


Otis Environmental Consultants, LLC

# Florida Onsite Sewage Nitrogen Reduction Strategies Study

# TASK B.7 PROGRESS REPORT

# B-HS4 Field System Monitoring Report No. 7

# **Prepared for:**

Florida Department of Health
Division of Disease Control and Health Protection
Bureau of Environmental Health
Onsite Sewage Programs
4042 Bald Cypress Way Bin #A-08
Tallahassee, FL 32399-1713

**FDOH Contract CORCL** 

November 2014

Prepared by:



In Association With:





# B-HS4 Field System Monitoring Report No. 7

#### 1.0 Background

Task B of the Florida Onsite Sewage Nitrogen Reduction Strategies Study (FOSNRS) includes performing field experiments to critically evaluate the performance of nitrogen removal technologies that were identified in FOSNRS Task A.9 and pilot tested in Task A.26. To meet this objective, full scale treatment systems are being installed at various residential sites in Florida and monitored over an extended timeframe under actual onsite conditions. The Task B Quality Assurance Project Plan (Task B.5) documents the objectives, monitoring framework, sample frequency and duration, and analytical methods to be used at the home sites. This report documents the seventh sample event of the passive nitrogen reduction system at home site B-HS4 in Seminole County, Florida.

# 2.0 Purpose

Operation of the B-HS4 system was initiated on July 9, 2013. This monitoring report documents data collected from the seventh B-HS4 monitoring and sampling event conducted on October 23, 2014 (Experimental Day 471). This monitoring event consisted of conducting flow measurements from the household water use meter, recording electricity use, monitoring of field parameters, collection of water samples from four points in the treatment system, and chemical analyses of water samples by a NELAC certified laboratory.

#### 3.0 Materials and Methods

#### 3.1 Project Site

The B-HS4 field site is located in Seminole County, FL. The nitrogen reducing onsite treatment system for the single family residence was installed in June 2013. Design and construction details were presented previously in the Task B.6 document. Figure 1 is a system schematic showing the system components and layout of the installation. A flow schematic of the system is shown in Figure 2. Prior to the installation of the nitrogen removal system, the property had two existing onsite sewage treatment and

disposal systems. The pre-existing 1,200 gallon concrete septic tank, located on the west side of the property, continues to provide primary treatment, now as part of the PNRS system. The pre-existing 900 gallon septic tank, located on the northeast side of the property, was converted to a lift station. In the new configuration, raw sewage is pumped from the 900 gallon lift station to the head end of the new gravity flow PNRS. All subsequent flow through the PNRS is by gravity. The passive nitrogen reduction system consists of the septic tank, two treatment tanks and a new drainfield that replaced the two existing permitted systems. The B-HS4 PNRS tankage includes a 2,800 gallon concrete tank that houses a Stage 1 unsaturated media biofilter and 1,500 gallon two chamber concrete tank that houses a Stage 2 saturated media biofilter. Based on measured average wastewater flow and tank volumes, there is over a ten day transit time through the treatment system prior to dispersal. The treated effluent from the Stage 2 biofilter is discharged into the soil via the new drainfield (EQ36-LP™ chambers).

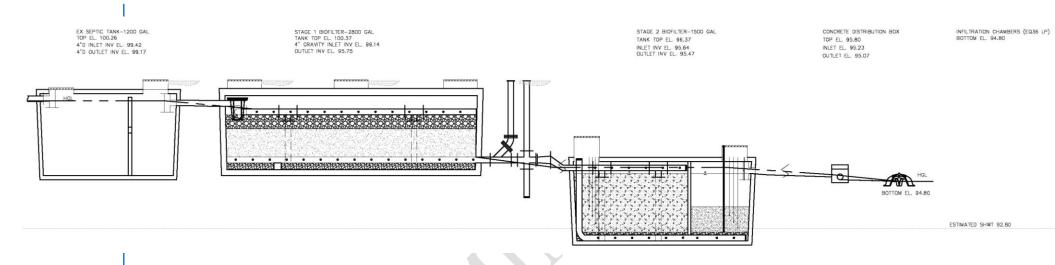



Figure 2
Flow Schematic of B-HS4 PNRS

#### 3.2 Monitoring and Sample Locations and Identification

The four primary monitoring points are shown in Figure 3. Household wastewater enters the primary tank and exits as septic tank effluent through an effluent filter screen into the Stage 1 biofilter. The first monitoring point, B-HS4-STE, is the effluent sampled approximately 1.5 feet below the surface of the primary tank before the effluent filter screen (Figure 4), which is referred to as primary effluent or septic tank effluent (STE). The lift station wastewater is pumped into the inlet side of the primary tank; therefore, samples from monitoring point B-HS4-STE are representative of the whole household wastewater and are the influent to the remainder of the onsite nitrogen reduction system.

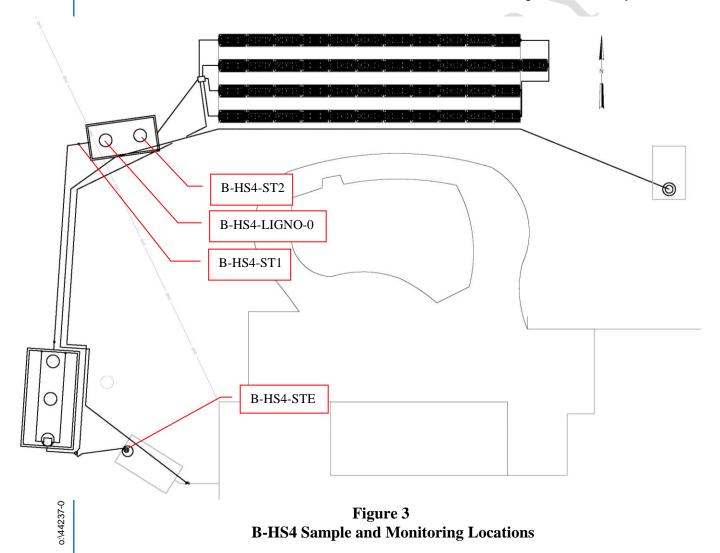





Figure 4
Primary Tank (B-HS4-STE Sample)

The primary tank contents are discharged by gravity to a distribution box, located inside the Stage 1 biofilter, which splits the flow between three perforated distribution pipes which run along the top of the unsaturated Stage 1 biofilter media. In the Stage 1 biofilter, wastewater percolates downward through 30-inches of unsaturated expanded clay media where nitrification occurs. Stage 1 biofilter effluent flows into the Stage 2 biofilter by gravity. The second sampling point (B-HS4-ST1) represents the Stage 1 biofilter effluent, and is taken from a sample port in the gravity pipe connecting the Stage 1 biofilter outlet to the Stage 2 biofilter inlet (Figure 3).

Effluent from the unsaturated (Stage 1) media tank enters the saturated denitrification (Stage 2) biofilter above the media in the first chamber (lignocellulosic media), flows downward through the media, moves laterally in a perforated 4-inch pipe through the

baffle wall to the bottom of the second chamber, and upward through the media in the second chamber (elemental sulfur and oyster shell).

The first chamber of the Stage 2 biofilter contains 42-inches of lignocellulosic media. Stainless steel samplers are positioned at 12-inch increments for vertical profiling throughout the lignocellulosic media. The third primary sampling point is a stainless steel sampler positioned at the bottom of the lignocellulosic media (B-HS4-LIGNO-0) with tubing to the surface. The B-HS4-LIGNO-0 sample represents effluent from the lignocellulosic media biofilter (Figure 5).



Figure 5
First Chamber of Stage 2 Biofilter (B-HS4-LIGNO-0 Sample)

A collection pipe along the bottom transfers the first chamber (lignocellulosic media) effluent to the second chamber, which contains 18-inches of elemental sulfur mixed with oyster shell media. The fourth primary sampling point, B-HS4-ST2, is the second chamber of the Stage 2 biofilter effluent which is sampled approximately 1 foot below the surface of the effluent baffle tee. This sample location is after passage through the sulfur media; it is the final effluent from the treatment system prior to being discharged to the soil infiltration system, or drainfield (Figure 6).



Figure 6
Second Chamber of Stage 2 Biofilter (B-HS4-ST2 Sample)

#### 3.3 Operational Monitoring

Start-up of the system occurred on July 9, 2013 (Experimental Day 0). Preliminary sampling for several key parameters was conducted July 29, 2013 (Experimental Day 20) to evaluate start-up performance. It was noted during sampling that the incoming lift station wastewater flow into the primary tank was causing mixing in the primary tank and the carryover of solids into the Stage 1 biofilter d-box. Therefore, the PNRS system was bypassed on August 15, 2013. On September 5, 2013 a smaller pump (lower horsepower) was installed in the lift station with a mechanical float switch. This modification results in more frequent and lower volume doses from the lift station to the primary tank and reduced mixing within the primary tank. The PNRS system has operated continually since September 5, 2013 (Experimental Day 58). For the seventh formal sampling event, Sample Event No. 7, the water meter for the house was read and recorded on October 23, 2014. The household water meter is located on the potable water line from the onsite well prior to entering the household plumbing. The water meter does not include the irrigation water use. Therefore, the water meter reading should be indicative of the wastewater flow to the system.

#### 3.4 Energy Consumption

The new PNRS system at this site is a gravity flow system and uses no energy for wastewater treatment. As indicated previously however, a small lift station pump was required to transfer wastewater from the second existing OSTDS to the new gravity PNRS. Energy consumption by this lift station pump was monitored using an electrical meter installed between the main power box for the house and the control panel. The electrical meter records the cumulative power usage of the system in kilowatt-hours. There are no chemicals added to the system. However, the Stage 2 biofilter media (lignocellulosic and sulfur) are "reactive" media which will be consumed during operation. The Stage 2 biofilter was initially filled with 42 inches of lignocellulosic media and 18 inches of sulfur and oyster shell mixture media, which ostensibly will last for many years without replenishment or replacement.

#### 3.5 Water Quality Sample Collection and Analyses

The seventh formal sample event was conducted on October 23, 2014. A full suite of samples were collected for water quality analysis, including influent, intermediate and effluent points. Samples were collected at each of the four monitoring points described in Section 3.3: B-HS4-STE, B-HS4-ST1, B-HS4-LIGNO-0, and B-HS4-ST2. A peristaltic pump was used to collect samples and route them directly into analysis-specific containers after sufficient flushing of the tubing had occurred. Field parameters were then recorded.

o:\44237-001R004\Wpdocs\Report\Final

Immediately subsequent to the regular samples for each primary monitoring point, additional sample was collected to be filtered at the laboratory (0.45 micron filter) for analysis of  $CBOD_5$  and the nitrogen species to allow for comparison to the unfiltered sample water quality results.

Lastly, field blank (FB) and field duplicate samples were taken. The field blank was collected by filling sample containers with deionized water that had been transported into the field along with other sample containers. The field sample duplicate (B-HS4-ST1) was collected immediately subsequent to the regular samples. These samples were then analyzed for the same parameters as the monitoring samples.

The analysis-specific containers were supplied by the analytical laboratory and contained appropriate preservatives. The analysis-specific containers were labeled, placed in coolers and transported on ice to the analytical laboratories. Each sample container was secured in packing material as appropriate to prevent damage and spills, and was recorded on chain-of-custody forms supplied by the laboratory. Chain of custody forms, provided in Appendix A, were used to document the transfer of samples from field personnel to the analytical laboratory.

Field parameters were measured using portable electronic probes and included temperature (Temp), dissolved oxygen (DO), oxidation-reduction potential (ORP), pH, and specific conductance. The field parameters were measured by placing the analytical probes in a container overflowing with sample water. The influent, intermediate, and effluent samples were analyzed by the laboratory for: total alkalinity, chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN-N), ammonia nitrogen (NH<sub>3</sub>-N), nitrate nitrogen (NO<sub>3</sub>-N), nitrite nitrogen (NO<sub>2</sub>-N), total phosphorus (TP), orthophosphate (Ortho P), total suspended solids (TSS), volatile suspended solids (VSS), total organic carbon (TOC), fecal coliform (fecal), and E.coli. The influent and sulfur media samples included sulfate, sulfide, and hydrogen sulfide (unionized). All analyses were performed by an independent and fully NELAC certified analytical laboratory (Southern Analytical Laboratory). Table 1 lists the analytical parameters, analytical methods, and detection limits for laboratory analyses.

**Method Detection Limit Analytical Parameter Method of Analysis** (mg/L)Total Alkalinity as CaCO3 SM 2320B 2 mg/L Chemical Oxygen Demand (COD) EPA 410.4 10 mg/L Total Kjeldahl Nitrogen (TKN-N) EPA 351.2 0.05 mg/L Ammonia Nitrogen (NH<sub>3</sub>-N) EPA 350.1 0.005 mg/L Nitrate Nitrogen (NO<sub>3</sub>-N) EPA 300.0 0.01 mg/L Nitrite Nitrogen (NO<sub>2</sub>-N) EPA 300.0 0.01 mg/L Nitrate+Nitrite Nitrogen (NOX-N) EPA 300.0 0.02 mg/L Total Phosphorus (TP) SM 4500P-E 0.01 mg/L Orthophosphate as P (Ortho P) EPA 300.0 0.01 mg/L Carbonaceous Biological Oxygen SM5210B 2 mg/L Demand (CBOD<sub>5</sub>) Total Solids (TS) EPA 160.3 .01 % by wt Total Suspended Solids (TSS) SM 2540D 1 mg/L Volatile Suspended Solids (VSS) EPA 160.4 1 mg/L Total Organic Carbon (TOC) SM5310B 0.06 mg/L Sulfate EPA 300.0 2.0 mg/L Sulfide SM 4500SF 0.10 mg/L Hydrogen Sulfide (unionized) SM 4550SF 0.01 mg/L Fecal Coliform (fecal) SM9222D 1 ct/100mL E.coli SM9223B 2 ct/100mL

#### 4.0 Results and Discussión

#### 4.1 Operational Monitoring

Table 2 provides a summary of the household water use since the water meter installation on February 8, 2013. The operation and maintenance log which includes actions taken since start-up is provided in Appendix B. From PNRS system start-up through October 23, 2014, the household water use average was 309 gallons per day with period of higher and lower flows (Table 2).

