nitrate (as N)	mg/L	37	EPA 300.0	0.40	0.10		03/11/14 14:5	
Nitrite (as N)	mg/L	0.01 U	EPA 300.0 SM 4500P-E	0.04	0.01		03/11/14 14:5	
Orthophosphate as P Phosphorous - Total as P	mg/L	3.8 4.0	SM 4500P-E	0.20 0.20	0.060	02/10/14 14:21	03/11/14 09:24	
•	mg/L		EPA 300.0		0.050	03/10/14 14:31	03/11/14 14:3	
Sulfate	mg/L	150	SM 4500SF	6.0	2.0		03/12/14 19:3	
Sulfide	mg/L	0.60		0.40	0.10		03/11/14 17:10	
Total Alkalinity	mg/L	220	SM 2320B	8.0	2.0	00/40/4444	03/18/14 12:2	
Total Kjeldahl Nitrogen	mg/L	2.0	EPA 351.2	1.0	0.25	03/10/14 14:31	03/11/14 14:3	
Total Organic Carbon	mg/L	11	SM 5310B	1.0	0.060	0040444500	03/13/14 15:2	
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:0	
Volatile Suspended Solids	mg/L	1 U 27	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:0	
Nitrate+Nitrite (N)	mg/L	37	EPA 300.0	0.44	0.11		03/11/14 14:5	2 10
<u>Microbiology</u> E. Coli	MPN/100 mL	730	SM 9223B	2.0	2.0	03/10/14 13:47	03/11/14 09:4	51
Fecal Coliforms	CFU/100 ml	730	SM 9223B SM 9222D	2.0 1	2.0 1	03/10/14 13:47	03/11/14 09:4	
		/40	SIVI 9222D	I	I	03/10/14 13.43	03/11/14 12:4	5 1

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

March 28, 2014 Work Order: 1402492

Project Name		B-HS2	SE#8					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	ilution
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS2-ST1-FILTERED Wastewater 1402492-06 03/10/14 09:26 Sean Schmidt 03/10/14 11:40						
Inorganic, Dissolved								
Ammonia as N	mg/L	0.20	EPA 350.1	0.040	0.009		03/21/14 09:5	0 1
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	03/12/14 08:42	03/17/14 12:5	
Nitrate (as N)	mg/L	38	EPA 300.0	0.40	0.10	00,12,1100.12	03/11/14 15:03	
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 15:03	
Total Kjeldahl Nitrogen	mg/L	2.7	EPA 351.2	0.20	0.050	03/12/14 09:30	03/17/14 10:3	
Nitrate+Nitrite (N) Lab filtration for diss. analytes	mg/L	38	EPA 300.0	0.44	0.11	00/12/14 00:00	03/11/14 15:03 03/12/14 14:0	3 10
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS2-LIGNO-0 Wastewater 1402492-07 03/10/14 09:02 Sean Schmidt 03/10/14 11:40						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	1.2	SM 4550SF	0.04	0.01	03/11/14 08:26	03/18/14 08:3	
Ammonia as N	mg/L	0.55	EPA 350.1	0.040	0.009		03/14/14 15:2	1 1
Carbonaceous BOD	mg/L	4	SM 5210B	2	2	03/12/14 08:41	03/17/14 12:4	5 1
Chemical Oxygen Demand	mg/L	25	EPA 410.4	25	10	03/10/14 12:17	03/11/14 16:37	71
Nitrate (as N)	mg/L	6.7	EPA 300.0	0.04	0.01		03/11/14 15:14	1
Nitrite (as N)	mg/L	0.87	EPA 300.0	0.04	0.01		03/11/14 15:14	
Orthophosphate as P	mg/L	3.3	SM 4500P-E	0.20	0.060		03/11/14 09:24	45
Phosphorous - Total as P	mg/L	3.5	SM 4500P-E	0.20	0.050	03/10/14 14:31	03/11/14 14:32	2 5
Sulfate	mg/L	160	EPA 300.0	6.0	2.0		03/12/14 20:4	0 10
Sulfide	mg/L	2.2	SM 4500SF	0.40	0.10		03/11/14 17:10	
Total Alkalinity	mg/L	330	SM 2320B	8.0	2.0		03/18/14 12:3	51
Total Kjeldahl Nitrogen	mg/L	2.2	EPA 351.2	1.0	0.25	03/10/14 14:31	03/11/14 14:32	2 5
Total Organic Carbon	mg/L	14	SM 5310B	1.0	0.060		03/13/14 15:2	91
Total Suspended Solids	mg/L	2	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:0	51
Volatile Suspended Solids	mg/L	1 U	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:0	51
Nitrate+Nitrite (N)	mg/L	7.5	EPA 300.0	0.08	0.02		03/11/14 15:14	1
<u>Microbiology</u>								
Total Coliform	CFU/100 ml	9	SM 9222B	1	1	03/10/14 13:46	03/11/14 12:40) 1
E. Coli	MPN/100 mL	7.5	SM 9223B	2.0	2.0	03/10/14 13:47	03/11/14 09:4	5 1
Fecal Coliforms	CFU/100 ml	8	SM 9222D	1	1	03/10/14 13:43	03/11/14 12:4	5 1

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

March 28, 2014 Work Order: 1402492

Project Name		B-H	S2 SE#8					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	ilution
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by		BHS2-LIGNO-0-FILT Wastewater 1402492-08 03/10/14 09:07 Sean Schmidt	FERED					
Date/Time Received		03/10/14 11:40						
Inorganic, Dissolved								
Ammonia as N	mg/L	0.27	EPA 350.1	0.040	0.009		03/21/14 09:5	2 1
Carbonaceous BOD	mg/L	3	SM 5210B	2	2	03/12/14 08:42	03/17/14 12:5	2 1
Nitrate (as N)	mg/L	7.7	EPA 300.0	0.04	0.01		03/11/14 15:20	5 1
Nitrite (as N)	mg/L	0.68	EPA 300.0	0.04	0.01		03/11/14 15:20	5 1
Total Kjeldahl Nitrogen	mg/L	2.7	EPA 351.2	0.20	0.050	03/12/14 09:30	03/17/14 10:3	45
Nitrate+Nitrite (N)	mg/L	8.4	EPA 300.0	0.08	0.02		03/11/14 15:20	5 1
Lab filtration for diss. analytes							03/12/14 14:0	7
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS2-ST2 Wastewater 1402492-09 03/10/14 08:45 Sean Schmidt 03/10/14 11:40						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	17	SM 4550SF	0.04	0.01	03/11/14 08:26	03/18/14 08:3	
Ammonia as N	mg/L	0.48	EPA 350.1	0.040	0.009		03/14/14 15:2	
Carbonaceous BOD	mg/L	42	SM 5210B	2	2	03/12/14 08:41	03/17/14 12:4	
Chemical Oxygen Demand	mg/L	100	EPA 410.4	25	10	03/10/14 12:17	03/11/14 16:3	
Nitrate (as N)	mg/L	0.04	EPA 300.0	0.04	0.01		03/11/14 16:40	
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 16:40	
Orthophosphate as P	mg/L	3.6	SM 4500P-E	0.20	0.060		03/11/14 09:24	
Phosphorous - Total as P	mg/L	3.7	SM 4500P-E	0.40	0.10	03/10/14 14:31	03/11/14 14:33	
Sulfate	mg/L	160	EPA 300.0	6.0	2.0		03/12/14 20:5	
Sulfide	mg/L	34	SM 4500SF	0.40	0.10		03/11/14 17:10	
Total Alkalinity	mg/L	340	SM 2320B	8.0	2.0		03/18/14 12:4	
Total Kjeldahl Nitrogen	mg/L	1.6 I	EPA 351.2	2.0	0.50	03/10/14 14:31	03/11/14 14:33	
Total Organic Carbon	mg/L	15	SM 5310B	1.0	0.060		03/14/14 11:40	
Total Suspended Solids	mg/L	3	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:0	61
Volatile Suspended Solids	mg/L	3	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:0	
Nitrate+Nitrite (N)	mg/L	0.04	EPA 300.0	0.08	0.02		03/11/14 16:40	6 1
<u>Microbiology</u>								
Total Coliform	CFU/100 ml	180	SM 9222B	1	1	03/10/14 13:46	03/11/14 12:40	
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/10/14 13:47	03/11/14 09:4	
Fecal Coliforms	CFU/100 ml	100	SM 9222D	1	1	03/10/14 13:43	03/11/14 12:4	51

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Laboratory Report

Project Name		B-HS2	SE#8					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed D	ilution
Sample Description Matrix SAL Sample Number		BHS2-ST2-FILTERED Wastewater 1402492-10						
Date/Time Collected		03/10/14 08:50						
Collected by		Sean Schmidt						
Date/Time Received		03/10/14 11:40						
Inorganics								
Sulfate	mg/L	160	EPA 300.0	6.0	2.0		03/12/14 21:10	0 10
Inorganic, Dissolved								
Ammonia as N	mg/L	0.36	EPA 350.1	0.040	0.009		03/21/14 10:4	51
Carbonaceous BOD	mg/L	14	SM 5210B	2	2	03/12/14 08:42	03/17/14 12:52	2 1
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 16:57	7 1
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 16:57	7 1
Total Kjeldahl Nitrogen	mg/L	1.2	EPA 351.2	0.20	0.050	03/12/14 09:30	03/17/14 10:3	55
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02		03/11/14 16:57	7 1
Lab filtration for diss. analytes							03/12/14 14:07	7
Sample Description		BHS2-EB						
Matrix		Reagent Water						
SAL Sample Number		1402492-11						
Date/Time Collected		03/10/14 10:15						
Collected by		Sean Schmidt						
Date/Time Received		03/10/14 11:40						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01	03/11/14 08:26	03/18/14 08:30	
Ammonia as N	mg/L	0.009 U	EPA 350.1	0.040	0.009		03/14/14 16:29	
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	03/12/14 08:41	03/17/14 12:4	
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10	03/10/14 12:17	03/11/14 16:37	
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 17:08	
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 17:08	
Orthophosphate as P	mg/L	0.012 U	SM 4500P-E	0.040	0.012		03/11/14 09:24	
Phosphorous - Total as P	mg/L	0.010 U	SM 4500P-E	0.040	0.010	03/10/14 14:31	03/11/14 14:36	
Sulfate	mg/L	0.20 U	EPA 300.0	0.60	0.20		03/13/14 06:19	
Sulfide	mg/L	0.10 U	SM 4500SF	0.40	0.10		03/11/14 17:16	
Total Alkalinity	mg/L	2.0 U	SM 2320B	8.0	2.0		03/18/14 12:49	
Total Kjeldahl Nitrogen	mg/L	0.05 U	EPA 351.2	0.20	0.05	03/10/14 14:31	03/11/14 14:36	6 1
Total Organic Carbon	mg/L	0.060 U	SM 5310B	1.0	0.060		03/14/14 11:40) 1
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:06	61
Volatile Suspended Solids	mg/L	1 U	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:06	
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02		03/11/14 17:08	31
<u>Microbiology</u>								
Total Coliform	CFU/100 ml	1 U	SM 9222B	1	1	03/10/14 13:46	03/11/14 12:40) 1
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/10/14 13:47	03/11/14 09:45	5 1

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager 110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Work Order: 1402492

Project Name		B-HS						
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	Dilution
Sample Description	BF	IS2-EB						
Matrix	Re	agent Water						
SAL Sample Number	14	02492-11						
Date/Time Collected	03	/10/14 10:15						
Collected by	Se	an Schmidt						
Date/Time Received	03	/10/14 11:40						
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	03/10/14 13:43	03/11/14 12:	45 1

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41026 - COD prep										
Blank (BC41026-BLK1)					Prepared:	03/10/14 Ar	alyzed: 03/	/11/14		
Chemical Oxygen Demand	10 U	25	10	mg/L						
LCS (BC41026-BS1)					Prepared:	03/10/14 Ar	alyzed: 03/	/11/14		
Chemical Oxygen Demand	49	25	10	mg/L	50		98	90-110		
Matrix Spike (BC41026-MS1)		Source: 1	402492-11		Prepared:	03/10/14 Ar	alyzed: 03/	/11/14		
Chemical Oxygen Demand	50	25	10	mg/L	50	ND	100	85-115		
Matrix Spike Dup (BC41026-MSD1)		Source: 1	402492-11		Prepared:	03/10/14 Ar	alyzed: 03/	/11/14		
Chemical Oxygen Demand	49	25	10	mg/L	50	ND	98	85-115	2	32
Batch BC41038 - Digestion for	TP and TKN									
Blank (BC41038-BLK1)					Prepared:	03/10/14 Ar	alyzed: 03/	/11/14		
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
Phosphorous - Total as P	0.010 U	0.040	0.010	mg/L						
LCS (BC41038-BS1)					Prepared:	03/10/14 Ar	alyzed: 03/	/11/14		
Total Kjeldahl Nitrogen	0.964	0.20	0.05	mg/L	1.0		96	90-110		
Phosphorous - Total as P	0.538	0.040	0.010	mg/L	0.50		108	90-110		
Matrix Spike (BC41038-MS1)		Source: 1	402491-03		Prepared:	03/10/14 Ar	alyzed: 03/	/11/14		
Total Kjeldahl Nitrogen	0.969	0.20	0.05	mg/L	1.0	ND	97	90-110		
Phosphorous - Total as P	0.546	0.040	0.010	mg/L	0.50	ND	109	90-110		
Matrix Spike Dup (BC41038-MSD1)		Source: 1	402491-03		Prepared:	03/10/14 Ar	alyzed: 03/	/11/14		
Phosphorous - Total as P	0.535	0.040	0.010	mg/L	0.50	ND	107	90-110	2	25
Total Kjeldahl Nitrogen	0.985	0.20	0.05	mg/L	1.0	ND	99	90-110	2	20

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41043 - Ion Chron	natography 300.0	Prep								
Blank (BC41043-BLK1)					Prepared 8	Analyzed:	03/11/14			
Sulfate	0.20 U	0.60	0.20	mg/L						
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Orthophosphate as P	0.010 U	0.040	0.010	mg/L						
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
LCS (BC41043-BS1)					Prepared 8	Analyzed:	03/11/14			
Nitrite (as N)	1.44	0.04	0.01	mg/L	1.4		103	85-115		
Orthophosphate as P	0.903	0.040	0.010	mg/L	0.90		100	85-115		
Nitrate (as N)	1.70	0.04	0.01	mg/L	1.7		100	85-115		
Sulfate	9.10	0.60	0.20	mg/L	9.0		101	85-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
LCS Dup (BC41043-BSD1)					Prepared 8	Analyzed:	03/11/14			
Orthophosphate as P	0.900	0.040	0.010	mg/L	0.90		100	85-115	0.3	200
Sulfate	9.03	0.60	0.20	mg/L	9.0		100	85-115	0.8	200
Nitrite (as N)	1.43	0.04	0.01	mg/L	1.4		102	85-115	0.6	200
Nitrate (as N)	1.68	0.04	0.01	mg/L	1.7		99	85-115	0.9	200
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41043 - Ion Chroma	tography 300.0	Prep								
Matrix Spike (BC41043-MS1)		Source: 1	402508-01		Prepared 8	Analyzed:	03/11/14			
Nitrite (as N)	2.85	0.04	0.01	mg/L	1.4	1.31	110	85-115		
Sulfate	32.1	0.60	0.20	mg/L	9.0	23.2	99	85-115		
Orthophosphate as P	2.48	0.040	0.010	mg/L	0.90	1.54	104	85-115		
Nitrate (as N)	10.3	0.04	0.01	mg/L	1.7	8.74	92	85-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Matrix Spike (BC41043-MS2)		Source: 1	402492-08		Prepared 8	Analyzed:	03/11/14			
Nitrate (as N)	9.45	0.04	0.01	mg/L	1.7	7.74	101	85-115		
Nitrite (as N)	2.06	0.04	0.01	mg/L	1.4	0.685	98	85-115		
Orthophosphate as P	2.53	0.040	0.010	mg/L	0.90	1.64	99	85-115		
Sulfate	90.0 L	0.60	0.20	mg/L	9.0	145	NR	85-115		
Surrogate: Dichloroacetate	1.09			mg/L	1.0		109	90-115		
Surrogate: Dichloroacetate	1.09			mg/L	1.0		109	90-115		
Surrogate: Dichloroacetate	1.09			mg/L	1.0		109	90-115		
Surrogate: Dichloroacetate	1.09			mg/L	1.0		109	90-115		
Batch BC41044 - Ion Chroma	tography 300.0	Prep								
Blank (BC41044-BLK1)					Prepared 8	Analyzed:	03/11/14			
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Surrogate: Dichloroacetate	1.07			mg/L	1.0		107	90-115		
Surrogate: Dichloroacetate	1.07			mg/L	1.0		107	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
				Unito	Lovoi	rtooun	/01120	Linito		Linit
Batch BC41044 - Ion Chromato	grapny sould	Frep			Bronorod	Analyzed:	02/11/14			
LCS (BC41044-BS1)	1.00	0.04	0.01		•	Analyzeu.		05 445		
Nitrate (as N)	1.68	0.04	0.01	mg/L	1.7		99	85-115		
Nitrite (as N)	1.45	0.04	0.01	mg/L	1.4		103	85-115		
Surrogate: Dichloroacetate	1.10			mg/L	1.0		110	90-115		
Surrogate: Dichloroacetate	1.10			mg/L	1.0		110	90-115		
LCS Dup (BC41044-BSD1)					Prepared &	Analyzed:	03/11/14			
Nitrite (as N)	1.45	0.04	0.01	mg/L	1.4		103	85-115	0	200
Nitrate (as N)	1.70	0.04	0.01	mg/L	1.7		100	85-115	0.9	200
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Matrix Spike (BC41044-MS1)		Source: 1	402047-01		Prepared 8	Analyzed:	03/12/14			
Nitrate (as N)	17.1	0.40	0.10	mg/L	17	ND	101	85-115		
Nitrite (as N)	14.5	0.40	0.10	mg/L	14	ND	104	85-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Matrix Spike (BC41044-MS2)		Source: 1	402322-01		Prepared 8	Analyzed:	03/11/14			
Nitrite (as N)	142	4.0	1.0	mg/L	140	3.00	100	85-115		
Nitrate (as N)	179	4.0	1.0	mg/L	170	7.60	101	85-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Batch BC41131 - Sulfide prep										
Blank (BC41131-BLK1)					Prepared &	Analyzed:	03/11/14			
Sulfide	0.10 U	0.40	0.10	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1402492

March 28, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analista	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result	PQL	MDL	Units	Levei	Result	%REC	LIMIUS	RPD	LITTIL
Batch BC41131 - Sulfide prep										
LCS (BC41131-BS1)					Prepared 8	Analyzed:	03/11/14			
Sulfide	5.03	0.40	0.10	mg/L	5.0		101	85-115		
Matrix Spike (BC41131-MS1)		Source: 1	402492-11		Prepared &	Analyzed:	03/11/14			
Sulfide	4.83	0.40	0.10	mg/L	5.0	ND	97	85-115		
Matrix Spike Dup (BC41131-MSD1)		Source: 1	402492-11		Prepared &	Analyzed:	03/11/14			
Sulfide	5.03	0.40	0.10	mg/L	5.0	ND	101	85-115	4	14
Batch BC41213 - TOC prep										
Blank (BC41213-BLK1)					Prepared &	Analyzed:	03/13/14			
Total Organic Carbon	0.060 U	1.0	0.060	mg/L						
LCS (BC41213-BS1)					Prepared &	Analyzed:	03/13/14			
Total Organic Carbon	10.4	1.0	0.060	mg/L	10		104	90-110		
Matrix Spike (BC41213-MS1)		Source: 1	402377-01		Prepared &	Analyzed:	03/13/14			
Total Organic Carbon	10.1	1.0	0.060	mg/L	10	ND	101	85-115		
Matrix Spike Dup (BC41213-MSD1)		Source: 1	402377-01		Prepared &	Analyzed:	03/13/14			
Total Organic Carbon	10.3	1.0	0.060	mg/L	10	ND	103	85-115	2	10
Batch BC41219 - BOD										
Blank (BC41219-BLK1)					Prepared:	03/12/14 Ar	alyzed: 03	/17/14		
Carbonaceous BOD	2 U	2	2	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41219 - BOD										
LCS (BC41219-BS1)					Prepared:	03/12/14 Ar	nalyzed: 03/	/17/14		
Carbonaceous BOD	207	2	2	mg/L	200		104	85-115		
LCS Dup (BC41219-BSD1)					Prepared:	03/12/14 Ar	nalyzed: 03	/17/14		
Carbonaceous BOD	202	2	2	mg/L	200		101	85-115	2	200
Duplicate (BC41219-DUP1)		Source: 1	402533-01		Prepared:	03/12/14 Ar	nalyzed: 03	/17/14		
Carbonaceous BOD	220	2	2	mg/L		220			0.9	25
Batch BC41221 - Ion Chroma	atography 300.0	Prep								
Blank (BC41221-BLK1)					Prepared 8	Analyzed:	03/12/14			
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Sulfate	0.20 U	0.60	0.20	mg/L						
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
LCS (BC41221-BS1)					Prepared &	Analyzed:	03/12/14			
Nitrate (as N)	1.69	0.04	0.01	mg/L	1.7		99	85-115		
Sulfate	9.15	0.60	0.20	mg/L	9.0		102	85-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
LCS Dup (BC41221-BSD1)					Prepared &	& Analyzed:	03/12/14			
Sulfate	9.17	0.60	0.20	mg/L	9.0		102	85-115	0.2	200
Nitrate (as N)	1.70	0.04	0.01	mg/L	1.7		100	85-115	0.6	200
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41221 - Ion Chroma	tography 300.0	Prep								
Matrix Spike (BC41221-MS1)		Source: 1	402492-06		Prepared 8	Analyzed:	03/12/14			
Nitrate (as N)	56.2	0.40	0.10	mg/L	17	37.6	109	85-115		
Sulfate	255	6.0	2.0	mg/L	90	157	109	85-115		
Surrogate: Dichloroacetate	1.07			mg/L	1.0		107	90-115		
Surrogate: Dichloroacetate	1.07			mg/L	1.0		107	90-115		
Matrix Spike (BC41221-MS2)		Source: 1	402141-01		Prepared 8	Analyzed:	03/12/14			
Sulfate	98.6	6.0	2.0	mg/L	90	5.99	103	85-115		
Nitrate (as N)	17.2	0.40	0.10	mg/L	17	ND	101	85-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Batch BC41224 - Ion Chroma Blank (BC41224-BLK1)					Prepared 8	Analyzed:	03/13/14			
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Sulfate	0.20 U	0.60	0.20	mg/L						
Surrogate: Dichloroacetate	1.10			mg/L	1.0		110	90-115		
Surrogate: Dichloroacetate	1.10			mg/L	1.0		110	90-115		
Surrogate: Dichloroacetate	1.10			mg/L	1.0		110	90-115		
LCS (BC41224-BS1)					Prepared 8	Analyzed:	03/13/14			
Nitrate (as N)	1.74	0.04	0.01	mg/L	1.7		102	85-115		
Sulfate	9.28	0.60	0.20	mg/L	9.0		103	85-115		
Nitrite (as N)	1.48	0.04	0.01	mg/L	1.4		106	85-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Inorganics - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41224 - Ion Chroma	atography 300.0	Prep								
LCS Dup (BC41224-BSD1)					Prepared 8	Analyzed:	03/13/14			
Sulfate	9.24	0.60	0.20	mg/L	9.0		103	85-115	0.4	200
Nitrate (as N)	1.73	0.04	0.01	mg/L	1.7		102	85-115	0.6	200
Nitrite (as N)	1.48	0.04	0.01	mg/L	1.4		106	85-115	0.1	200
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Matrix Spike (BC41224-MS1)		Source: 1	402084-04		Prepared 8	Analyzed:	03/13/14			
Nitrite (as N)	1.44	0.04	0.01	mg/L	1.4	ND	103	85-115		
Nitrate (as N)	1.68	0.04	0.01	mg/L	1.7	ND	99	85-115		
Sulfate	84.7	0.60	0.20	mg/L	9.0	75.9	99	85-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Batch BC41233 - VSS Prep										
Blank (BC41233-BLK1)					Prepared:	03/12/14 Ar	nalyzed: 03/	'14/14		
Volatile Suspended Solids	1 U	1		mg/L						
Total Suspended Solids	1 U	1	1	mg/L						
LCS (BC41233-BS1)					Prepared:	03/12/14 Ar	nalyzed: 03/	'14/14		
Total Suspended Solids	48.5	1	1	mg/L	50		97	85-115		
Duplicate (BC41233-DUP1)		Source: 1	402492-01		Prepared:	03/12/14 Ar	nalyzed: 03/	/14/14		
Total Suspended Solids	30.0	1	1	mg/L		30.0			0	30

mg/L

12.2

Volatile Suspended Solids

10.2

1

18

20

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
				Onito	Lever	rtcount	/iiteo	Linito		Linin
Batch BC41301 - Ortho phosph	orus SM4500	P-E by sea								
Blank (BC41301-BLK1)					Prepared &	Analyzed:	03/11/14			
Orthophosphate as P	0.012 U	0.040	0.012	mg/L						
LCS (BC41301-BS1)					Prepared &	Analyzed:	03/11/14			
Orthophosphate as P	0.824	0.040	0.012	mg/L	0.80		103	90-110		
Matrix Spike (BC41301-MS1)		Source: 1	402492-11		Prepared &	& Analyzed:	03/11/14			
Orthophosphate as P	1.04	0.040	0.012	mg/L	1.0	ND	104	90-110		
Matrix Spike Dup (BC41301-MSD1)		Source: 1	402492-11		Prepared &	& Analyzed:	03/11/14			
Orthophosphate as P	1.06	0.040	0.012	mg/L	1.0	ND	106	90-110	2	20
Batch BC41334 - Ammonia by S	SEAL									
Blank (BC41334-BLK1)					Prepared &	Analyzed:	03/14/14			
Ammonia as N	0.009 U	0.040	0.009	mg/L						
LCS (BC41334-BS1)					Prepared &	Analyzed:	03/14/14			
Ammonia as N	0.51	0.040	0.009	mg/L	0.50		102	90-110		
Matrix Spike (BC41334-MS1)		Source: 1	401222-11		Prepared &	Analyzed:	03/14/14			
Ammonia as N	0.48	0.040	0.009	mg/L	0.50	ND	97	90-110		
Matrix Spike (BC41334-MS2)		Source: 1	402484-01		Prepared &	& Analyzed:	03/14/14			
Ammonia as N	0.49	0.040	0.009	mg/L	0.50	ND	98	90-110		
Matrix Spike Dup (BC41334-MSD1)		Source: 1	401222-11		Prepared &	& Analyzed:	03/14/14			
Ammonia as N	0.52	0.040	0.009	mg/L	0.50	ND	103	90-110	7	10