| Date and Time Read | Cumulative Volume<br>(gallons) | Average Daily Household Flow between readings, Q (gpd) | Average<br>Household Flow<br>since PNRS start-up, Q<br>(gpd) |
|--------------------|--------------------------------|--------------------------------------------------------|--------------------------------------------------------------|
| 2/8/2013 13:45     | 0.0                            | INSTALLED                                              |                                                              |
| 2/21/2013 11:25    | 4,391.0                        | 340.3                                                  |                                                              |
| 2/28/2013 12:00    | 6,292.5                        | 270.7                                                  | 1                                                            |
| 6/7/2013 8:00      | 34,417.4                       | 284.6                                                  |                                                              |
| 6/14/2013 8:00     | 36,179.5                       | 251.7                                                  |                                                              |
| 6/20/2013 12:40    | 37,981.2                       | 290.9                                                  |                                                              |
| 7/9/2013 15:35     | 42334.44                       | 227.7                                                  | PNRS start-up                                                |
| 7/17/2013 14:30    | 45,422.8                       | 388.2                                                  | 388.2                                                        |
| 7/23/2013 13:32    | 47,051.9                       | 273.4                                                  | 339.0                                                        |
| 7/29/2013 11:25    | 48,658.8                       | 271.8                                                  | 319.0                                                        |
| 8/6/2013 12:15     | 50,922.9                       | 281.8                                                  | 308.3                                                        |
| 8/12/2013 10:24    | 52,614.2                       | 285.6                                                  | 304.3                                                        |
| 8/15/2013 8:20     | 53,328.4                       | 245.1                                                  | 299.6                                                        |
| 8/27/2013 10:20    | 56,550.0                       | 266.6                                                  | 291.4                                                        |
| 9/5/2013 9:59      | 58,748.1                       | 244.6                                                  | 284.1                                                        |
| 9/30/2013 13:15    | 65,633.7                       | 273.9                                                  | 281.0                                                        |
| 11/8/2013 11:00    | 76,559.6                       | 280.8                                                  | 281.0                                                        |
| 11/27/2013 11:15   | 82,039.9                       | 288.3                                                  | 282.0                                                        |
| 12/2/2013 13:30    | 83,048.8                       | 198.1                                                  | 279.0                                                        |
| 12/23/2013 13:00   | 88,271.2                       | 248.9                                                  | 275.2                                                        |
| 1/23/2014 10:30    | 98,116.0                       | 318.6                                                  | 282.0                                                        |
| 1/31/2014 10:48    | 100,521.0                      | 300.2                                                  | 282.7                                                        |
| 2/3/2014 11:20     | 101,475.3                      | 315.8                                                  | 283.2                                                        |
| 2/4/2014 10:05     | 101,844.6                      | 389.6                                                  | 283.7                                                        |
| 2/5/2014 8:05      | 102,095.7                      | 273.9                                                  | 283.6                                                        |
| 2/6/2014 9:25      | 102,275.2                      | 170.1                                                  | 283.1                                                        |
| 2/7/2014 9:11      | 102,557.9                      | 285.5                                                  | 283.1                                                        |
| 2/12/2014 11:30    | 103,986.0                      | 280.2                                                  | 283.0                                                        |
| 3/14/2014 9:00     | 112,449.7                      | 283.1                                                  | 283.0                                                        |
| 4/3/2014 12:00     | 118,146.5                      | 283.1                                                  | 283.0                                                        |
| 4/25/2014 8:50     | 124,728.7                      | 301.0                                                  | 284.4                                                        |
| 4/29/2014 11:15    | 125,962.6                      | 300.9                                                  | 284.6                                                        |
| 5/29/2014 11:20    | 136,114.3                      | 338.4                                                  | 289.6                                                        |
| 6/9/2014 11:15     | 138,848.1                      | 248.6                                                  | 288.3                                                        |
| 7/11/2014 10:30    | 147,011.9                      | 255.4                                                  | 285.4                                                        |
| 7/29/2014 14:15    | 152,624.1                      | 309.1                                                  | 286.5                                                        |
| 8/22/2014 9:30     | 166,932.8                      | 601.2                                                  | 304.8                                                        |
| 9/19/14 11:20      | 175,287.4                      | 297.6                                                  | 304.4                                                        |
| 10/23/2014 8:00    | 187,775.5                      | 368.8                                                  | 309.0                                                        |

#### 4.2 Energy Consumption

As mentioned previously, the PNRS at this site is a gravity system and uses no electrical energy for treatment. However, energy is required to transfer wastewater from the second existing OSTDS to the head end of the PNRS system. The energy consumption by the lift station pump that transfers flow from the second existing OSTDS is monitored using an electrical meter installed between the main power box for the house and the lift station pump outlet to record cumulative power usage of the pump in kilowatt-hours. The recorded electrical use for the system is summarized in Table 3. The total average electrical use through October 23, 2014 was 0.164 kWh per day. The cause for the increase in electrical use between the March 14<sup>th</sup> and April 3<sup>rd</sup>, 2014 readings is attributed to a clog in the lift station throttling valve (ball valve). The clog was causing the pump to run longer with a very slow flow rate.

Table 3
Summary of System Electrical Use

| Summa                          | ry of System Electrical |                         |
|--------------------------------|-------------------------|-------------------------|
| D . 177 D .                    | Cumulative Electrical   | Average Daily           |
| Date and Time Read             | Meter Reading           | Electrical Use          |
|                                | (kWh)                   | btwn readings (kWh/day) |
| 6/20/2013 14:00                |                         | Installed               |
| 7/9/2013 15:45                 | 0.3                     | PNRS start-up           |
| 7/17/2013 10:41                | 0.5                     | 0.026                   |
| 7/23/2013 13:34                | 0.6                     | 0.016                   |
| 7/29/2013 11:30                | 0.8                     | 0.034                   |
| 8/6/2013 11:42                 | 0.9                     | 0.012                   |
| 8/12/2013 10:24                | 1.2                     | 0.050                   |
| 8/15/2013 8:20                 | 1.3                     | 0.034                   |
| 8/27/2013 10:20                | 1.8                     | 0.041                   |
| 9/5/2013 9:59                  | 2.2                     | 0.045                   |
| 9/30/2013 13:15                | 5.8                     | 0.143                   |
| 11/8/2013 11:00                | 12.3                    | 0.167                   |
| 11/27/2013 11:15               | 14.1                    | 0.095                   |
| 12/2/2013 12:55                | 14.5                    | 0.079                   |
| 12/23/2013 13:00               | 17.3                    | 0.133                   |
| 1/23/2014 10:30                | 21.1                    | 0.123                   |
| 1/31/2014 10:48                | 22.2                    | 0.137                   |
| 2/3/2014 11:20                 | 22.7                    | 0.165                   |
| 2/4/2014 10:05                 | 22.9                    | 0.211                   |
| 2/5/2014 8:05                  | 23.0                    | 0.109                   |
| 2/6/2014 9:25                  | 23.1                    | 0.095                   |
| 2/7/2014 9:11                  | 23.1                    | 0.000                   |
| 2/12/2014 11:30                | 23.9                    | 0.157                   |
| 3/14/2014 9:00                 | 29.7                    | 0.194                   |
| 4/3/2014 12:00                 | 62.2                    | 1.615                   |
| 4/25/2014 8:50                 | 66.8                    | 0.210                   |
| 4/29/2014 11:15                | 68.4                    | 0.390                   |
| 5/29/2014 11:20                | 73.7                    | 0.177                   |
| 6/9/2014 11:15                 | 73.9                    | 0.018                   |
| 7/11/2014 10:30                | 74.7                    | 0.025                   |
| 8/22/2014 9:30                 | 75.9                    | 0.029                   |
| 9/19/2014 11:20                | 76.6                    | 0.025                   |
| 10/23/2014 8:00                | 77.5                    | 0.027                   |
| Total average through 10/23/14 |                         | 0.164                   |

# **4.3** Water Quality

Water quality analytical results, for Sample Event No. 7 are listed in Table 4 and key results are graphically displayed in Figure 7. A summary of the water quality data collected to date for the test system is presented in Table 5. The laboratory report containing

the raw analytical data is included in Appendix A. The following discussion summarizes the water quality analytical results. The performance of the various system components was compared by considering the changes through treatment of nitrogen species (TKN,  $NH_3$ -N, and  $NO_x$ -N), as well as supporting water quality parameters.

| Q ⊏                          | <b>⇒</b> STE | <b>⇒</b> STAGE | 1    STAGE  LIGNO |      | DISPERSA     Q |
|------------------------------|--------------|----------------|-------------------|------|----------------|
| CBOD <sub>5</sub> mg/L       | 110          | 5              | 6                 | 7    |                |
| TKN mg N/L                   | 82           | 3.2            | 3.7               | 1.0  |                |
| NH <sub>3</sub> mg N/L       | 66           | 2.5            | 0.7               | 0.7  |                |
| NO <sub>x</sub> mg N/L       | 0.8          | 55.1           | 13.3              | 0.04 |                |
| TN mg N/L                    | 82.8         | 58.3           | 17.0              | 1.0  |                |
| Sulfate mg/L                 | Non-detect   | 24             | 20                | 71   |                |
| Fecal Coliform<br>(Ct/100mL) | 67,000       | 530            | 830               | 410  |                |

Figure 7
Graphical Representation of Nitrogen Results
Sample Event No. 7 October 23, 2014 (Experimental Day 471)

**Septic Tank Effluent (STE) Quality:** The water quality characteristics of STE collected in Sample Event 7 were within the typical range generally expected for domestic STE for all parameters. The measured STE total nitrogen (TN) concentration was 82.8 mg/L, which is within the high end of the range that has been typically reported for Florida single family residence STE. The measured CBOD<sub>5</sub> concentration was 110 mg/L.

Stage 1 Effluent (ST1): The Stage 1 effluent NH $_3$ -N level was 2.5 mg/L with a DO level at 4.14 mg/L (Table 4). The Stage 1 effluent TSS and CBOD $_5$  concentrations were 3 mg/L. The Stage 1 biofilter showed substantial nitrification with an effluent NH $_3$ -N concentration of 2.5 mg/L and TKN of 3.2 mg/L. The Stage 1 effluent NO $_x$ -N was 55 mg/L. The Stage 1 effluent TN of 58.2 mg/L was 30% lower than that in the STE, suggesting denitrification in the Stage 1 biofilter.

**Stage 2 Biofilter Effluent (LIGNO-0" and ST2)**: The Stage 2 system produced a highly reducing environment and NO<sub>x</sub>-N reduction was virtually complete. Effluent NO<sub>x</sub>-N from the Stage 2 biofilter monitoring point was 0.04 mg/L and was accompanied by a measured DO of 0.29 mg/L and ORP of -179 mV. The effluent NO<sub>x</sub>-N of the lignocellulosic media biofilter was 13.3 mg/L. Final total nitrogen (TN) in the treatment system ef-

o:\44237-001R004\Wpdocs\Report\Final

fluent was 1.03 mg/L. The Stage 2 biofilter lignocellulosic media effluent and sulfur media effluent CBOD $_5$  were 6 and 7 mg/L, respectively. The Stage 2 effluent sulfate concentration was 71 mg/L.

**Field Blank (EB)**: Described in Section 3.5, the field blank (FB) results for most of the parameters measured were at or below the method detection limit. The slightly elevated parameters were total alkalinity 2.9 mg/L, orthophosphate 0.014 mg/L and total organic carbon 0.14 mg/L.

| Sample ID             | Sample<br>Date/Time | Temp<br>(°C) | рН   | Specific<br>Conductance<br>(uS/cm) | DO<br>(mg/L) | ORP<br>(mV) | Total<br>Alkalinity<br>(mg/L) | TSS<br>(mg/L) | VSS<br>(mg/L) | CBOD <sub>5</sub><br>(mg/L) | COD<br>(mg/L) | TN<br>(mg/L N) <sup>1</sup> | TKN<br>(mg/L N) | Organic N<br>(mg/L N) <sup>2</sup> |       | NO <sub>3</sub> -N<br>(mg/L N) | NO <sub>2</sub> -N<br>(mg/L N) | NOx<br>(mg/L N) | TIN<br>(mg/L N) <sup>3</sup> |      | Ortho P<br>(mg/L P) | Sulfate | Hydrogen<br>Sulfide<br>(mg/L) | Sulfide | Fecal<br>(Ct/100<br>mL) | E-coli<br>(Ct/100<br>mL) | TOC<br>(mg/L) |
|-----------------------|---------------------|--------------|------|------------------------------------|--------------|-------------|-------------------------------|---------------|---------------|-----------------------------|---------------|-----------------------------|-----------------|------------------------------------|-------|--------------------------------|--------------------------------|-----------------|------------------------------|------|---------------------|---------|-------------------------------|---------|-------------------------|--------------------------|---------------|
| BHS4-STE              | 10/23/2014 9:20     | 24.53        | 6.79 | 1278                               | 0.08         | -201.3      | 490                           | 45            | 44            | 110                         | 310           | 82.76                       | 82              | 16                                 | 66    | 0.66                           | 0.1                            | 0.76            | 66.76                        | 10   | 9.2                 | 0.2     | 3.1                           | 6.4     | 67000                   | 200000                   | 59            |
| BHS4-STE-FILTERED     | 10/23/2014 9:20     | 24.53        | 6.79 | 1278                               | 0.08         | -201.3      |                               |               |               | 87                          |               | 74.11                       | 74              | 14                                 | 60    | 0.01                           | 0.1                            | 0.11            | 60.11                        | ,    |                     |         |                               |         |                         |                          |               |
| BHS4-ST1              | 10/23/2014 8:55     | 25.40        | 7.21 | 1317                               | 4.14         | 508.2       | 300                           | 3             | 3             | 5                           | 18            | 58.33                       | 3.2             | 0.7                                | 2.5   | 55                             | 0.13                           | 55.13           | 57.63                        | 3.2  | 2.8                 | 24      | 0.44                          | 1.2     | 530                     | 200                      | 7.9           |
| BHS4-ST1-DUP          | 10/23/2014 9:00     | 25.40        | 7.21 | 1317                               | 4.14         | 508.2       | 300                           | 4             | . 4           | 3                           | 20            | 59.14                       | 3               | 0.5                                | 2.5   | 56                             | 0.14                           | 56.14           | 58.64                        | 3    | 2.6                 | 24      |                               |         | 290                     | 280                      | 7.7           |
| BHS4-ST1-FILTERED     | 10/23/2014 8:55     | 25.40        | 7.21 | 1317                               | 4.14         | 508.2       |                               |               |               | 3                           |               | 59.04                       | 2.9             | 1.1                                | 1.8   | 56                             | 0.14                           | 56.14           | 57.94                        |      |                     |         |                               | Ĭ.      |                         |                          |               |
| BHS4-LIGNO-0          | 10/23/2014 8:54     | 25.73        | 6.54 | 1149                               | 1.57         | 58.2        | 400                           | 1             | . 1           | 6                           | 79            | 16.97                       | 3.7             | 3.02                               | 0.68  | 13                             | 0.27                           | 13.27           | 13.95                        | 2.6  | 2.5                 | 20      | 0.29                          | 0.4     | 830                     | 820                      | 8.9           |
| BHS4-LIGNO-0-FILTERED | 10/23/2014 8:54     | 25.73        | 6.54 | 1149                               | 1.57         | 58.2        |                               |               |               | 3                           |               | 15.98                       | 3.7             | 3.09                               | 0.61  | 12                             | 0.28                           | 12.28           | 12.89                        |      |                     |         |                               |         |                         |                          |               |
| BHS4-ST2              | 10/23/2014 8:32     | 24.88        | 6.58 | 1200                               | 0.29         | -178.6      | 450                           | 2             | 1             | 7                           | 31            | 1.03                        | 0.99            | 0.29                               | 0.7   | 0.02                           | 0.02                           | 0.04            | 0.74                         | 2.2  | 2.1                 | 71      | 3.4                           | 4.8     | 410                     | 370                      | 8.4           |
| BHS4-ST2-FILTERED     | 10/23/2014 8:32     | 24.88        | 6.58 | 1200                               | 0.29         | -178.6      |                               |               |               | 3                           |               | 1.01                        | 0.98            | 0.44                               | 0.54  | 0.01                           | 0.02                           | 0.03            | 0.57                         |      |                     | 71      |                               |         |                         |                          |               |
| BHS4-FB               | 10/23/2014 9:45     | 20.30        | 6.27 | 2.03                               | 8.39         | 425.9       | 2.9                           | 1             | 1             | 2                           | 10            | 0.08                        | 0.05            | 0.041                              | 0.009 | 0.02                           | 0.01                           | 0.03            | 0.039                        | 0.01 | 0.014               | 0.2     | 0.01                          | 0.1     | 1                       | 2                        | 0.14          |

Notes:

Gray-shaded data points indicate values below method detection level (mdl), mdl value used for statistical analyses.