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41334 - Ammonia b	y SEAL									
Matrix Spike Dup (BC41334-MSI	02)	Source: 1	402484-01		Prepared 8	Analyzed:	03/14/14			
Ammonia as N	0.52	0.040	0.009	mg/L	0.50	ND	105	90-110	6	10
Batch BC41343 - TOC prep										
Blank (BC41343-BLK1)					Prepared &	Analyzed:	03/14/14			
Total Organic Carbon	0.060 U	1.0	0.060	mg/L						
LCS (BC41343-BS1)					Prepared &	Analyzed:	03/14/14			
Total Organic Carbon	10.4	1.0	0.060	mg/L	10		104	90-110		
Matrix Spike (BC41343-MS1)		Source: 1	402613-03		Prepared &	Analyzed:	03/14/14			
Total Organic Carbon	18.3 J5	1.0	0.060	mg/L	10	9.87	85	85-115		
Matrix Spike Dup (BC41343-MSI	01)	Source: 1	402613-03		Prepared &	Analyzed:	03/14/14			
Total Organic Carbon	18.7	1.0	0.060	mg/L	10	9.87	89	85-115	2	10
Batch BC41801 - Ammonia b	y SEAL									
Blank (BC41801-BLK1)					Prepared &	Analyzed:	03/18/14			
Ammonia as N	0.009 U	0.040	0.009	mg/L						
LCS (BC41801-BS1)					Prepared &	Analyzed:	03/18/14			
Ammonia as N	0.52	0.040	0.009	mg/L	0.50		105	90-110		
Matrix Spike (BC41801-MS1)		Source: 1	402550-07		Prepared &	Analyzed:	03/18/14			
Ammonia as N	0.50	0.040	0.009	mg/L	0.50	ND	99	90-110		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41801 - Ammonia by	SEAL									
Matrix Spike (BC41801-MS2)		Source: 1	402684-07		Prepared 8	Analyzed:	03/18/14			
Ammonia as N	0.49	0.040	0.009	mg/L	0.50	0.044	90	90-110		
Matrix Spike Dup (BC41801-MSD1)		Source: 1	402550-07		Prepared &	Analyzed:	03/18/14			
Ammonia as N	0.51	0.040	0.009	mg/L	0.50	ND	102	90-110	3	10
Matrix Spike Dup (BC41801-MSD2)		Source: 1	402684-07		Prepared &	Analyzed:	03/18/14			
Ammonia as N	0.51	0.040	0.009	mg/L	0.50	0.044	94	90-110	4	10
Batch BC41812 - alkalinity										
Blank (BC41812-BLK1)					Prepared 8	Analyzed:	03/18/14			
Total Alkalinity	2.0 U	8.0	2.0	mg/L						
LCS (BC41812-BS1)					Prepared &	Analyzed:	03/18/14			
Total Alkalinity	130	8.0	2.0	mg/L	120		101	90-110		
LCS (BC41812-BS2)					Prepared &	Analyzed:	03/18/14			
Total Alkalinity	120	8.0	2.0	mg/L	120		98	90-110		
LCS (BC41812-BS3)					Prepared &	Analyzed:	03/18/14			
Total Alkalinity	120	8.0	2.0	mg/L	120		100	90-110		
LCS (BC41812-BS4)					Prepared &	Analyzed:	03/18/14			
Total Alkalinity	130	8.0	2.0	mg/L	120		100	90-110		
LCS (BC41812-BS5)					Prepared &	Analyzed:	03/18/14			
Total Alkalinity	120	8.0	2.0	mg/L	120		99	90-110		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte Batch BC41812 - alkalinity	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Matrix Spike (BC41812-MS1)		Source: 1	402550-07	,	Prepared &	& Analyzed:	03/18/14			
Total Alkalinity	130	8.0	2.0	mg/L	120	ND	104	80-120		
Matrix Spike Dup (BC41812-MSD	1)	Source: 1	402550-07	,	Prepared &	& Analyzed:	03/18/14			
Total Alkalinity	130	8.0	2.0	mg/L	120	ND	106	80-120	1	26

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41043 - Ion Chroma	tography 300.0	Prep								
Blank (BC41043-BLK1)					Prepared 8	Analyzed:	03/11/14			
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
_CS (BC41043-BS1)					Prepared &	Analyzed:	03/11/14			
Nitrite (as N)	1.44	0.04	0.01	mg/L	1.4		103	85-115		
Nitrate (as N)	1.70	0.04	0.01	mg/L	1.7		100	85-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
LCS Dup (BC41043-BSD1)					Prepared &	Analyzed:	03/11/14			
Nitrite (as N)	1.43	0.04	0.01	mg/L	1.4		102	85-115	0.6	200
Nitrate (as N)	1.68	0.04	0.01	mg/L	1.7		99	85-115	0.9	200
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Matrix Spike (BC41043-MS1)		Source: 1	402508-01		Prepared &	Analyzed:	03/11/14			
Nitrate (as N)	10.3	0.04	0.01	mg/L	1.7	8.74	92	85-115		
Nitrite (as N)	2.85	0.04	0.01	mg/L	1.4	1.31	110	85-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Matrix Spike (BC41043-MS2)		Source: 1	402492-08		Prepared &	Analyzed:	03/11/14			
Nitrite (as N)	2.06	0.04	0.01	mg/L	1.4	0.685	98	85-115		
Nitrate (as N)	9.45	0.04	0.01	mg/L	1.7	7.74	101	85-115		
Surrogate: Dichloroacetate	1.09			mg/L	1.0		109	90-115		
Surrogate: Dichloroacetate	1.09			mg/L	1.0		109	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41044 - Ion Chroma	tography 300.0	Prep								
Blank (BC41044-BLK1)					Prepared 8	Analyzed:	03/11/14			
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Surrogate: Dichloroacetate	1.07			mg/L	1.0		107	90-115		
Surrogate: Dichloroacetate	1.07			mg/L	1.0		107	90-115		
LCS (BC41044-BS1)					Prepared 8	Analyzed:	03/11/14			
Nitrate (as N)	1.68	0.04	0.01	mg/L	1.7		99	85-115		
Nitrite (as N)	1.45	0.04	0.01	mg/L	1.4		103	85-115		
Surrogate: Dichloroacetate	1.10			mg/L	1.0		110	90-115		
Surrogate: Dichloroacetate	1.10			mg/L	1.0		110	90-115		
LCS Dup (BC41044-BSD1)					Prepared 8	Analyzed:	03/11/14			
Nitrite (as N)	1.45	0.04	0.01	mg/L	1.4		103	85-115	0	200
Nitrate (as N)	1.70	0.04	0.01	mg/L	1.7		100	85-115	0.9	200
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Matrix Spike (BC41044-MS1)		Source: 1	402047-01		Prepared 8	Analyzed:	03/12/14			
Nitrite (as N)	14.5	0.40	0.10	mg/L	14	ND	104	85-115		
Nitrate (as N)	17.1	0.40	0.10	mg/L	17	ND	101	85-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Matrix Spike (BC41044-MS2)		Source: 1	402322-01		Prepared 8	Analyzed:	03/11/14			
Nitrate (as N)	179	4.0	1.0	mg/L	170	7.60	101	85-115		
Nitrite (as N)	142	4.0	1.0	mg/L	140	3.00	100	85-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41202 - Digestion for	or TP and TKN									
Blank (BC41202-BLK1)					Prepared:	03/12/14 Ar	nalyzed: 03/	/17/14		
Total Kjeldahl Nitrogen	0.050 U	0.20	0.050	mg/L						
LCS (BC41202-BS1)					Prepared:	03/12/14 Ar	nalyzed: 03	/17/14		
Total Kjeldahl Nitrogen	0.924	0.20	0.050	mg/L	1.0		92	90-110		
Matrix Spike (BC41202-MS1)		Source: 1	402599-02		Prepared:	03/12/14 Ar	nalyzed: 03	/17/14		
Total Kjeldahl Nitrogen	1.97	0.20	0.050	mg/L	1.0	0.927	104	90-110		
Matrix Spike (BC41202-MS2)		Source: 1	402613-07		Prepared:	03/12/14 Ar	nalyzed: 03	/17/14		
Total Kjeldahl Nitrogen	0.974	0.20	0.050	mg/L	1.0	ND	97	90-110		
Matrix Spike Dup (BC41202-MSD	1)	Source: 1	402599-02		Prepared:	03/12/14 Ar	nalyzed: 03	/17/14		
Total Kjeldahl Nitrogen	2.02	0.20	0.050	mg/L	1.0	0.927	109	90-110	3	20
Matrix Spike Dup (BC41202-MSD	2)	Source: 1	402613-07		Prepared:	03/12/14 Ar	nalyzed: 03	/17/14		
Total Kjeldahl Nitrogen	1.03	0.20	0.050	mg/L	1.0	ND	103	90-110	5	20
Batch BC41220 - BOD Dissol	ved									
Blank (BC41220-BLK1)					Prepared:	03/12/14 Ar	nalyzed: 03	/17/14		
Carbonaceous BOD	2 U	2	2	mg/L						
LCS (BC41220-BS1)					Prepared:	03/12/14 Ar	nalyzed: 03	/17/14		
Carbonaceous BOD	196	2	2	mg/L	200		98	85-115		
LCS Dup (BC41220-BSD1)					Prepared:	03/12/14 Ar	nalyzed: 03	/17/14		
Carbonaceous BOD	194	2	2	mg/L	200		97	85-115	1	200

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41220 - BOD Dissol	ved									
Duplicate (BC41220-DUP1)		Source: 1	402492-10		Prepared:	03/12/14 Ar	nalyzed: 03/	/17/14		
Carbonaceous BOD	14	2	2	mg/L		14			4	25
Batch BC41221 - Ion Chroma	tography 300.0	Prep								
Blank (BC41221-BLK1)					Prepared &	Analyzed:	03/12/14			
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
LCS (BC41221-BS1)					Prepared &	Analyzed:	03/12/14			
Nitrate (as N)	1.69	0.04	0.01	mg/L	1.7		99	85-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
LCS Dup (BC41221-BSD1)					Prepared &	Analyzed:	03/12/14			
Nitrate (as N)	1.70	0.04	0.01	mg/L	1.7		100	85-115	0.6	200
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Matrix Spike (BC41221-MS1)		Source: 1	402492-06		Prepared &	Analyzed:	03/12/14			
Nitrate (as N)	56.2	0.40	0.10	mg/L	17	37.6	109	85-115		
Surrogate: Dichloroacetate	1.07			mg/L	1.0		107	90-115		
Matrix Spike (BC41221-MS2)		Source: 1	402141-01		Prepared &	Analyzed:	03/12/14			
Nitrate (as N)	17.2	0.40	0.10	mg/L	17		101	85-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Batch BC42102 - Ammonia by	/ SEAL									
Blank (BC42102-BLK1)					Prepared 8	Analyzed:	03/21/14			
Ammonia as N	0.009 U	0.040	0.009	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC42102 - Ammonia b	y SEAL									
LCS (BC42102-BS1)					Prepared &	Analyzed:	03/21/14			
Ammonia as N	0.50	0.040	0.009	mg/L	0.50		100	90-110		
Matrix Spike (BC42102-MS1)		Source: 1	402492-08		Prepared &	Analyzed:	03/21/14			
Ammonia as N	0.76	0.040	0.009	mg/L	0.50	0.27	97	90-110		
Matrix Spike Dup (BC42102-MSD	01)	Source: 1	402492-08		Prepared &	Analyzed:	03/21/14			
Ammonia as N	0.78	0.040	0.009	mg/L	0.50	0.27	102	90-110	3	10

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Microbiology - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch BC41032 - FC-MF											
Blank (BC41032-BLK1)					Prepared:	03/10/14 Ar	nalyzed: 03/	'11/14			
Fecal Coliforms	1 U	1	1	CFU/100 m	าไ						
Duplicate (BC41032-DUP1)		Source: 1402480-02 Prepared: 03/10/14 Analyzed: 03/11/14									
Fecal Coliforms	1 U	1	1	CFU/100 m	าไ	ND				200	
Batch BC41033 - TC-MF											
Blank (BC41033-BLK1)					Prepared:	03/10/14 Ar	nalyzed: 03/	/11/14			
Total Coliform	1 U	1	1	CFU/100 m	าไ						
Duplicate (BC41033-DUP1)		Source: 1	402492-0	07	Prepared:	03/10/14 Ar	nalyzed: 03/	'11/14			
Total Coliform	10.0	1	1	CFU/100 m	าไ	9.00			11	200	

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402492

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

* Qualifiers, Notes and Definitions

Results followed by a "U" indicate that the sample was analyzed but the compound was not detected. Results followed by "I" indicate that the reported value is between the laboratory method detection limts and the laboratory practical quantitation limit.

A statement of estimated uncertainty of test results is available upon request.

For methods marked with **, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Test results in this report meet all the requirements of the NELAC standards. Any applicable qualifiers are shown below.

L Off-scale high. Result exceeded highest calibration standard.

J5 Matrix spike of this sample was outside typical range. All other QC criteria were acceptable.

Questions regarding this report should be directed to :

Kathryn Nordmark Telephone (813) 855-1844 FAX (813) 855-2218 Kathryn@southernanalyticallabs.com

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Client Name Project Name / Lo Samplers: (Signat	bocation ture) Matrix Codes: hking Water WW-Wastewater	and Sawyer								Contact / Josefin Hi		20 4409					
-	ture) Matrix Codes: nking Water WW-Wastewater	SE#8	~~~							ana cuttur	tar ola-or	00-4490					
Samplers: (Signal	Matrix Codes:	L-															
	nking Water WW-Wastewater	1e			-				PARAMET	ER / CON		SCRIPTIC	DN .				
SW-Surfa	aceWater SL-Sludge SO-Soil dwater SA-Saline Water O-Other R-Reagent Water Sample Description	Date	Time	Matrix	Composite	Grab 125mLP, Na ₂ S ₂ O ₃ FC-MF, FC-QT	1LP, Cool Total Alkalinity, TSS, VSS, CBOD, NOX, OP, SO4	125mLP, H ₂ SO4 COD, TKN, NH ₃ , TP	500mLP, NaOH, Zn Acetate H ₂ S	40mLaV, HCI TOC	1LP, Cool Lab Filtered: CBOD, TKN, NH ₃ , NOx	н	1LP, Cool Lab Filtered: CBOD, TKN, NH ₃ , NOx, SO ₄	ø	Ha	Temperature	Conductivity
01 BHS2-STE		3/10/14	1000	ww		X 4	1	1	1	2				0.03	7.18	220	1410
02 BHS2-STE	E-FILTERED	1	1005	ww		x					1			1	1	1	1
03 BHS2-REC	CIRC		0950	ww		x 4	1	1	1	2				008	7.34	21.5	1432
04 BHS2-ST1			0921	ww		X 4	1	1	1	2				4.80	7.05	20.3	1216
05 BHS2-ST1	I-DUP		0926	ww		X 4	1	1	1	2				1	1	1	ſ
06 BHS2-ST1	I-FILTERED		0926	ww		x					1				1		
07 BHS2-LIG	NO-0		OFOZ.	ww		x	1	1	1	2		6		0.35	7.01	20.6	1217
08 BHS2-LIG	NO-0-FILTERED		0907	ww		x					1			1	1	1	1
09 BHS2-ST2	2		0845	ww		x	1	1	1	2		6		0.22	7.04	205	1209
10 BHS2-ST2	2-FILTERED		0850	ww		x							1			L	1
11 BHS2-EB			1015	R		x	1	1	1	2		6		7.68	7.09	187	1.24
Containers Prepared/ Relinquished:	1-29-14	Received:	i the	the (30-14	18:30	Seal inta Samples	ct? Intact upon a	•	D N NA D N NA			Instructio	ns / Rema	irks	
Relinquished:	Date/Time: //40 3/10/14 Date/Time:	Réceived:	rdm	nik	Date/ Date/	Fime: 10/14 Fime:	140	Proper p	d on ice? Ter reservatives ithin holding ti	indicated?	13 N NA 9 N NA 13 N NA						
Relinquished:	Date/Time:	Received:			Date/				rec'd w/out i ontainers use	-d?	v						
Relinquished:	Date/Time:	Received:			Date/	lime:				(C	9 n na						

Chein of Custody.xis Rev.Date 11/19/01

Page 27 of 27

Chain of Custody

SAL Project No. 1402492

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

March 27, 2014 Work Order: 1402550

Project Name		B-HS2						
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Di	lution
Sample Description		BHS2-STE						
Matrix		Wastewater						
SAL Sample Number		1402550-01						
Date/Time Collected		03/11/14 11:45						
Collected by		Sean Schmidt						
Date/Time Received		03/11/14 13:00						
Client Provided Field Data								
рН		7.15						
Temperature		21.8 °C						
Conductivity		1425 umhos						
Dissolved Oxygen		0.03 mg/L						
Inorganics	ma/l	22	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Hydrogen Sulfide (Unionized) Ammonia as N	mg/L	40	EPA 350.1	2.0	0.01	03/10/14 00.20	03/20/14 09:31	
	mg/L	390	SM 5210B	2.0	0.47	02/12/14 10:20		
Carbonaceous BOD	mg/L	450	EPA 410.4	2 25	2 10	03/13/14 10:28	03/18/14 12:21	
Chemical Oxygen Demand	mg/L	450 0.05	EPA 410.4 EPA 300.0	25 0.04	0.01	03/13/14 09:00	03/14/14 09:13	
Nitrate (as N)	mg/L	0.05 0.01 U	EPA 300.0	0.04	0.01		03/11/14 22:16	
Nitrite (as N)	mg/L	6.5	SM 4500P-E	0.04	0.01		03/11/14 22:16 03/13/14 10:31	
Orthophosphate as P	mg/L	0.5 7.2	SM 4500P-E	0.20	0.000	03/11/14 16:45	03/13/14 10:31	
Phosphorous - Total as P Sulfate	mg/L	4.9	EPA 300.0	0.80	0.20	03/11/14 10.45		
	mg/L		SM 4500SF				03/11/14 22:16	
Sulfide	mg/L	50	SM 43003F SM 2320B	0.40	0.10		03/18/14 08:30	
Total Alkalinity	mg/L	570	EPA 351.2	8.0	2.0	00/14/14 4 40.45	03/18/14 13:12	
Total Kjeldahl Nitrogen	mg/L	60		4.0	1.0	03/11/14 16:45	03/13/14 13:55	
Total Organic Carbon	mg/L	120	SM 5310B	1.0	0.060	00/40/4445-00	03/14/14 11:40	
Total Suspended Solids	mg/L	16	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:06	
Volatile Suspended Solids	mg/L	15	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:06	
Nitrate+Nitrite (N)	mg/L	0.05 l	EPA 300.0	0.08	0.02		03/11/14 22:16	1
<u>Microbiology</u> E. Coli	MPN/100 mL	24,000	SM 9223B	2.0	2.0	03/11/14 14:41	03/12/14 10:07	1
Fecal Coliforms	CFU/100 ml	27,000	SM 9223D	2.0	2.0 1	03/11/14 14:41	03/12/14 10:07	
		27,000				00/11/14 14.41	03/12/14 10.40	
Sample Description		BHS2-RECIRC						
Matrix		Wastewater						
SAL Sample Number		1402550-02						
Date/Time Collected		03/11/14 11:30						
Collected by Date/Time Received		Sean Schmidt						
Date/ Time Received		03/11/14 13:00						
Client Provided Field Data								
рН		7.28						
Temperature		21.8 °C						
Conductivity		1430 umhos						
Dissolved Oxygen		0.07 mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402550

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Project Name		B-HS2						
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Di	lution
Sample Description		BHS2-RECIRC						
Matrix		Wastewater						
SAL Sample Number		1402550-02						
Date/Time Collected		03/11/14 11:30						
Collected by		Sean Schmidt						
Date/Time Received		03/11/14 13:00						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	17	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	40	EPA 350.1	2.0	0.47		03/20/14 13:25	50
Carbonaceous BOD	mg/L	150	SM 5210B	2	2	03/13/14 10:28	03/18/14 12:21	1
Chemical Oxygen Demand	mg/L	270	EPA 410.4	25	10	03/13/14 09:00	03/14/14 09:13	1
Nitrate (as N)	mg/L	0.05	EPA 300.0	0.04	0.01		03/11/14 22:27	1
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 22:27	1
Orthophosphate as P	mg/L	5.9	SM 4500P-E	0.20	0.060		03/13/14 10:33	5
Phosphorous - Total as P	mg/L	6.4	SM 4500P-E	0.80	0.20	03/11/14 16:45	03/13/14 13:56	20
Sulfate	mg/L	3.9	EPA 300.0	0.60	0.20		03/11/14 22:27	1
Sulfide	mg/L	45	SM 4500SF	0.40	0.10		03/18/14 08:30	1
Total Alkalinity	mg/L	580	SM 2320B	8.0	2.0		03/18/14 13:27	1
Total Kjeldahl Nitrogen	mg/L	57	EPA 351.2	4.0	1.0	03/11/14 16:45	03/13/14 13:56	20
Total Organic Carbon	mg/L	71	SM 5310B	1.0	0.060		03/14/14 11:40	1
Total Suspended Solids	mg/L	12	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:06	1
Volatile Suspended Solids	mg/L	12	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:06	1
Nitrate+Nitrite (N)	mg/L	0.05 1	EPA 300.0	0.08	0.02		03/11/14 22:27	
Microbiology				0.00	0.02			
E. Coli	MPN/100 mL	10,000	SM 9223B	2.0	2.0	03/11/14 14:41	03/12/14 10:07	['] 1
Fecal Coliforms	CFU/100 ml	51,000	SM 9222D	1	1	03/11/14 14:41	03/12/14 10:07	
Oceanda Deceministica								
Sample Description Matrix		BHS2-ST1						
SAL Sample Number		Wastewater 1402550-03						
Date/Time Collected		03/11/14 11:15						
Collected by		Sean Schmidt						
Date/Time Received		03/11/14 13:00						
Client Provided Field Data								
		6.04						
pH Temperature		6.91 20.7 °C						
Conductivity		1197 umhos						
Dissolved Oxygen		4.64 mg/L						
Inorganics		č						
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	0.24	EPA 350.1	0.040	0.009		03/20/14 09:35	
Carbonaceous BOD	mg/L	17	SM 5210B	2	2	03/13/14 10:28	03/18/14 12:21	
Chemical Oxygen Demand	mg/L	14	EPA 410.4	25	10	03/13/14 09:00	03/14/14 09:13	
		י די		-0	10	00.10,14 00.00	00.10	

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

March 27, 2014 Work Order: 1402550

Laboratory Report

Project Name								
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Dil	ution
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS2-ST1 Wastewater 1402550-03 03/11/14 11:15 Sean Schmidt 03/11/14 13:00						
Nitrate (as N)	mg/L	37	EPA 300.0	0.40	0.10		03/12/14 21:22	10
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 22:38	1
Orthophosphate as P	mg/L	3.8	SM 4500P-E	0.20	0.060		03/13/14 10:34	5
Phosphorous - Total as P	mg/L	4.1	SM 4500P-E	0.20	0.050	03/11/14 16:45	03/13/14 13:57	5
Sulfate	mg/L	160	EPA 300.0	6.0	2.0	03/11/14 10:43	03/12/14 21:22	10
Sulfide	mg/L	0.10 U	SM 4500SF	0.40	0.10		03/18/14 08:30	1
Total Alkalinity	mg/L	220	SM 2320B	8.0	2.0		03/18/14 13:34	1
Total Kjeldahl Nitrogen	-	220	EPA 351.2	1.0	0.25	03/11/14 16:45	03/13/14 13:57	5
Total Organic Carbon	mg/L	15	SM 5310B	1.0	0.25	03/11/14 10.43	03/14/14 11:40	1
-	mg/L	2	SM 2540D	1.0	0.000	03/12/14 15:00	03/14/14 09:06	1
Total Suspended Solids	mg/L	2 1 U	EPA 160.4		1			1
Volatile Suspended Solids	mg/L	37	EPA 300.4	1 0.44	ı 0.11	03/12/14 15:00	03/14/14 09:06	
Nitrate+Nitrite (N)	mg/L	37	EPA 300.0	0.44	0.11		03/12/14 21:22	10
Microbiology			~					
E. Coli	MPN/100 mL	2,000	SM 9223B	2.0	2.0	03/11/14 14:41	03/12/14 10:07	1
Fecal Coliforms	CFU/100 ml	2,030	SM 9222D	1	1	03/11/14 14:41	03/12/14 13:40	1
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS2-LIGNO-0 Wastewater 1402550-04 03/11/14 11:00 Sean Schmidt 03/11/14 13:00						
Client Provided Field Data								
pH Temperature Conductivity Dissolved Oxygen		7.04 20.8 °C 1115 umhos 0.12 mg/L						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.60	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	0.31	EPA 350.1	0.040	0.009		03/20/14 09:37	1
Carbonaceous BOD	mg/L	15	SM 5210B	2	2	03/13/14 10:28	03/18/14 12:21	1
Chemical Oxygen Demand	mg/L	29	EPA 410.4	25	10	03/13/14 09:00	03/14/14 09:13	1
Nitrate (as N)	mg/L	5.1	EPA 300.0	0.04	0.01		03/11/14 22:50	1
Nitrite (as N)	mg/L	0.57	EPA 300.0	0.04	0.01		03/11/14 22:50	1
Orthophosphate as P	mg/L	3.3	SM 4500P-E	0.20	0.060		03/13/14 10:35	5
P P	•		SM 4500P-E	0.20		02/11/14 16:45		
Phosphorous - Total as P	mg/L	3.4	SIVI 4500F-E	0.20	0.050	03/11/14 16:45	03/13/14 13:58	5

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

March 27, 2014 Work Order: 1402550

Laboratory Report

Project Name		B-HS2	SE#9					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed [Dilution
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS2-LIGNO-0 Wastewater 1402550-04 03/11/14 11:00 Sean Schmidt 03/11/14 13:00						
Sulfide	mg/L	1.2	SM 4500SF	0.40	0.10		03/18/14 08:3	
Total Alkalinity	mg/L	330	SM 2320B	8.0	2.0		03/18/14 13:4	
Total Kjeldahl Nitrogen	mg/L	1.4	EPA 351.2	1.0	0.25	03/11/14 16:45	03/13/14 13:5	8 5
Total Organic Carbon	mg/L	12	SM 5310B	1.0	0.060		03/14/14 11:4	0 1
Total Suspended Solids	mg/L	2	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:0	6 1
Volatile Suspended Solids	mg/L	2	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:0	6 1
Nitrate+Nitrite (N)	mg/L	5.7	EPA 300.0	0.08	0.02		03/11/14 22:5	0 1
<u>Microbiology</u>								
Total Coliform	CFU/100 ml	2	SM 9222B	1	1	03/11/14 14:31	03/12/14 13:4	0 1
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/11/14 14:41	03/12/14 10:0	7 1
Fecal Coliforms	CFU/100 ml	2	SM 9222D	1	1	03/11/14 14:41	03/12/14 13:4	0 1
Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		Wastewater 1402550-05 03/11/14 10:40 Sean Schmidt 03/11/14 13:00						
Client Provided Field Data								
pH Temperature Conductivity Dissolved Oxygen		7.01 20.4 °C 1210 umhos 0.15 mg/L						
Inorganics	100 cr //	45	SM 4550SF	0.04	0.01	02/40/44 00:00	02/40/44 00:2	0 1
Hydrogen Sulfide (Unionized)	mg/L	15		0.04	0.01	03/18/14 08:26	03/18/14 08:3	
Ammonia as N	mg/L	0.30	EPA 350.1	0.040	0.009	00/40/44 40 00	03/20/14 13:2	
Carbonaceous BOD	mg/L	44	SM 5210B	2	2	03/13/14 10:28	03/18/14 12:2	
Chemical Oxygen Demand	mg/L	35	EPA 410.4	25	10	03/13/14 09:00	03/14/14 09:1	
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 23:0	
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 23:0	
Orthophosphate as P	mg/L	3.4	SM 4500P-E	0.20	0.060		03/11/14 13:4	
Phosphorous - Total as P	mg/L	3.5	SM 4500P-E	0.20	0.050	03/11/14 16:45	03/13/14 13:5	
Sulfate	mg/L	170	EPA 300.0	6.0	2.0		03/12/14 21:4	
Sulfide	mg/L	28	SM 4500SF	0.40	0.10		03/18/14 08:3	
Total Alkalinity	mg/L	340	SM 2320B	8.0	2.0		03/18/14 13:5	
Total Kjeldahl Nitrogen	mg/L	0.91 l	EPA 351.2	1.0	0.25	03/11/14 16:45	03/13/14 13:5	
Total Organic Carbon	mg/L	13	SM 5310B	1.0	0.060		03/14/14 11:4	0 1

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402550

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Project Name		B-HS2						
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed D	ilution
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS2-ST2 Wastewater 1402550-05 03/11/14 10:40 Sean Schmidt 03/11/14 13:00						
Total Suspended Solids	mg/L	2	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:06	6 1
Volatile Suspended Solids	mg/L	2	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:06	3 1
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02		03/11/14 23:01	1
Microbiology	Ū							
Total Coliform	CFU/100 ml	1 U	SM 9222B	1	1	03/11/14 14:31	03/12/14 13:40) 1
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/11/14 14:41	03/12/14 10:07	7 1
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	03/11/14 14:41	03/12/14 13:40	
Collected by Date/Time Received Client Provided Field Data pH		Sean Schmidt 03/11/14 13:00 7.01						
Temperature Conductivity Dissolved Oxygen		20.4 °C 1210 umhos 0.15 mg/L						
Inorganics	ma/l	17	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30) 1
Hydrogen Sulfide (Unionized) Ammonia as N	mg/L mg/L	0.33	EPA 350.1	0.04	0.009	03/10/14 00.20	03/20/14 13:28	
Carbonaceous BOD	mg/L	43	SM 5210B	2	2	03/13/14 10:28	03/18/14 12:21	
Chemical Oxygen Demand	mg/L	31	EPA 410.4	25	10	03/13/14 09:00	03/14/14 09:13	
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 23:13	
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/11/14 23:13	
Orthophosphate as P	mg/L	3.4	SM 4500P-E	0.20	0.060		03/13/14 10:36	
Phosphorous - Total as P	mg/L	3.5	SM 4500P-E	0.20	0.050	03/11/14 16:45	03/13/14 14:00	
Sulfate	mg/L	170	EPA 300.0	6.0	2.0		03/12/14 22:04	
Sulfide	mg/L	32	SM 4500SF	0.40	0.10		03/18/14 08:30	
Total Alkalinity	mg/L	330	SM 2320B	8.0	2.0		03/18/14 13:59	
Total Kjeldahl Nitrogen	mg/L	0.88 I	EPA 351.2	1.0	0.25	03/11/14 16:45	03/13/14 14:00	
Total Organic Carbon	mg/L	14	SM 5310B	1.0	0.060		03/14/14 11:40	
Total Suspended Solids	mg/L	2	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:06	51
Volatile Suspended Solids	mg/L	2	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:06	6 1
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02		03/11/14 23:13	3 1
<u>Microbiology</u>								

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402550

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Project Name		B-HS	2 SE#9					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Di	lution
Sample Description		BHS2-ST2-DUP						
Matrix		Wastewater						
SAL Sample Number		1402550-06						
Date/Time Collected		03/11/14 10:45						
Collected by		Sean Schmidt						
Date/Time Received		03/11/14 13:00						
Total Coliform	CFU/100 ml	1 U	SM 9222B	1	1	03/11/14 14:31	03/12/14 13:40	1
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/11/14 14:41	03/12/14 10:07	1
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	03/11/14 14:41	03/12/14 13:40	1
Sample Description		BHS2-EB						
Matrix		Reagent Water						
SAL Sample Number		1402550-07						
Date/Time Collected		03/11/14 10:30						
Collected by		Sean Schmidt						
Date/Time Received		03/11/14 13:00						
Client Provided Field Data								
pН		6.24						
Temperature		22.7 °C						
Conductivity		1.40 umhos						
Dissolved Oxygen		6.88 mg/L						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	
Ammonia as N	mg/L	0.009 U	EPA 350.1	0.040	0.009		03/18/14 11:01	1
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	03/13/14 10:28	03/18/14 12:21	
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10	03/13/14 09:00	03/14/14 09:13	
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/13/14 06:30	
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/13/14 06:30	1
Orthophosphate as P	mg/L	0.012 U	SM 4500P-E	0.040	0.012		03/11/14 13:40	1
Phosphorous - Total as P	mg/L	0.010 U	SM 4500P-E	0.040	0.010	03/11/14 16:45	03/13/14 14:01	1
Sulfate	mg/L	0.20 U	EPA 300.0	0.60	0.20		03/13/14 06:30	1
Sulfide	mg/L	0.10 U	SM 4500SF	0.40	0.10		03/18/14 08:30	
Total Alkalinity	mg/L	2.0 U	SM 2320B	8.0	2.0		03/18/14 14:02	1
Total Kjeldahl Nitrogen	mg/L	0.05 U	EPA 351.2	0.20	0.05	03/11/14 16:45	03/13/14 14:01	1
Total Organic Carbon	mg/L	0.060 U	SM 5310B	1.0	0.060		03/14/14 11:40	1
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:06	1
Volatile Suspended Solids	mg/L	1 U	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:06	1
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02		03/13/14 06:30	1
<u>Microbiology</u>								
Total Coliform	CFU/100 ml	1 U	SM 9222B	1	1	03/11/14 14:31	03/12/14 13:40	1
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/11/14 14:41	03/12/14 10:07	1
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	03/11/14 14:41	03/12/14 13:40	

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Inorganics - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41114 - Ion Chroma	atography 300.0	Prep								
Blank (BC41114-BLK1)					Prepared 8	Analyzed:	03/11/14			
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Sulfate	0.20 U	0.60	0.20	mg/L						
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
LCS (BC41114-BS1)					Prepared 8	Analyzed:	03/11/14			
Nitrate (as N)	1.71	0.04	0.01	mg/L	1.7		101	85-115		
Sulfate	9.22	0.60	0.20	mg/L	9.0		102	85-115		
Nitrite (as N)	1.46	0.04	0.01	mg/L	1.4		104	85-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
LCS Dup (BC41114-BSD1)					Prepared 8	Analyzed:	03/11/14			
Sulfate	9.18	0.60	0.20	mg/L	9.0		102	85-115	0.4	200
Nitrite (as N)	1.46	0.04	0.01	mg/L	1.4		104	85-115	0.3	200
Nitrate (as N)	1.70	0.04	0.01	mg/L	1.7		100	85-115	0.8	200
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Matrix Spike (BC41114-MS1)		Source: 1	402555-02		Prepared 8	Analyzed:	03/11/14			
Sulfate	13.1	0.60	0.20	mg/L	9.0	3.26	109	85-115		
Nitrite (as N)	1.47	0.04	0.01	mg/L	1.4	ND	105	85-115		
Nitrate (as N)	2.14	0.04	0.01	mg/L	1.7	0.294	108	85-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		

March 27, 2014 Work Order: 1402550

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402550

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41114 - Ion Chroma	tography 300.0	Prep								
Matrix Spike (BC41114-MS2)		Source: 1	402397-02		Prepared 8	Analyzed:	03/12/14			
Nitrite (as N)	1.67	0.04	0.01	mg/L	1.4	0.366	93	85-115		
Sulfate	12.8	0.60	0.20	mg/L	9.0	3.52	103	85-115		
Nitrate (as N)	1.90	0.04	0.01	mg/L	1.7	0.121	105	85-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Batch BC41129 - Digestion fo	or TP and TKN									
Blank (BC41129-BLK1)					Prepared: (03/11/14 Ar	alyzed: 03/	13/14		
Phosphorous - Total as P	0.010 U	0.040	0.010	mg/L						
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
LCS (BC41129-BS1)					Prepared: (03/11/14 Ar	alyzed: 03/	13/14		
Phosphorous - Total as P	0.508	0.040	0.010	mg/L	0.50		102	90-110		
Total Kjeldahl Nitrogen	1.01	0.20	0.05	mg/L	1.0		101	90-110		
Matrix Spike (BC41129-MS1)		Source: 1	402521-07		Prepared: (03/11/14 Ar	alyzed: 03/	13/14		
Phosphorous - Total as P	0.706	0.040	0.010	mg/L	0.50	0.199	101	90-110		
Total Kjeldahl Nitrogen	1.76	0.20	0.05	mg/L	1.0	0.733	103	90-110		
Matrix Spike (BC41129-MS2)		Source: 1	402550-07		Prepared: (03/11/14 Ar	alyzed: 03/	13/14		
Phosphorous - Total as P	0.522	0.040	0.010	mg/L	0.50	ND	104	90-110		
Total Kjeldahl Nitrogen	0.921	0.20	0.05	mg/L	1.0	ND	92	90-110		
Matrix Spike Dup (BC41129-MSD	MSD1) Source: 1402521-07				Prepared: (03/11/14 Ar	alyzed: 03/	13/14		
Phosphorous - Total as P	0.700	0.040	0.010	mg/L	0.50	0.199	100	90-110	0.9	25
Total Kjeldahl Nitrogen	1.68	0.20	0.05	mg/L	1.0	0.733	95	90-110	5	20

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402550

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41129 - Digestion fo	or TP and TKN									
Matrix Spike Dup (BC41129-MSI	02)	Source: 1	402550-07		Prepared:	03/11/14 Ar	alyzed: 03/	/13/14		
Phosphorous - Total as P	0.545	0.040	0.010	mg/L	0.50	ND	109	90-110	4	25
Total Kjeldahl Nitrogen	0.933	0.20	0.05	mg/L	1.0	ND	93	90-110	1	20
Batch BC41130 - COD prep										
Blank (BC41130-BLK1)					Prepared:	03/13/14 Ar	nalyzed: 03	/14/14		
Chemical Oxygen Demand	10 U	25	10	mg/L						
LCS (BC41130-BS1)					Prepared:	03/13/14 Ar	nalyzed: 03	/14/14		
Chemical Oxygen Demand	52	25	10	mg/L	50		104	90-110		
Matrix Spike (BC41130-MS1)		Source: 1	402555-02		Prepared:	03/13/14 Ar	nalyzed: 03	/14/14		
Chemical Oxygen Demand	52	25	10	mg/L	50	ND	104	85-115		
Matrix Spike Dup (BC41130-MSE	01)	Source: 1	402555-02		Prepared:	03/13/14 Ar	nalyzed: 03	/14/14		
Chemical Oxygen Demand	52	25	10	mg/L	50	ND	104	85-115	0	32
Batch BC41221 - Ion Chroma	atography 300.0	Prep								
Blank (BC41221-BLK1)					Prepared &	Analyzed:	03/12/14			
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Sulfate	0.20 U	0.60	0.20	mg/L						
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
LCS (BC41221-BS1)					Prepared &	& Analyzed:	03/12/14			
Nitrate (as N)	1.69	0.04	0.01	mg/L	1.7		99	85-115		
Sulfate	9.15	0.60	0.20	mg/L	9.0		102	85-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402550

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Inorganics - Quality Control

					Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BC41221 - Ion Chroma	tography 300.	0 Prep								
LCS Dup (BC41221-BSD1)					Prepared &	& Analyzed:	03/12/14			
Nitrate (as N)	1.70	0.04	0.01	mg/L	1.7		100	85-115	0.6	200
Sulfate	9.17	0.60	0.20	mg/L	9.0		102	85-115	0.2	200
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Matrix Spike (BC41221-MS1)		Source: 1	402492-06	i	Prepared &	Analyzed:	03/12/14			
Nitrate (as N)	56.2	0.40	0.10	mg/L	17	37.6	109	85-115		
Sulfate	255	6.0	2.0	mg/L	90	157	109	85-115		
Surrogate: Dichloroacetate	1.07			mg/L	1.0		107	90-115		
Surrogate: Dichloroacetate	1.07			mg/L	1.0		107	90-115		
Matrix Spike (BC41221-MS2)		Source: 1	402141-01		Prepared &	Analyzed:	03/12/14			
Sulfate	98.6	6.0	2.0	mg/L	90	5.99	103	85-115		
Nitrate (as N)	17.2	0.40	0.10	mg/L	17	ND	101	85-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		

Batch BC41224 - Ion Chromatography 300.0 Prep

Blank (BC41224-BLK1)				l	Prepared & Analy	yzed: 03/13/14	
Nitrate (as N)	0.01 U	0.04	0.01	mg/L			
Nitrite (as N)	0.01 U	0.04	0.01	mg/L			
Sulfate	0.20 U	0.60	0.20	mg/L			
Surrogate: Dichloroacetate	1.10			mg/L	1.0	110	90-115
Surrogate: Dichloroacetate	1.10			mg/L	1.0	110	90-115
Surrogate: Dichloroacetate	1.10			mg/L	1.0	110	90-115

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402550

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41224 - Ion Chromat	ography 300.0	Prep								
LCS (BC41224-BS1)					Prepared &	Analyzed:	03/13/14			
Nitrite (as N)	1.48	0.04	0.01	mg/L	1.4		106	85-115		
Sulfate	9.28	0.60	0.20	mg/L	9.0		103	85-115		
Nitrate (as N)	1.74	0.04	0.01	mg/L	1.7		102	85-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
LCS Dup (BC41224-BSD1)					Prepared &	Analyzed:	03/13/14			
Sulfate	9.24	0.60	0.20	mg/L	9.0		103	85-115	0.4	200
Nitrite (as N)	1.48	0.04	0.01	mg/L	1.4		106	85-115	0.1	200
Nitrate (as N)	1.73	0.04	0.01	mg/L	1.7		102	85-115	0.6	200
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Matrix Spike (BC41224-MS1)		Source: 1	402084-04	Ļ	Prepared &	Analyzed:	03/13/14			
Nitrate (as N)	1.68	0.04	0.01	mg/L	1.7	ND	99	85-115		
Nitrite (as N)	1.44	0.04	0.01	mg/L	1.4	ND	103	85-115		
Sulfate	84.7	0.60	0.20	mg/L	9.0	75.9	99	85-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Batch BC41233 - VSS Prep										
Blank (BC41233-BLK1)					Prepared:	03/12/14 Ar	nalyzed: 03/	/14/14		
Total Suspended Solids	1 U	1	1	mg/L						
Volatile Suspended Solids	1 U	1		mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402550

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41233 - VSS Prep										
LCS (BC41233-BS1)					Prepared:	03/12/14 Ar	nalyzed: 03	/14/14		
Total Suspended Solids	48.5	1	1	mg/L	50		97	85-115		
Duplicate (BC41233-DUP1)		Source: 1	402492-01		Prepared:	03/12/14 Ar	nalyzed: 03	/14/14		
Total Suspended Solids	30.0	1	1	mg/L		30.0			0	30
Volatile Suspended Solids	10.2	1		mg/L		12.2			18	20
Batch BC41301 - Ortho phosph	orus SM4500	P-E by sea	I							
Blank (BC41301-BLK1)					Prepared 8	Analyzed:	03/11/14			
Orthophosphate as P	0.012 U	0.040	0.012	mg/L						
LCS (BC41301-BS1)					Prepared &	& Analyzed:	03/11/14			
Orthophosphate as P	0.824	0.040	0.012	mg/L	0.80		103	90-110		
Matrix Spike (BC41301-MS1)		Source: 1	402492-11		Prepared &	Analyzed:	03/11/14			
Orthophosphate as P	1.04	0.040	0.012	mg/L	1.0	ND	104	90-110		
Matrix Spike Dup (BC41301-MSD1)	1	Source: 1	402492-11		Prepared &	& Analyzed:	03/11/14			
Orthophosphate as P	1.06	0.040	0.012	mg/L	1.0	ND	106	90-110	2	20
Batch BC41302 - Ortho phosph	orus SM4500)P-E by sea	I							
Blank (BC41302-BLK1)					Prepared &	Analyzed:	03/13/14			
Orthophosphate as P	0.012 U	0.040	0.012	mg/L						
LCS (BC41302-BS1)					Prepared &	& Analyzed:	03/13/14			
Orthophosphate as P	0.833	0.040	0.012	mg/L	0.80		104	90-110		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402550

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41302 - Ortho phos	phorus SM4500	P-E by sea	I							
Matrix Spike (BC41302-MS1)			402613-07		Prepared &	& Analyzed:	03/13/14			
Orthophosphate as P	1.05	0.040	0.012	mg/L	1.0	ND	105	90-110		
Matrix Spike (BC41302-MS2)		Source: 1	402626-03		Prepared &	& Analyzed:	03/13/14			
Orthophosphate as P	1.08	0.040	0.012	mg/L	1.0	0.0368	104	90-110		
Matrix Spike Dup (BC41302-MSD)1)	Source: 1	402613-07		Prepared &	& Analyzed:	03/13/14			
Orthophosphate as P	1.05	0.040	0.012	mg/L	1.0	ND	105	90-110	0.5	20
Matrix Spike Dup (BC41302-MSD	2)	Source: 1	402626-03		Prepared &	& Analyzed:	03/13/14			
Orthophosphate as P	1.08	0.040	0.012	mg/L	1.0	0.0368	105	90-110	0.2	20
Batch BC41314 - BOD										
Blank (BC41314-BLK1)					Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Carbonaceous BOD	2 U	2	2	mg/L						
Blank (BC41314-BLK2)					Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Carbonaceous BOD	2 U	2	2	mg/L						
LCS (BC41314-BS1)					Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Carbonaceous BOD	195	2	2	mg/L	200		98	85-115		
LCS (BC41314-BS2)					Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Carbonaceous BOD	196	2	2	mg/L	200		98	85-115		
LCS Dup (BC41314-BSD1)					Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Carbonaceous BOD	195	2	2	mg/L	200		97	85-115	0.3	200

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1402550

March 27, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

A	Desult	DOI	MDL	1.1 14	Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BC41314 - BOD										
LCS Dup (BC41314-BSD2)					Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Carbonaceous BOD	195	2	2	mg/L	200		97	85-115	0.8	200
Duplicate (BC41314-DUP1)		Source: 1	402604-01		Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Carbonaceous BOD	390	2	2	mg/L		400			1	25
Duplicate (BC41314-DUP2)		Source: 1	402661-01		Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Carbonaceous BOD	200	2	2	mg/L		210			3	25
Batch BC41343 - TOC prep										
Blank (BC41343-BLK1)					Prepared &	& Analyzed:	03/14/14			
Total Organic Carbon	0.060 U	1.0	0.060	mg/L						
LCS (BC41343-BS1)					Prepared 8	& Analyzed:	03/14/14			
Total Organic Carbon	10.4	1.0	0.060	mg/L	10		104	90-110		
Matrix Spike (BC41343-MS1)		Source: 1	402613-03		Prepared 8	& Analyzed:	03/14/14			
Total Organic Carbon	18.3 J5	1.0	0.060	mg/L	10	9.87	85	85-115		
Matrix Spike Dup (BC41343-MSD1)	Source: 1	402613-03		Prepared 8	& Analyzed:	03/14/14			
Total Organic Carbon	18.7	1.0	0.060	mg/L	10	9.87	89	85-115	2	10
Batch BC41801 - Ammonia by	SEAL									
Blank (BC41801-BLK1)					Prepared 8	& Analyzed:	03/18/14			
Ammonia as N	0.009 U	0.040	0.009	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402550

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Apoluto	Result	PQL	MDL	Linita	Spike	Source	%REC	%REC	RPD	RPD Limit
Analyte	Result	PQL	IVIDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BC41801 - Ammonia by	SEAL									
LCS (BC41801-BS1)					Prepared &	& Analyzed:	03/18/14			
Ammonia as N	0.52	0.040	0.009	mg/L	0.50		105	90-110		
Matrix Spike (BC41801-MS1)		Source: 1	402550-07		Prepared &	Analyzed:	03/18/14			
Ammonia as N	0.50	0.040	0.009	mg/L	0.50	ND	99	90-110		
Matrix Spike (BC41801-MS2)		Source: 1	402684-07		Prepared &	Analyzed:	03/18/14			
Ammonia as N	0.49	0.040	0.009	mg/L	0.50	0.044	90	90-110		
Matrix Spike Dup (BC41801-MSD	1)	Source: 1	402550-07		Prepared &	Analyzed:	03/18/14			
Ammonia as N	0.51	0.040	0.009	mg/L	0.50	ND	102	90-110	3	10
Matrix Spike Dup (BC41801-MSD)	2)	Source: 1	402684-07		Prepared &	Analyzed:	03/18/14			
Ammonia as N	0.51	0.040	0.009	mg/L	0.50	0.044	94	90-110	4	10
Batch BC41812 - alkalinity										
Blank (BC41812-BLK1)					Prepared &	Analyzed:	03/18/14			
Total Alkalinity	2.0 U	8.0	2.0	mg/L						
LCS (BC41812-BS1)					Prepared 8	Analyzed:	03/18/14			
Total Alkalinity	130	8.0	2.0	mg/L	120		101	90-110		
LCS (BC41812-BS2)					Prepared &	Analyzed:	03/18/14			
Total Alkalinity	120	8.0	2.0	mg/L	120		98	90-110		
LCS (BC41812-BS3)					Prepared 8	& Analyzed:	03/18/14			
Total Alkalinity	120	8.0	2.0	mg/L	120		100	90-110		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1402550

March 27, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Aldyte	Result	I QL		Onito	Lever	result	701120	Linito		Linin
Batch BC41812 - alkalinity										
LCS (BC41812-BS4)					Prepared 8	Analyzed:	03/18/14			
Total Alkalinity	130	8.0	2.0	mg/L	120		100	90-110		
LCS (BC41812-BS5)					Prepared 8	Analyzed:	03/18/14			
Total Alkalinity	120	8.0	2.0	mg/L	120		99	90-110		
Matrix Spike (BC41812-MS1)		Source: 1	402550-07		Prepared 8	Analyzed:	03/18/14			
Total Alkalinity	130	8.0	2.0	mg/L	120	ND	104	80-120		
Matrix Spike Dup (BC41812-MSD1)		Source: 1	402550-07		Prepared 8	Analyzed:	03/18/14			
Total Alkalinity	130	8.0	2.0	mg/L	120	ND	106	80-120	1	26
Batch BC41835 - Sulfide prep										
Blank (BC41835-BLK1)					Prepared 8	Analyzed:	03/18/14			
Sulfide	0.10 U	0.40	0.10	mg/L						
Blank (BC41835-BLK2)					Prepared 8	Analyzed:	03/18/14			
Sulfide	0.10 U	0.40	0.10	mg/L						
LCS (BC41835-BS1)					Prepared 8	Analyzed:	03/18/14			
Sulfide	4.84	0.40	0.10	mg/L	5.0		97	85-115		
LCS (BC41835-BS2)					Prepared 8	Analyzed:	03/18/14			
Sulfide	4.64	0.40	0.10	mg/L	5.0		93	85-115		
Matrix Spike (BC41835-MS1)		Source: 1	402550-07		Prepared 8	Analyzed:	03/18/14			
Sulfide	4.64	0.40	0.10	mg/L	5.0	ND	93	85-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1402550

March 27, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41835 - Sulfide prep										
Matrix Spike (BC41835-MS2)		Source: 1	402721-07		Prepared 8	Analyzed:	03/18/14			
Sulfide	4.64	0.40	0.10	mg/L	5.0	ND	93	85-115		
Matrix Spike Dup (BC41835-MSD1)		Source: 1	402550-07	0	Prepared &	Analyzed:	03/18/14			
Sulfide	4.84	0.40	0.10	mg/L	5.0	ND	97	85-115	4	14
Matrix Spike Dup (BC41835-MSD2)		Source: 1	402721-07		Prepared &	Analyzed:	03/18/14			
Sulfide	4.84	0.40	0.10	mg/L	5.0	ND	97	85-115	4	14
Batch BC41920 - Ammonia by S	EAL									
Blank (BC41920-BLK1)					Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.009 U	0.040	0.009	mg/L						
LCS (BC41920-BS1)					Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.47	0.040	0.009	mg/L	0.50		94	90-110		
Matrix Spike (BC41920-MS1)		Source: 1	402538-15		Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.46	0.040	0.009	mg/L	0.50	ND	92	90-110		
Matrix Spike (BC41920-MS2)		Source: 1	402613-07		Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.48	0.040	0.009	mg/L	0.50	ND	96	90-110		
Matrix Spike Dup (BC41920-MSD1)		Source: 1	402538-15		Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.48	0.040	0.009	mg/L	0.50	ND	96	90-110	4	10
Matrix Spike Dup (BC41920-MSD2)		Source: 1	402613-07		Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.48	0.040	0.009	mg/L	0.50	ND	96	90-110	0.6	10

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402550

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Microbiology - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41117 - TC-MF										
Blank (BC41117-BLK1)					Prepared:	03/11/14 Ar	nalyzed: 03/	12/14		
Total Coliform	1 U	1	1	CFU/100 n	nl					
Duplicate (BC41117-DUP1)		Source: 1	402550-	07	Prepared:	03/11/14 Ar	nalyzed: 03/	12/14		
Total Coliform	1 U	1	1	CFU/100 n	nl	ND				200
Batch BC41118 - FC-MF										
Blank (BC41118-BLK1)					Prepared:	03/11/14 Ar	nalyzed: 03/	12/14		
Fecal Coliforms	1 U	1	1	CFU/100 n	nl					
Duplicate (BC41118-DUP1)		Source: 1	402550-	07	Prepared:	03/11/14 Ar	nalyzed: 03/	12/14		
Fecal Coliforms	1 U	1	1	CFU/100 n	nl	ND				200

ANTED IN ACCORDANCE

Work Order: 1402550

March 27, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

* Qualifiers, Notes and Definitions

Results followed by a "U" indicate that the sample was analyzed but the compound was not detected. Results followed by "I" indicate that the reported value is between the laboratory method detection limts and the laboratory practical quantitation limit.

A statement of estimated uncertainty of test results is available upon request.

For methods marked with **, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Test results in this report meet all the requirements of the NELAC standards. Any applicable qualifiers are shown below.

J5 Matrix spike of this sample was outside typical range. All other QC criteria were acceptable.