Yellow-shaded data points indicate the reported value is between the laboratory method detection limit and the laboratory practical quantitation limit, value used for statistical analysis.

<sup>&</sup>lt;sup>1</sup>Total Nitrogen (TN) is a calculated value equal to the sum of TKN and NO<sub>X</sub>.

 $<sup>^2</sup>$ Organic Nitrogen (ON) is a calculated value equal to the difference of TKN and NH $_3$ .

<sup>&</sup>lt;sup>3</sup>Total Inorganic Nitrogen (TIN) is a calculated value equal to the sum of NH<sub>3</sub> and NO<sub>X</sub>.

Table 5
Summary of Water Quality Data

| Sample<br>ID | Statistical<br>Parameter | Temp<br>(°C) | рН   | Specific<br>Conductance<br>(uS/cm) | DO<br>(mg/L) | ORP<br>(mV) | Total<br>Alkalinity<br>(mg/L) | TSS<br>(mg/L) | VSS<br>(mg/L) | CBOD <sub>5</sub><br>(mg/L) | COD<br>(mg/L) | TN<br>(mg/L N) <sup>1</sup> | TKN<br>(mg/L N) | Organic<br>N (mg/L<br>N) <sup>2</sup> | NH <sub>3</sub> -N<br>(mg/L N) | NO <sub>3</sub> -N<br>(mg/L N) | NO <sub>2</sub> -N<br>(mg/L N) | NOx<br>(mg/L N) | TIN<br>(mg/L N) <sup>3</sup> | TP<br>(mg/L) | Ortho P<br>(mg/L P) | Sulfate<br>(mg/L) | Hydroge<br>n Sulfide<br>(mg/L) | Sulfide<br>(mg/L) | Fecal<br>(Ct/100<br>mL) | E-coli<br>(Ct/100<br>mL) | TOC<br>(mg/L) |
|--------------|--------------------------|--------------|------|------------------------------------|--------------|-------------|-------------------------------|---------------|---------------|-----------------------------|---------------|-----------------------------|-----------------|---------------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------|------------------------------|--------------|---------------------|-------------------|--------------------------------|-------------------|-------------------------|--------------------------|---------------|
|              | n                        | 11           | 11   | 11                                 | 11           | 11          | 11                            | 11            | 11            | 11                          | 11            | 11                          | 11              | 11                                    | 11                             | 11                             | 11                             | 11              | 11                           | 11           | 11                  | 11                | 11                             | 11                | 11                      | 10                       | 11            |
|              | MEAN                     | 22.89        | 6.79 | 1175.36                            | 0.16         | -217.47     | 442.73                        | 61.36         | 58.18         | 133.91                      | 213.45        | 69.38                       | 69.27           | 8.00                                  | 61.27                          | 0.09                           | 0.02                           | 0.11            | 61.38                        | 9.55         | 6.42                | 1.66              | 3.14                           | 5.13              | 42,638                  | 14,075                   | 65.18         |
| STE          | STD. DEV.                | 3.29         | 0.00 | 118.00                             | 0.22         | 55.93       | 30.69                         | 21.97         | 20.71         | 54.54                       | 112.57        | 10.09                       | 9.98            | 7.81                                  | 6.63                           | 0.19                           | 0.03                           | 0.22            | 6.68                         | 2.13         | 2.29                | 1.57              | 1.02                           | 1.50              |                         |                          | 16.08         |
|              | MIN                      | 19.50        | 6.52 | 1027.00                            | 0.01         | -321.80     | 400.00                        | 38.00         | 38.00         | 23.00                       | 10.00         | 56.06                       | 56.00           | -5.00                                 | 49.00                          | 0.01                           | 0.01                           | 0.02            | 49.07                        | 7.60         | 0.01                | 0.20              | 1.50                           | 2.60              | 21,000                  | 690                      | 34.00         |
|              | MAX                      | 28.32        | 6.94 | 1329.00                            | 0.79         | -131.40     | 490.00                        | 118.00        | 111.00        | 220.00                      | 330.00        | 87.14                       | 87.00           | 23.00                                 | 75.00                          | 0.66                           | 0.10                           | 0.76            | 75.02                        | 14.00        | 9.20                | 5.40              | 4.50                           | 6.80              | 80,000                  | 200,000                  | 85.00         |
|              | n                        | 11           | 11   | 11                                 | 11           | 11          | 11                            | 11            | 11            | 11                          | 11            | 11                          | 11              | 11                                    | 11                             | 10                             | 10                             | 11              | 11                           | 11           | 11                  | 9                 | 8                              | 8                 | 11                      | 10                       | 11            |
|              | MEAN                     | 22.57        | 6.83 | 1170.27                            | 2.68         | 95.83       | 321.82                        | 9.64          | 8.55          | 8.64                        | 42.18         | 44.52                       | 12.33           | 3.80                                  | 8.53                           | 31.80                          | 0.17                           | 32.19           | 40.72                        | 3.60         | 2.86                | 19.00             | 0.30                           | 0.60              | 3,510                   | 1,811                    | 15.40         |
| Stage 1      | STD. DEV.                | 3.28         | 0.00 | 144.71                             | 1.55         | 153.29      | 37.10                         | 6.34          | 5.34          | 6.48                        | 33.27         | 10.40                       | 7.76            | 4.02                                  | 8.41                           | 16.46                          | 0.31                           | 15.50           | 10.49                        | 1.17         | 0.96                | 2.35              | 0.32                           | 0.61              |                         |                          | 5.89          |
|              | MIN                      | 19.00        | 6.42 | 978.00                             | 0.87         | -69.70      | 270.00                        | 3.00          | 3.00          | 2.00                        | 10.00         | 27.00                       | 3.20            | 0.00                                  | 0.38                           | 12.00                          | 0.01                           | 12.00           | 27.00                        | 1.80         | 1.50                | 16.00             | 0.01                           | 0.10              | 100                     | 41                       | 6.50          |
|              | MAX                      | 27.60        | 7.39 | 1385.00                            | 5.16         | 508.20      | 390.00                        | 22.00         | 18.00         | 18.00                       | 120.00        | 63.30                       | 25.00           | 14.44                                 | 23.00                          | 57.00                          | 0.85                           | 57.00           | 58.80                        | 5.50         | 4.10                | 24.00             | 1.00                           | 1.80              | 32,000                  | 24,000                   | 24.00         |
|              | n                        | 11           | 11   | 11                                 | 11           | 11          | 11                            | 11            | 11            | 11                          | 11            | 11                          | 11              | 11                                    | 11                             | 11                             | 11                             | 11              | 11                           | 11           | 11                  | 10                | 9                              | 9                 | 11                      | 10                       | 11            |
| Stage 2      | MEAN                     | 22.99        | 6.64 | 1103.82                            | 0.63         | -149.88     | 426.36                        | 5.27          | 5.00          | 13.09                       | 46.55         | 12.04                       | 9.15            | 3.08                                  | 6.08                           | 2.86                           | 0.03                           | 2.89            | 8.96                         | 2.83         | 2.24                | 13.34             | 1.13                           | 1.67              | 1,226                   | 622                      | 14.83         |
| Ligno        | STD. DEV.                | 3.62         | 0.00 | 83.42                              | 0.66         | 96.94       | 22.03                         | 3.82          | 3.46          | 6.79                        | 16.29         | 4.58                        | 6.20            | 3.52                                  | 6.30                           | 4.12                           | 0.08                           | 4.19            | 5.01                         | 1.36         | 1.19                | 6.38              | 0.65                           | 0.96              |                         |                          | 4.21          |
| Ligito       | MIN                      | 18.20        | 6.46 | 956.00                             | 0.13         | -238.00     | 400.00                        | 1.00          |               | 2.00                        | 25.00         | 3.30                        | 2.00            | 0.70                                  | 0.13                           | 0.03                           | 0.01                           | 0.03            | 1.21                         | 0.42         | 0.18                | 5.70              | 0.00                           | 0.00              | 30                      | 10                       | 6.20          |
|              | MAX                      | 28.51        | 6.80 | 1247.00                            | 2.16         | 58.20       | 460.00                        | 12.00         | 12.00         | 23.00                       | 79.00         | 17.04                       | 17.00           | 13.49                                 | 15.00                          | 13.00                          | 0.27                           | 13.27           | 15.04                        | 4.10         | 3.30                | 23.00             | 2.10                           | 3.00              | 17,200                  | 6,100                    | 19.00         |
|              | n                        | 11           | 11   | 11                                 | 11           | 11          | 11                            | 11            | 11            | 11                          | 11            | 11                          | 11              | 11                                    | 11                             | 11                             | 11                             | 11              | 11                           | 11           | 11                  | 11                | 11                             | 11                | 11                      | 10                       | 11            |
| Stage 2      | MEAN                     | 22.46        | 6.73 | 1162.36                            | 0.18         | -222.68     | 462.73                        | 4.00          | 3.45          | 12.36                       | 44.73         | 6.81                        | 6.77            | 2.27                                  | 4.51                           | 0.03                           | 0.01                           | 0.04            | 4.54                         | 2.74         | 2.23                | 34.36             | 4.55                           | 6.46              | 343                     | 212                      | 13.99         |
| Sulfur       | STD. DEV.                | 3.11         | 0.45 | 90.92                              | 0.11         | 59.91       | 24.53                         | 2.41          | 2.58          | 8.54                        | 12.71         | 4.55                        | 4.54            | 3.24                                  | 4.18                           | 0.02                           | 0.00                           | 0.02            | 4.18                         | 1.12         | _                   | 15.40             | 2.45                           | 3.06              |                         |                          | 3.98          |
| Januar .     | MIN                      | 19.60        | 5.79 | 1054.00                            | 0.04         | -348.90     | 440.00                        | 2.00          | 1.00          | 3.00                        | 29.00         | 1.03                        | 0.99            | 0.29                                  | 0.51                           | 0.01                           | 0.01                           | 0.02            | 0.53                         | 0.70         | 0.32                | 21.00             | 1.30                           | 1.30              | 1                       | 2                        | 6.50          |
|              | MAX                      | 27.60        | 7.66 | 1306.00                            | 0.44         | -132.60     | 510.00                        | 9.00          | 8.00          | 30.00                       | 64.00         | 13.07                       | 13.00           | 11.70                                 | 10.00                          | 0.07                           | 0.02                           | 0.07            | 10.04                        | 4.10         | 3.50                | 71.00             | 9.90                           | 11.00             | 5,400                   | 1,400                    | 18.00         |
|              | n                        | 1            | 1    | 1                                  | 1            | 1           | 1                             | 1             | 1             | 1                           | 1             | 1                           | 1               | 1                                     | 1                              | 1                              | 1                              | 1               | 1                            | 1            | 1                   | 1                 | 1                              | 1                 | 1                       | 1                        | 1             |
|              | MEAN                     | 27.90        | 7.32 | 529.00                             | 5.10         | 101.30      | 150.00                        | 1.00          | 1.00          | 2.00                        | 10.00         | 1.58                        | 0.18            | 0.16                                  | 0.02                           | 1.40                           | 0.01                           | 1.40            | 1.42                         | 0.49         | 0.20                | 8.70              | 0.13                           | 0.41              | 1                       | 2                        | 2.10          |
| Well         | STD. DEV.                |              |      |                                    |              |             |                               |               |               |                             |               |                             |                 |                                       |                                |                                |                                |                 |                              |              |                     |                   |                                |                   |                         |                          |               |
|              | MIN                      | 27.90        | 7.32 | 529.00                             | 5.10         | 101.30      | 150.00                        | 1.00          | 1.00          | 2.00                        | 10.00         | 1.58                        |                 | 0.16                                  | 0.02                           | 1.40                           | 0.01                           | 1.40            | 1.42                         | 0.49         |                     | 8.70              | 0.13                           | 0.41              | 1                       | 2                        | 2.10          |
|              | MAX                      | 27.90        | 7.32 | 529.00                             | 5.10         | 101.30      | 150.00                        | 1.00          | 1.00          | 2.00                        | 10.00         | 1.58                        | 0.18            | 0.16                                  | 0.02                           | 1.40                           | 0.01                           | 1.40            | 1.42                         | 0.49         | 0.20                | 8.70              | 0.13                           | 0.41              | 1                       | 2                        | 2.10          |

#### Notes:

Gray-shaded data points indicate values below method detection level (mdl), mdl value used for statistical analyses.