Questions regarding this report should be directed to :

Kathryn Nordmark Telephone (813) 855-1844 FAX (813) 855-2218 Kathryn@southernanalyticallabs.com

Finbail

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Client		zan and §	Sawver									Contact / Josefin Hi	Phone: rst 813-6	30-4498					
Projec	t Name / Location								******										
Samp	lers: (Signature)	\$2 SE#9	-/-																
						.	r				PARAMET	ER / CON		SCRIPTIC	DN				
SAL Use Only Sample No.	Matrix Codes: DW-Drinking Water WW-Wastewater SW-SurfaceWater SL-Sludge SO-Soil GW-Groundwater SA-Saline Water O-Other R-Reagent Water Sample Description		Date	Time	Matrix	Composite	Grab	125mLP, Na ₂ S ₂ O ₃ FC-MF, FC-QT	1LP, Cool Total Alkalinity, TSS, VSS, CBOD, NOx, OP, SO4	125mLP, H ₂ SO4 COD, TKN, NH ₃ , TP	500mLP, NaOH, Zn Acetate H ₂ S	40mLaV, HCI TOC	1LP, Cool Lab Filtered: CBOD, TKN, NH ₃ , NOx	125mLP, Na ₂ S ₂ O ₃ FC-MF, FC-QT, TC-MF (Non-potable)	1LP, Cool Lab Fittered: CBOD, TKN, NH ₃ , NOx, SO ₄	DC	Hđ	Temperature	Conductivity
01	BHS2-STE		1/14	1145	ww		x	4	1	1	1	2				0.03	7.15	21.8	1425
02	BHS2-RECIRC		<u>,,,</u>	1130	 ww		x	4	1	1	1	2				0.07	7.28	1 1	1430
02	BHS2-ST1		1	1115	 ww	1	x	4	1	, 1	1	2				4.64		20.7	
	BHS2-LIGNO-0		1	1100	 ww		x		1	' 1	1	2		6		0.12	7.04		1115
	BHS2-ST2		1	1040	 ww	\uparrow	x		1	 1	1	2		6		0.15		20.4	1210
06	BHS2-ST2-DUP		†	1045	ww		x		1	1	1	2		6		1	1	1	10
	BHS2-EB		<u> </u>	1000	 R		x		1	1	1	2		6		6.88	19:55	72.7	1.40
			•	07-			Â			•						<u> </u>		- 60	1.70
	0.1			1		2													
Relinqu	ished: 11-29-14	Rece		C	1		e/Time	124/	90 14	Seal inta Samples	intact upon a	errival?	ON NA			Instructio	ns / Rema	irks	
Relinqu	ished: Date/fime; 30, 3/11/14	\mathcal{L} \mathcal{K}	M	dme	nh	Jate J	e/Timi	114	300	Receive	d on ice? Ter	mp	🕅 N NYA						
Relinqu	iished: Date/Time:	Rece	lved;			Date	e/Tim	e:			reservatives ithin holding ti		∲n nva §n nva						,
Relinqu	iished: Date/Time:	Rece	ived:		<u></u>	Date	e/Time	e:			rec'd w/out f		Y N 🖗						
Relinqu	ilshed: Date/Time:	Rece	ived:		- 1 88	Date	e/Tim	e:		Proper c	ontainers use	^{ad?}	9 n na						
L														J					

Chain of Custody xts Rev.Date 11/19/01

Page 20 of 20

Chain of Custody

SAL Project No. 1402550

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402613

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

NELAP Accredited

Laboratory Report

Project Name		B-HS2	SE#10					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed D	ilution
Sample Description		BHS2-STE						
Matrix		Wastewater						
SAL Sample Number		1402613-01						
Date/Time Collected		03/12/14 09:30						
Collected by		Sean Schmidt						
Date/Time Received		03/12/14 11:30						
Client Provided Field Data								
рН		7.20						
Temperature		21.9 °C						
Conductivity		1411 umhos						
Dissolved Oxygen		0.01 mg/L						
Inorganics Hydrogen Sulfide (Unionized)	mg/L	21	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30) 1
Ammonia as N	mg/L	39	EPA 350.1	2.0	0.01	03/10/14 00.20	03/20/14 09:52	
Carbonaceous BOD	-	390	SM 5210B	2.0	2	03/13/14 10:28	03/18/14 12:2	
	mg/L	390	EPA 410.4	25	2 10	03/13/14 10:28	03/14/14 12:2	
Chemical Oxygen Demand	mg/L	0.01 U	EPA 300.0	0.04	0.01	03/13/14 14.00	03/13/14 04:02	
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01			
Nitrite (as N) Orthophosphate as P	mg/L	6.6	SM 4500P-E	0.04	0.01		03/13/14 04:02 03/13/14 10:36	
	mg/L		SM 4500P-E SM 4500P-E			02/42/44 00:20		
Phosphorous - Total as P	mg/L	6.7		0.80	0.20	03/12/14 09:30	03/17/14 10:45	
Sulfate	mg/L	15	EPA 300.0	0.60	0.20		03/13/14 04:02	
Sulfide	mg/L	52	SM 4500SF	0.40	0.10		03/18/14 08:30	
Total Alkalinity	mg/L	550	SM 2320B	8.0	2.0	00/40/44 00 00	03/18/14 14:4	
Total Kjeldahl Nitrogen	mg/L	60	EPA 351.2	4.0	1.0	03/12/14 09:30	03/17/14 10:4	
Total Organic Carbon	mg/L	98	SM 5310B	1.0	0.060		03/14/14 11:40	
Total Suspended Solids	mg/L	16	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:06	
Volatile Suspended Solids	mg/L	16	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:06	
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02		03/13/14 04:02	2 1
Microbiology			01100005					
E. Coli	MPN/100 mL	24,000	SM 9223B	2.0	2.0	03/12/14 12:57	03/13/14 09:17	
Fecal Coliforms	CFU/100 ml	43,000	SM 9222D	1	1	03/12/14 12:55	03/13/14 12:38	3 1
Sample Description		BHS2-RECIRC						
Matrix		Wastewater						
SAL Sample Number		1402613-02						
Date/Time Collected		03/12/14 09:15						
Collected by Date/Time Received		Sean Schmidt						
Date/Time Received		03/12/14 11:30						
Client Provided Field Data								
рН		7.25						
Temperature		21.6 °C						
Conductivity		1418 umhos						
Dissolved Oxygen		0.04 mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402613

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Laboratory Report

Project Name		B-HS2	SE#10					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Dil	ution
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by		BHS2-RECIRC Wastewater 1402613-02 03/12/14 09:15						
Date/Time Received		Sean Schmidt 03/12/14 11:30						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	15	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	40	EPA 350.1	2.0	0.47		03/20/14 13:30	50
Carbonaceous BOD	mg/L	200	SM 5210B	2	2	03/13/14 10:28	03/18/14 12:21	1
Chemical Oxygen Demand	mg/L	310	EPA 410.4	25	10	03/13/14 14:00	03/14/14 16:45	1
Nitrate (as N)	mg/L	0.05	EPA 300.0	0.04	0.01		03/13/14 04:14	1
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/13/14 04:14	1
Orthophosphate as P	mg/L	5.9	SM 4500P-E	0.20	0.060		03/13/14 10:37	5
		6.2	SM 4500P-E		0.000	03/12/14 09:30		20
Phosphorous - Total as P	mg/L			0.80		03/12/14 09:30	03/17/14 10:46	
Sulfate	mg/L	7.8	EPA 300.0	0.60	0.20		03/13/14 04:14	1
Sulfide	mg/L	39	SM 4500SF	0.40	0.10		03/18/14 08:30	1
Total Alkalinity	mg/L	590	SM 2320B	8.0	2.0		03/18/14 14:57	1
Total Kjeldahl Nitrogen	mg/L	63	EPA 351.2	4.0	1.0	03/12/14 09:30	03/17/14 10:46	20
Total Organic Carbon	mg/L	58	SM 5310B	1.0	0.060		03/14/14 11:40	1
Total Suspended Solids	mg/L	14	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:06	1
Volatile Suspended Solids	mg/L	13	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:06	1
Nitrate+Nitrite (N)	mg/L	0.05 I	EPA 300.0	0.08	0.02		03/13/14 04:14	1
Microbiology	-							
E. Coli	MPN/100 mL	20,000	SM 9223B	2.0	2.0	03/12/14 12:57	03/13/14 09:17	1
Fecal Coliforms	CFU/100 ml	66,000	SM 9222D	1	1	03/12/14 12:55	03/13/14 12:38	1
Sample Description Matrix		BHS2-ST1 Wastewater						
SAL Sample Number Date/Time Collected Collected by		1402613-03 03/12/14 08:55 Sean Schmidt						
Date/Time Received		03/12/14 11:30						
Client Provided Field Data								
pH Temperature Conductivity Dissolved Oxygen		7.09 21.8 °C 1215 umhos 4.85 mg/L						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	1.6	EPA 350.1	0.040	0.009		03/20/14 09:56	1
	-		SM 5210B			00/40/4440:00		
Carbonaceous BOD	mg/L	18	3111 32 100	2	2	03/13/14 10:28	03/18/14 12:21	1

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

March 27, 2014 Work Order: 1402613

Laboratory Report

Project Name		B-HS2	SE#10					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Dil	ution
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS2-ST1 Wastewater 1402613-03 03/12/14 08:55 Sean Schmidt 03/12/14 11:30						
Nitrate (as N)	mg/L	31	EPA 300.0	0.04	0.01		03/13/14 04:25	1
Nitrite (as N)	mg/L	0.32	EPA 300.0	0.04	0.01		03/13/14 04:25	1
Orthophosphate as P	mg/L	3.9	SM 4500P-E	0.20	0.060		03/13/14 10:38	5
Phosphorous - Total as P	mg/L	4.0	SM 4500P-E	0.20	0.050	03/12/14 09:30	03/17/14 10:47	5
Sulfate	mg/L	150	EPA 300.0	6.0	2.0		03/25/14 11:44	10
Sulfide	mg/L	0.10 U	SM 4500SF	0.40	0.10		03/18/14 08:30	1
Total Alkalinity	mg/L	240	SM 2320B	8.0	2.0		03/18/14 15:04	1
Total Kjeldahl Nitrogen	mg/L	4.7	EPA 351.2	1.0	0.25	03/12/14 09:30	03/17/14 10:47	5
Total Organic Carbon	mg/L	9.9	SM 5310B	1.0	0.060		03/14/14 11:40	1
Total Suspended Solids	mg/L	2	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:06	1
Volatile Suspended Solids	mg/L	2	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:06	1
Nitrate+Nitrite (N)	mg/L	31	EPA 300.0	0.08	0.02		03/13/14 04:25	1
Microbiology	0							
E. Coli	MPN/100 mL	10,000	SM 9223B	2.0	2.0	03/12/14 12:57	03/13/14 09:17	1
Fecal Coliforms	CFU/100 ml	11,300	SM 9222D	1	1	03/12/14 12:55	03/13/14 12:38	1
Sample Description		BHS2-LIGNO-0						
Matrix		Wastewater						
SAL Sample Number		1402613-04						
Date/Time Collected		03/12/14 08:35						
Collected by Date/Time Received		Sean Schmidt						
		03/12/14 11:30						
Client Provided Field Data								
pH Temperature Conductivity Dissolved Oxygen		7.08 21.4 °C 1116 umhos 1.19 mg/L						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.28	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	0.28	EPA 350.1	0.040	0.009		03/20/14 09:58	1
Carbonaceous BOD	mg/L	17	SM 5210B	2	2	03/13/14 10:28	03/18/14 12:21	1
Chemical Oxygen Demand	mg/L	25	EPA 410.4	25	10	03/13/14 14:00	03/14/14 16:45	1
Nitrate (as N)	mg/L	5.4	EPA 300.0	0.04	0.01	00/10/14 14:00	03/13/14 04:37	1
Nitrite (as N)	mg/L	0.46	EPA 300.0	0.04	0.01		03/13/14 04:37	1
()	-	3.3	SM 4500P-E	0.04	0.01		03/13/14 04.37	
Orthophosphate as P	mg/L		SM 4500P-E SM 4500P-E			02/12/14 00:20		5
Phosphorous - Total as P	mg/L	3.6		0.20	0.050	03/12/14 09:30	03/17/14 10:48	5
Sulfate	mg/L	150	EPA 300.0	6.0	2.0		03/24/14 21:18	10

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402613

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Laboratory Report

Project Name		B-HS2	SE#10					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Dil	lution
Sample Description		BHS2-LIGNO-0						
Matrix		Wastewater						
SAL Sample Number		1402613-04						
Date/Time Collected		03/12/14 08:35						
Collected by		Sean Schmidt						
Date/Time Received		03/12/14 11:30						
Sulfide	mg/L	0.60	SM 4500SF	0.40	0.10		03/18/14 08:30	1
Total Alkalinity	mg/L	340	SM 2320B	8.0	2.0		03/25/14 12:59	1
Total Kjeldahl Nitrogen	mg/L	1.7	EPA 351.2	1.0	0.25	03/12/14 09:30	03/17/14 10:48	5
Total Organic Carbon	mg/L	410	SM 5310B	1.0	0.060		03/17/14 14:05	1
Total Suspended Solids	mg/L	1	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:06	1
Volatile Suspended Solids	mg/L	1 U	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:06	1
Nitrate+Nitrite (N)	mg/L	5.9	EPA 300.0	0.08	0.02		03/13/14 04:37	1
Microbiology			014 00000			00/40/44 40 50	00/10/14 10 00	
Total Coliform	CFU/100 ml	1 U	SM 9222B	1	1	03/12/14 12:56	03/13/14 12:33	1
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/12/14 12:57	03/13/14 09:17	1
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	03/12/14 12:55	03/13/14 12:38	1
Sample Description		BHS2-ST2						
Matrix		Wastewater						
SAL Sample Number		1402613-05						
Date/Time Collected		03/12/14 08:15						
Collected by		Sean Schmidt						
Date/Time Received		03/12/14 11:30						
Client Provided Field Data								
pН		6.96						
Temperature		20.5 °C						
Conductivity		1208 umhos						
Dissolved Oxygen		0.06 mg/L						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	12	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	0.38	EPA 350.1	0.040	0.009		03/20/14 13:32	1
Carbonaceous BOD	mg/L	61	SM 5210B	2	2	03/13/14 10:28	03/18/14 12:21	1
Chemical Oxygen Demand	mg/L	93	EPA 410.4	25	10	03/13/14 14:00	03/14/14 16:45	1
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/13/14 04:48	1
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/13/14 04:48	1
Orthophosphate as P	mg/L	3.4	SM 4500P-E	0.20	0.060		03/13/14 10:40	5
								-

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

Phosphorous - Total as P

Total Kjeldahl Nitrogen

Total Organic Carbon

Sulfate

Sulfide

Total Alkalinity

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

03/17/14 10:49

03/24/14 21:27

03/18/14 08:30

03/25/14 13:08

03/17/14 10:49

03/17/14 14:05

5

10

1

1

5

1

SM 4500P-E

EPA 300.0

SM 4500SF

SM 2320B

EPA 351.2

SM 5310B

0.20

6.0

0.40

8.0

1.0

1.0

0.050 03/12/14 09:30

03/12/14 09:30

2.0

0.10

2.0

0.25

0.060

3.6

230

23

320

1.3

13

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

March 27, 2014 Work Order: 1402613

Laboratory Report

Project Name		B-HS2	SE#10					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Di	lution
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS2-ST2 Wastewater 1402613-05 03/12/14 08:15 Sean Schmidt 03/12/14 11:30						
Total Suspended Solids	mg/L	2	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:06	1
Volatile Suspended Solids	mg/L	1 U	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:06	
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02		03/13/14 04:48	1
<u>Microbiology</u> Total Coliform	CFU/100 ml	1 U	SM 9222B	1	1	03/12/14 12:56	03/13/14 12:33	1
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/12/14 12:57	03/13/14 12:33	1
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	03/12/14 12:55	03/13/14 12:38	
Date/Time Collected Collected by Date/Time Received		03/12/14 08:20 Sean Schmidt 03/12/14 11:30						
Client Provided Field Data								
pH Temperature Conductivity Dissolved Oxygen		6.96 20.5 °C 1208 umhos 0.06 mg/L						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	14	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	
Ammonia as N	mg/L	0.37	EPA 350.1	0.040	0.009		03/20/14 13:33	
Carbonaceous BOD	mg/L	65	SM 5210B	2	2	03/13/14 10:28	03/18/14 12:21	1
Chemical Oxygen Demand	mg/L	97	EPA 410.4 EPA 300.0	25	10	03/13/14 14:00	03/14/14 16:45	
Nitrate (as N)	mg/L	0.04 0.01 U	EPA 300.0 EPA 300.0	0.04 0.04	0.01 0.01		03/13/14 04:59 03/13/14 04:59	
Nitrite (as N)	mg/L	3.4	SM 4500P-E	0.04	0.060			5
Orthophosphate as P Phosphorous - Total as P	mg/L mg/L	3.5	SM 4500P-E	0.20	0.000	03/12/14 09:30	03/13/14 10:41 03/17/14 10:52	
Sulfate	mg/L	210	EPA 300.0	6.0	2.0	00/12/14 00:00	03/25/14 12:03	
Sulfide	mg/L	26	SM 4500SF	0.40	0.10		03/18/14 08:30	
Total Alkalinity	mg/L	320	SM 2320B	8.0	2.0		03/25/14 13:17	
Total Kjeldahl Nitrogen	mg/L	1.3	EPA 351.2	1.0	0.25	03/12/14 09:30	03/17/14 10:52	
Total Organic Carbon	mg/L	13	SM 5310B	1.0	0.060		03/17/14 14:05	
Total Suspended Solids	mg/L	1	SM 2540D	1	1	03/12/14 15:00	03/14/14 09:06	
Volatile Suspended Solids	mg/L	1 U	EPA 160.4	1	1	03/12/14 15:00	03/14/14 09:06	
Nitrate+Nitrite (N)	mg/L	0.04 I	EPA 300.0	0.08	0.02		03/13/14 04:59	
Microbiology	č							

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402613

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Laboratory Report

Project Name		B-HS2	2 SE#10					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Di	lution
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS2-ST2-DUP Wastewater 1402613-06 03/12/14 08:20 Sean Schmidt 03/12/14 11:30						
Total Coliform	CFU/100 ml	1 U	SM 9222B	1	1	03/12/14 12:56	03/13/14 12:33	1
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/12/14 12:57	03/13/14 09:17	1
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	03/12/14 12:55	03/13/14 12:38	
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS2-EB Reagent Water 1402613-07 03/12/14 08:00 Sean Schmidt 03/12/14 11:30						
Client Provided Field Data		6 FF						
pH Temperature Conductivity Dissolved Oxygen		6.55 19.0 °C 1.70 umhos 7.10 mg/L						
Inorganics	~~/l	0.01 U	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Hydrogen Sulfide (Unionized) Ammonia as N	mg/L mg/L	0.009 U	EPA 350.1	0.04	0.001	03/10/14 00.20	03/20/14 10:04	
Carbonaceous BOD	mg/L	0.009 U 2 U	SM 5210B	2	2	03/13/14 10:28	03/18/14 12:21	1
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10	03/13/14 14:00	03/14/14 16:45	
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01	00/10/14 14:00	03/13/14 06:08	
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/13/14 06:08	
Orthophosphate as P	mg/L	0.012 U	SM 4500P-E	0.040	0.012		03/13/14 10:10	
Phosphorous - Total as P	mg/L	0.050 U	SM 4500P-E	0.20	0.050	03/12/14 09:30	03/17/14 10:53	
Sulfate	mg/L	0.20 U	EPA 300.0	0.60	0.20		03/13/14 06:08	
Sulfide	mg/L	0.10 U	SM 4500SF	0.40	0.10		03/18/14 08:30	
Total Alkalinity	mg/L	2.0 U	SM 2320B	8.0	2.0		03/25/14 13:20	
Total Kjeldahl Nitrogen	mg/L	0.25 U	EPA 351.2	1.0	0.25	03/12/14 09:30	03/17/14 10:53	
Total Organic Carbon	mg/L	0.060 U	SM 5310B	1.0	0.060		03/17/14 14:05	
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	03/17/14 11:34	03/18/14 17:00	
Volatile Suspended Solids	mg/L	1 U	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:00	
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02		03/13/14 06:08	
Microbiology	<u> </u>							
Total Coliform	CFU/100 ml	1 U	SM 9222B	1	1	03/12/14 12:56	03/13/14 12:33	1
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/12/14 12:57	03/13/14 09:17	
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	03/12/14 12:55	03/13/14 12:38	

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402613

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41202 - Digestion fo	r TP and TKN									
Blank (BC41202-BLK1)					Prepared:	03/12/14 Ar	alyzed: 03	/17/14		
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
Phosphorous - Total as P	0.010 U	0.040	0.010	mg/L						
LCS (BC41202-BS1)					Prepared:	03/12/14 Ar	alyzed: 03	/17/14		
Total Kjeldahl Nitrogen	0.924	0.20	0.05	mg/L	1.0		92	90-110		
Phosphorous - Total as P	0.525	0.040	0.010	mg/L	0.50		105	90-110		
Matrix Spike (BC41202-MS1)		Source: 1	402599-02		Prepared:	03/12/14 Ar	alyzed: 03	/17/14		
Total Kjeldahl Nitrogen	1.97	0.20	0.05	mg/L	1.0	0.927	104	90-110		
Phosphorous - Total as P	0.618	0.040	0.010	mg/L	0.50	0.0969	104	90-110		
Matrix Spike (BC41202-MS2)		Source: 1	402613-07		Prepared:	03/12/14 Ar	alyzed: 03	/17/14		
Total Kjeldahl Nitrogen	0.974	0.20	0.05	mg/L	1.0	ND	97	90-110		
Phosphorous - Total as P	0.533	0.040	0.010	mg/L	0.50	ND	107	90-110		
Matrix Spike Dup (BC41202-MSD	1)	Source: 1	402599-02		Prepared:	03/12/14 Ar	alyzed: 03	/17/14		
Phosphorous - Total as P	0.600	0.040	0.010	mg/L	0.50	0.0969	101	90-110	3	25
Total Kjeldahl Nitrogen	2.02	0.20	0.05	mg/L	1.0	0.927	109	90-110	3	20
Matrix Spike Dup (BC41202-MSD)	2)	Source: 1	402613-07		Prepared:	03/12/14 Ar	alyzed: 03	/17/14		
Total Kjeldahl Nitrogen	1.03	0.20	0.05	mg/L	1.0	ND	103	90-110	5	20
Phosphorous - Total as P	0.521	0.040	0.010	mg/L	0.50	ND	104	90-110	2	25
Batch BC41223 - Ion Chromat	ography 300.0	Prep								
Blank (BC41223-BLK1)					Prepared &	& Analyzed:	03/12/14			
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						

0.01 U	0.04	0.01	mg/L				
0.20 U	0.60	0.20	mg/L				
1.14			mg/L	1.0	114	90-115	
1.14			mg/L	1.0	114	90-115	
1.14			mg/L	1.0	114	90-115	
	1.14 1.14	0.20 U 0.60 1.14 1.14	0.20 U 0.60 0.20 1.14 1.14	0.20 U 0.60 0.20 mg/L 1.14 mg/L 1.14 mg/L	0.20 U 0.60 0.20 mg/L 1.14 mg/L 1.0 1.14 mg/L 1.0	0.20 U 0.60 0.20 mg/L 1.14 mg/L 1.0 114 1.14 mg/L 1.0 114	0.20 U 0.60 0.20 mg/L 1.14 mg/L 1.0 114 90-115 1.14 mg/L 1.0 114 90-115

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402613

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

					Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BC41223 - Ion Chroma	tography 300.	0 Prep								
LCS (BC41223-BS1)					Prepared 8	Analyzed:	03/12/14			
Nitrite (as N)	1.48	0.04	0.01	mg/L	1.4		105	85-115		
Sulfate	9.26	0.60	0.20	mg/L	9.0		103	85-115		
Nitrate (as N)	1.74	0.04	0.01	mg/L	1.7		102	85-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
LCS Dup (BC41223-BSD1)					Prepared 8	Analyzed:	03/13/14			
Nitrate (as N)	1.70	0.04	0.01	mg/L	1.7		100	85-115	2	200
Nitrite (as N)	1.46	0.04	0.01	mg/L	1.4		105	85-115	0.7	200
Sulfate	9.19	0.60	0.20	mg/L	9.0		102	85-115	0.7	200
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Matrix Spike (BC41223-MS1)		Source: 1	402429-05		Prepared 8	Analyzed:	03/13/14			
Sulfate	132	6.0	2.0	mg/L	90	43.8	98	85-115		
Nitrite (as N)	14.7	0.40	0.10	mg/L	14	ND	105	85-115		
Nitrate (as N)	17.2	0.40	0.10	mg/L	17	0.590	98	85-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Matrix Spike (BC41223-MS2)		Source: 1	402442-04		Prepared 8	Analyzed:	03/13/14			
Sulfate	29.7	0.60	0.20	mg/L	9.0	20.3	104	85-115		
Nitrite (as N)	1.36	0.04	0.01	mg/L	1.4	ND	97	85-115		
Nitrate (as N)	1.82	0.04	0.01	mg/L	1.7	0.0400	105	85-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Inorganics - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
										-
Batch BC41224 - Ion Chroma	llography 300.0	Prep								
Blank (BC41224-BLK1)					Prepared 8	Analyzed:	03/13/14			
Sulfate	0.20 U	0.60	0.20	mg/L						
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Surrogate: Dichloroacetate	1.10			mg/L	1.0		110	90-115		
Surrogate: Dichloroacetate	1.10			mg/L	1.0		110	90-115		
Surrogate: Dichloroacetate	1.10			mg/L	1.0		110	90-115		
LCS (BC41224-BS1)					Prepared 8	Analyzed:	03/13/14			
Sulfate	9.28	0.60	0.20	mg/L	9.0		103	85-115		
Nitrate (as N)	1.74	0.04	0.01	mg/L	1.7		102	85-115		
Nitrite (as N)	1.48	0.04	0.01	mg/L	1.4		106	85-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
LCS Dup (BC41224-BSD1)					Prepared 8	Analyzed:	03/13/14			
Sulfate	9.24	0.60	0.20	mg/L	9.0		103	85-115	0.4	200
Nitrite (as N)	1.48	0.04	0.01	mg/L	1.4		106	85-115	0.1	200
Nitrate (as N)	1.73	0.04	0.01	mg/L	1.7		102	85-115	0.6	200
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Matrix Spike (BC41224-MS1)		Source: 1	402084-04		Prepared 8	Analyzed:	03/13/14			
Sulfate	84.7	0.60	0.20	mg/L	9.0	75.9	99	85-115		
Nitrate (as N)	1.68	0.04	0.01	mg/L	1.7	ND	99	85-115		
Nitrite (as N)	1.44	0.04	0.01	mg/L	1.4	ND	103	85-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		

March 27, 2014 Work Order: 1402613

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402613

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41233 - VSS Prep										
Blank (BC41233-BLK1)					Prepared:	03/12/14 Ar	nalyzed: 03/	/14/14		
Total Suspended Solids	1 U	1	1	mg/L						
Volatile Suspended Solids	1 U	1		mg/L						
LCS (BC41233-BS1)					Prepared:	03/12/14 Ar	nalyzed: 03/	/14/14		
Total Suspended Solids	48.5	1	1	mg/L	50		97	85-115		
Duplicate (BC41233-DUP1)		Source: 1	402492-01		Prepared:	03/12/14 Ar	nalyzed: 03/	/14/14		
Volatile Suspended Solids	10.2	1		mg/L		12.2			18	20
Total Suspended Solids	30.0	1	1	mg/L		30.0			0	30
Batch BC41302 - Ortho phospl	norus SM4500)P-E by sea	I							
Blank (BC41302-BLK1)					Prepared &	Analyzed:	03/13/14			
Orthophosphate as P	0.012 U	0.040	0.012	mg/L						
LCS (BC41302-BS1)					Prepared &	Analyzed:	03/13/14			
Orthophosphate as P	0.833	0.040	0.012	mg/L	0.80		104	90-110		
Matrix Spike (BC41302-MS1)		Source: 1	402613-07		Prepared &	Analyzed:	03/13/14			
Orthophosphate as P	1.05	0.040	0.012	mg/L	1.0	ND	105	90-110		
Matrix Spike (BC41302-MS2)		Source: 1	402626-03		Prepared 8	Analyzed:	03/13/14			
Orthophosphate as P	1.08	0.040	0.012	mg/L	1.0	0.0368	104	90-110		
Materix Spiles Dup (BC44202 MSD4)		Courses 4	402613-07		Prenared &	Analyzed:	03/13/14			
Matrix Spike Dup (BC41302-MSD1))	Source: 1	402013-07		i iepaieu e	k Analyzeu.	00/10/14			

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402613

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41302 - Ortho phosph	norus SM4500	P-E by sea	I							
Matrix Spike Dup (BC41302-MSD2))	Source: 1	402626-03		Prepared 8	Analyzed:	03/13/14			
Orthophosphate as P	1.08	0.040	0.012	mg/L	1.0	0.0368	105	90-110	0.2	20
Batch BC41308 - COD prep										
Blank (BC41308-BLK1)					Prepared:	03/13/14 Ar	alyzed: 03	/14/14		
Chemical Oxygen Demand	10 U	25	10	mg/L						
LCS (BC41308-BS1)					Prepared:	03/13/14 Ar	alyzed: 03	/14/14		
Chemical Oxygen Demand	50	25	10	mg/L	50		100	90-110		
Matrix Spike (BC41308-MS1)		Source: 1	402626-01		Prepared:	03/13/14 Ar	alyzed: 03	/14/14		
Chemical Oxygen Demand	83	25	10	mg/L	50	35	96	85-115		
Matrix Spike Dup (BC41308-MSD1))	Source: 1	402626-01		Prepared:	03/13/14 Ar	alyzed: 03	/14/14		
Chemical Oxygen Demand	81	25	10	mg/L	50	35	92	85-115	2	32
Batch BC41314 - BOD										
Blank (BC41314-BLK1)					Prepared:	03/13/14 Ar	nalyzed: 03/	/18/14		
Carbonaceous BOD	2 U	2	2	mg/L						
Blank (BC41314-BLK2)					Prepared:	03/13/14 Ar	alyzed: 03	/18/14		
Carbonaceous BOD	2 U	2	2	mg/L						
LCS (BC41314-BS1)					Prepared:	03/13/14 Ar	alyzed: 03	/18/14		
Carbonaceous BOD	195	2	2	mg/L	200		98	85-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402613