Yellow-shaded data points indicate the reported value is between the laboratory method detection limit and the laboratory practical quantitation limit. Value used for statistical analysis

o:\44237-001R004\Wpdocs\Report\Final

 $<sup>^{1}\</sup>text{Total}$  Nitrogen (TN) is a calculated value equal to the sum of TKN and NO  $_{\chi}$ 

 $<sup>^{2}</sup>$ Organic Nitrogen (ON) is a calculated value equal to the difference of TKN and NH $_{\mathrm{3.}}$ 

 $<sup>^3\</sup>text{Total Inorganic Nitrogen (TIN)}$  is a calculated value equal to the sum of NH  $_3$  and NO  $_\chi$ 

<sup>&</sup>lt;sup>4</sup>Fecal coliform and pH values are reported as geometric mean.

# o:\44237-001R004\Wpdocs\Report\Final

#### 5.0 B-HS4 Sample Event No. 7: Summary and Recommendations

#### 5.1 Summary

The results of the seventh sampling event indicate that:

- Septic tank effluent (STE) quality is characteristic of typical household STE quality. The total nitrogen concentration of 82.8 mg/L is within the high end of the range of values typically reported for Florida single family residence STE.
- The Stage 1 biofilter reduced TN and TKN by 30 and 96%, respectively.
- The Stage 1 biofilter substantially reduced TKN and ammonium; effluent TKN and ammonia N were 3.2 and 2.5 mg/L, respectively.
- The Stage 2 biofilter effluent NO<sub>x</sub>-N was 0.04 mg N/L.
- The total nitrogen concentration in the final effluent from the total treatment system was 1.0 mg/L, an approximately 99% reduction in STE TN.



# **Appendix A: Laboratory Report**



110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### **Laboratory Report**

| Project Name                      |            | B-HS4             | SE#11           |       |       |                |                |        |
|-----------------------------------|------------|-------------------|-----------------|-------|-------|----------------|----------------|--------|
| Parameters                        | Units      | Results *         | Method          | PQL   | MDL   | Prepared       | Analyzed Di    | lution |
| Sample Description                |            | BHS4-STE          |                 |       |       |                |                |        |
| Matrix                            |            | Wastewater        |                 |       |       |                |                |        |
| SAL Sample Number                 |            | 1410747-01        |                 |       |       |                |                |        |
| Date/Time Collected               |            | 10/23/14 09:20    |                 |       |       |                |                |        |
| Collected by                      |            | Josefin Hirst     |                 |       |       |                |                |        |
| Date/Time Received                |            | 10/23/14 14:58    |                 |       |       |                |                |        |
| Inorganics                        |            |                   |                 |       |       |                |                |        |
| Hydrogen Sulfide (Unionized)      | mg/L       | 3.1               | SM 4550SF       | 0.04  | 0.01  | 10/28/14 15:46 | 10/28/14 15:48 | 1      |
| Ammonia as N                      | mg/L       | 66                | EPA 350.1       | 3.6   | 0.85  |                | 10/24/14 16:50 | 90     |
| Carbonaceous BOD                  | mg/L       | 110               | SM 5210B        | 2     | 2     | 10/24/14 11:12 | 10/29/14 13:49 | 1      |
| Chemical Oxygen Demand            | mg/L       | 310               | EPA 410.4       | 25    | 10    | 10/30/14 12:16 | 10/30/14 14:30 | 1      |
| Nitrate+Nitrite (N)               | mg/L       | 0.76              | EPA 353.2       | 0.40  | 0.10  |                | 11/07/14 16:43 | 10     |
| Nitrite (as N)                    | mg/L       | 0.10              | SM<br>4500NO2-B | 0.04  | 0.01  | 10/24/14 10:50 | 10/24/14 10:57 | 1      |
| Orthophosphate as P               | mg/L       | 9.2               | SM 4500P-E      | 0.20  | 0.060 |                | 10/24/14 10:54 | 5      |
| Phosphorous - Total as P          | mg/L       | 10                | SM 4500P-E      | 0.040 | 0.010 | 10/24/14 08:35 | 10/24/14 15:20 | 1      |
| Sulfate                           | mg/L       | 0.20 U            | EPA 300.0       | 0.60  | 0.20  |                | 10/30/14 21:15 | 1      |
| Sulfide                           | mg/L       | 6.4               | SM 4500SF       | 0.40  | 0.10  |                | 10/28/14 16:22 | 1      |
| Total Alkalinity                  | mg/L       | 490               | SM 2320B        | 8.0   | 2.0   |                | 10/27/14 11:56 | 1      |
| Total Kjeldahl Nitrogen           | mg/L       | 82                | EPA 351.2       | 0.20  | 0.05  | 10/24/14 08:35 | 10/24/14 15:20 | 1      |
| Total Organic Carbon              | mg/L       | 59                | SM 5310B        | 10    | 0.60  |                | 10/29/14 15:58 | 10     |
| Total Suspended Solids            | mg/L       | 45                | SM 2540D        | 1     | 1     | 10/24/14 09:13 | 10/27/14 15:54 | 1      |
| Volatile Suspended Solids         | mg/L       | 44                | EPA 160.4       | 1     | 1     | 10/24/14 09:13 | 10/27/14 15:54 | 1      |
| Nitrate (as N)                    | mg/L       | 0.66              | EPA 353.2       | 0.44  | 0.11  |                | 11/07/14 16:43 | 10     |
| Microbiology                      | _          |                   |                 |       |       |                |                |        |
| E. Coli                           | MPN/100 mL | 200,000           | SM 9223B        | 2.0   | 2.0   | 10/23/14 16:03 | 10/24/14 10:35 | 1      |
| Fecal Coliforms                   | CFU/100 ml | 67,000            | SM 9222D        | 1     | 1     | 10/23/14 15:54 | 10/24/14 14:22 |        |
| Sample Description                |            | BHS4-STE-FILTERED |                 |       |       |                |                |        |
| Matrix                            |            | Wastewater        |                 |       |       |                |                |        |
| SAL Sample Number                 |            | 1410747-02        |                 |       |       |                |                |        |
| Date/Time Collected               |            | 10/23/14 09:20    |                 |       |       |                |                |        |
| Collected by                      |            | Josefin Hirst     |                 |       |       |                |                |        |
| Date/Time Received                |            | 10/23/14 14:58    |                 |       |       |                |                |        |
| Inorganic, Dissolved              |            |                   |                 |       |       |                |                |        |
| Ammonia as N                      | mg/L       | 60                | EPA 350.1       | 3.6   | 0.85  |                | 10/31/14 11:44 | 90     |
| Carbonaceous BOD                  | mg/L       | 87                | SM 5210B        | 2     | 2     | 10/24/14 11:10 | 10/29/14 13:47 | 1      |
| Nitrate (as N)                    | mg/L       | 0.01 U            | EPA 353.2       | 0.04  | 0.01  |                | 10/24/14 12:18 | 1      |
| Nitrite (as N)                    | mg/L       | 0.10              | SM<br>4500NO2-B | 0.04  | 0.01  | 10/24/14 10:50 | 10/24/14 10:58 | 1      |
| Total Kjeldahl Nitrogen           | mg/L       | 74                | EPA 351.2       | 0.20  | 0.050 | 10/29/14 08:38 | 10/29/14 17:16 | 1      |
| Nitrate+Nitrite (N)               | mg/L       | 0.01 U            | EPA 353.2       | 0.04  | 0.01  |                | 10/24/14 12:18 | 1      |
| Lab filtration for diss. analytes |            |                   |                 |       |       |                | 10/24/14 11:06 |        |

Florida Certification Number: E84129

**NELAP Accredited** 

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

# **Laboratory Report**

| Project Name                                                                                    |            | B-HS                                                                                          | S4 SE#11        |       |       |                |                |         |
|-------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------|-----------------|-------|-------|----------------|----------------|---------|
| Parameters                                                                                      | Units      | Results *                                                                                     | Method          | PQL   | MDL   | Prepared       | Analyzed D     | ilution |
| Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received |            | BHS4-ST1<br>Wastewater<br>1410747-03<br>10/23/14 08:55<br>Josefin Hirst<br>10/23/14 14:58     |                 |       |       |                |                |         |
| Inorganics                                                                                      |            |                                                                                               |                 |       |       |                |                |         |
| Hydrogen Sulfide (Unionized)                                                                    | mg/L       | 0.44                                                                                          | SM 4550SF       | 0.04  | 0.01  | 10/28/14 15:46 | 10/28/14 15:48 | 3 1     |
| Ammonia as N                                                                                    | mg/L       | 2.5                                                                                           | EPA 350.1       | 0.40  | 0.095 |                | 10/24/14 16:22 | 10      |
| Carbonaceous BOD                                                                                | mg/L       | 5                                                                                             | SM 5210B        | 2     | 2     | 10/24/14 11:12 | 10/29/14 13:49 | ) 1     |
| Chemical Oxygen Demand                                                                          | mg/L       | 18 I                                                                                          | EPA 410.4       | 25    | 10    | 10/30/14 12:16 | 10/30/14 14:30 | ) 1     |
| Nitrate+Nitrite (N)                                                                             | mg/L       | 55                                                                                            | EPA 353.2       | 4.8   | 1.2   |                | 10/24/14 15:19 | 120     |
| Nitrite (as N)                                                                                  | mg/L       | 0.13                                                                                          | SM<br>4500NO2-B | 0.04  | 0.01  | 10/24/14 10:50 | 10/24/14 10:58 | 3 1     |
| Orthophosphate as P                                                                             | mg/L       | 2.8                                                                                           | SM 4500P-E      | 0.20  | 0.060 |                | 10/24/14 10:55 | 5 5     |
| Phosphorous - Total as P                                                                        | mg/L       | 3.2                                                                                           | SM 4500P-E      | 0.040 | 0.010 | 10/24/14 08:35 | 10/24/14 15:20 | ) 1     |
| Sulfate                                                                                         | mg/L       | 24                                                                                            | EPA 300.0       | 6.0   | 2.0   |                | 10/29/14 23:47 | 10      |
| Sulfide                                                                                         | mg/L       | 1.2                                                                                           | SM 4500SF       | 0.40  | 0.10  |                | 10/28/14 16:22 | 2 1     |
| Total Alkalinity                                                                                | mg/L       | 300                                                                                           | SM 2320B        | 8.0   | 2.0   |                | 10/27/14 12:05 | 5 1     |
| Total Kjeldahl Nitrogen                                                                         | mg/L       | 3.2                                                                                           | EPA 351.2       | 0.20  | 0.05  | 10/24/14 08:35 | 10/24/14 15:20 | ) 1     |
| Total Organic Carbon                                                                            | mg/L       | 7.9                                                                                           | SM 5310B        | 1.0   | 0.060 |                | 10/29/14 15:58 | 3 1     |
| Total Suspended Solids                                                                          | mg/L       | 3                                                                                             | SM 2540D        | 1     | 1     | 10/24/14 09:13 | 10/27/14 15:54 | 1       |
| Volatile Suspended Solids                                                                       | mg/L       | 3                                                                                             | EPA 160.4       | 1     | 1     | 10/24/14 09:13 | 10/27/14 15:54 | . 1     |
| Nitrate (as N)                                                                                  | mg/L       | 55                                                                                            | EPA 353.2       | 4.8   | 1.2   |                | 10/24/14 15:19 | 120     |
| Microbiology                                                                                    |            |                                                                                               |                 |       |       |                |                |         |
| E. Coli                                                                                         | MPN/100 mL | 200                                                                                           | SM 9223B        | 2.0   | 2.0   | 10/23/14 16:03 | 10/24/14 10:35 | 5 1     |
| Fecal Coliforms                                                                                 | CFU/100 ml | 530                                                                                           | SM 9222D        | 1     | 1     | 10/23/14 15:54 | 10/24/14 14:22 |         |
| Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received |            | BHS4-ST1-DUP<br>Wastewater<br>1410747-04<br>10/23/14 09:00<br>Josefin Hirst<br>10/23/14 14:58 |                 |       |       |                |                |         |
| <u>Inorganics</u>                                                                               |            |                                                                                               |                 |       |       |                |                |         |
| Ammonia as N                                                                                    | mg/L       | 2.5                                                                                           | EPA 350.1       | 0.40  | 0.095 |                | 10/24/14 16:23 | 10      |
| Carbonaceous BOD                                                                                | mg/L       | 3                                                                                             | SM 5210B        | 2     | 2     | 10/24/14 11:12 | 10/29/14 13:49 | ) 1     |
| Chemical Oxygen Demand                                                                          | mg/L       | 20 I                                                                                          | EPA 410.4       | 25    | 10    | 10/30/14 12:16 | 10/30/14 14:30 | ) 1     |
| Nitrate+Nitrite (N)                                                                             | mg/L       | 56                                                                                            | EPA 353.2       | 4.8   | 1.2   |                | 10/24/14 15:20 | 120     |
| Nitrite (as N)                                                                                  | mg/L       | 0.14                                                                                          | SM<br>4500NO2-B | 0.04  | 0.01  | 10/24/14 10:50 | 10/24/14 10:59 | ) 1     |
| Orthophosphate as P                                                                             | mg/L       | 2.6                                                                                           | SM 4500P-E      | 0.20  | 0.060 |                | 10/24/14 10:56 | 5       |
| Phosphorous - Total as P                                                                        | mg/L       | 3.0                                                                                           | SM 4500P-E      | 0.040 | 0.010 | 10/24/14 08:35 | 10/24/14 15:20 | ) 1     |
| Sulfate                                                                                         | mg/L       | 24                                                                                            | EPA 300.0       | 6.0   | 2.0   |                | 10/30/14 00:00 | 10      |