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

					Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BC41314 - BOD										
LCS (BC41314-BS2)					Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Carbonaceous BOD	196	2	2	mg/L	200		98	85-115		
LCS Dup (BC41314-BSD1)					Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Carbonaceous BOD	195	2	2	mg/L	200		97	85-115	0.3	200
LCS Dup (BC41314-BSD2)					Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Carbonaceous BOD	195	2	2	mg/L	200		97	85-115	0.8	200
Duplicate (BC41314-DUP1)		Source: 1	402604-01		Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Carbonaceous BOD	390	2	2	mg/L		400			1	25
Duplicate (BC41314-DUP2)		Source: 1	402661-01		Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Carbonaceous BOD	200	2	2	mg/L		210			3	25
Batch BC41343 - TOC prep										
Blank (BC41343-BLK1)					Prepared &	Analyzed:	03/14/14			
Total Organic Carbon	0.060 U	1.0	0.060	mg/L						
LCS (BC41343-BS1)					Prepared &	Analyzed:	03/14/14			
Total Organic Carbon	10.4	1.0	0.060	mg/L	10		104	90-110		
Matrix Spike (BC41343-MS1)		Source: 1	402613-03		Prepared &	& Analyzed:	03/14/14			
Total Organic Carbon	18.3 J5	1.0	0.060	mg/L	10	9.87	85	85-115		
Matrix Spike Dup (BC41343-MSD1)		Source: 1	402613-03		Prepared &	& Analyzed:	03/14/14			
Total Organic Carbon	18.7	1.0	0.060	mg/L	10	9.87	89	85-115	2	10

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402613

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41712 - VSS Prep										
Blank (BC41712-BLK1)					Prepared:	03/17/14 Ar	nalyzed: 03	/18/14		
Volatile Suspended Solids	1 U	1		mg/L						
Total Suspended Solids	1 U	1	1	mg/L						
LCS (BC41712-BS1)					Prepared:	03/17/14 Ar	nalyzed: 03	/18/14		
Total Suspended Solids	48.0	1	1	mg/L	50		96	85-115		
Duplicate (BC41712-DUP1)		Source: "	1402569-02		Prepared:	03/17/14 Ar	nalyzed: 03	/18/14		
Total Suspended Solids	5,590	1	1	mg/L		5460			2	30
Volatile Suspended Solids	4,770	1		mg/L		4640			3	20
Batch BC41718 - TOC prep										
Blank (BC41718-BLK1)					Prepared &	& Analyzed:	03/17/14			
Total Organic Carbon	0.060 U	1.0	0.060	mg/L						
LCS (BC41718-BS1)					Prepared &	& Analyzed:	03/17/14			
Total Organic Carbon	10.0	1.0	0.060	mg/L	10		100	90-110		
Matrix Spike (BC41718-MS1)		Source: 1	1402721-07		Prepared 8	Analyzed:	03/17/14			
Total Organic Carbon	10.4	1.0	0.060	mg/L	10	ND	104	85-115		
Matrix Spike Dup (BC41718-MSD1)	Source: 1	1402721-07		Prepared &	Analyzed:	03/17/14			
Total Organic Carbon	10.5	1.0	0.060	mg/L	10	ND	105	85-115	0.6	10
Batch BC41812 - alkalinity										
Blank (BC41812-BLK1)					Prepared &	Analyzed:	03/18/14			
Total Alkalinity	2.0 U	8.0	2.0	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402613

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Result	FQL	MIDE	Units	Levei	Result	/irlu	LIIIIIIS	NF D	LIIIII
Batch BC41812 - alkalinity										
LCS (BC41812-BS1)					Prepared 8	Analyzed:	03/18/14			
Total Alkalinity	130	8.0	2.0	mg/L	120		101	90-110		
LCS (BC41812-BS2)					Prepared 8	Analyzed:	03/18/14			
Total Alkalinity	120	8.0	2.0	mg/L	120		98	90-110		
LCS (BC41812-BS3)					Prepared 8	Analyzed:	03/18/14			
Total Alkalinity	120	8.0	2.0	mg/L	120		100	90-110		
LCS (BC41812-BS4)					Prepared 8	Analyzed:	03/18/14			
Total Alkalinity	130	8.0	2.0	mg/L	120		100	90-110		
LCS (BC41812-BS5)					Prepared 8	Analyzed:	03/18/14			
Total Alkalinity	120	8.0	2.0	mg/L	120		99	90-110		
Matrix Spike (BC41812-MS1)		Source: 1	402550-07		Prepared 8	Analyzed:	03/18/14			
Total Alkalinity	130	8.0	2.0	mg/L	120	ND	104	80-120		
Matrix Spike Dup (BC41812-MSD1)		Source: 1	402550-07		Prepared 8	Analyzed:	03/18/14			
Total Alkalinity	130	8.0	2.0	mg/L	120	ND	106	80-120	1	26
Batch BC41835 - Sulfide prep										
Blank (BC41835-BLK1)					Prepared 8	Analyzed:	03/18/14			
Sulfide	0.10 U	0.40	0.10	mg/L						
Blank (BC41835-BLK2)					Prepared 8	Analyzed:	03/18/14			
Sulfide	0.10 U	0.40	0.10	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1402613

March 27, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result	FQL	MIDE	Units	Levei	Result	/irlu	LIIIIIIS	NF D	LIIIII
Batch BC41835 - Sulfide prep										
LCS (BC41835-BS1)					Prepared 8	Analyzed:	03/18/14			
Sulfide	4.84	0.40	0.10	mg/L	5.0		97	85-115		
LCS (BC41835-BS2)					Prepared 8	Analyzed:	03/18/14			
Sulfide	4.64	0.40	0.10	mg/L	5.0		93	85-115		
Matrix Spike (BC41835-MS1)		Source: 1	402550-07		Prepared 8	Analyzed:	03/18/14			
Sulfide	4.64	0.40	0.10	mg/L	5.0	ND	93	85-115		
Matrix Spike (BC41835-MS2)		Source: 1	402721-07		Prepared 8	Analyzed: (03/18/14			
Sulfide	4.64	0.40	0.10	mg/L	5.0	ND	93	85-115		
Matrix Spike Dup (BC41835-MSD1)		Source: 1	402550-07		Prepared 8	Analyzed:	03/18/14			
Sulfide	4.84	0.40	0.10	mg/L	5.0	ND	97	85-115	4	14
Matrix Spike Dup (BC41835-MSD2)		Source: 1	402721-07		Prepared 8	Analyzed: (03/18/14			
Sulfide	4.84	0.40	0.10	mg/L	5.0	ND	97	85-115	4	14
Batch BC41920 - Ammonia by S	EAL									
Blank (BC41920-BLK1)					Prepared 8	Analyzed: (03/20/14			
Ammonia as N	0.009 U	0.040	0.009	mg/L						
LCS (BC41920-BS1)					Prepared 8	Analyzed:	03/20/14			
Ammonia as N	0.47	0.040	0.009	mg/L	0.50		94	90-110		
Matrix Spike (BC41920-MS1)		Source: 1	402538-15		Prepared 8	Analyzed: (03/20/14			
Ammonia as N	0.46	0.040	0.009	mg/L	0.50	ND	92	90-110		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1402613

March 27, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41920 - Ammonia b	y SEAL									
Matrix Spike (BC41920-MS2)		Source: 1	402613-07		Prepared 8	Analyzed:	03/20/14			
Ammonia as N	0.48	0.040	0.009	mg/L	0.50	ND	96	90-110		
Matrix Spike Dup (BC41920-MSD	01)	Source: 1	402538-15		Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.48	0.040	0.009	mg/L	0.50	ND	96	90-110	4	10
Matrix Spike Dup (BC41920-MSD	02)	Source: 1	402613-07		Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.48	0.040	0.009	mg/L	0.50	ND	96	90-110	0.6	10
Batch BC42428 - Ion Chroma	tography 300.0	Prep								
Blank (BC42428-BLK1)					Prepared &	Analyzed:	03/25/14			
Sulfate	0.20 U	0.60	0.20	mg/L						
Surrogate: Dichloroacetate	0.967			mg/L	1.0		97	90-115		
LCS (BC42428-BS1)					Prepared &	Analyzed:	03/24/14			
Sulfate	8.98	0.60	0.20	mg/L	9.0		100	85-115		
Surrogate: Dichloroacetate	1.02			mg/L	1.0		102	90-115		
LCS Dup (BC42428-BSD1)					Prepared &	Analyzed:	03/25/14			
Sulfate	9.00	0.60	0.20	mg/L	9.0		100	85-115	0.3	200
Surrogate: Dichloroacetate	1.02			mg/L	1.0		102	90-115		
Matrix Spike (BC42428-MS1)		Source: 1	402613-03		Prepared &	Analyzed:	03/24/14			
Nitrate (as N)	51.1	0.40	0.10	mg/L	17	33.9	101	85-115		
Nitrite (as N)	14.7	0.40	0.10	mg/L	14	0.589	101	85-115		
Sulfate	239	6.0	2.0	mg/L	90	148	101	85-115		
Surrogate: Dichloroacetate	0.963			mg/L	1.0		96	90-115		
Surrogate: Dichloroacetate	0.963			mg/L	1.0		96	90-115		
Surrogate: Dichloroacetate	0.963			mg/L	1.0		96	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402613

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC42428 - Ion Chromato	graphy 300.0	Prep								
Matrix Spike (BC42428-MS2)		Source: 1	402893-02		Prepared &	& Analyzed:	03/25/14			
Sulfate	128	6.0	2.0	mg/L	90	41.5	97	85-115		
Surrogate: Dichloroacetate	1.00			mg/L	1.0		100	90-115		
Batch BC42512 - alkalinity										
Blank (BC42512-BLK1)					Prepared &	& Analyzed:	03/25/14			
Total Alkalinity	2.0 U	8.0	2.0	mg/L						
LCS (BC42512-BS1)					Prepared &	& Analyzed:	03/25/14			
Total Alkalinity	120	8.0	2.0	mg/L	120		97	90-110		
Matrix Spike (BC42512-MS1)		Source: 1	402721-07		Prepared &	& Analyzed:	03/25/14			
Total Alkalinity	120	8.0	2.0	mg/L	120	ND	98	80-120		
Matrix Spike Dup (BC42512-MSD1)		Source: 1	402721-07		Prepared &	& Analyzed:	03/25/14			
Total Alkalinity	130	8.0	2.0	mg/L	120	ND	101	80-120	3	26

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 27, 2014

Work Order: 1402613

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Microbiology - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41226 - FC-MF										
Blank (BC41226-BLK1)					Prepared:	03/12/14 Ar	nalyzed: 03/	13/14		
Fecal Coliforms	1 U	1	1	CFU/100 m	าไ					
Duplicate (BC41226-DUP1)		Source: 1	402595-0	02	Prepared:	03/12/14 Ar	nalyzed: 03/	13/14		
Fecal Coliforms	1 U	1	1	CFU/100 m	าไ	ND				200
Batch BC41227 - TC-MF										
Blank (BC41227-BLK1)					Prepared:	03/12/14 Ar	nalyzed: 03/	13/14		
Total Coliform	1 U	1	1	CFU/100 m	าไ					
Duplicate (BC41227-DUP1)		Source: 1	402613-0	07	Prepared:	03/12/14 Ar	nalyzed: 03/	13/14		
Total Coliform	1 U	1	1	CFU/100 m	าไ	ND				200

ANTED IN ACCORDANCE

Work Order: 1402613

March 27, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

* Qualifiers, Notes and Definitions

Results followed by a "U" indicate that the sample was analyzed but the compound was not detected. Results followed by "I" indicate that the reported value is between the laboratory method detection limts and the laboratory practical quantitation limit.

A statement of estimated uncertainty of test results is available upon request.

For methods marked with **, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Test results in this report meet all the requirements of the NELAC standards. Any applicable qualifiers are shown below.

J5 Matrix spike of this sample was outside typical range. All other QC criteria were acceptable.

Questions regarding this report should be directed to :

Kathryn Nordmark Telephone (813) 855-1844 FAX (813) 855-2218 Kathryn@southernanalyticallabs.com

Finbail

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Client	Name											Contact /						
	the second s	an and S	awyer									Jasefin H	irst 813-630	J-4498 				
Projec	t Name / Location	2 SE#10	/															
Samp	lers: (Signature)	2 35#10							T									
	Ti	C								I	PARAMETI	ER / CONT	TAINER DES	CRIPTION				
	Matrix Codes: DW-Drinking Water WW-Wastewater SW-SurfaceWater SL-Słudge SO-Soil GW-Groundwater SA-Saline Water O-Other R-Reagent Water							la ₂ S ₂ O ₃ QT	Cool I Alkalinity, TSS, , CBOD, NOX, OP,	LP, H ₂ SO, TKN, NH ₃ , TP	aOH, Zn	Ū	125mLP, Na _r S ₂ O ₃ FC-MF, FC-QT, TC-MF (Non-potable)				J.	ţ
SAL Use Only Sample No.	Sample Description		Date	Time	Matrix	Composite	Grab	125mLP, Na ₂ S ₂ O ₃ FC-MF, FC-QT	1LP, Cool Total Alkali VSS, CBO SO4	125mLP, H ₂ SO, COD, TKN, NH ₃ ,	500mLP, NaOH, Zn Acetate H ₂ S	40mLaV, HCI TOC	125mLP, N FC-MF, FC (Non-potat		00	Ha	Temperature	Conductivity
			2/14			Ť								**	0.01	7.20		1411
01	BHS2-STE BHS2-RECIRC	-40	<u> 1</u>	0930	 ww		x x	4	1	1	11	2			0.04			14/8
	BHS2-ST1		1	0855	ww		x	4	1	1	1	2						1215
<u> </u>	BHS2-LIGNO-0			0835	ww	Π	x		1	1	1	2	6		1.19		21.4	
05	BHS2-ST2			0815	ww		x		1	1	1	2	6		0.04		20.5	
06	BHS2-ST2-DUP			0820	ww		x		1	1	1	2	6		1	1	1	1
07	BHS2-EB			0400	R		x		1	1	1	2	6		7.10	6.55	- 19.0	1.70
												···						
					L													
Contair	the north algorit	×Rece	ived:	-tz	1	Date	e/Tim	100 1301	50 %	Seal inta Samples	intact upon e	,	PN NA DN NA		Instructio	ns / Rema	rks	
Reling	Bate/Time 11 SC 3/m//3	> Rece	ived:	M	V	Date	e/Time	274 1	30	Received	l on ice? Ter		Ø N NA					
Relinqu	ished: Date/Time:	Rece	ived:	1/		Date	e/Tim	e:			eservatives thin holding ti		ØNNA ØNNA					
Relinqu	ished; Date/Time:	Rece	ived:			Date	e/Tim	e:			rec'd w <i>l</i> out I	eadspace	Y NQA					
Relinqu	uished; Date/Time:	Rece	ived:			Date	Tim	e:		rioper c	AUGUICIS USC		9 N NA					

Chain of Custody.xis Rev.Date 11/19/01

Page 20 of 20

SAL Project No. 1402613

Chain of Custody

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

March 31, 2014 Work Order: 1402686

Laboratory Report

Project Name		B-HS	2 SE#11					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Dil	ution
Sample Description		BHS2-STE						
Matrix		Wastewater						
SAL Sample Number		1402686-01						
Date/Time Collected		03/13/14 10:55						
Collected by		Sean Schmidt						
Date/Time Received		03/13/14 14:36						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	24	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	38	EPA 350.1	2.0	0.47		03/20/14 14:35	50
Carbonaceous BOD	mg/L	220	SM 5210B	2	2	03/14/14 11:30	03/19/14 10:03	1
Chemical Oxygen Demand	mg/L	420	EPA 410.4	25	10	03/17/14 12:30	03/17/14 16:00	1
Nitrate (as N)	mg/L	0.04	EPA 300.0	0.04	0.01		03/14/14 04:37	1
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/14/14 04:37	1
Orthophosphate as P	mg/L	3.4	SM 4500P-E	0.20	0.060		03/15/14 08:45	5
Phosphorous - Total as P	mg/L	6.6	SM 4500P-E	0.80	0.20	03/13/14 16:01	03/18/14 15:31	20
Sulfate	mg/L	20	EPA 300.0	0.60	0.20		03/14/14 04:37	1
Sulfide	mg/L	55	SM 4500SF	0.40	0.10		03/18/14 08:30	1
Total Alkalinity	mg/L	550	SM 2320B	8.0	2.0		03/25/14 13:39	1
Total Kjeldahl Nitrogen	mg/L	63	EPA 351.2	4.0	1.0	03/13/14 16:01	03/18/14 15:31	20
Total Organic Carbon	mg/L	110	SM 5310B	10	0.60		03/17/14 14:05	10
Total Suspended Solids	mg/L	10	SM 2540D	1	1	03/17/14 11:34	03/18/14 17:00	1
Volatile Suspended Solids	mg/L	8	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:00	1
Nitrate+Nitrite (N)	mg/L	0.04	EPA 300.0	0.08	0.02		03/14/14 04:37	1
Microbiology								-
E. Coli	MPN/100 mL	24,000	SM 9223B	2.0	2.0	03/13/14 15:15	03/14/14 10:12	1
Fecal Coliforms	CFU/100 ml	36,000	SM 9222D	1	1	03/13/14 15:13	03/14/14 14:07	1
Sample Description Matrix		BHS2-RECIRC Wastewater						
SAL Sample Number		1402686-02						
Date/Time Collected		03/13/14 10:40						
Collected by		Sean Schmidt						
Date/Time Received		03/13/14 14:36						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	15	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	41	EPA 350.1	2.0	0.47		03/20/14 17:34	50
Carbonaceous BOD	mg/L	160	SM 5210B	2	2	03/14/14 11:30	03/19/14 10:03	1
Chemical Oxygen Demand	mg/L	250	EPA 410.4	25	10	03/17/14 12:30	03/17/14 16:00	1
Nitrate (as N)	mg/L	0.05	EPA 300.0	0.04	0.01	20, 11, 14 12.00	03/14/14 04:48	1
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/14/14 04:48	1
Orthophosphate as P	mg/L	3.7	SM 4500P-E	0.20	0.060		03/15/14 08:46	5
Phosphorous - Total as P	mg/L	6.0	SM 4500P-E	0.20	0.000	03/13/14 16:01	03/18/14 15:32	20
Sulfate		7.9	EPA 300.0	0.60	0.20	00/10/14 10.01	03/14/14 04:48	1
Sunate	mg/L	1.9	LI A 300.0	0.00	0.20		03/14/14 04.40	1

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

March 31, 2014 Work Order: 1402686

Laboratory Report

Project Name		B-HS	S2 SE#11					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed	ilution
Sample Description	E	3HS2-RECIRC						
Matrix	١	Nastewater						
SAL Sample Number		402686-02						
Date/Time Collected)3/13/14 10:40						
Collected by		Sean Schmidt						
Date/Time Received	(03/13/14 14:36						
Sulfide	mg/L	39	SM 4500SF	0.40	0.10		03/18/14 08:3	0 1
Total Alkalinity	mg/L	600	SM 2320B	8.0	2.0		03/25/14 13:5	7 1
Total Kjeldahl Nitrogen	mg/L	62	EPA 351.2	4.0	1.0	03/13/14 16:01	03/18/14 15:3	2 20
Total Organic Carbon	mg/L	81	SM 5310B	10	0.60		03/17/14 14:0	5 10
Total Suspended Solids	mg/L	4	SM 2540D	1	1	03/17/14 11:34	03/18/14 17:0	0 1
Volatile Suspended Solids	mg/L	4	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:0	0 1
Nitrate+Nitrite (N)	mg/L	0.05 I	EPA 300.0	0.08	0.02		03/14/14 04:4	81
<u>Microbiology</u>								
E. Coli	MPN/100 mL	20,000	SM 9223B	2.0	2.0	03/13/14 15:15	03/14/14 10:1:	2 1
Fecal Coliforms	CFU/100 ml	59,000	SM 9222D	1	1	03/13/14 15:13	03/14/14 14:0	7 1
Sample Description		3HS2-ST1						
Matrix		Vastewater						
SAL Sample Number		402686-03						
Date/Time Collected		3/13/14 10:30						
Collected by		Sean Schmidt						
Date/Time Received	(03/13/14 14:36						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.09	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:3	0 1
Ammonia as N	mg/L	2.4	EPA 350.1	0.20	0.047	00/10/14 00.20	03/20/14 16:0	
Carbonaceous BOD	mg/L	8	SM 5210B	2	2	03/14/14 11:30	03/19/14 10:03	
Chemical Oxygen Demand	mg/L	22 1	EPA 410.4	25	10	03/17/14 12:30	03/17/14 16:0	
Nitrate (as N)	mg/L	34	EPA 300.0	0.40	0.10	00/11/14 12:00	03/15/14 02:1	
Nitrite (as N)	mg/L	0.48	EPA 300.0	0.04	0.01		03/14/14 05:0	
Orthophosphate as P	mg/L	5.8	SM 4500P-E	0.20	0.060		03/15/14 09:0	
Phosphorous - Total as P	mg/L	7.6	SM 4500P-E	0.40	0.10	03/13/14 16:01	03/18/14 15:3	
Sulfate	mg/L	150	EPA 300.0	6.0	2.0	00/10/14 10:01	03/15/14 02:1	
Sulfide	mg/L	0.20 1	SM 4500SF	0.40	0.10		03/18/14 08:3	
Total Alkalinity	mg/L	250	SM 2320B	8.0	2.0		03/25/14 14:0	
Total Kjeldahl Nitrogen	mg/L	10	EPA 351.2	2.0	0.50	03/13/14 16:01	03/18/14 15:3	
Total Organic Carbon	mg/L	16	SM 5310B	2.0 1.0	0.060	00/10/14 10:01	03/17/14 15:5	
Total Suspended Solids	mg/L	4	SM 2540D	1.0	0.000	03/17/14 11:34	03/18/14 17:0	
Volatile Suspended Solids	mg/L	4 3	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:0	
Nitrate+Nitrite (N)	mg/L	34	EPA 300.0	0.44	0.11	03/17/14 11.34	03/15/14 02:1	
Microbiology	<u> </u>							-
E. Coli	MPN/100 mL	24,000	SM 9223B	2.0	2.0	03/13/14 15:15	03/14/14 10:1:	2 1
	CFU/100 ml	, =		-				

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 31, 2014

Work Order: 1402686

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Laboratory Report

Project Name		B-HS	2 SE#11					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed D	ilution
Sample Description		BHS2-LIGNO-0						
Matrix		Wastewater						
SAL Sample Number		1402686-04						
Date/Time Collected		03/13/14 10:15						
Collected by		Sean Schmidt						
Date/Time Received		03/13/14 14:36						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.84	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30) 1
Ammonia as N	mg/L	0.29	EPA 350.1	0.040	0.009		03/20/14 14:42	2 1
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	03/14/14 11:30	03/19/14 10:03	31
Chemical Oxygen Demand	mg/L	22 I	EPA 410.4	25	10	03/17/14 12:30	03/17/14 16:00	
Nitrate (as N)	mg/L	3.2	EPA 300.0	0.04	0.01		03/14/14 05:12	
Nitrite (as N)	mg/L	0.28	EPA 300.0	0.04	0.01		03/14/14 05:1	1
Orthophosphate as P	mg/L	4.9	SM 4500P-E	0.20	0.060		03/15/14 09:06	5 5
Phosphorous - Total as P	mg/L	7.1	SM 4500P-E	0.40	0.10	03/13/14 16:01	03/18/14 15:34	4 10
Sulfate	mg/L	150	EPA 300.0	6.0	2.0		03/25/14 15:50) 10
Sulfide	mg/L	1.6	SM 4500SF	0.40	0.10		03/18/14 08:30) 1
Total Alkalinity	mg/L	360	SM 2320B	8.0	2.0		03/25/14 14:19	91
Total Kjeldahl Nitrogen	mg/L	3.1	EPA 351.2	2.0	0.50	03/13/14 16:01	03/18/14 15:34	4 10
Total Organic Carbon	mg/L	14	SM 5310B	1.0	0.060		03/17/14 14:0	51
Total Suspended Solids	mg/L	18	SM 2540D	1	1	03/17/14 11:34	03/18/14 17:00) 1
Volatile Suspended Solids	mg/L	18	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:00) 1
Nitrate+Nitrite (N)	mg/L	3.5	EPA 300.0	0.08	0.02		03/14/14 05:12	1
Microbiology								
Total Coliform	CFU/100 ml	8	SM 9222B	1	1	03/13/14 15:14	03/14/14 14:04	4 1
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/13/14 15:15	03/14/14 10:12	2 1
Fecal Coliforms	CFU/100 ml	2	SM 9222D	1	1	03/13/14 15:13	03/14/14 14:07	7 1
Sample Description		BHS2-ST2						
Matrix		Wastewater						
SAL Sample Number		1402686-05						
Date/Time Collected		03/13/14 09:55						
Collected by		Sean Schmidt						
Date/Time Received		03/13/14 14:36						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	12	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30) 1
Ammonia as N	mg/L	0.29	EPA 350.1	0.040	0.009		03/20/14 17:0 ⁻	1 1
Carbonaceous BOD	mg/L	38	SM 5210B	2	2	03/14/14 11:30	03/19/14 10:03	3 1
Chemical Oxygen Demand	mg/L	97	EPA 410.4	25	10	03/17/14 12:30	03/17/14 16:00) 1
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/14/14 05:22	2 1
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/14/14 05:22	2 1
Orthophosphate as P	mg/L	5.1	SM 4500P-E	0.20	0.060		03/15/14 09:07	
Phosphorous - Total as P	mg/L	6.2	SM 4500P-E	0.40	0.10	03/13/14 16:01	03/18/14 15:3	

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

March 31, 2014 Work Order: 1402686

Laboratory Report

Project Name		B-HS	2 SE#11					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed D	ilution
Sample Description Matrix		BHS2-ST2 Wastewater						
SAL Sample Number		1402686-05						
Date/Time Collected Collected by		03/13/14 09:55 Sean Schmidt						
Date/Time Received		03/13/14 14:36						
Sulfate	mg/L	200	EPA 300.0	6.0	2.0		03/26/14 00:07	7 10
Sulfide	mg/L	24	SM 4500SF	0.40	0.10		03/18/14 08:30) 1
Total Alkalinity	mg/L	340	SM 2320B	8.0	2.0		03/25/14 14:28	3 1
Total Kjeldahl Nitrogen	mg/L	1.8 I	EPA 351.2	2.0	0.50	03/13/14 16:01	03/18/14 15:35	5 10
Total Organic Carbon	mg/L	16	SM 5310B	1.0	0.060		03/17/14 14:0	51
Total Suspended Solids	mg/L	6	SM 2540D	1	1	03/17/14 11:34	03/18/14 17:00) 1
Volatile Suspended Solids	mg/L	5	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:00) 1
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02		03/14/14 05:22	2 1
Microbiology								
Total Coliform	CFU/100 ml	1 U	SM 9222B	1	1	03/13/14 15:14	03/14/14 14:04	41
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/13/14 15:15	03/14/14 10:12	<u>2</u> 1
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	03/13/14 15:13	03/14/14 14:07	7 1
Sample Description		BHS2-ST2-DUP						
Matrix		Wastewater						
SAL Sample Number		1402686-06						
Date/Time Collected		03/13/14 10:00						
Collected by		Sean Schmidt						
Date/Time Received		03/13/14 14:36						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	14	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30) 1
Ammonia as N	mg/L	0.30	EPA 350.1	0.040	0.009		03/20/14 17:03	31
Carbonaceous BOD	mg/L	39	SM 5210B	2	2	03/14/14 11:30	03/19/14 10:03	31
Chemical Oxygen Demand	mg/L	99	EPA 410.4	25	10	03/17/14 12:30	03/17/14 16:00) 1
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/14/14 05:34	4 1
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/14/14 05:34	41
Orthophosphate as P	mg/L	5.2	SM 4500P-E	0.20	0.060		03/15/14 09:08	35
Phosphorous - Total as P	mg/L	6.5	SM 4500P-E	0.40	0.10	03/13/14 16:01	03/18/14 15:36	5 10
Sulfate	mg/L	200	EPA 300.0	6.0	2.0		03/25/14 16:09	9 10
Sulfide	mg/L	27	SM 4500SF	0.40	0.10		03/18/14 08:30) 1
Total Alkalinity	mg/L	340	SM 2320B	8.0	2.0		03/25/14 14:37	7 1
Total Kjeldahl Nitrogen	mg/L	1.8 I	EPA 351.2	2.0	0.50	03/13/14 16:01	03/18/14 15:36	5 10
Total Organic Carbon	mg/L	16	SM 5310B	1.0	0.060		03/17/14 14:05	51
Total Suspended Solids	mg/L	6	SM 2540D	1	1	03/17/14 11:34	03/18/14 17:00) 1
Volatile Suspended Solids	mg/L	4	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:00) 1
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02		03/14/14 05:34	4 1
<u>Microbiology</u>								

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 31, 2014

Work Order: 1402686

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Laboratory Report

Project Name		B-H	S2 SE#11					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed D	ilution
Sample Description		BHS2-ST2-DUP						
Matrix		Wastewater						
SAL Sample Number		1402686-06						
Date/Time Collected		03/13/14 10:00						
Collected by		Sean Schmidt						
Date/Time Received		03/13/14 14:36						
Total Coliform	CFU/100 ml	1 U	SM 9222B	1	1	03/13/14 15:14	03/14/14 14:04	4 1
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/13/14 15:15	03/14/14 10:12	2 1
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	03/13/14 15:13	03/14/14 14:07	7 1
Sample Description		BHS2-EB						
Matrix		Reagent Water						
SAL Sample Number		1402686-07						
Date/Time Collected		03/13/14 09:25						
Collected by		Sean Schmidt						
Date/Time Received		03/13/14 14:36						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30) 1
Ammonia as N	mg/L	0.009 U	EPA 350.1	0.040	0.009		03/20/14 14:56	51
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	03/14/14 11:30	03/19/14 10:03	31
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10	03/17/14 12:30	03/17/14 16:00) 1
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/14/14 05:48	51
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/14/14 05:45	51
Orthophosphate as P	mg/L	0.012 U	SM 4500P-E	0.040	0.012		03/15/14 08:50) 1
Phosphorous - Total as P	mg/L	0.010 U	SM 4500P-E	0.040	0.010	03/13/14 16:01	03/18/14 15:37	71
Sulfate	mg/L	0.20 U	EPA 300.0	0.60	0.20		03/14/14 05:45	51
Sulfide	mg/L	0.10 U	SM 4500SF	0.40	0.10		03/18/14 08:30) 1
Total Alkalinity	mg/L	2.0 U	SM 2320B	8.0	2.0		03/25/14 14:40) 1
Total Kjeldahl Nitrogen	mg/L	0.05 U	EPA 351.2	0.20	0.05	03/13/14 16:01	03/18/14 15:37	71
Total Organic Carbon	mg/L	0.060 U	SM 5310B	1.0	0.060		03/17/14 14:05	51
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	03/17/14 11:34	03/18/14 17:00) 1
Volatile Suspended Solids	mg/L	1 U	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:00) 1
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02		03/14/14 05:45	51
Microbiology								
Total Coliform	CFU/100 ml	1 U	SM 9222B	1	1	03/13/14 15:14	03/14/14 14:04	41
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/13/14 15:15	03/14/14 10:12	2 1
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	03/13/14 15:13	03/14/14 14:07	71

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Inorganics - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41322 - Ion Chroma	tography 300.0) Prep								
Blank (BC41322-BLK1)					Prepared 8	Analyzed:	03/14/14			
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Sulfate	0.20 U	0.60	0.20	mg/L						
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
LCS (BC41322-BS1)					Prepared 8	Analyzed:	03/14/14			
Nitrite (as N)	1.49	0.04	0.01	mg/L	1.4		106	85-115		
Sulfate	9.29	0.60	0.20	mg/L	9.0		103	85-115		
Nitrate (as N)	1.74	0.04	0.01	mg/L	1.7		103	85-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
LCS Dup (BC41322-BSD1)					Prepared 8	Analyzed:	03/14/14			
Sulfate	9.28	0.60	0.20	mg/L	9.0		103	85-115	0.2	200
Nitrate (as N)	1.74	0.04	0.01	mg/L	1.7		102	85-115	0.2	200
Nitrite (as N)	1.49	0.04	0.01	mg/L	1.4		106	85-115	0	200
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Matrix Spike (BC41322-MS1)		Source: 1	402467-02		Prepared 8	Analyzed:	03/14/14			
Sulfate	15.5	0.60	0.20	mg/L	9.0	7.01	94	85-115		
Nitrate (as N)	1.85	0.04	0.01	mg/L	1.7	0.112	102	85-115		
Nitrite (as N)	1.44	0.04	0.01	mg/L	1.4	ND	103	85-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		

March 31, 2014 Work Order: 1402686

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 31, 2014

Work Order: 1402686

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41322 - Ion Chroma	tography 300.0	Prep								
Matrix Spike (BC41322-MS2)		Source: 1	402470-01		Prepared 8	Analyzed:	03/14/14			
Nitrate (as N)	1,700	40	10	mg/L	1700	33.0	98	85-115		
Sulfate	10,700	600	200	mg/L	9000	1250	105	85-115		
Nitrite (as N)	1,510	40	10	mg/L	1400	ND	108	85-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Batch BC41347 - Digestion fo	or TP and TKN									
Blank (BC41347-BLK1)					Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Phosphorous - Total as P	0.010 U	0.040	0.010	mg/L						
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
LCS (BC41347-BS1)					Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Phosphorous - Total as P	0.521	0.040	0.010	mg/L	0.50		104	90-110		
Total Kjeldahl Nitrogen	0.971	0.20	0.05	mg/L	1.0		97	90-110		
Matrix Spike (BC41347-MS1)		Source: 1	402686-07		Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Phosphorous - Total as P	0.495	0.040	0.010	mg/L	0.50	ND	99	90-110		
Total Kjeldahl Nitrogen	1.01	0.20	0.05	mg/L	1.0	ND	101	90-110		
Matrix Spike (BC41347-MS2)		Source: 1	402721-07		Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Phosphorous - Total as P	0.508	0.040	0.010	mg/L	0.50	ND	102	90-110		
Total Kjeldahl Nitrogen	1.05	0.20	0.05	mg/L	1.0	ND	105	90-110		
Matrix Spike Dup (BC41347-MSD	1)	Source: 1	402686-07		Prepared:	03/13/14 Ar	nalyzed: 03	/18/14		
Phosphorous - Total as P	0.501	0.040	0.010	mg/L	0.50	ND	100	90-110	1	25
Total Kjeldahl Nitrogen	1.03	0.20	0.05	mg/L	1.0	ND	103	90-110	2	20

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 31, 2014

Work Order: 1402686

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41347 - Digestion f	or TP and TKN									
Matrix Spike Dup (BC41347-MSI	02)	Source: 1	402721-07		Prepared: (03/13/14 Ar	nalyzed: 03/	/18/14		
Total Kjeldahl Nitrogen	1.11	0.20	0.05	mg/L	1.0	ND	111	90-110	6	20
Phosphorous - Total as P	0.525	0.040	0.010	mg/L	0.50	ND	105	90-110	3	25
Batch BC41402 - Ion Chroma	atography 300.0	Prep								
Blank (BC41402-BLK1)					Prepared 8	Analyzed:	03/14/14			
Sulfate	0.20 U	0.60	0.20	mg/L						
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
LCS (BC41402-BS1)					Prepared 8	Analyzed:	03/14/14			
Nitrate (as N)	1.68	0.04	0.01	mg/L	1.7		99	85-115		
Sulfate	9.14	0.60	0.20	mg/L	9.0		102	85-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
LCS Dup (BC41402-BSD1)					Prepared 8	Analyzed:	03/14/14			
Nitrate (as N)	1.68	0.04	0.01	mg/L	1.7		99	85-115	0.06	200
Sulfate	9.05	0.60	0.20	mg/L	9.0		101	85-115	1	200
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Matrix Spike (BC41402-MS1)		Source: 1	402575-10		Prepared 8	Analyzed:	03/15/14			
Nitrate (as N)	175	4.0	1.0	mg/L	170	ND	103	85-115		
Sulfate	934	60	20	mg/L	900	ND	104	85-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Inorganics - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41402 - Ion Chromat	ography 300.0	Prep								
Matrix Spike (BC41402-MS2)		Source: 1	402575-12		Prepared &	& Analyzed:	03/15/14			
Sulfate	945	60	20	mg/L	900	ND	105	85-115		
Nitrate (as N)	179	4.0	1.0	mg/L	170	ND	105	85-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Batch BC41417 - BOD										
Blank (BC41417-BLK1)					Prepared:	03/14/14 Ar	nalyzed: 03/	/19/14		
Carbonaceous BOD	2 U	2	2	mg/L						
Blank (BC41417-BLK2)					Prepared:	03/14/14 Ar	nalyzed: 03	/19/14		
Carbonaceous BOD	2 U	2	2	mg/L						
LCS (BC41417-BS1)					Prepared:	03/14/14 Ar	nalyzed: 03	/19/14		
Carbonaceous BOD	196	2	2	mg/L	200		98	85-115		
LCS (BC41417-BS2)					Prepared:	03/14/14 Ar	nalyzed: 03	/19/14		
Carbonaceous BOD	184	2	2	mg/L	200		92	85-115		
LCS Dup (BC41417-BSD1)					Prepared:	03/14/14 Ar	nalyzed: 03	/19/14		
Carbonaceous BOD	194	2	2	mg/L	200		97	85-115	1	200
LCS Dup (BC41417-BSD2)					Prepared:	03/14/14 Ar	nalyzed: 03	/19/14		
Carbonaceous BOD	185	2	2	mg/L	200		93	85-115	0.8	200
Duplicate (BC41417-DUP1)		Source: 1	402709-01		Prepared:	03/14/14 Ar	nalyzed: 03	/19/14		
Carbonaceous BOD	210	2	2	mg/L		210			0.5	25

March 31, 2014

Work Order: 1402686

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 31, 2014

Work Order: 1402686

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41417 - BOD										
Duplicate (BC41417-DUP2)		Source: 1	402714-01		Prepared:	03/14/14 Ar	nalyzed: 03	/19/14		
Carbonaceous BOD	160	2	2	mg/L		170			0.6	25
Batch BC41433 - Ortho phosph	norus SM4500)P-E by sea	I							
Blank (BC41433-BLK1)					Prepared &	Analyzed:	03/15/14			
Orthophosphate as P	0.012 U	0.040	0.012	mg/L						
LCS (BC41433-BS1)					Prepared &	Analyzed:	03/15/14			
Orthophosphate as P	0.759	0.040	0.012	mg/L	0.80		95	90-110		
Matrix Spike (BC41433-MS1)		Source: 1	402686-07		Prepared &	Analyzed:	03/15/14			
Orthophosphate as P	0.952	0.040	0.012	mg/L	1.0	ND	95	90-110		
Matrix Spike Dup (BC41433-MSD1))	Source: 1	402686-07		Prepared &	Analyzed:	03/15/14			
Orthophosphate as P	0.951	0.040	0.012	mg/L	1.0	ND	95	90-110	0.1	20
Batch BC41705 - COD prep										
Blank (BC41705-BLK1)					Prepared &	Analyzed:	03/17/14			
Chemical Oxygen Demand	10 U	25	10	mg/L						
LCS (BC41705-BS1)					Prepared &	Analyzed:	03/17/14			
Chemical Oxygen Demand	47	25	10	mg/L	50		94	90-110		
Matrix Spike (BC41705-MS1)		Source: 1	402686-07		Prepared &	Analyzed:	03/17/14			
Chemical Oxygen Demand	49	25	10	mg/L	50	ND	98	85-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 31, 2014

Work Order: 1402686

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41705 - COD prep										
Matrix Spike Dup (BC41705-MSD1	1)	Source: 1	402686-07		Prepared &	& Analyzed:	03/17/14			
Chemical Oxygen Demand	47	25	10	mg/L	50	ND	94	85-115	4	32
Batch BC41712 - VSS Prep										
Blank (BC41712-BLK1)					Prepared:	03/17/14 Ar	nalyzed: 03	/18/14		
Total Suspended Solids	1 U	1	1	mg/L						
Volatile Suspended Solids	1 U	1		mg/L						
LCS (BC41712-BS1)					Prepared:	03/17/14 Ar	nalyzed: 03	/18/14		
Total Suspended Solids	48.0	1	1	mg/L	50		96	85-115		
Duplicate (BC41712-DUP1)		Source: 1	402569-02		Prepared:	03/17/14 Ar	nalyzed: 03	/18/14		
Volatile Suspended Solids	4,770	1		mg/L		4640			3	20
Total Suspended Solids	5,590	1	1	mg/L		5460			2	30
Batch BC41718 - TOC prep										
Blank (BC41718-BLK1)					Prepared &	& Analyzed:	03/17/14			
Total Organic Carbon	0.060 U	1.0	0.060	mg/L						
LCS (BC41718-BS1)					Prepared &	& Analyzed:	03/17/14			
Total Organic Carbon	10.0	1.0	0.060	mg/L	10		100	90-110		
Matrix Spike (BC41718-MS1)		Source: 1	402721-07		Prepared &	& Analyzed:	03/17/14			
Total Organic Carbon	10.4	1.0	0.060	mg/L	10	ND	104	85-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 31, 2014

Work Order: 1402686

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41718 - TOC prep										
Matrix Spike Dup (BC41718-MSD1)		Source: 1	402721-07		Prepared 8	Analyzed:	03/17/14			
Total Organic Carbon	10.5	1.0	0.060	mg/L	10	ND	105	85-115	0.6	10
Batch BC41835 - Sulfide prep										
Blank (BC41835-BLK1)					Prepared 8	Analyzed:	03/18/14			
Sulfide	0.10 U	0.40	0.10	mg/L						
Blank (BC41835-BLK2)					Prepared 8	Analyzed:	03/18/14			
Sulfide	0.10 U	0.40	0.10	mg/L						
LCS (BC41835-BS1)					Prepared 8	Analyzed:	03/18/14			
Sulfide	4.84	0.40	0.10	mg/L	5.0		97	85-115		
LCS (BC41835-BS2)					Prepared 8	Analyzed:	03/18/14			
Sulfide	4.64	0.40	0.10	mg/L	5.0		93	85-115		
Matrix Spike (BC41835-MS1)		Source: 1	402550-07		Prepared 8	Analyzed:	03/18/14			
Sulfide	4.64	0.40	0.10	mg/L	5.0	ND	93	85-115		
Matrix Spike (BC41835-MS2)		Source: 1	402721-07		Prepared 8	Analyzed:	03/18/14			
Sulfide	4.64	0.40	0.10	mg/L	5.0	ND	93	85-115		
Matrix Spike Dup (BC41835-MSD1)		Source: 1	402550-07		Prepared 8	Analyzed:	03/18/14			
Sulfide	4.84	0.40	0.10	mg/L	5.0	ND	97	85-115	4	14
Matrix Spike Dup (BC41835-MSD2)		Source: 1	402721-07		Prepared 8	Analyzed:	03/18/14			
Sulfide	4.84	0.40	0.10	mg/L	5.0	ND	97	85-115	4	14

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 31, 2014

Work Order: 1402686

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result	FQL	MDL	Units	Levei	Result	/0RLC	LIIIIIIS	NF D	LIIIII
Batch BC41921 - Ammonia by	SEAL									
Blank (BC41921-BLK1)					Prepared &	& Analyzed:	03/20/14			
Ammonia as N	0.009 U	0.040	0.009	mg/L						
LCS (BC41921-BS1)					Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.46	0.040	0.009	mg/L	0.50		92	90-110		
Matrix Spike (BC41921-MS1)		Source: 1	402686-07		Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.48	0.040	0.009	mg/L	0.50	ND	96	90-110		
Matrix Spike (BC41921-MS2)		Source: 1	402721-07		Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.49	0.040	0.009	mg/L	0.50	ND	98	90-110		
Matrix Spike Dup (BC41921-MSD	1)	Source: 1	402686-07		Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.48	0.040	0.009	mg/L	0.50	ND	95	90-110	0.6	10
Matrix Spike Dup (BC41921-MSD	2)	Source: 1	402721-07		Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.48	0.040	0.009	mg/L	0.50	ND	97	90-110	2	10
Batch BC42503 - Ion Chromat	ography 300.0	Prep								
Blank (BC42503-BLK1)					Prepared &	Analyzed:	03/25/14			
Sulfate	0.20 U	0.60	0.20	mg/L						
Surrogate: Dichloroacetate	1.09			mg/L	1.0		109	90-115		
LCS (BC42503-BS1)					Prepared &	& Analyzed:	03/25/14			
Sulfate	8.80	0.60	0.20	mg/L	9.0		98	85-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 31, 2014

Work Order: 1402686

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC42503 - Ion Chroma	tography 300.0	Prep								
LCS Dup (BC42503-BSD1)					Prepared 8	Analyzed:	03/25/14			
Sulfate	8.78	0.60	0.20	mg/L	9.0		98	85-115	0.3	200
Surrogate: Dichloroacetate	1.06			mg/L	1.0		106	90-115		
Matrix Spike (BC42503-MS1)		Source: 1	402721-04		Prepared 8	Analyzed:	03/25/14			
Sulfate	238	6.0	2.0	mg/L	90	154	94	85-115		
Surrogate: Dichloroacetate	1.08			mg/L	1.0		108	90-115		
Matrix Spike (BC42503-MS2)		Source: 1	403001-08		Prepared 8	Analyzed:	03/25/14			
Sulfate	29.0	0.60	0.20	mg/L	9.0	20.1	99	85-115		
Surrogate: Dichloroacetate	0.978			mg/L	1.0		98	90-115		
Batch BC42512 - alkalinity										
Blank (BC42512-BLK1)					Prepared 8	Analyzed:	03/25/14			
Total Alkalinity	2.0 U	8.0	2.0	mg/L						
LCS (BC42512-BS1)					Prepared 8	Analyzed:	03/25/14			
Total Alkalinity	120	8.0	2.0	mg/L	120		97	90-110		
Matrix Spike (BC42512-MS1)		Source: 1	402721-07		Prepared 8	Analyzed:	03/25/14			
Total Alkalinity	120	8.0	2.0	mg/L	120	ND	98	80-120		
Matrix Spike Dup (BC42512-MSD	1)	Source: 1	402721-07		Prepared 8	Analyzed:	03/25/14			
Total Alkalinity	130	8.0	2.0	mg/L	120	ND	101	80-120	3	26

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 31, 2014

Work Order: 1402686

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Microbiology - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41336 - FC-MF										
Blank (BC41336-BLK1)					Prepared:	03/13/14 Ar	nalyzed: 03/	14/14		
Fecal Coliforms	1 U	1	1	CFU/100 r	nl					
Duplicate (BC41336-DUP1)		Source: 1	402687-	02	Prepared:	03/13/14 Ar	nalyzed: 03/	14/14		
Fecal Coliforms	1 U	1	1	CFU/100 r	nl	ND				200
Duplicate (BC41336-DUP2)		Source: 1	402688-	01	Prepared:	03/13/14 Ar	nalyzed: 03/	14/14		
Fecal Coliforms	1 U	1	1	CFU/100 r	nl	ND				200
Batch BC41337 - TC-MF										
Blank (BC41337-BLK1)					Prepared:	03/13/14 Ar	nalyzed: 03/	14/14		
Total Coliform	1 U	1	1	CFU/100 r	nl					
Duplicate (BC41337-DUP1)		Source: 1	402686-	07	Prepared:	03/13/14 Ar	nalyzed: 03/	14/14		
Total Coliform	1 U	1	1	CFU/100 r	nl	ND				200

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 31, 2014

Work Order: 1402686

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

* Qualifiers, Notes and Definitions

Results followed by a "U" indicate that the sample was analyzed but the compound was not detected. Results followed by "I" indicate that the reported value is between the laboratory method detection limts and the laboratory practical quantitation limit.

A statement of estimated uncertainty of test results is available upon request.

For methods marked with **, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Test results in this report meet all the requirements of the NELAC standards. Any applicable qualifiers are shown below.

Questions regarding this report should be directed to :

Kathryn Nordmark Telephone (813) 855-1844 FAX (813) 855-2218 Kathryn@southernanalyticallabs.com

Finbail

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Client		and Sawyer								Contact / Josefin H	Phone: irst 813-63	0-4498				
Projec	t Name / Location															
	BHS2 S lers: (Signature)	E#11	·													
Samp	(olghature)	T.J							PARAMET	ER / CON	TAINER DE	SCRIPTION				
SAL Use Only Sample No.	Matrix Codes: DW-Drinking Water WW-Wastewater SW-SurfaceWater SL-Sludge SO-Soil GW-Groundwater SA-Saline Water O-Other R-Reagent Water	Date	Time	Matrix	Composite	Grab 125mLP, Na ₂ S ₂ O ₃ FC-MF, FC-QT	1LP, Cool Total Alkalinity, TSS, VSS, CBOD, NOX, OP, SO4	125mLP, H ₂ SO4 COD, TKN, NH ₃ , TP	500mLP, NaOH, Zn Acetate H ₂ S	40mLaV, HCI TOC	125mLP, Na ₂ S ₂ O ₃ FC-MF, FC-QT, TC-MF (Non-potable)		00	Т	Temperature	Conductivity
Np.	Sample Description				1-1		<u> </u>	÷0	_¤ ₹ ∓	4 F	₩ <u>₩</u>			E		
01	BHS2-STE	3/13/14		ww		<u>X 4</u>	1	1	1	2			0.03	7.17	20.7	1428
02	BHS2-RECIRC		1040	ww		<u>X 4</u>	1	1	1	2			Q .05	7.22		1415
03	BHS2-ST1		1030	ww		X 4	1	1	1	2			7.25	7.10	20.4	1202
04	BHS2-LIGNO-0		1015	ww		x	1	1	1	2	6		0.88	7.01	22.0	1120
05	BHS2-ST2		0955	ww		x	1	1	1	2	6		0.09	7.05	29,2	1210
06	BHS2-ST2-DUP		1000	ww		x	1	1	1	2	6			/		1
07	BHS2-EB)	0925	R		x	1	1	1	2	6		9.21	7.04	15.2	1.81
Contair Relinqu	ers Prepared/ inhed/ Hatton 0,3014 ished: Date/Time: Date/Tim	Received:	A	- <u>i</u> '		Time: 10 1/30/ Time:	4	Seal inta Samples	ict?		O N NA O N NA		Instructio	ons / Rema	rks	
	5/13/14	Term	y My	m	12	29 3/1	3/14		d on ice? Te		ON NA					
Relinqu	and Mun 2:36 5/13/14	Received:	W/		14	20	13-14		reservatives ithin holding t		ØN NA ØN NA					
Relingu	iefhed: Date/Time:	Received:	7		Date	/Time:			rec'd w/out	ed?	-					
Relinqu	ished: Date/Time:	Received:			Date	/Time:				(Øn nøa					

Chain of Custody.xis Rev.Date 11/19/01

Page 17 of 17

Chain of Custody

SAL Project No. 1402686

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402721

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Laboratory Report

Project Name		B-HS2	SE#12					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Di	lution
Sample Description		BHS2-STE						
Matrix		Wastewater						
SAL Sample Number		1402721-01						
Date/Time Collected		03/14/14 10:40						
Collected by		Sean Schmidt						
Date/Time Received		03/14/14 12:03						
Client Provided Field Data								
рН		7.15						
Temperature		21.2 °C						
Conductivity		1430 umhos						
Dissolved Oxygen		0.02 mg/L						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	23	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	
Ammonia as N	mg/L	39	EPA 350.1	2.0	0.47		03/20/14 17:39	
Carbonaceous BOD	mg/L	250	SM 5210B	2	2	03/14/14 14:15	03/19/14 10:03	
Chemical Oxygen Demand	mg/L	360	EPA 410.4	25	10	03/20/14 11:30	03/20/14 15:49	
Nitrate (as N)	mg/L	0.03 I	EPA 300.0	0.04	0.01		03/15/14 02:21	
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/15/14 02:21	
Orthophosphate as P	mg/L	3.4	EPA 300.0	0.040	0.010		03/15/14 02:21	1
Phosphorous - Total as P	mg/L	6.5	SM 4500P-E	0.80	0.20	03/15/14 23:01	03/18/14 15:44	20
Sulfate	mg/L	14	EPA 300.0	0.60	0.20		03/15/14 02:21	
Sulfide	mg/L	53	SM 4500SF	0.40	0.10		03/18/14 08:30	1
Total Alkalinity	mg/L	580	SM 2320B	8.0	2.0		03/25/14 15:01	
Total Kjeldahl Nitrogen	mg/L	64	EPA 351.2	4.0	1.0	03/15/14 23:01	03/18/14 15:44	
Total Organic Carbon	mg/L	100	SM 5310B	10	0.60		03/17/14 14:05	
Total Suspended Solids	mg/L	16	SM 2540D	1	1	03/17/14 11:34	03/18/14 17:00	1
Volatile Suspended Solids	mg/L	13	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:00	1
Nitrate+Nitrite (N)	mg/L	0.03 l	EPA 300.0	0.08	0.02		03/15/14 02:21	1
Microbiology								
E. Coli	MPN/100 mL	24,000 Z	SM 9223B	2.0	2.0	03/14/14 12:57	03/15/14 11:30	1
Fecal Coliforms	CFU/100 ml	180,000	SM 9222D	1	1	03/14/14 12:56	03/15/14 11:50	1
Sample Description		BHS2-RECIRC						
Matrix		Wastewater						
SAL Sample Number		1402721-02						
Date/Time Collected		03/14/14 10:25						
Collected by		Sean Schmidt						
Date/Time Received		03/14/14 12:03						
Client Provided Field Data								
рН		7.27						
Temperature		20.8 °C						
Conductivity		1402 umhos						
Dissolved Oxygen		0.04 mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402721