Florida Certification Number: E84129

**NELAP Accredited** 

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

# **Laboratory Report**

| Project Name                                                                                    |              | B-HS4 S                                                                                            | SE#11           |       |       |                     |                                  |       |
|-------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------|-----------------|-------|-------|---------------------|----------------------------------|-------|
| Parameters                                                                                      | Units        | Results *                                                                                          | Method          | PQL   | MDL   | Prepared            | Analyzed Dil                     | ution |
| Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received |              | BHS4-ST1-DUP<br>Wastewater<br>1410747-04<br>10/23/14 09:00<br>Josefin Hirst<br>10/23/14 14:58      |                 |       |       |                     |                                  |       |
| Total Alkalinity                                                                                | mg/L         | 300                                                                                                | SM 2320B        | 8.0   | 2.0   |                     | 10/27/14 12:13                   | 1     |
| Total Kjeldahl Nitrogen                                                                         | mg/L         | 3.0                                                                                                | EPA 351.2       | 0.20  | 0.05  | 10/24/14 08:35      | 10/24/14 15:20                   | 1     |
| Total Organic Carbon                                                                            | mg/L         | 7.7                                                                                                | SM 5310B        | 1.0   | 0.060 | 10/24/14 00.33      | 10/29/14 15:58                   | 1     |
| =                                                                                               | =            | 4                                                                                                  | SM 2540D        | 1.0   | 1     | 10/24/14 09:13      | 10/29/14 15:58                   | 1     |
| Total Suspended Solids Volatile Suspended Solids                                                | mg/L<br>mg/L | 4                                                                                                  | EPA 160.4       | 1     | 1     | 10/24/14 09:13      | 10/27/14 15:54                   | 1     |
|                                                                                                 | =            | 56                                                                                                 | EPA 353.2       | 4.8   | 1.2   | 10/24/14 09.13      | 10/24/14 15:34                   | 120   |
| Nitrate (as N)                                                                                  | mg/L         | 50                                                                                                 | LI A 333.2      | 4.0   | 1.2   |                     | 10/24/14 15.20                   | 120   |
| Microbiology<br>E. Coli                                                                         | MDN/400 ml   | 200                                                                                                | SM 9223B        | 2.0   | 2.0   | 10/22/14 16:02      | 10/24/14 10:25                   | 4     |
|                                                                                                 | MPN/100 mL   | 280                                                                                                |                 | 2.0   | 2.0   | 10/23/14 16:03      | 10/24/14 10:35                   | 1     |
| Fecal Coliforms                                                                                 | CFU/100 ml   | 290                                                                                                | SM 9222D        | 1     | 1     | 10/23/14 15:54      | 10/24/14 14:22                   | 1     |
| Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received |              | BHS4-ST1-FILTERED<br>Wastewater<br>1410747-05<br>10/23/14 08:55<br>Josefin Hirst<br>10/23/14 14:58 |                 |       |       |                     |                                  |       |
| Inorganic, Dissolved                                                                            |              |                                                                                                    |                 |       |       |                     |                                  |       |
| Ammonia as N                                                                                    | mg/L         | 1.8                                                                                                | EPA 350.1       | 0.040 | 0.009 |                     | 10/31/14 10:24                   | 1     |
| Carbonaceous BOD                                                                                | mg/L         | 3                                                                                                  | SM 5210B        | 2     | 2     | 10/24/14 11:10      | 10/29/14 13:47                   | 1     |
| Nitrate (as N)                                                                                  | mg/L         | 56                                                                                                 | EPA 353.2       | 4.8   | 1.2   |                     | 10/24/14 15:21                   | 120   |
| Nitrite (as N)                                                                                  | mg/L         | 0.14                                                                                               | SM<br>4500NO2-B | 0.04  | 0.01  | 10/24/14 10:50      | 10/24/14 11:03                   | 1     |
| Total Kjeldahl Nitrogen                                                                         | mg/L         | 2.9                                                                                                | EPA 351.2       | 0.20  | 0.050 | 10/29/14 08:38      | 10/29/14 17:16                   | 1     |
| Nitrate+Nitrite (N) Lab filtration for diss. analytes                                           | mg/L         | 56                                                                                                 | EPA 353.2       | 4.8   | 1.2   |                     | 10/24/14 15:21<br>10/24/14 11:06 | 120   |
| Sample Description Matrix SAL Sample Number Date/Time Collected Collected by Date/Time Received |              | BHS4-LIGNO-0<br>Wastewater<br>1410747-06<br>10/23/14 08:54<br>Josefin Hirst<br>10/23/14 14:58      |                 |       |       |                     |                                  |       |
| <u>Inorganics</u>                                                                               | _            | 0.77                                                                                               | 014 45          |       | • • • | 10/00/4 - 1 - 1 - 1 | 40/00// : := :=                  |       |
| Hydrogen Sulfide (Unionized)                                                                    | mg/L         | 0.29                                                                                               | SM 4550SF       | 0.04  | 0.01  | 10/28/14 15:46      | 10/28/14 15:48                   | 1     |
| Ammonia as N                                                                                    | mg/L         | 0.68                                                                                               | EPA 350.1       | 0.040 | 0.009 |                     | 10/24/14 15:17                   | 1     |
| Carbonaceous BOD                                                                                | mg/L         | 6                                                                                                  | SM 5210B        | 2     | 2     | 10/24/14 11:12      | 10/29/14 13:49                   | 1     |
| Chemical Oxygen Demand                                                                          | mg/L         | 79                                                                                                 | EPA 410.4       | 25    | 10    | 10/30/14 12:16      | 10/30/14 14:30                   | 1     |

Florida Certification Number: E84129

**NELAP Accredited** 

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

# **Laboratory Report**

| Project Name                      |            | B-HS              | 4 SE#11         |       |       |                |                |         |
|-----------------------------------|------------|-------------------|-----------------|-------|-------|----------------|----------------|---------|
| Parameters                        | Units      | Results *         | Method          | PQL   | MDL   | Prepared       | Analyzed D     | ilution |
| Sample Description                |            | BHS4-LIGNO-0      |                 |       |       |                |                |         |
| Matrix                            |            | Wastewater        |                 |       |       |                |                |         |
| SAL Sample Number                 |            | 1410747-06        |                 |       |       |                |                |         |
| Date/Time Collected               |            | 10/23/14 08:54    |                 |       |       |                |                |         |
| Collected by                      |            | Josefin Hirst     |                 |       |       |                |                |         |
| Date/Time Received                |            | 10/23/14 14:58    |                 |       |       |                |                |         |
| Nitrate+Nitrite (N)               | mg/L       | 13                | EPA 353.2       | 0.96  | 0.24  |                | 10/24/14 14:14 | 24      |
| Nitrite (as N)                    | mg/L       | 0.27              | SM<br>4500NO2-B | 0.40  | 0.10  | 10/24/14 10:50 | 10/24/14 11:30 | 10      |
| Orthophosphate as P               | mg/L       | 2.5               | SM 4500P-E      | 0.20  | 0.060 |                | 10/24/14 10:57 | 7 5     |
| Phosphorous - Total as P          | mg/L       | 2.6               | SM 4500P-E      | 0.040 | 0.010 | 10/24/14 08:35 | 10/24/14 15:20 | ) 1     |
| Sulfate                           | mg/L       | 20                | EPA 300.0       | 6.0   | 2.0   |                | 10/30/14 12:12 | 2 10    |
| Sulfide                           | mg/L       | 0.40              | SM 4500SF       | 0.40  | 0.10  |                | 10/28/14 16:22 | 2 1     |
| Total Alkalinity                  | mg/L       | 400               | SM 2320B        | 8.0   | 2.0   |                | 10/27/14 12:25 | 5 1     |
| Total Kjeldahl Nitrogen           | mg/L       | 3.7               | EPA 351.2       | 0.20  | 0.05  | 10/24/14 08:35 | 10/24/14 15:20 | ) 1     |
| Total Organic Carbon              | mg/L       | 8.9               | SM 5310B        | 1.0   | 0.060 |                | 10/29/14 15:58 | 3 1     |
| Total Suspended Solids            | mg/L       | 1 U               | SM 2540D        | 1     | 1     | 10/24/14 09:13 | 10/27/14 15:54 | 1       |
| Volatile Suspended Solids         | mg/L       | 1 U               | EPA 160.4       | 1     | 1     | 10/24/14 09:13 | 10/27/14 15:54 | 1       |
| Nitrate (as N)                    | mg/L       | 13                | EPA 353.2       | 1.4   | 0.34  |                | 10/24/14 14:14 | 24      |
| Microbiology                      |            |                   |                 |       |       |                |                |         |
| E. Coli                           | MPN/100 mL | 820               | SM 9223B        | 2.0   | 2.0   | 10/23/14 16:03 | 10/24/14 10:35 | 5 1     |
| Fecal Coliforms                   | CFU/100 ml | 830               | SM 9222D        | 1     | 1     | 10/23/14 15:54 | 10/24/14 14:22 | 2 1     |
| Sample Description                |            | BHS4-LIGNO-0-FILT | ERED            |       |       |                |                |         |
| Matrix                            |            | Wastewater        |                 |       |       |                |                |         |
| SAL Sample Number                 |            | 1410747-07        |                 |       |       |                |                |         |
| Date/Time Collected               |            | 10/23/14 08:54    |                 |       |       |                |                |         |
| Collected by                      |            | Josefin Hirst     |                 |       |       |                |                |         |
| Date/Time Received                |            | 10/23/14 14:58    |                 |       |       |                |                |         |
| Inorganic, Dissolved              |            |                   |                 |       |       |                |                |         |
| Ammonia as N                      | mg/L       | 0.61              | EPA 350.1       | 0.040 | 0.009 |                | 10/31/14 10:26 | 3 1     |
| Carbonaceous BOD                  | mg/L       | 3                 | SM 5210B        | 2     | 2     | 10/24/14 11:10 | 10/29/14 13:47 | 7 1     |
| Nitrate (as N)                    | mg/L       | 12                | EPA 353.2       | 0.96  | 0.24  |                | 10/24/14 14:15 | 5 24    |
| Nitrite (as N)                    | mg/L       | 0.28 I            | SM<br>4500NO2-B | 0.40  | 0.10  | 10/24/14 10:50 | 10/24/14 11:31 | 10      |
| Total Kjeldahl Nitrogen           | mg/L       | 3.7               | EPA 351.2       | 0.20  | 0.050 | 10/29/14 08:38 | 10/29/14 17:16 | 3 1     |
| Nitrate+Nitrite (N)               | mg/L       | 13                | EPA 353.2       | 0.96  | 0.24  |                | 10/24/14 14:15 | 5 24    |
| Lab filtration for diss. analytes |            |                   |                 |       |       |                | 10/24/14 11:06 | ;       |

Florida Certification Number: E84129

**NELAP Accredited** 

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

# **Laboratory Report**

| Project Name                             |               | B-HS4             | SE#11                  |       |       |                |                |         |
|------------------------------------------|---------------|-------------------|------------------------|-------|-------|----------------|----------------|---------|
| Parameters                               | Units         | Results *         | Method                 | PQL   | MDL   | Prepared       | Analyzed D     | ilution |
| Sample Description                       |               | BHS4-ST2          |                        |       |       |                |                |         |
| Matrix                                   |               | Wastewater        |                        |       |       |                |                |         |
| SAL Sample Number                        |               | 1410747-08        |                        |       |       |                |                |         |
| Date/Time Collected                      |               | 10/23/14 08:32    |                        |       |       |                |                |         |
| Collected by                             |               | Josefin Hirst     |                        |       |       |                |                |         |
| Date/Time Received                       |               | 10/23/14 14:58    |                        |       |       |                |                |         |
| <u>Inorganics</u>                        |               |                   |                        |       |       |                |                |         |
| Hydrogen Sulfide (Unionized)             | mg/L          | 3.4               | SM 4550SF              | 0.04  | 0.01  | 10/28/14 15:46 | 10/28/14 15:48 | 3 1     |
| Ammonia as N                             | mg/L          | 0.70              | EPA 350.1              | 0.040 | 0.009 |                | 11/07/14 16:59 | ) 1     |
| Carbonaceous BOD                         | mg/L          | 7                 | SM 5210B               | 2     | 2     | 10/24/14 11:12 | 10/29/14 13:49 | 9 1     |
| Chemical Oxygen Demand                   | mg/L          | 31                | EPA 410.4              | 25    | 10    | 10/30/14 12:16 | 10/30/14 14:30 | ) 1     |
| Nitrate+Nitrite (N)                      | mg/L          | 0.03              | EPA 353.2              | 0.04  | 0.01  |                | 10/24/14 12:40 | ) 1     |
| Nitrite (as N)                           | mg/L          | 0.02              | SM<br>4500NO2-B        | 0.04  | 0.01  | 10/24/14 10:50 | 10/24/14 11:05 | 5 1     |
| Orthophosphate as P                      | mg/L          | 2.1               | SM 4500P-E             | 0.20  | 0.060 |                | 10/24/14 10:58 | 3 5     |
| Phosphorous - Total as P                 | mg/L          | 2.2               | SM 4500P-E             | 0.040 | 0.010 | 10/24/14 08:35 | 10/24/14 15:20 | ) 1     |
| Sulfate                                  | mg/L          | 71                | EPA 300.0              | 6.0   | 2.0   |                | 10/30/14 21:26 | 3 10    |
| Sulfide                                  | mg/L          | 4.8               | SM 4500SF              | 0.40  | 0.10  |                | 10/28/14 16:22 | 2 1     |
| Total Alkalinity                         | mg/L          | 450               | SM 2320B               | 8.0   | 2.0   |                | 10/27/14 12:43 | 3 1     |
| Total Kjeldahl Nitrogen                  | mg/L          | 0.99              | EPA 351.2              | 0.20  | 0.05  | 10/24/14 08:35 | 10/24/14 15:20 | ) 1     |
| Total Organic Carbon                     | mg/L          | 8.4               | SM 5310B               | 1.0   | 0.060 |                | 10/29/14 15:58 | 3 1     |
| Total Suspended Solids                   | mg/L          | 2                 | SM 2540D               | 1     | 1     | 10/24/14 09:13 | 10/27/14 15:54 | 1 1     |
| Volatile Suspended Solids                | mg/L          | 1 U               | EPA 160.4              | 1     | 1     | 10/24/14 09:13 | 10/27/14 15:54 | 1 1     |
| Nitrate (as N)                           | mg/L          | 0.02 U            | EPA 353.2              | 0.08  | 0.02  |                | 10/24/14 12:40 |         |
| Microbiology                             |               |                   |                        |       |       |                |                |         |
| E. Coli                                  | MPN/100 mL    | 370               | SM 9223B               | 2.0   | 2.0   | 10/23/14 16:03 | 10/24/14 10:35 | 5 1     |
| Fecal Coliforms                          | CFU/100 ml    | 410               | SM 9222D               | 1     | 1     | 10/23/14 15:54 | 10/24/14 14:22 | 2 1     |
| Sample Description                       |               | BHS4-ST2-FILTERED |                        |       |       |                |                |         |
| Matrix                                   |               | Wastewater        |                        |       |       |                |                |         |
| SAL Sample Number                        |               | 1410747-09        |                        |       |       |                |                |         |
| Date/Time Collected                      |               | 10/23/14 08:32    |                        |       |       |                |                |         |
| Collected by                             |               | Josefin Hirst     |                        |       |       |                |                |         |
| Date/Time Received                       |               | 10/23/14 14:58    |                        |       |       |                |                |         |
| Inorganics                               |               |                   |                        |       |       |                |                |         |
| Sulfate                                  | mg/L          | 71                | EPA 300.0              | 6.0   | 2.0   |                | 10/30/14 22:00 | 10      |
| Inorganic, Dissolved                     |               |                   |                        |       |       |                |                |         |
| Ammonia as N                             | mg/L          | 0.54              | EPA 350.1              | 0.040 | 0.009 |                | 10/31/14 10:34 | 1 1     |
| Carbonaceous BOD                         | mg/L          | 3                 | SM 5210B               | 2     | 2     | 10/24/14 11:10 | 10/29/14 13:47 | 7 1     |
| Nitrate (as N)                           | mg/L          | 0.01 U            | EPA 353.2              | 0.04  | 0.01  |                | 10/24/14 12:42 | 2 1     |
| Nitrite (as N)                           | mg/L          | 0.02              | SM                     | 0.04  | 0.01  | 10/24/14 10:50 | 10/24/14 11:05 | 5 1     |
| Total Kjeldahl Nitrogen                  | mg/L          | 0.98              | 4500NO2-B<br>EPA 351.2 | 0.20  | 0.050 | 10/29/14 08:38 | 10/29/14 17:16 | 3 1     |
| ,- · · · · · · · · · · · · · · · · · · · | ·· <b>·</b> - |                   |                        |       |       |                |                | -       |

Florida Certification Number: E84129

**NELAP Accredited** 

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

# **Laboratory Report**

| Project Name                                          |            | B-HS4                                         | SE#11           |       |       |                |                                |          |
|-------------------------------------------------------|------------|-----------------------------------------------|-----------------|-------|-------|----------------|--------------------------------|----------|
| Parameters                                            | Units      | Results *                                     | Method          | PQL   | MDL   | Prepared       | Analyzed D                     | Dilution |
| Sample Description Matrix SAL Sample Number           |            | BHS4-ST2-FILTERED<br>Wastewater<br>1410747-09 |                 |       |       |                |                                |          |
| Date/Time Collected                                   |            | 10/23/14 08:32                                |                 |       |       |                |                                |          |
| Collected by                                          |            | Josefin Hirst                                 |                 |       |       |                |                                |          |
| Date/Time Received                                    |            | 10/23/14 14:58                                |                 |       |       |                |                                |          |
| Nitrate+Nitrite (N) Lab filtration for diss. analytes | mg/L       | 0.01                                          | EPA 353.2       | 0.04  | 0.01  |                | 10/24/14 12:4<br>10/24/14 11:0 |          |
| Sample Description                                    |            | BHS4-FB                                       |                 |       |       |                |                                |          |
| Matrix                                                |            | Reagent Water                                 |                 |       |       |                |                                |          |
| SAL Sample Number                                     |            | 1410747-10                                    |                 |       |       |                |                                |          |
| Date/Time Collected Collected by                      |            | 10/23/14 09:45<br>Josefin Hirst               |                 |       |       |                |                                |          |
| Date/Time Received                                    |            | 10/23/14 14:58                                |                 |       |       |                |                                |          |
| Inorganics                                            |            |                                               |                 |       |       |                |                                |          |
| Hydrogen Sulfide (Unionized)                          | mg/L       | 0.01 U                                        | SM 4550SF       | 0.04  | 0.01  | 10/28/14 15:46 | 10/28/14 15:4                  | 8 1      |
| Ammonia as N                                          | mg/L       | 0.009 U                                       | EPA 350.1       | 0.040 | 0.009 | 11/11/14 15:41 | 11/11/14 15:49                 | 9 1      |
| Carbonaceous BOD                                      | mg/L       | 2 U                                           | SM 5210B        | 2     | 2     | 10/24/14 11:12 | 10/29/14 13:4                  | 9 1      |
| Chemical Oxygen Demand                                | mg/L       | 10 U                                          | EPA 410.4       | 25    | 10    | 10/30/14 12:16 | 10/30/14 14:3                  | 0 1      |
| Nitrate+Nitrite (N)                                   | mg/L       | 0.01 I                                        | EPA 353.2       | 0.04  | 0.01  |                | 10/24/14 12:4                  | 4 1      |
| Nitrite (as N)                                        | mg/L       | 0.01 U                                        | SM<br>4500NO2-B | 0.04  | 0.01  | 10/24/14 10:50 | 10/24/14 11:00                 | 6 1      |
| Orthophosphate as P                                   | mg/L       | 0.014 I                                       | SM 4500P-E      | 0.040 | 0.012 |                | 10/24/14 10:2                  | 2 1      |
| Phosphorous - Total as P                              | mg/L       | 0.010 U                                       | SM 4500P-E      | 0.040 | 0.010 | 10/24/14 08:35 | 10/24/14 15:2                  | 0 1      |
| Sulfate                                               | mg/L       | 0.20 U                                        | EPA 300.0       | 0.60  | 0.20  |                | 10/30/14 22:2                  | 2 1      |
| Sulfide                                               | mg/L       | 0.10 U                                        | SM 4500SF       | 0.40  | 0.10  |                | 10/28/14 16:2                  | 2 1      |
| Total Alkalinity                                      | mg/L       | 2.9                                           | SM 2320B        | 8.0   | 2.0   |                | 10/27/14 12:4                  | 6 1      |
| Total Kjeldahl Nitrogen                               | mg/L       | 0.05 U                                        | EPA 351.2       | 0.20  | 0.05  | 10/24/14 08:35 | 10/24/14 15:2                  | 0 1      |
| Total Organic Carbon                                  | mg/L       | 0.14 I                                        | SM 5310B        | 1.0   | 0.060 |                | 10/29/14 15:5                  | 8 1      |
| Total Suspended Solids                                | mg/L       | 1 U                                           | SM 2540D        | 1     | 1     | 10/24/14 09:13 | 10/27/14 15:5                  | 4 1      |
| Volatile Suspended Solids                             | mg/L       | 1 U                                           | EPA 160.4       | 1     | 1     | 10/24/14 09:13 | 10/27/14 15:5                  | 4 1      |
| Nitrate (as N)                                        | mg/L       | 0.02 U                                        | EPA 353.2       | 0.08  | 0.02  |                | 10/24/14 12:4                  | 4 1      |
| Microbiology                                          |            |                                               |                 |       |       |                |                                |          |
| E. Coli                                               | MPN/100 mL | 2.0 U                                         | SM 9223B        | 2.0   | 2.0   | 10/23/14 16:03 | 10/24/14 10:3                  | 5 1      |
| Fecal Coliforms                                       | CFU/100 ml | 1 U                                           | SM 9222D        | 1     | 1     | 10/23/14 15:54 | 10/24/14 14:2                  | 2 1      |

Florida Certification Number: E84129

**NELAP Accredited** 

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### **Inorganics - Quality Control**

| Analyte                       | Result        | PQL       | MDL       | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit |
|-------------------------------|---------------|-----------|-----------|-------|----------------|------------------|-------------|----------------|-----|--------------|
| Batch BJ42402 - Ortho phos    | phorus SM4500 |           | <br>      |       |                |                  | 7,011=2     |                |     |              |
| Blank (BJ42402-BLK1)          |               | _         |           |       | Prepared 8     | & Analyzed:      | 10/24/14 10 | 0:03           |     |              |
| Orthophosphate as P           | 0.0163 I,V    | 0.040     | 0.012     | mg/L  |                |                  |             |                |     |              |
| LCS (BJ42402-BS1)             |               |           |           |       | Prepared 8     | & Analyzed:      | 10/24/14 10 | 0:04           |     |              |
| Orthophosphate as P           | 0.805         | 0.040     | 0.012     | mg/L  | 0.80           |                  | 101         | 90-110         |     |              |
| LCS (BJ42402-BS2)             |               |           |           |       | Prepared 8     | & Analyzed:      | 10/24/14 10 | 0:06           |     |              |
| Orthophosphate as P           | 0.819         | 0.040     | 0.012     | mg/L  | 0.80           |                  | 102         | 90-110         |     |              |
| LCS (BJ42402-BS3)             |               |           |           |       | Prepared 8     | & Analyzed:      | 10/24/14 10 | 0:07           |     |              |
| Orthophosphate as P           | 0.779         | 0.040     | 0.012     | mg/L  | 0.80           |                  | 97          | 90-110         |     |              |
| LCS (BJ42402-BS4)             |               |           |           |       | Prepared 8     | & Analyzed:      | 10/24/14 10 | 0:08           |     |              |
| Orthophosphate as P           | 0.825         | 0.040     | 0.012     | mg/L  | 0.80           |                  | 103         | 90-110         |     |              |
| LCS (BJ42402-BS5)             |               |           |           |       | Prepared 8     | & Analyzed:      | 10/24/14 10 | 0:09           |     |              |
| Orthophosphate as P           | 0.783         | 0.040     | 0.012     | mg/L  | 0.80           |                  | 98          | 90-110         |     |              |
| Matrix Spike (BJ42402-MS1)    |               | Source: 1 | 410752-27 |       | Prepared 8     | & Analyzed:      | 10/24/14 10 | 0:11           |     |              |
| Orthophosphate as P           | 1.04          | 0.040     | 0.012     | mg/L  | 1.0            | 0.0141           | 103         | 90-110         |     |              |
| Matrix Spike (BJ42402-MS2)    |               | Source: 1 | 410747-10 |       | Prepared 8     | & Analyzed:      | 10/24/14 10 | 0:13           |     |              |
| Orthophosphate as P           | 1.04          | 0.040     | 0.012     | mg/L  | 1.0            | 0.0137           | 103         | 90-110         |     |              |
| Matrix Spike Dup (BJ42402-MSI | <b>D1</b> )   | Source: 1 | 410752-27 |       | Prepared 8     | & Analyzed:      | 10/24/14 10 | 0:12           |     |              |
| Orthophosphate as P           | 0.981         | 0.040     | 0.012     | mg/L  | 1.0            | 0.0141           | 97          | 90-110         | 6   | 20           |
| Matrix Spike Dup (BJ42402-MSI | D2)           | Source: 1 | 410747-10 |       | Prepared 8     | & Analyzed:      | 10/24/14 10 | 0:14           |     |              |
| Orthophosphate as P           | 1.02          | 0.040     | 0.012     | mg/L  | 1.0            | 0.0137           | 100         | 90-110         | 3   | 20           |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### **Inorganics - Quality Control**

|                                 |             |           |           |       | Spike      | Source    |             | %REC   |     | RPD   |
|---------------------------------|-------------|-----------|-----------|-------|------------|-----------|-------------|--------|-----|-------|
| Analyte                         | Result      | PQL       | MDL       | Units | Level      | Result    | %REC        | Limits | RPD | Limit |
| Batch BJ42403 - Digestion for T | P and TKN   |           |           |       |            |           |             |        |     |       |
| Blank (BJ42403-BLK1)            |             |           |           |       | Prepared 8 | Analyzed: | 10/24/14 15 | 5:20   |     |       |
| Phosphorous - Total as P        | 0.010 U     | 0.040     | 0.010     | mg/L  |            |           |             |        |     |       |
| Total Kjeldahl Nitrogen         | 0.05 U      | 0.20      | 0.05      | mg/L  |            |           |             |        |     |       |
| LCS (BJ42403-BS1)               |             |           |           |       | Prepared 8 | Analyzed: | 10/24/14 15 | 5:20   |     |       |
| Total Kjeldahl Nitrogen         | 0.992       | 0.20      | 0.05      | mg/L  | 1.0        |           | 99          | 90-110 |     |       |
| Phosphorous - Total as P        | 1.03        | 0.040     | 0.010     | mg/L  | 1.0        |           | 103         | 90-110 |     |       |
| Matrix Spike (BJ42403-MS1)      |             | Source: 1 | 410747-10 |       | Prepared 8 | Analyzed: | 10/24/14 15 | 5:20   |     |       |
| Total Kjeldahl Nitrogen         | 1.05        | 0.20      | 0.05      | mg/L  | 1.0        | ND        | 105         | 90-110 |     |       |
| Phosphorous - Total as P        | 1.08        | 0.040     | 0.010     | mg/L  | 1.0        | ND        | 108         | 90-110 |     |       |
| Matrix Spike (BJ42403-MS2)      |             | Source: 1 | 410752-27 |       | Prepared 8 | Analyzed: | 10/24/14 15 | 5:20   |     |       |
| Phosphorous - Total as P        | 1.09        | 0.040     | 0.010     | mg/L  | 1.0        | ND        | 109         | 90-110 |     |       |
| Total Kjeldahl Nitrogen         | 1.05        | 0.20      | 0.05      | mg/L  | 1.0        | ND        | 105         | 90-110 |     |       |
| Matrix Spike Dup (BJ42403-MSD1) |             | Source: 1 | 410747-10 |       | Prepared 8 | Analyzed: | 10/24/14 15 | 5:20   |     |       |
| Phosphorous - Total as P        | 1.09        | 0.040     | 0.010     | mg/L  | 1.0        | ND        | 109         | 90-110 | 1   | 25    |
| Total Kjeldahl Nitrogen         | 1.09        | 0.20      | 0.05      | mg/L  | 1.0        | ND        | 109         | 90-110 | 4   | 20    |
| Matrix Spike Dup (BJ42403-MSD2) |             | Source: 1 | 410752-27 |       | Prepared 8 | Analyzed: | 10/24/14 15 | 5:20   |     |       |
| Total Kjeldahl Nitrogen         | 1.05        | 0.20      | 0.05      | mg/L  | 1.0        | ND        | 105         | 90-110 | 0.5 | 20    |
| Phosphorous - Total as P        | 1.08        | 0.040     | 0.010     | mg/L  | 1.0        | ND        | 108         | 90-110 | 8.0 | 25    |
| Batch BJ42405 - Nitrite SM 4500 | NO2-B by se | al        |           |       |            |           |             |        |     |       |
| Blank (BJ42405-BLK1)            |             | •         |           |       | Prepared 8 | Analyzed: | 10/24/14 10 | ):54   |     |       |
| Nitrite (as N)                  | 0.01 U      | 0.04      | 0.01      | mg/L  |            |           |             |        |     |       |
|                                 |             |           |           | -     |            |           |             |        |     |       |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### **Inorganics - Quality Control**