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Laboratory Report

Project Name		B-HS2	SE#12					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Dil	lution
Sample Description Matrix		BHS2-RECIRC Wastewater						
SAL Sample Number		1402721-02						
Date/Time Collected		03/14/14 10:25						
Collected by		Sean Schmidt						
Date/Time Received		03/14/14 12:03						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	17	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	42	EPA 350.1	2.0	0.47		03/20/14 17:40	50
Carbonaceous BOD	mg/L	200	SM 5210B	2	2	03/14/14 14:15	03/19/14 10:03	1
Chemical Oxygen Demand	mg/L	310	EPA 410.4	25	10	03/20/14 11:30	03/20/14 15:49	1
Nitrate (as N)	mg/L	0.06	EPA 300.0	0.04	0.01		03/15/14 02:33	1
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/15/14 02:33	1
Orthophosphate as P	mg/L	3.8	EPA 300.0	0.040	0.010		03/15/14 02:33	1
Phosphorous - Total as P	mg/L	5.9	SM 4500P-E	0.80	0.20	03/15/14 23:01	03/18/14 15:45	20
Sulfate	mg/L	7.9	EPA 300.0	0.60	0.20		03/15/14 02:33	1
Sulfide	mg/L	45	SM 4500SF	0.40	0.10		03/18/14 08:30	1
Total Alkalinity	mg/L	610	SM 2320B	8.0	2.0		03/25/14 15:19	1
Total Kjeldahl Nitrogen	mg/L	63	EPA 351.2	4.0	1.0	03/15/14 23:01	03/18/14 15:45	20
Total Organic Carbon	mg/L	93	SM 5310B	10	0.60		03/17/14 14:05	10
Total Suspended Solids	mg/L	21	SM 2540D	1	1	03/17/14 11:34	03/18/14 17:00	1
Volatile Suspended Solids	mg/L	21	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:00	1
Nitrate+Nitrite (N)	mg/L	0.06	EPA 300.0	0.08	0.02		03/15/14 02:33	1
Microbiology	5							
E. Coli	MPN/100 mL	24,000 Z	SM 9223B	2.0	2.0	03/14/14 12:57	03/15/14 11:30	1
Fecal Coliforms	CFU/100 ml	139,000	SM 9222D	1	1	03/14/14 12:56	03/15/14 11:50	1
Sample Description		BHS2-ST1						
Matrix		Wastewater						
SAL Sample Number		1402721-03						
Date/Time Collected		03/14/14 10:15						
Collected by		Sean Schmidt						
Date/Time Received		03/14/14 12:03						
Client Provided Field Data								
pH		7.16						
Temperature		21.5 °C						
Conductivity		1198 umhos						
Dissolved Oxygen		3.32 mg/L						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	1.6	EPA 350.1	0.040	0.009		03/20/14 15:02	1
Carbonaceous BOD	mg/L	6	SM 5210B	2	2	03/14/14 14:15	03/19/14 10:03	1
Chemical Oxygen Demand	mg/L	23	EPA 410.4	25	10	03/20/14 11:30	03/20/14 15:49	

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

March 28, 2014 Work Order: 1402721

Laboratory Report

Project Name		B-HS2	SE#12					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Dil	ution
Sample Description		BHS2-ST1						
Matrix		Wastewater						
SAL Sample Number		1402721-03						
Date/Time Collected		03/14/14 10:15						
Collected by		Sean Schmidt						
Date/Time Received		03/14/14 12:03						
Nitrate (as N)	mg/L	34	EPA 300.0	0.40	0.10		03/14/14 18:27	10
Nitrite (as N)	mg/L	0.23	EPA 300.0	0.04	0.01		03/15/14 02:44	1
Orthophosphate as P	mg/L	2.9	EPA 300.0	0.040	0.010		03/15/14 02:44	1
Phosphorous - Total as P	mg/L	3.8	SM 4500P-E	0.20	0.050	03/15/14 23:01	03/18/14 15:46	5
Sulfate	mg/L	150	EPA 300.0	6.0	2.0		03/14/14 18:27	10
Sulfide	mg/L	0.10 U	SM 4500SF	0.40	0.10		03/18/14 08:30	1
Total Alkalinity	mg/L	230	SM 2320B	8.0	2.0		03/25/14 15:25	1
Total Kjeldahl Nitrogen	mg/L	4.8	EPA 351.2	1.0	0.25	03/15/14 23:01	03/18/14 15:46	5
Total Organic Carbon	mg/L	19	SM 5310B	1.0	0.060		03/17/14 14:05	1
Total Suspended Solids	mg/L	2	SM 2540D	1	1	03/17/14 11:34	03/18/14 17:00	1
Volatile Suspended Solids	mg/L	2	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:00	1
Nitrate+Nitrite (N)	mg/L	34	EPA 300.0	0.44	0.11		03/15/14 02:44	10
Microbiology								
E. Coli	MPN/100 mL	24,000 Z	SM 9223B	2.0	2.0	03/14/14 12:57	03/15/14 11:30	1
Fecal Coliforms	CFU/100 ml	27,000	SM 9222D	1	1	03/14/14 12:56	03/15/14 11:50	1
Sample Description		BHS2-LIGNO-0						
Matrix		Wastewater						
SAL Sample Number		1402721-04						
Date/Time Collected		03/14/14 10:00						
Collected by		Sean Schmidt						
Date/Time Received		03/14/14 12:03						
Client Provided Field Data								
pH		7.02						
Temperature		22.2 °C						
Conductivity		1112 umhos						
Dissolved Oxygen		0.60 mg/L						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.92	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	0.26	EPA 350.1	0.040	0.009		03/20/14 15:04	1
Carbonaceous BOD	mg/L	4	SM 5210B	2	2	03/14/14 14:15	03/19/14 10:03	1
Chemical Oxygen Demand	mg/L	33	EPA 410.4	25	10	03/20/14 11:30	03/20/14 15:49	1
Nitrate (as N)	mg/L	2.1	EPA 300.0	0.04	0.01		03/15/14 02:55	1
Nitrite (as N)	mg/L	0.37	EPA 300.0	0.04	0.01		03/15/14 02:55	1
Orthophosphate as P	mg/L	1.9	EPA 300.0	0.040	0.010		03/15/14 02:55	1
Phosphorous - Total as P	mg/L	3.4	SM 4500P-E	0.20	0.050	03/15/14 23:01	03/18/14 15:47	5
	5	150						

Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q.A. Manager

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402721

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Laboratory Report

Project Name		B-HS2	SE#12					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Di	lution
Sample Description		BHS2-LIGNO-0						
Matrix		Wastewater						
SAL Sample Number		1402721-04						
Date/Time Collected		03/14/14 10:00						
Collected by		Sean Schmidt						
Date/Time Received		03/14/14 12:03						
Sulfide	mg/L	1.8	SM 4500SF	0.40	0.10		03/18/14 08:30	1
Total Alkalinity	mg/L	350	SM 2320B	8.0	2.0		03/25/14 15:34	1
Total Kjeldahl Nitrogen	mg/L	1.8	EPA 351.2	1.0	0.25	03/15/14 23:01	03/18/14 15:47	5
Total Organic Carbon	mg/L	14	SM 5310B	1.0	0.060		03/17/14 14:05	1
Total Suspended Solids	mg/L	18	SM 2540D	1	1	03/17/14 11:34	03/18/14 17:00	1
Volatile Suspended Solids	mg/L	18	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:00	1
Nitrate+Nitrite (N)	mg/L	2.5	EPA 300.0	0.08	0.02		03/15/14 02:55	1
<u>Microbiology</u> Total Coliform		10	SM 9222B	4	4	00/44/4440.55	00/45/44 44.40	1
	CFU/100 ml	10		1	1	03/14/14 12:55	03/15/14 11:40	
E. Coli Fecal Coliforms	MPN/100 mL CFU/100 ml	8.5 10	SM 9223B SM 9222D	2.0 1	2.0 1	03/14/14 12:57 03/14/14 12:56	03/15/14 11:30 03/15/14 11:50	
		BHS2-ST2				00,11,1112.00	00,10,111100	
Sample Description Matrix		Wastewater						
SAL Sample Number		1402721-05						
Date/Time Collected		03/14/14 09:42						
Collected by		Sean Schmidt						
Date/Time Received		03/14/14 12:03						
Client Provided Field Data								
pH		7.09						
Temperature		20.0 °C						
Conductivity		1205 umhos						
Dissolved Oxygen		0.07 mg/L						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	14	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	0.38	EPA 350.1	0.040	0.009		03/20/14 16:25	1
Carbonaceous BOD	mg/L	47	SM 5210B	2	2	03/14/14 14:15	03/19/14 10:03	1
Chemical Oxygen Demand	mg/L	66	EPA 410.4	25	10	03/20/14 11:30	03/20/14 15:49	
Nitrate (as N)	mg/L	0.03 l	EPA 300.0	0.04	0.01		03/15/14 04:04	
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/15/14 04:04	
Orthophosphate as P	mg/L	1.9	EPA 300.0	0.040	0.010		03/15/14 04:04	
Phosphorous - Total as P	mg/L	3.0	SM 4500P-E	0.20	0.050	03/15/14 23:01	03/18/14 15:48	
Sulfate	mg/L	190	EPA 300.0	6.0	2.0		03/25/14 17:42	
		100		0.0			50, E0, 17 11.7L	

mg/L

mg/L

mg/L

mg/L

Sulfide

Total Alkalinity

Total Kjeldahl Nitrogen

Total Organic Carbon

03/18/14 08:30

03/25/14 15:43

03/18/14 15:48

03/17/14 14:05

1

1

5

1

31

360

1.1

15

SM 4500SF

SM 2320B

EPA 351.2

SM 5310B

0.40

8.0

1.0

1.0

0.10

2.0

0.25

0.060

03/15/14 23:01

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

March 28, 2014 Work Order: 1402721

Laboratory Report

Project Name		B-HS2	SE#12					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Di	lution
Sample Description Matrix SAL Sample Number		BHS2-ST2 Wastewater 1402721-05						
Date/Time Collected Collected by Date/Time Received		03/14/14 09:42 Sean Schmidt 03/14/14 12:03						
Total Suspended Solids	mg/L	2	SM 2540D	1	1	03/17/14 11:34	03/18/14 17:00	1
Volatile Suspended Solids	mg/L	2	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:00	1
Nitrate+Nitrite (N)	mg/L	0.03 I	EPA 300.0	0.08	0.02		03/15/14 04:04	1
<u>Microbiology</u>								
Total Coliform	CFU/100 ml	100	SM 9222B	1	1	03/14/14 12:55	03/15/14 11:40	1
E. Coli	MPN/100 mL	72	SM 9223B	2.0	2.0	03/14/14 12:57	03/15/14 11:30	1
Fecal Coliforms	CFU/100 ml	80	SM 9222D	1	1	03/14/14 12:56	03/15/14 11:50	1
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS2-ST2-DUP Wastewater 1402721-06 03/14/14 09:47 Sean Schmidt 03/14/14 12:03						
Client Provided Field Data								
pH Temperature Conductivity		7.09 20.0 °C 1205 umhos						
Dissolved Oxygen Inorganics		0.07 mg/L						
Hydrogen Sulfide (Unionized)	mg/L	14	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	1
Ammonia as N	mg/L	0.38	EPA 350.1	0.040	0.009	00.10.1100120	03/20/14 16:28	
Carbonaceous BOD	mg/L	42	SM 5210B	2	2	03/14/14 14:15	03/19/14 10:03	
Chemical Oxygen Demand	mg/L	72	EPA 410.4	25	10	03/20/14 11:30	03/20/14 15:49	1
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/15/14 04:15	1
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/15/14 04:15	1
Orthophosphate as P	mg/L	1.7	EPA 300.0	0.040	0.010		03/15/14 04:15	1
Phosphorous - Total as P	mg/L	3.1	SM 4500P-E	0.20	0.050	03/15/14 23:01	03/18/14 15:49	5
Sulfate	mg/L	210	EPA 300.0	6.0	2.0		03/25/14 17:52	10
Sulfide	mg/L	31	SM 4500SF	0.40	0.10		03/18/14 08:30	1
Total Alkalinity	mg/L	350	SM 2320B	8.0	2.0		03/25/14 15:52	1
Total Kjeldahl Nitrogen	mg/L	1.1	EPA 351.2	1.0	0.25	03/15/14 23:01	03/18/14 15:49	5
Total Organic Carbon	mg/L	15	SM 5310B	1.0	0.060		03/17/14 14:05	1
Total Suspended Solids	mg/L	2	SM 2540D	1	1	03/17/14 11:34	03/18/14 17:00	
Volatile Suspended Solids	mg/L	2	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:00	
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02		03/15/14 04:15	1
<u>Microbiology</u>								

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402721

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Laboratory Report

Project Name		B-HS	2 SE#12					
Parameters	Units	Results *	Method	PQL	MDL	Prepared	Analyzed Di	lution
Sample Description Matrix SAL Sample Number Date/Time Collected		BHS2-ST2-DUP Wastewater 1402721-06 03/14/14 09:47						
Collected by		Sean Schmidt						
Date/Time Received		03/14/14 12:03						
Total Coliform	CFU/100 ml	128	SM 9222B	1	1	03/14/14 12:55	03/15/14 11:40	1
E. Coli	MPN/100 mL	52	SM 9223B	2.0	2.0	03/14/14 12:57	03/15/14 11:30	1
Fecal Coliforms	CFU/100 ml	60	SM 9222D	1	1	03/14/14 12:56	03/15/14 11:50	1
Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received		BHS2-EB Reagent Water 1402721-07 03/14/14 09:15 Sean Schmidt 03/14/14 12:03						
Client Provided Field Data								
pH Temperature Conductivity Dissolved Oxygen		7.05 16.8 °C 1.39 umhos 8.35 mg/L						
Inorganics								
Hydrogen Sulfide (Unionized)	mg/L	0.01 U	SM 4550SF	0.04	0.01	03/18/14 08:26	03/18/14 08:30	
Ammonia as N	mg/L	0.009 U	EPA 350.1	0.040	0.009		03/20/14 15:13	
Carbonaceous BOD	mg/L	2 U	SM 5210B	2	2	03/14/14 14:15	03/19/14 10:03	
Chemical Oxygen Demand	mg/L	10 U	EPA 410.4	25	10	03/20/14 11:30	03/20/14 15:49	
Nitrate (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/14/14 15:29	
Nitrite (as N)	mg/L	0.01 U	EPA 300.0	0.04	0.01		03/14/14 15:29	
Orthophosphate as P	mg/L	0.010 U	EPA 300.0	0.040	0.010		03/14/14 15:29	
Phosphorous - Total as P	mg/L	0.010 U	SM 4500P-E	0.040	0.010	03/15/14 23:01	03/18/14 15:50	
Sulfate	mg/L	0.20 U	EPA 300.0	0.60	0.20		03/14/14 15:29	1
Sulfide	mg/L	0.10 U	SM 4500SF	0.40	0.10		03/18/14 08:30	1
Total Alkalinity	mg/L	2.0 U	SM 2320B	8.0	2.0		03/25/14 16:01	1
Total Kjeldahl Nitrogen	mg/L	0.05 U	EPA 351.2	0.20	0.05	03/15/14 23:01	03/18/14 15:50	1
Total Organic Carbon	mg/L	0.060 U	SM 5310B	1.0	0.060		03/17/14 14:05	1
Total Suspended Solids	mg/L	1 U	SM 2540D	1	1	03/17/14 11:34	03/18/14 17:00	1
Volatile Suspended Solids	mg/L	1 U	EPA 160.4	1	1	03/17/14 11:34	03/18/14 17:00	1
Nitrate+Nitrite (N)	mg/L	0.02 U	EPA 300.0	0.08	0.02		03/14/14 15:29	1
<u>Microbiology</u>								
Total Coliform	CFU/100 ml	1 U	SM 9222B	1	1	03/14/14 12:55	03/15/14 11:40	1
E. Coli	MPN/100 mL	2.0 U	SM 9223B	2.0	2.0	03/14/14 12:57	03/15/14 11:30	1
Fecal Coliforms	CFU/100 ml	1 U	SM 9222D	1	1	03/14/14 12:56	03/15/14 11:50	1

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402721

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41347 - Digestion for	TP and TKN									
Blank (BC41347-BLK1)					Prepared:	03/13/14 Ar	alyzed: 03	/18/14		
Phosphorous - Total as P	0.010 U	0.040	0.010	mg/L						
Total Kjeldahl Nitrogen	0.05 U	0.20	0.05	mg/L						
LCS (BC41347-BS1)					Prepared:	03/13/14 Ar	alyzed: 03	/18/14		
Phosphorous - Total as P	0.521	0.040	0.010	mg/L	0.50		104	90-110		
Total Kjeldahl Nitrogen	0.971	0.20	0.05	mg/L	1.0		97	90-110		
Matrix Spike (BC41347-MS1)		Source: 1	402686-07		Prepared:	03/13/14 Ar	alyzed: 03	/18/14		
Phosphorous - Total as P	0.495	0.040	0.010	mg/L	0.50	ND	99	90-110		
Total Kjeldahl Nitrogen	1.01	0.20	0.05	mg/L	1.0	ND	101	90-110		
Matrix Spike (BC41347-MS2)		Source: 1	402721-07		Prepared:	03/13/14 Ar	alyzed: 03	/18/14		
Phosphorous - Total as P	0.508	0.040	0.010	mg/L	0.50	ND	102	90-110		
Total Kjeldahl Nitrogen	1.05	0.20	0.05	mg/L	1.0	ND	105	90-110		
Matrix Spike Dup (BC41347-MSD1)	Source: 1	402686-07		Prepared:	03/13/14 Ar	alyzed: 03	/18/14		
Total Kjeldahl Nitrogen	1.03	0.20	0.05	mg/L	1.0	ND	103	90-110	2	20
Phosphorous - Total as P	0.501	0.040	0.010	mg/L	0.50	ND	100	90-110	1	25
Matrix Spike Dup (BC41347-MSD2	2)	Source: 1	402721-07		Prepared:	03/13/14 Ar	alyzed: 03	/18/14		
Total Kjeldahl Nitrogen	1.11	0.20	0.05	mg/L	1.0	ND	111	90-110	6	20
Phosphorous - Total as P	0.525	0.040	0.010	mg/L	0.50	ND	105	90-110	3	25
Batch BC41402 - Ion Chromat	ography 300.0	Prep								
Blank (BC41402-BLK1)					Prepared 8	Analyzed:	03/14/14			

Blank (BC41402-BLK1)					Prepared & Anal	yzeu. 03/14/14	
Orthophosphate as P	0.010 U	0.040	0.010	mg/L			
Nitrite (as N)	0.01 U	0.04	0.01	mg/L			
Nitrate (as N)	0.01 U	0.04	0.01	mg/L			
Sulfate	0.20 U	0.60	0.20	mg/L			
Surrogate: Dichloroacetate	1.15			mg/L	1.0	115	90-115
Surrogate: Dichloroacetate	1.15			mg/L	1.0	115	90-115
Surrogate: Dichloroacetate	1.15			mg/L	1.0	115	90-115
Surrogate: Dichloroacetate	1.15			mg/L	1.0	115	90-115

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1402721

March 28, 2014

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
				0		rtooun	/0.120	2		
Batch BC41402 - Ion Chroma	tography 300.	u Prep								
LCS (BC41402-BS1)					Prepared 8	Analyzed:	03/14/14			
Sulfate	9.14	0.60	0.20	mg/L	9.0		102	85-115		
Nitrite (as N)	1.45	0.04	0.01	mg/L	1.4		104	85-115		
Nitrate (as N)	1.68	0.04	0.01	mg/L	1.7		99	85-115		
Orthophosphate as P	0.881	0.040	0.010	mg/L	0.90		98	85-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
LCS Dup (BC41402-BSD1)					Prepared 8	Analyzed:	03/14/14			
Nitrate (as N)	1.68	0.04	0.01	mg/L	1.7		99	85-115	0.06	200
Sulfate	9.05	0.60	0.20	mg/L	9.0		101	85-115	1	200
Orthophosphate as P	0.883	0.040	0.010	mg/L	0.90		98	85-115	0.2	200
Nitrite (as N)	1.45	0.04	0.01	mg/L	1.4		104	85-115	0.07	200
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Matrix Spike (BC41402-MS1)		Source: 1	402575-10		Prepared 8	Analyzed:	03/15/14			
Nitrite (as N)	148	4.0	1.0	mg/L	140	2.00	104	85-115		
Nitrate (as N)	175	4.0	1.0	mg/L	170	ND	103	85-115		
Orthophosphate as P	87.2	4.0	1.0	mg/L	90	ND	97	85-115		
Sulfate	934	60	20	mg/L	900	ND	104	85-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		
Surrogate: Dichloroacetate	1.14			mg/L	1.0		114	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402721

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result	FQL	MDL	Units	Levei	Result	/irlu	LIIIIIIS	RF D	LIIIII
Batch BC41402 - Ion Chromato	ography 300.0	Prep								
Matrix Spike (BC41402-MS2)		Source: 1	402575-12		Prepared 8	Analyzed:	03/15/14			
Sulfate	945	60	20	mg/L	900	ND	105	85-115		
Orthophosphate as P	90.5	4.0	1.0	mg/L	90	ND	101	85-115		
Nitrite (as N)	151	4.0	1.0	mg/L	140	2.10	106	85-115		
Nitrate (as N)	179	4.0	1.0	mg/L	170	ND	105	85-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Batch BC41417 - BOD										
Blank (BC41417-BLK1)					Prepared: (03/14/14 Ar	alyzed: 03/	/19/14		
Carbonaceous BOD	2 U	2	2	mg/L						
Blank (BC41417-BLK2)					Prepared: (03/14/14 Ar	alyzed: 03/	/19/14		
Carbonaceous BOD	2 U	2	2	mg/L						
LCS (BC41417-BS1)					Prepared: (03/14/14 Ar	alyzed: 03/	/19/14		
Carbonaceous BOD	196	2	2	mg/L	200		98	85-115		
LCS (BC41417-BS2)					Prepared: (03/14/14 Ar	alyzed: 03/	/19/14		
Carbonaceous BOD	184	2	2	mg/L	200		92	85-115		
LCS Dup (BC41417-BSD1)					Prepared: (03/14/14 Ar	alyzed: 03/	/19/14		
Carbonaceous BOD	194	2	2	mg/L	200		97	85-115	1	200
LCS Dup (BC41417-BSD2)					Prenared: (03/14/14 Ar	alvzed: 03/	/19/14		
LCS Dup (BC41417-BSD2)					i iopuiou.					

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402721

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41417 - BOD										
Duplicate (BC41417-DUP1)		Source: 1	402709-01		Prepared:	03/14/14 Ar	nalyzed: 03/	/19/14		
Carbonaceous BOD	210	2	2	mg/L		210			0.5	25
Duplicate (BC41417-DUP2)		Source: 1	402714-01		Prepared:	03/14/14 Ar	nalyzed: 03/	/19/14		
Carbonaceous BOD	160	2	2	mg/L		170			0.6	25
Batch BC41423 - Ion Chroma	atography 300.0	Prep								
Blank (BC41423-BLK1)					Prepared 8	Analyzed:	03/15/14			
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Nitrite (as N)	0.01 U	0.04	0.01	mg/L						
Sulfate	0.20 U	0.60	0.20	mg/L						
Orthophosphate as P	0.010 U	0.040	0.010	mg/L						
Surrogate: Dichloroacetate	1.08			mg/L	1.0		108	90-115		
Surrogate: Dichloroacetate	1.08			mg/L	1.0		108	90-115		
Surrogate: Dichloroacetate	1.08			mg/L	1.0		108	90-115		
Surrogate: Dichloroacetate	1.08			mg/L	1.0		108	90-115		
LCS (BC41423-BS1)					Prepared &	Analyzed:	03/15/14			
Nitrate (as N)	1.73	0.04	0.01	mg/L	1.7		102	85-115		
Nitrite (as N)	1.47	0.04	0.01	mg/L	1.4		105	85-115		
Orthophosphate as P	0.813	0.040	0.010	mg/L	0.90		90	85-115		
Sulfate	9.26	0.60	0.20	mg/L	9.0		103	85-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		
Surrogate: Dichloroacetate	1.13			mg/L	1.0		113	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402721

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41423 - Ion Chroma	tography 300.	0 Prep								
LCS Dup (BC41423-BSD1)					Prepared 8	& Analyzed:	03/15/14			
Orthophosphate as P	0.811	0.040	0.010	mg/L	0.90		90	85-115	0.2	200
Nitrite (as N)	1.46	0.04	0.01	mg/L	1.4		104	85-115	0.4	200
Nitrate (as N)	1.72	0.04	0.01	mg/L	1.7		101	85-115	1	200
Sulfate	9.21	0.60	0.20	mg/L	9.0		102	85-115	0.6	200
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Surrogate: Dichloroacetate	1.11			mg/L	1.0		111	90-115		
Matrix Spike (BC41423-MS1)		Source: 1	402584-09		Prepared &	& Analyzed:	03/15/14			
Sulfate	160	6.0	2.0	mg/L	90	61.4	109	85-115		
Nitrate (as N)	19.5	0.40	0.10	mg/L	17	0.840	110	85-115		
Nitrite (as N)	14.8	0.40	0.10	mg/L	14	ND	106	85-115		
Orthophosphate as P	9.38	0.40	0.10	mg/L	9.0	ND	104	85-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Surrogate: Dichloroacetate	1.12			mg/L	1.0		112	90-115		
Matrix Spike (BC41423-MS2)		Source: 1	402538-06		Prepared &	& Analyzed:	03/15/14			
Sulfate	26.5	0.60	0.20	mg/L	9.0	18.0	94	85-115		
Orthophosphate as P	0.822	0.040	0.010	mg/L	0.90	ND	91	85-115		
Nitrite (as N)	1.52	0.04	0.01	mg/L	1.4	ND	109	85-115		
Nitrate (as N)	1.60	0.04	0.01	mg/L	1.7	0.0600	91	85-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		
Surrogate: Dichloroacetate	1.15			mg/L	1.0		115	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402721

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41712 - VSS Prep										
Blank (BC41712-BLK1)					Prepared:	03/17/14 Ar	nalyzed: 03	/18/14		
Volatile Suspended Solids	1 U	1		mg/L						
Total Suspended Solids	1 U	1	1	mg/L						
LCS (BC41712-BS1)					Prepared:	03/17/14 Ar	nalyzed: 03	/18/14		
Total Suspended Solids	48.0	1	1	mg/L	50		96	85-115		
Duplicate (BC41712-DUP1)		Source: 1	402569-02		Prepared:	03/17/14 Ar	nalyzed: 03	/18/14		
Total Suspended Solids	5,590	1	1	mg/L		5460			2	30
Volatile Suspended Solids	4,770	1		mg/L		4640			3	20
Batch BC41718 - TOC prep										
Blank (BC41718-BLK1)					Prepared &	Analyzed:	03/17/14			
Total Organic Carbon	0.060 U	1.0	0.060	mg/L						
LCS (BC41718-BS1)					Prepared &	Analyzed:	03/17/14			
Total Organic Carbon	10.0	1.0	0.060	mg/L	10		100	90-110		
Matrix Spike (BC41718-MS1)		Source: 1	402721-07		Prepared &	Analyzed:	03/17/14			
Total Organic Carbon	10.4	1.0	0.060	mg/L	10	ND	104	85-115		
Matrix Spike Dup (BC41718-MSD	1)	Source: 1	402721-07		Prepared &	Analyzed:	03/17/14			
Total Organic Carbon	10.5	1.0	0.060	mg/L	10	ND	105	85-115	0.6	10
Batch BC41808 - Ion Chroma	tography 300.0	Prep								
Blank (BC41808-BLK1)					Prepared &	Analyzed:	03/18/14			
Sulfate	0.20 U	0.60	0.20	mg/L						
Nitrate (as N)	0.01 U	0.04	0.01	mg/L						
Surrogate: Dichloroacetate	1.03			mg/L	1.0		103	90-115		
Surrogate: Dichloroacetate	1.03			mg/L	1.0		103	90-115		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402721

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Analyte	Result	FQL	MIDE	Units	Levei	Result	/irlu	LIIIIIIS	RF D	LIIIII
Batch BC41808 - Ion Chromato	graphy 300.0	Prep								
LCS (BC41808-BS1)					Prepared &	Analyzed:	03/19/14			
Nitrate (as N)	1.62	0.04	0.01	mg/L	1.7		95	85-115		
Sulfate	8.59	0.60	0.20	mg/L	9.0		95	85-115		
Surrogate: Dichloroacetate	1.05			mg/L	1.0		105	90-115		
Surrogate: Dichloroacetate	1.05			mg/L	1.0		105	90-115		
LCS Dup (BC41808-BSD1)					Prepared &	Analyzed:	03/19/14			
Nitrate (as N)	1.64	0.04	0.01	mg/L	1.7		96	85-115	1	200
Sulfate	8.64	0.60	0.20	mg/L	9.0		96	85-115	0.6	200
Surrogate: Dichloroacetate	1.08			mg/L	1.0		108	90-115		
Surrogate: Dichloroacetate	1.08			mg/L	1.0		108	90-115		
Matrix Spike (BC41808-MS1)		Source: 1	402084-01		Prepared &	Analyzed:	03/18/14			
Nitrate (as N)	16.2	0.40	0.10	mg/L	17	0.0360	95	85-115		
Sulfate	98.4	6.0	2.0	mg/L	90	13.5	94	85-115		
Surrogate: Dichloroacetate	1.03			mg/L	1.0		103	90-115		
Surrogate: Dichloroacetate	1.03			mg/L	1.0		103	90-115		
Matrix Spike (BC41808-MS2)		Source: 1	402340-03		Prepared &	Analyzed:	03/18/14			
Nitrate (as N)	17.9	0.40	0.10	mg/L	17	1.69	95	85-115		
Sulfate	194	6.0	2.0	mg/L	90	99.8	104	85-115		
Surrogate: Dichloroacetate	1.08			mg/L	1.0		108	90-115		
Surrogate: Dichloroacetate	1.08			mg/L	1.0		108	90-115		
Batch BC41835 - Sulfide prep										
Blank (BC41835-BLK1)					Prepared &	Analyzed:	03/18/14			
Sulfide	0.10 U	0.40	0.10	mg/L						

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

Work Order: 1402721

March 28, 2014

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

A	Desult	DOI	MDL	11	Spike	Source		%REC		RPD
Analyte	Result	PQL	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch BC41835 - Sulfide prep										
Blank (BC41835-BLK2)					Prepared &	Analyzed: (03/18/14			
Sulfide	0.10 U	0.40	0.10	mg/L						
LCS (BC41835-BS1)					Prepared &	Analyzed: (03/18/14			
Sulfide	4.84	0.40	0.10	mg/L	5.0		97	85-115		
LCS (BC41835-BS2)					Prepared &	Analyzed: (03/18/14			
Sulfide	4.64	0.40	0.10	mg/L	5.0		93	85-115		
Matrix Spike (BC41835-MS1)		Source: 1	402550-07		Prepared &	Analyzed: (03/18/14			
Sulfide	4.64	0.40	0.10	mg/L	5.0	ND	93	85-115		
Matrix Spike (BC41835-MS2)	atrix Spike (BC41835-MS2)				Prepared &	Analyzed:	03/18/14			
Sulfide	4.64	0.40	0.10	mg/L	5.0	ND	93	85-115		
Matrix Spike Dup (BC41835-MSD1)		Source: 1	402550-07		Prepared & Analyzed: 03/18/14					
Sulfide	4.84	0.40	0.10	mg/L	5.0	ND	97	85-115	4	14
Matrix Spike Dup (BC41835-MSD2)		Source: 1	402721-07		Prepared &	Analyzed:	03/18/14			
Sulfide	4.84	0.40	0.10	mg/L	5.0	ND	97	85-115	4	14
Batch BC41836 - COD prep										
Blank (BC41836-BLK1)					Prepared &	Analyzed: (03/20/14			
Chemical Oxygen Demand	10 U	25	10	mg/L						
LCS (BC41836-BS1)					Prepared &	Analyzed: (03/20/14			
Chemical Oxygen Demand	47	25	10	mg/L	50		94	90-110		

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402721

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Inorganics - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41836 - COD prep										
Matrix Spike (BC41836-MS1)		Source: 1	402813-02		Prepared 8	Analyzed:	03/20/14			
Chemical Oxygen Demand	47	25	10	mg/L	50	ND	94	85-115		
Matrix Spike Dup (BC41836-MSD1)		Source: 1	402813-02		Prepared 8	Analyzed:	03/20/14			
Chemical Oxygen Demand	49	25	10	mg/L	50	ND	98	85-115	4	32
Batch BC41921 - Ammonia by S	EAL									
Blank (BC41921-BLK1)					Prepared 8	Analyzed:	03/20/14			
Ammonia as N	0.009 U	0.040	0.009	mg/L						
LCS (BC41921-BS1)					Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.46	0.040	0.009	mg/L	0.50		92	90-110		
Matrix Spike (BC41921-MS1)		Source: 1	402686-07		Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.48	0.040	0.009	mg/L	0.50	ND	96	90-110		
Matrix Spike (BC41921-MS2)		Source: 1	402721-07		Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.49	0.040	0.009	mg/L	0.50	ND	98	90-110		
Matrix Spike Dup (BC41921-MSD1)		Source: 1	402686-07		Prepared &	Analyzed:	03/20/14			
Ammonia as N	0.48	0.040	0.009	mg/L	0.50	ND	95	90-110	0.6	10
Matrix Spike Dup (BC41921-MSD2)		Source: 1	402721-07		Prepared & Analyzed: 03/20/14					
Ammonia as N	0.48	0.040	0.009	mg/L	0.50	ND	97	90-110	2	10
Batch BC42503 - Ion Chromatog	graphy 300.0	Prep								
Blank (BC42503-BLK1)					Prepared &	Analyzed:	03/25/14			
Sulfate	0.20 U	0.60	0.20	mg/L						

mg/L

1.0

109

90-115

Surrogate: Dichloroacetate

1.09

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402721

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Result	POI	MDL	Units	Spike Level	Source Result	%RFC	%REC Limits	RPD	RPD Limit
<u> Jraphy 300.0</u>	Prep								
				Prepared &	Analyzed:	03/25/14			
8.80	0.60	0.20	mg/L	9.0		98	85-115		
1.14			mg/L	1.0		114	90-115		
				Prepared &	Analyzed:	03/25/14			
8.78	0.60	0.20	mg/L	9.0		98	85-115	0.3	200
1.06			mg/L	1.0		106	90-115		
	Source: 1	402721-04		Prepared &	Analyzed:	03/25/14			
238	6.0	2.0	mg/L	90	154	94	85-115		
1.08			mg/L	1.0		108	90-115		
	Source: 1	403001-08		Prepared &	Analyzed:	03/25/14			
29.0	0.60	0.20	mg/L	9.0	20.1	99	85-115		
0.978			mg/L	1.0		98	90-115		
				Prepared &	Analyzed:	03/25/14			
2.0 U	8.0	2.0	mg/L						
				Prepared &	Analyzed:	03/25/14			
120	8.0	2.0	mg/L	120		97	90-110		
	Source: 1	402721-07		Prepared &	Analyzed:	03/25/14			
120	8.0	2.0	mg/L	120	ND	98	80-120		
	Source: 1	402721 <u>-</u> 07		Prepared &	Analyzed:	03/25/14			
	8.0	2.0					-		
	8.80 1.14 8.78 1.06 238 1.08 29.0 0.978 2.0 U 120	Baseline Baseline	Bigraphy 300.0 Prep 8.80 0.60 0.20 1.14 0.60 0.20 1.06 0.20 0.20 1.06 0.20 0.20 1.06 0.20 0.20 1.06 0.20 0.20 1.08 0.00 0.20 29.0 0.60 0.20 0.978 0.60 0.20 120 8.0 2.0 Source: 1402721-07 1402721-07	Base O.60 O.20 mg/L 8.80 0.60 0.20 mg/L 1.14 mg/L mg/L 8.78 0.60 0.20 mg/L 1.06 mg/L mg/L 238 6.0 2.0 mg/L 1.08 mg/L mg/L 29.0 0.60 0.20 mg/L 0.978 mg/L mg/L mg/L 2.0 8.0 2.0 mg/L 120 8.0 2.0 mg/L 120 8.0 2.0 mg/L 120 8.0 2.0 mg/L	Result PQL MDL Units Level graphy 300.0 Prep Prepared 8 8.80 0.60 0.20 mg/L 9.0 1.14 mg/L 1.0 Prepared 8 8.78 0.60 0.20 mg/L 9.0 1.06 mg/L 1.0 Prepared 8 8.78 0.60 0.20 mg/L 9.0 1.06 mg/L 1.0 Prepared 8 8.78 0.60 0.20 mg/L 9.0 1.06 mg/L 1.0 Prepared 8 238 6.0 2.0 mg/L 9.0 1.08 mg/L 1.0 Prepared 8 29.0 0.60 0.20 mg/L 1.0 0.978 mg/L 1.0 Prepared 8 2.0 8.0 2.0 mg/L 1.0 120 8.0 2.0 mg/L 120 120 8.0 2.0 mg/L 120	Result PQL MDL Units Level Result graphy 300.0 Prep Prepared & Analyzed: 1 Prepared & Analyzed: 1 Prepared & Analyzed: 1 8.80 0.60 0.20 mg/L 9.0 Prepared & Analyzed: 1 1.14 mg/L 1.0 Prepared & Analyzed: 1 Prepared & Analyzed: 1 8.78 0.60 0.20 mg/L 9.0 1 1.06 mg/L 1.0 Prepared & Analyzed: 1 1 238 6.0 2.0 mg/L 1.0 1 238 6.0 2.0 mg/L 1.0 1 29.0 0.60 0.20 mg/L 1.0 1 20.0 0.60 0.20 mg/L 1.0 1 20.0 0.60 2.0 </td <td>Result PQL MDL Units Level Result %REC graphy 300.0 Prep Prepared & Analyzed: 03/25/14 Prepared & Analyzed: 03/25/14 9.0 98 8.80 0.60 0.20 mg/L 9.0 98 1.14 mg/L 1.0 114 Prepared & Analyzed: 03/25/14 Prepared & Analyzed: 03/25/14 8.78 0.60 0.20 mg/L 9.0 98 1.06 mg/L 9.0 98 1.06 98 1.06 0.20 mg/L 9.0 98 106 Source: 1402721-04 mg/L 1.0 106 Source: 1403001-08 mg/L 9.0 154 94 1.08 Source: 1403001-08 Prepared & Analyzed: 03/25/14 98 29.0 0.60 0.20 mg/L 1.0 98 0.978 mg/L 1.0 98 98 20.0 8.0 2.0 mg/L 9.0 93/25/14 20.0 8</td> <td>Result PQL MDL Units Level Result %REC Limits graphy 300.0 Prep Prepared & Analyzed: 03/25/14 Prepared & Analyzed: 03/25/14 Source: 03/25/14</td> <td>Result PQL MDL Units Level Result %REC Limits RPD graphy 300.0 Prep Prepared & Analyzed: 03/25/14 Prepared & Analyzed: 03/25/14 9.0 98 85-115 1.14 90.115 Prepared & Analyzed: 03/25/14 9.0 98 85-115 0.3 1.14 </td>	Result PQL MDL Units Level Result %REC graphy 300.0 Prep Prepared & Analyzed: 03/25/14 Prepared & Analyzed: 03/25/14 9.0 98 8.80 0.60 0.20 mg/L 9.0 98 1.14 mg/L 1.0 114 Prepared & Analyzed: 03/25/14 Prepared & Analyzed: 03/25/14 8.78 0.60 0.20 mg/L 9.0 98 1.06 mg/L 9.0 98 1.06 98 1.06 0.20 mg/L 9.0 98 106 Source: 1402721-04 mg/L 1.0 106 Source: 1403001-08 mg/L 9.0 154 94 1.08 Source: 1403001-08 Prepared & Analyzed: 03/25/14 98 29.0 0.60 0.20 mg/L 1.0 98 0.978 mg/L 1.0 98 98 20.0 8.0 2.0 mg/L 9.0 93/25/14 20.0 8	Result PQL MDL Units Level Result %REC Limits graphy 300.0 Prep Prepared & Analyzed: 03/25/14 Prepared & Analyzed: 03/25/14 Source: 03/25/14	Result PQL MDL Units Level Result %REC Limits RPD graphy 300.0 Prep Prepared & Analyzed: 03/25/14 Prepared & Analyzed: 03/25/14 9.0 98 85-115 1.14 90.115 Prepared & Analyzed: 03/25/14 9.0 98 85-115 0.3 1.14

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218

March 28, 2014

Work Order: 1402721

Hazen and Sawyer

10002 Princess Palm Ave, Suite 200

Tampa, FL 33619

Microbiology - Quality Control

Analyte	Result	PQL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BC41420 - TC-MF										
Blank (BC41420-BLK1)					Prepared:	03/14/14 Ar	nalyzed: 03/	15/14		
Total Coliform	1 U	1	1	CFU/100 n	nl					
Duplicate (BC41420-DUP1)		Source: 1	402721-	07	Prepared:	03/14/14 Ar	nalyzed: 03/	15/14		
Total Coliform	1 U	1	1	CFU/100 n	nl	ND				200
Batch BC41421 - FC-MF										
Blank (BC41421-BLK1)					Prepared:	03/14/14 Ar	nalyzed: 03/	15/14		
Fecal Coliforms	1 U	1	1	CFU/100 n	nl					
Duplicate (BC41421-DUP1)		Source: 1	402713-	02	Prepared:	03/14/14 Ar	nalyzed: 03/	15/14		
Fecal Coliforms	1 U	1	1	CFU/100 n	nl	ND				200

STREE IN ACCORDANCE

Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

* Qualifiers, Notes and Definitions

Results followed by a "U" indicate that the sample was analyzed but the compound was not detected. Results followed by "I" indicate that the reported value is between the laboratory method detection limts and the laboratory practical quantitation limit.

A statement of estimated uncertainty of test results is available upon request.

For methods marked with **, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Test results in this report meet all the requirements of the NELAC standards. Any applicable qualifiers are shown below.

Z Too many colonies were present for accurate counting.

Questions regarding this report should be directed to :

Kathryn Nordmark Telephone (813) 855-1844 FAX (813) 855-2218 Kathryn@southernanalyticallabs.com

Finbail

March 28, 2014 Work Order: 1402721

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

Client	Name	Hazan	and Sawyer								Contact / Josefin H	Phone: irst 813-63	0-4498			·····	
Projec	ct Name / Location	BHS2 S															
Samp	lers: (Signature)	4	1										SCRIPTION				
SAL Use Only Sample No.	Matrix Codes DW-Drinking Water WW-Wa SW-SurfaceWater SL-Sludge GW-Groundwater SA-Saline Wa R-Reagent Water Sample Descript	e SO-Soil ter O-Other	Date	Time	Matrix	Composite	Grab 125mLP, Na ₂ S ₂ O ₃	11P, Cool Total Alkalinity, TSS, VSS, CBOD, NOx, OP, SO,	125mLP, H ₂ SO4 COD, TKN, NH ₃ , TP	500mLP, NaOH, Zn Acetate H ₂ S	40mLaV, HCI TOC	125mLP, Na ₅ S ₂ O ₃ FC-MF, FC-QT, TC-MF (Non-potable)		0	F	Temperature	Conductivity
01	BHS2-STE		3/19/14	1040	ww		<u>x 4</u>	1	1	1	2			0.02	7.15	21.2	(430
02	BHS2-RECIRC			1025	ww	<u> </u>	<u>X 4</u>	1	1	1	2			0.04	7.27	20.8	1402
03	BHS2-ST1			1015	ww		<u>X 4</u>	1	1	1	2	ļ		3.72	7.16	21.5	1198
04	BHS2-LIGNO-0			1000	ww		x	1	1	1	2	6		0.60	7.02	21.2	1112
05	BHS2-ST2			0942	ww		x	1	1	1	2	6		0.07	7.09	20.0	1 205
06	BHS2-ST2-DUP			0947	ww		<u>x</u>	1	1	1	2	6					
07	BHS2-EB		1	0815	R		<u>x</u>	1	1	1	2	6		8.35	7.05	168	1-39
<u> </u>																	
		<u></u>		1		$\left \right $											
ļ						$\left - \right $											
	1					$\left\{ \cdot \right\}$											
Relinq	uished	Date/Time: /20-3 3/14//4 Date/Time:	Received: LML Received:	dmen	ch	3/	/Time: / /14/14 /Time:	203	-	act? s intact upon i d on ice? Te	mp (Instructio	ons / Rema	rks	
Relinq	uished:	Date/Time:	Received:			Date	/Time:			reservatives ithin holding t		() n nva () n nva					
Relinq	uished [.]	Date/Time:	Received:			Date	/Time:			s rec'd w/out containers us		Y N Ø					
Relinq	uished:	Date/Time:	Received:			Date	/Time:			, on tamers US		Øn na					

Chain of Custody xis Rev.Date 11/19/01

Page 19 of 19

Chain of Custody

SAL Project No. 1402721

Appendix B: Operation & Maintenance Log

Operation and Maintenance Log
Description
Existing system evaluation performed. Septic tank was pumped out.
Local DOH performed site evaluation
System construction started
System start-up
Globe valves were set at 3.5:1 recirculation ratio
Tanks full
Preliminary sample event 1
Preliminary sample event 2
Preliminary sample event 3. Low level in pump tank.
Very high level in pump tank.
Pulled float tree up (reset floats), and pump immediately came on.
Water level below top float in pump tank
Sample Event No. 1
Very high level in pump tank.
Pulled float tree up (reset floats), and pump immediately came on.
Very high level in pump tank. Audio alarm came on and was reset.
Water level below top float in pump tank
Re-positioned floats and zip-tied wires to tree.
Very high level in pump tank.
Pulled float tree up (reset floats), and pump immediately came on.
Water level below top float in pump tank
Low level in pump tank
Floats not registering in panel
Pulled float tree up (reset floats)
Moved bottom float down
Re-wrapped wires and checked lights in panel, floats registered.
Sample Event No. 2
Site visit. Cleaned out leaves from DBOX.
Sample Event No. 3
Site visit.

Table B.1Operation and Maintenance Log

o:\44237-001\\Wpdocs\Report\Draft

Table B.1 (continued)Operation and Maintenance Log

Date	Description
6/4/2013	Sample Event No. 4
7/8/2013	System check
8/7/2013	Sample Event No. 5
	Revised recirculation mode of operation to Stage 1 biofilter spray nozzles
	Cleaned STE effluent screen
9/3/2013	System check
	Recirculation ratio still at 3:1
9/6/2013	System check
	Recirculation ratio still at 3:1
9/24/2013	System check
	Recirculation ratio still at 3:1
10/7/2013	Sample Event No. 6
	Recirculation ratio still at 3:1
10/24/2013	System check
11/27/2013	System check
	Recirculation ratio still at 3:1
12/3/2013	System check
12/5/2013	Sample Event No. 7
12/30/2013	System check
2/13/2014	System check
3/10/2014	Sample Event No. 8
3/11/2014	Sample Event No. 9
3/12/2014	Sample Event No. 10
3/13/2014	Sample Event No. 11
3/14/2014	Sample Event No. 12
4/30/2014	Met with homeowner regarding system acceptance
	Cleaned STE screen
	Reset recirculation mode of operation to recirc tank

Appendix C: Vericomm PLC Data

Systen	n Status		3/14/2014	3/13/2014	3/12/2014	3/11/2014	3/10/2014	2/13/2014	1/9/2014
Point	Description	Status	Value						
1	Alarm Status	Automatic	ОК	ОК	ОК	OK	ОК	ОК	ОК
2	Alert Status	Automatic	ОК	ОК	ОК	OK	ОК	OK	ОК
3	System Mode	Automatic	Normal						
5	Timer Mode	Automatic	Normal	Normal	Normal	Off	Off	Normal	Overide
6	Active Off Time	Automatic	58.8 Minutes	15.0 Minutes					
7	Active On Time	Automatic	1.2 Minutes	2.0 Minutes					
9	Pump Mode	Automatic	OffCycl	OffCycl	OffCycl	Off	Off	OffCycl	OffCycl
10	Pump Status	Automatic	Off						
12	Pump Cycles Today	Automatic	6.0 Cycles	6.0 Cycles	4.0 Cycles	6.0 Cycles	4.0 Cycles	5.0 Cycles	12.0 Cycles
13	Override Cycles Today	Automatic	0.0 Cycles	5.0 Cycles					
14	Pump Run Time Today	Automatic	6.3 Minutes	6.2 Minutes	3.8 Minutes	6.1 Minutes	3.5 Minutes	5.5 Minutes	16.0 Minutes
Setting	js								
Point	Description	Status	Value						
17	Off Cycle Time	Constant/Setpoint	58.8 Minutes						
18	On Cycle Time	Constant/Setpoint	1.2 Minutes						
19	Override Off Cycle Time	Constant/Setpoint	15.0 Minutes						
20	Override On Cycle Time	Constant/Setpoint	2.0 Minutes						
21	Minimum Override Cycles	Automatic	3.0 Cycles						
	Override Cycle Limit per Day	Automatic	10.0 Cycles						
	Time Limit per Day	Constant/Setpoint	40.0 Minutes						
	High Level Pump Test	Automatic	2.0 Minutes						
	Alarm Update Interval	Automatic	120.0 Minutes	240.0 Minutes					
	Page Delay	Automatic	960.0 Minutes						
30	Page Interval	Automatic	30.0 Minutes						
31	Local Alarm Delay	Constant/Setpoint	1140.0 Minutes						
32	Local Reactivate Delay	Automatic	120.0 Minutes						
Trouble	eshooting								
Point	Description	Status	Value						
33	Top Float Status	Automatic	ОК						
34	Middle Float Status	Automatic	ок						
35	Bottom Float Status	Automatic	ОК						
37	Contactor Status	Automatic	ок	ОК	OK	OK	OK	ок	OK
38	Pump Status	Automatic	ок	ОК	OK	OK	OK	OK	OK
	Filter Status	Automatic	OK	OK	OK	OK	OK	ОК	OK
-	Tank Status	Automatic	OK	OK	OK	OK	OK	ОК	OK
	Power Status	Automatic	ок	OK	OK	OK	OK	OK	OK
Flow D									
-	Description	Status	Value						
	Pump Run Time Today	Automatic	6.3 Minutes	6.2 Minutes	3.8 Minutes	6.1 Minutes	3.5 Minutes	5.5 Minutes	16.0 Minutes
	Override Cycles Today	Automatic	0	0.2 Minutes	0	0	0	0	5
	Pump Cycles Today	Automatic	6.0 Cycles	6.0 Cycles	4.0 Cycles	6.0 Cycles	4.0 Cycles	5.0 Cycles	12.0 Cycles
51	Average Run Time per Cycle Today	Automatic	1.1 Minutes	1.0 Minutes	1.0 Minutes	1.0 Minutes	0.9 Minutes	1.1 Minutes	1.3 Minutes
_	Brownouts Today	Automatic	0	0	0	0	0	0	0

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES STUDY B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8

Appendix C

			3/14/2014	3/13/2014	3/12/2014	3/11/2014	3/10/2014	2/13/2014	1/9/2014
30-Dav	/ History Data								
_	Description	Status	Value	Value	Value	Value	Value	Value	Value
65	30 Day Average Run Time per Day	Automatic	15.4 Minutes	15.2 Minutes	15.4 Minutes	15.9 Minutes	17.2 Minutes	18.3 Minutes	22.9 Minutes
66	30 Day Average Override Cycles per Day	Automatic	0.1 Cycles	0.1 Cycles	0.1 Cycles	0.3 Cycles	0.7 Cycles	1.0 Cycles	2.1 Cycles
67	30 Day Average Cycles per Day	Automatic	14.5 Cycles	14.3 Cycles	14.5 Cycles	14.8 Cycles	15.5 Cycles	16.2 Cycles	18.9 Cycles
68	30 Day Average Run Time per Cycle	Automatic	1.1 Minutes	1.2 Minutes					
71	30 Day Total Pump Run Time	Automatic	463.3 Minutes	456.3 Minutes	462.0 Minutes	475.7 Minutes	515.6 Minutes	547.7 Minutes	685.8 Minutes
72	30 Day Total Override Cycles	Automatic	4.0 Cycles	4.0 Cycles	4.0 Cycles	8.0 Cycles	21.0 Cycles	31.0 Cycles	64.0 Cycles
73	30 Day Total Cycles	Automatic	435.0 Cycles	430.0 Cycles	434.0 Cycles	443.0 Cycles	466.0 Cycles	485.0 Cycles	567.0 Cycles
76	30 Day Total Brow nouts	Automatic	0	0	0	0	0	0	0
otaliz	ed Pump Data								
Point	Description	Status	Value	Value	Value	Value	Value	Value	Value
82	Pump Total Run Time	Automatic	204.3 Hours	204.0 Hours	203.7 Hours	203.6 Hours	203.4 Hours	196.9 Hours	185.6 Hours
83	Pump Total Cycles	Automatic	10582.0 Cyclos	10566.0 Cyclos	10549.0 Cyclos	10539.0 Cvelos	10527.0 Cyclos	10162.0 Cyclos	9573.0 Cycles
Visce	laneous								
Point	Description	Status	Value	Value	Value	Value	Value	Value	Value
145	Pump On Auto	Automatic	Off	Off	Off	Off	Off	Off	Off
147	Pump Test Today	Automatic	Off	Off	Off	Off	Off	Off	On
148	Pump Check Enable	Automatic	Off	Off	Off	Off	Off	Off	Off
149	Total Override Cycles	Automatic	0	0	0	0	0	0	1
150	High Level Condition	Automatic	Off	Off	Off	Off	Off	Off	Off
151	Leak Check Enable	Automatic	On	On	On	Off	Off	On	On
152	Brownout State	Automatic	Off	Off	Off	Off	Off	Off	Off
153	Test Mode	Automatic	Off	Off	Off	Off	Off	Off	Off
Alarm	Points								·
Point	Description	Status	Value	Value	Value	Value	Value	Value	Value
161	General Alarm	Automatic	Off	Off	Off	Off	Off	Off	Off
162	New Alarm	Automatic	Off	Off	Off	Off	Off	Off	Off
163	Update Central Enable	Automatic	On	On	On	On	On	On	On
167	Page Alarm Start	Automatic	Off	Off	Off	Off	Off	Off	Off
168	Pager Signal	Override Off	Off	Off	Off	Off	Off	Off	Off
169		Automatic	Off	Off	Off	Off	Off	Off	Off
170	Local Alarm Silence	Automatic	Off	Off	Off	Off	Off	Off	Off
Inputs	& Outputs								
-	Description	Status	Value	Value	Value	Value	Value	Value	Value
177	High Level/Override Timer Float Input	Automatic	Off	Off	Off	Off	Off	Off	Off
178		Automatic	On	On	On	Off	Off	On	On
179	Redundant Off Float & Low Level Alarm Input	Automatic	On	On	On	On	On	On	On
181	Push To Silence Input	Automatic	Off	Off	Off	Off	Off	Off	Off
182	Auxiliary Contact Input	Automatic	Off	Off	Off	Off	Off	Off	Off
186	Pump Output	Automatic	Off	Off	Off	Off	Off	Off	Off
	Alarm Light Output	Automatic	Off	Off	Off	Off	Off	Off	Off
	Audible Alarm Output	Automatic	Off	Off	Off	Off	Off	Off	Off

FLORIDA DEPARTMENT OF HEALTH B-HS2 FIELD SYSTEM MONITORING REPORT NO. 8 PAGE C-2 HAZEN AND SAWYER, P.C.