|                                 |              |           |           |       | Spike                               | Source      |              | %REC        |     | RPD   |  |
|---------------------------------|--------------|-----------|-----------|-------|-------------------------------------|-------------|--------------|-------------|-----|-------|--|
| Analyte                         | Result       | PQL       | MDL       | Units | Level                               | Result      | %REC         | Limits      | RPD | Limit |  |
| Batch BJ42405 - Nitrite SM 450  | 0NO2-B by se | eal       |           |       |                                     |             |              |             |     |       |  |
| Blank (BJ42405-BLK2)            |              |           |           |       | Prepared 8                          | Analyzed:   | 10/24/14 16  | 3:09        |     |       |  |
| Nitrite (as N)                  | 0.01 U       | 0.04      | 0.01      | mg/L  |                                     |             |              |             |     |       |  |
| LCS (BJ42405-BS1)               |              |           |           |       | Prepared 8                          | Analyzed:   | 10/24/14 10  | ):55        |     |       |  |
| Nitrite (as N)                  | 0.0774       | 0.04      | 0.01      | mg/L  | 0.080                               |             | 97           | 90-110      |     |       |  |
| LCS (BJ42405-BS2)               |              |           |           |       | Prepared 8                          | Analyzed:   | 10/24/14 16  | 3:39        |     |       |  |
| Nitrite (as N)                  | 0.0974       | 0.04      | 0.01      | mg/L  | 0.10                                |             | 97           | 90-110      |     |       |  |
| Matrix Spike (BJ42405-MS1)      |              | Source: 1 | 410747-01 |       | Prepared 8                          | Analyzed:   | 10/24/14 10  | ):56        |     |       |  |
| Nitrite (as N)                  | 0.161 J2     | 0.04      | 0.01      | mg/L  | 0.10                                | 0.0990      | 62           | 77-119      |     |       |  |
| Matrix Spike (BJ42405-MS2)      |              | Source: 1 | 410752-07 |       | Prepared 8                          | Analyzed:   | 10/24/14 11  | :01         |     |       |  |
| Nitrite (as N)                  | 0.0905       | 0.04      | 0.01      | mg/L  | 0.10                                | ND          | 90           | 77-119      |     |       |  |
| Matrix Spike (BJ42405-MS3)      |              | Source: 1 | 410752-10 |       | Prepared 8                          | Analyzed:   | 10/24/14 11  | :08         |     |       |  |
| Nitrite (as N)                  | 0.112        | 0.04      | 0.01      | mg/L  | 0.10                                | 0.0356      | 77           | 77-119      |     |       |  |
| Matrix Spike Dup (BJ42405-MSD1) |              | Source: 1 | 410747-01 |       | Prepared 8                          | Analyzed:   | 10/24/14 10  | ):56        |     |       |  |
| Nitrite (as N)                  | 0.162 J2     | 0.04      | 0.01      | mg/L  | 0.10                                | 0.0990      | 63           | 77-119      | 0.5 | 20    |  |
| Matrix Spike Dup (BJ42405-MSD2) |              | Source: 1 | 410752-07 |       | Prepared 8                          | Analyzed:   | 10/24/14 11  | :02         |     |       |  |
| Nitrite (as N)                  | 0.0926       | 0.04      | 0.01      | mg/L  | 0.10                                | ND          | 93           | 77-119      | 2   | 20    |  |
| Matrix Spike Dup (BJ42405-MSD3) |              | Source: 1 | 410752-10 |       | Prepared & Analyzed: 10/24/14 11:09 |             |              |             |     |       |  |
| Nitrite (as N)                  | 0.117        | 0.04      | 0.01      | mg/L  | 0.10                                | 0.0356      | 82           | 77-119      | 4   | 20    |  |
| Batch BJ42411 - VSS Prep        |              |           |           |       |                                     |             |              |             |     |       |  |
| Blank (BJ42411-BLK1)            |              |           |           |       | Prepared:                           | 10/24/14 An | alyzed: 10/2 | 27/14 15:54 |     |       |  |
| Volatile Suspended Solids       | 1 U          | 1         |           | mg/L  |                                     |             |              |             |     |       |  |
| Total Suspended Solids          | 1 U          | 1         | 1         | mg/L  |                                     |             |              |             |     |       |  |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### **Inorganics - Quality Control**

| A 1. 4 -                        | Decut   | DOL       | MDL       | 1.1-24- | Spike      | Source      | 0/ DEO      | %REC        | DDD | RPD   |
|---------------------------------|---------|-----------|-----------|---------|------------|-------------|-------------|-------------|-----|-------|
| Analyte                         | Result  | PQL       | MDL       | Units   | Level      | Result      | %REC        | Limits      | RPD | Limit |
| Batch BJ42411 - VSS Prep        |         |           |           |         |            |             |             |             |     |       |
| LCS (BJ42411-BS1)               |         |           |           |         | Prepared:  | 10/24/14 An | alyzed: 10/ | 27/14 15:54 |     |       |
| Total Suspended Solids          | 49.0    | 1         | 1         | mg/L    | 50         |             | 98          | 85-115      |     |       |
| Duplicate (BJ42411-DUP1)        |         | Source: 1 | 410747-01 |         | Prepared:  | 10/24/14 An | alyzed: 10/ | 27/14 15:54 |     |       |
| Total Suspended Solids          | 41.0    | 1         | 1         | mg/L    |            | 45.0        |             |             | 9   | 30    |
| Volatile Suspended Solids       | 30.0 J3 | 1         |           | mg/L    |            | 44.0        |             |             | 38  | 20    |
| Batch BJ42416 - Nitrate 353.2 b | y seal  |           |           |         |            |             |             |             |     |       |
| Blank (BJ42416-BLK1)            |         |           |           |         | Prepared 8 | & Analyzed: | 10/24/14 12 | 2:08        |     |       |
| Nitrate+Nitrite (N)             | 0.01 U  | 0.04      | 0.01      | mg/L    |            |             |             |             |     |       |
| LCS (BJ42416-BS1)               |         |           |           |         | Prepared 8 | k Analyzed: | 10/24/14 12 | 2:10        |     |       |
| Nitrate+Nitrite (N)             | 0.797   | 0.04      | 0.01      | mg/L    | 0.80       |             | 100         | 90-110      |     |       |
| Matrix Spike (BJ42416-MS1)      |         | Source: 1 | 410747-03 |         | Prepared 8 | k Analyzed: | 10/24/14 1  | 5:17        |     |       |
| Nitrate+Nitrite (N)             | 49.2 L2 | 4.8       | 1.2       | mg/L    | 1.0        | 55.0        | NR          | 90-110      |     |       |
| Matrix Spike (BJ42416-MS2)      |         | Source: 1 | 410747-06 |         | Prepared 8 | k Analyzed: | 10/24/14 14 | 4:11        |     |       |
| Nitrate+Nitrite (N)             | 12.6 L2 | 0.96      | 0.24      | mg/L    | 1.0        | 12.8        | NR          | 90-110      |     |       |
| Matrix Spike Dup (BJ42416-MSD1) |         | Source: 1 | 410747-03 |         | Prepared 8 | & Analyzed: | 10/24/14 1  | 5:18        |     |       |
| Nitrate+Nitrite (N)             | 50.5 L2 | 4.8       | 1.2       | mg/L    | 1.0        | 55.0        | NR          | 90-110      | 3   | 20    |
| Matrix Spike Dup (BJ42416-MSD2) |         | Source: 1 | 410747-06 |         | Prepared 8 | & Analyzed: | 10/24/14 14 | 4:12        |     |       |
| Nitrate+Nitrite (N)             | 12.4 L2 | 0.96      | 0.24      | mg/L    | 1.0        | 12.8        | NR          | 90-110      | 1   | 20    |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### **Inorganics - Quality Control**

| Analyte                    | Result  | PQL       | MDL       | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit |
|----------------------------|---------|-----------|-----------|-------|----------------|------------------|-------------|----------------|-----|--------------|
| Batch BJ42421 - BOD        |         |           |           |       |                |                  |             |                |     |              |
| Blank (BJ42421-BLK1)       |         |           |           |       | Prepared:      | 10/24/14 An      | alyzed: 10/ | 29/14 13:49    |     |              |
| Carbonaceous BOD           | 2 U     | 2         | 2         | mg/L  |                |                  |             |                |     |              |
| Blank (BJ42421-BLK2)       |         |           |           |       | Prepared:      | 10/24/14 An      | alyzed: 10/ | 29/14 13:49    |     |              |
| Carbonaceous BOD           | 2 U     | 2         | 2         | mg/L  |                |                  |             |                |     |              |
| LCS (BJ42421-BS1)          |         |           |           |       | Prepared:      | 10/24/14 An      | alyzed: 10/ | 29/14 13:49    |     |              |
| Carbonaceous BOD           | 201     | 2         | 2         | mg/L  | 200            |                  | 101         | 85-115         |     |              |
| LCS (BJ42421-BS2)          |         |           |           |       | Prepared:      | 10/24/14 An      | alyzed: 10/ | 29/14 13:49    |     |              |
| Carbonaceous BOD           | 217     | 2         | 2         | mg/L  | 200            |                  | 109         | 85-115         |     |              |
| LCS Dup (BJ42421-BSD1)     |         |           |           |       | Prepared:      | 10/24/14 An      | alyzed: 10/ | 29/14 13:49    |     |              |
| Carbonaceous BOD           | 195     | 2         | 2         | mg/L  | 200            |                  | 97          | 85-115         | 3   | 200          |
| LCS Dup (BJ42421-BSD2)     |         |           |           |       | Prepared:      | 10/24/14 An      | alyzed: 10/ | 29/14 13:49    |     |              |
| Carbonaceous BOD           | 206     | 2         | 2         | mg/L  | 200            |                  | 103         | 85-115         | 5   | 200          |
| Duplicate (BJ42421-DUP1)   |         | Source: 1 | 410747-01 |       | Prepared:      | 10/24/14 An      | alyzed: 10/ | 29/14 13:49    |     |              |
| Carbonaceous BOD           | 92      | 2         | 2         | mg/L  |                | 110              |             |                | 15  | 25           |
| Duplicate (BJ42421-DUP2)   |         | Source: 1 | 411489-01 |       | Prepared:      | 10/24/14 An      | alyzed: 10/ | 29/14 13:49    |     |              |
| Carbonaceous BOD           | 200     | 2         | 2         | mg/L  |                | 200              |             |                | 0   | 25           |
| Batch BJ42422 - Ammonia by | y SEAL  |           |           |       |                |                  |             |                |     |              |
| Blank (BJ42422-BLK1)       |         |           |           |       | Prepared 8     | & Analyzed:      | 10/24/14 15 | 5:05           |     |              |
| Ammonia as N               | 0.009 U | 0.040     | 0.009     | mg/L  |                |                  |             |                |     |              |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### **Inorganics - Quality Control**

|                              |                           |                                                                            |                                                                                                                                     | Spike                                                                                                                                 | Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------|---------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result                       | PQL                       | MDL                                                                        | Units                                                                                                                               | Level                                                                                                                                 | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SEAL                         |                           |                                                                            |                                                                                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              |                           |                                                                            |                                                                                                                                     | Prepared 8                                                                                                                            | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/24/14 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.48                         | 0.040                     | 0.009                                                                      | mg/L                                                                                                                                | 0.50                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              | Source: 1                 | 410747-01                                                                  |                                                                                                                                     | Prepared 8                                                                                                                            | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/24/14 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6:17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.7 L2                       | 0.40                      | 0.095                                                                      | mg/L                                                                                                                                | 0.50                                                                                                                                  | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              | Source: 1                 | 410752-08                                                                  |                                                                                                                                     | Prepared 8                                                                                                                            | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/24/14 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5:22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.49                         | 0.040                     | 0.009                                                                      | mg/L                                                                                                                                | 0.50                                                                                                                                  | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1)                           | Source: 1                 | 410747-01                                                                  |                                                                                                                                     | Prepared 8                                                                                                                            | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/24/14 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2012                         | 0.40                      | 0.005                                                                      | ma/l                                                                                                                                | 0.50                                                                                                                                  | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.0 L2                       | 0.40                      | 0.095                                                                      | IIIg/L                                                                                                                              | 0.50                                                                                                                                  | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.0 L2                       |                           | 410752-08                                                                  | IIIg/∟                                                                                                                              |                                                                                                                                       | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                              |                           |                                                                            | mg/L                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2)                           | Source: 1                 | 410752-08                                                                  |                                                                                                                                     | Prepared 8                                                                                                                            | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/24/14 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2)                           | Source: 1                 | 410752-08                                                                  |                                                                                                                                     | Prepared 8                                                                                                                            | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/24/14 15<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2)                           | Source: 1                 | 410752-08                                                                  |                                                                                                                                     | Prepared 8                                                                                                                            | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/24/14 15<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.52                         | Source: 1<br>0.040        | <b>410752-08</b><br>0.009                                                  | mg/L                                                                                                                                | Prepared 8 0.50 Prepared 8                                                                                                            | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96<br>10/27/14 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.52                         | Source: 1<br>0.040        | <b>410752-08</b><br>0.009                                                  | mg/L                                                                                                                                | Prepared 8 0.50 Prepared 8                                                                                                            | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96<br>10/27/14 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.52<br>2.0 U                | Source: 1<br>0.040<br>8.0 | 0.009<br>2.0                                                               | mg/L                                                                                                                                | Prepared 8  O.50  Prepared 8  Prepared 8                                                                                              | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96<br>10/27/14 11<br>10/27/14 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.52<br>2.0 U                | Source: 1<br>0.040<br>8.0 | 0.009<br>2.0                                                               | mg/L                                                                                                                                | Prepared 8  O.50  Prepared 8  Prepared 8                                                                                              | Analyzed: 0.038 Analyzed: Analyzed: Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                               | 96<br>10/27/14 11<br>10/27/14 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2)<br>0.52<br>2.0 U<br>2.0 U | 8.0<br>8.0                | 2.0<br>2.0                                                                 | mg/L mg/L mg/L                                                                                                                      | Prepared 8 Prepared 8 Prepared 8 Prepared 8 120                                                                                       | Analyzed: 0.038 Analyzed: Analyzed: Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/24/14 15<br>96<br>10/27/14 11<br>10/27/14 11<br>10/27/14 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90-110<br>:24<br>:27<br>:36<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              | 0.48<br>2.7 L2<br>0.49    | 7 SEAL  0.48 0.040 Source: 1 2.7 L2 0.40 Source: 1 0.49 0.040 1) Source: 1 | 7 SEAL  0.48  0.040  0.009  Source: 1410747-01  2.7 L2  0.40  0.095  Source: 1410752-08  0.49  0.040  0.009  1)  Source: 1410747-01 | 7 SEAL  0.48 0.040 0.009 mg/L Source: 1410747-01  2.7 L2 0.40 0.095 mg/L Source: 1410752-08  0.49 0.040 0.009 mg/L Source: 1410747-01 | Result         PQL         MDL         Units         Level           y SEAL           Prepared 8           0.48         0.040         0.009         mg/L         0.50           Source: 1410747-01         Prepared 8           2.7 L2         0.40         0.095         mg/L         0.50           Source: 1410752-08         Prepared 8           0.49         0.040         0.009         mg/L         0.50           1)         Source: 1410747-01         Prepared 8 | Result         PQL         MDL         Units         Level         Result           7 SEAL           Prepared & Analyzed: **           0.48         0.040         0.009         mg/L         0.50           Source: 1410747-01         Prepared & Analyzed: **           2.7 L2         0.40         0.095         mg/L         0.50         66           Source: 1410752-08         Prepared & Analyzed: **           0.49         0.040         0.009         mg/L         0.50         0.038           1)         Source: 1410747-01         Prepared & Analyzed: ** | Result         PQL         MDL         Units         Level         Result         %REC           r SEAL           Prepared & Analyzed: 10/24/14 15           0.48         0.040         0.009         mg/L         0.50         95           Source: 1410747-01         Prepared & Analyzed: 10/24/14 16           2.7 L2         0.40         0.095         mg/L         0.50         66         NR           Source: 1410752-08         Prepared & Analyzed: 10/24/14 15           0.49         0.040         0.009         mg/L         0.50         0.038         91           1)         Source: 1410747-01         Prepared & Analyzed: 10/24/14 16 | Result         PQL         MDL         Units         Level         Result         %REC         Limits           / SEAL           Prepared & Analyzed: 10/24/14 15:07           0.48         0.040         0.009         mg/L         0.50         95         90-110           Source: 1410747-01         Prepared & Analyzed: 10/24/14 16:17           2.7 L2         0.40         0.095         mg/L         0.50         66         NR         90-110           Source: 1410752-08         Prepared & Analyzed: 10/24/14 15:22           0.49         0.040         0.009         mg/L         0.50         0.038         91         90-110           10         Source: 1410747-01         Prepared & Analyzed: 10/24/14 16:19 | Result         PQL         MDL         Units         Level         Result         %REC         Limits         RPD           r SEAL           Prepared & Analyzed: 10/24/14 15:07           0.48         0.040         0.009         mg/L         0.50         95         90-110           Source: 1410747-01         Prepared & Analyzed: 10/24/14 16:17           2.7 L2         0.40         0.095         mg/L         0.50         66         NR         90-110           Source: 1410752-08         Prepared & Analyzed: 10/24/14 15:22           0.49         0.040         0.009         mg/L         0.50         0.038         91         90-110 |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### **Inorganics - Quality Control**

| Analyte                         | Result  | PQL       | MDL        | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit |
|---------------------------------|---------|-----------|------------|-------|----------------|------------------|-------------|----------------|-----|--------------|
| Batch BJ42439 - alkalinity      |         |           |            |       |                |                  |             |                |     |              |
| Matrix Spike (BJ42439-MS1)      |         | Source: 1 | 1410747-10 |       | Prepared 8     | & Analyzed:      | 10/27/14 12 | 2:52           |     |              |
| Total Alkalinity                | 130     | 8.0       | 2.0        | mg/L  | 120            | 2.9              | 103         | 80-120         |     |              |
| Matrix Spike (BJ42439-MS2)      |         | Source: 1 | 1410752-27 |       | Prepared 8     | & Analyzed:      | 10/27/14 15 | 5:20           |     |              |
| Total Alkalinity                | 140     | 8.0       | 2.0        | mg/L  | 120            | ND               | 110         | 80-120         |     |              |
| Matrix Spike Dup (BJ42439-MSD1) |         | Source: 1 | 1410747-10 |       | Prepared 8     | & Analyzed:      | 10/27/14 12 | 2:57           |     |              |
| Total Alkalinity                | 140     | 8.0       | 2.0        | mg/L  | 120            | 2.9              | 106         | 80-120         | 3   | 26           |
| Matrix Spike Dup (BJ42439-MSD2) |         | Source: 1 | 1410752-27 |       | Prepared 8     | & Analyzed:      | 10/27/14 15 | 5:26           |     |              |
| Total Alkalinity                | 140     | 8.0       | 2.0        | mg/L  | 120            | ND               | 110         | 80-120         | 0.5 | 26           |
| Batch BJ42819 - TOC prep        |         |           |            |       |                |                  |             |                |     |              |
| Blank (BJ42819-BLK1)            |         |           |            |       | Prepared 8     | & Analyzed:      | 10/29/14 15 | 5:58           |     |              |
| Total Organic Carbon            | 0.060 U | 1.0       | 0.060      | mg/L  |                |                  |             |                |     |              |
| LCS (BJ42819-BS1)               |         |           |            |       | Prepared 8     | & Analyzed:      | 10/29/14 15 | 5:58           |     |              |
| Total Organic Carbon            | 9.54    | 1.0       | 0.060      | mg/L  | 10             |                  | 95          | 90-110         |     |              |
| Matrix Spike (BJ42819-MS1)      |         | Source: 1 | 1411420-01 |       | Prepared 8     | & Analyzed:      | 10/29/14 15 | 5:58           |     |              |
| Total Organic Carbon            | 10.3    | 1.0       | 0.060      | mg/L  | 10             | ND               | 103         | 85-115         |     |              |
| Matrix Spike Dup (BJ42819-MSD1) |         | Source: 1 | 1411420-01 |       | Prepared 8     | & Analyzed:      | 10/29/14 15 | 5:58           |     |              |
| Total Organic Carbon            | 10.2    | 1.0       | 0.060      | mg/L  | 10             | ND               | 102         | 85-115         | 0.8 | 10           |
| Batch BJ42825 - Sulfide prep    |         |           |            |       |                |                  |             |                |     |              |
| Blank (BJ42825-BLK1)            |         |           |            |       | Prepared 8     | & Analyzed:      | 10/28/14 16 | 6:22           |     |              |
| Sulfide                         | 0.10 U  | 0.40      | 0.10       | mg/L  |                |                  |             |                |     |              |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### **Inorganics - Quality Control**

| Analyte                         | Result       | PQL       | MDL       | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit |
|---------------------------------|--------------|-----------|-----------|-------|----------------|------------------|-------------|----------------|-----|--------------|
| Analyte                         | Nesuit       | FQL       | WIDE      | Units | Levei          | Nesuit           | 70NLC       | LIIIIIIS       | KFD | LIIIII       |
| Batch BJ42825 - Sulfide prep    |              |           |           |       |                |                  |             |                |     |              |
| Blank (BJ42825-BLK2)            |              |           |           |       | Prepared 8     | Analyzed:        | 10/28/14 16 | 6:22           |     |              |
| Sulfide                         | 0.10 U       | 0.40      | 0.10      | mg/L  |                |                  |             |                |     |              |
| LCS (BJ42825-BS1)               |              |           |           |       | Prepared 8     | Analyzed:        | 10/28/14 16 | 3:22           |     |              |
| Sulfide                         | 5.21         | 0.40      | 0.10      | mg/L  | 5.0            |                  | 104         | 85-115         |     |              |
| LCS (BJ42825-BS2)               |              |           |           |       | Prepared 8     | Analyzed:        | 10/28/14 16 | 3:22           |     |              |
| Sulfide                         | 5.21         | 0.40      | 0.10      | mg/L  | 5.0            |                  | 104         | 85-115         |     |              |
| Matrix Spike (BJ42825-MS1)      |              | Source: 1 | 410747-10 |       | Prepared 8     | Analyzed:        | 10/28/14 16 | 5:22           |     |              |
| Sulfide                         | 5.21         | 0.40      | 0.10      | mg/L  | 5.0            | ND               | 104         | 85-115         |     |              |
| Matrix Spike (BJ42825-MS2)      |              | Source: 1 | 410748-10 |       | Prepared 8     | Analyzed:        | 10/28/14 16 | 3:22           |     |              |
| Sulfide                         | 5.21         | 0.40      | 0.10      | mg/L  | 5.0            | ND               | 104         | 85-115         |     |              |
| Matrix Spike Dup (BJ42825-MSD1) |              | Source: 1 | 410747-10 |       | Prepared 8     | Analyzed:        | 10/28/14 16 | 3:22           |     |              |
| Sulfide                         | 5.01         | 0.40      | 0.10      | mg/L  | 5.0            | ND               | 100         | 85-115         | 4   | 14           |
| Matrix Spike Dup (BJ42825-MSD2) |              | Source: 1 | 410748-10 |       | Prepared 8     | Analyzed:        | 10/28/14 16 | 3:22           |     |              |
| Sulfide                         | 4.81         | 0.40      | 0.10      | mg/L  | 5.0            | ND               | 96          | 85-115         | 8   | 14           |
| Batch BJ42925 - Ion Chromato    | graphy 300.0 | Prep      |           |       |                |                  |             |                |     |              |
| Blank (BJ42925-BLK1)            |              |           |           |       | Prepared 8     | Analyzed:        | 10/29/14 17 | <b>'</b> :14   |     |              |
| Sulfate                         | 0.20 U       | 0.60      | 0.20      | mg/L  |                |                  |             |                |     |              |
| Surrogate: Dichloroacetate      | 0.814        |           |           | mg/L  | 1.0            |                  | 81          | 78-120         |     |              |
| LCS (BJ42925-BS1)               |              |           |           |       | Prepared 8     | Analyzed:        | 10/29/14 17 | 7:27           |     |              |
| Sulfate                         | 9.13         | 0.60      | 0.20      | mg/L  | 9.0            |                  | 101         | 85-115         |     |              |
| Surrogate: Dichloroacetate      | 0.981        |           |           | mg/L  | 1.0            |                  | 98          | 78-120         |     |              |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



**Hazen and Sawyer** 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619

November 12, 2014 Work Order: 1410747

#### **Inorganics - Quality Control**

|                            |                |           |                                     |       | Spike      | Source      |             | %REC   |     | RPD   |  |
|----------------------------|----------------|-----------|-------------------------------------|-------|------------|-------------|-------------|--------|-----|-------|--|
| Analyte                    | Result         | PQL       | MDL                                 | Units | Level      | Result      | %REC        | Limits | RPD | Limit |  |
| Batch BJ42925 - Ion Chroma | tography 300.0 | ) Prep    |                                     |       |            |             |             |        |     |       |  |
| LCS (BJ42925-BS2)          |                |           |                                     |       | Prepared 8 | & Analyzed: | 10/29/14 17 | 7:55   |     |       |  |
| Sulfate                    | 9.25           | 0.60      | 0.20                                | mg/L  | 9.0        |             | 103         | 85-115 |     |       |  |
| Surrogate: Dichloroacetate | 1.03           |           |                                     | mg/L  | 1.0        |             | 103         | 78-120 |     |       |  |
| LCS (BJ42925-BS3)          |                |           |                                     |       | Prepared 8 | & Analyzed: | 10/29/14 18 | 3:08   |     |       |  |
| Sulfate                    | 9.24           | 0.60      | 0.20                                | mg/L  | 9.0        |             | 103         | 85-115 |     |       |  |
| Surrogate: Dichloroacetate | 1.01           |           |                                     | mg/L  | 1.0        |             | 101         | 78-120 |     |       |  |
| LCS (BJ42925-BS4)          |                |           | Prepared & Analyzed: 10/29/14 18:22 |       |            |             |             |        |     |       |  |
| Sulfate                    | 9.24           | 0.60      | 0.20                                | mg/L  | 9.0        |             | 103         | 85-115 |     |       |  |
| Surrogate: Dichloroacetate | 0.988          |           |                                     | mg/L  | 1.0        |             | 99          | 78-120 |     |       |  |
| LCS (BJ42925-BS5)          |                |           |                                     |       | Prepared 8 | & Analyzed: | 10/29/14 18 | 3:36   |     |       |  |
| Sulfate                    | 9.21           | 0.60      | 0.20                                | mg/L  | 9.0        |             | 102         | 85-115 |     |       |  |
| Surrogate: Dichloroacetate | 1.03           |           |                                     | mg/L  | 1.0        |             | 103         | 78-120 |     |       |  |
| LCS Dup (BJ42925-BSD1)     |                |           |                                     |       | Prepared 8 | & Analyzed: | 10/29/14 17 | 7:41   |     |       |  |
| Sulfate                    | 9.08           | 0.60      | 0.20                                | mg/L  | 9.0        |             | 101         | 85-115 | 0.5 | 200   |  |
| Surrogate: Dichloroacetate | 1.02           |           |                                     | mg/L  | 1.0        |             | 102         | 78-120 |     |       |  |
| Matrix Spike (BJ42925-MS1) |                | Source: 1 | 411389-02                           |       | Prepared 8 | & Analyzed: | 10/29/14 21 | 1:32   |     |       |  |
| Sulfate                    | 10,900         | 600       | 200                                 | mg/L  | 9000       | 1820        | 100         | 85-115 |     |       |  |
| Surrogate: Dichloroacetate | 1.01           |           |                                     | mg/L  | 1.0        |             | 101         | 78-120 |     |       |  |
| Matrix Spike (BJ42925-MS2) |                | Source: 1 | 410747-06                           |       | Prepared 8 | & Analyzed: | 10/30/14 12 | 2:23   |     |       |  |
| Sulfate                    | 109            | 6.0       | 2.0                                 | mg/L  | 90         | 20.4        | 98          | 85-115 |     |       |  |
| Surrogate: Dichloroacetate | 1.10           |           |                                     | mg/L  | 1.0        |             | 110         | 78-120 |     |       |  |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### **Inorganics - Quality Control**

| Analyte                         | Result      | PQL       | MDL       | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit |
|---------------------------------|-------------|-----------|-----------|-------|----------------|------------------|-------------|----------------|-----|--------------|
| Batch BJ43022 - COD prep        |             |           |           |       |                |                  |             |                |     |              |
| Blank (BJ43022-BLK1)            |             |           |           |       | Prepared 8     | Analyzed:        | 10/30/14 14 | :30            |     |              |
| Chemical Oxygen Demand          | 10 U        | 25        | 10        | mg/L  |                |                  |             |                |     |              |
| Blank (BJ43022-BLK2)            |             |           |           |       | Prepared 8     | Analyzed:        | 10/30/14 14 | :30            |     |              |
| Chemical Oxygen Demand          | 10 U        | 25        | 10        | mg/L  |                |                  |             |                |     |              |
| LCS (BJ43022-BS1)               |             |           |           |       | Prepared 8     | Analyzed:        | 10/30/14 14 | :30            |     |              |
| Chemical Oxygen Demand          | 47          | 25        | 10        | mg/L  | 50             |                  | 94          | 90-110         |     |              |
| LCS (BJ43022-BS2)               |             |           |           |       | Prepared 8     | Analyzed:        | 10/30/14 14 | :30            |     |              |
| Chemical Oxygen Demand          | 45          | 25        | 10        | mg/L  | 50             |                  | 90          | 90-110         |     |              |
| Matrix Spike (BJ43022-MS1)      |             | Source: 1 | 410747-10 |       | Prepared 8     | Analyzed:        | 10/30/14 14 | :30            |     |              |
| Chemical Oxygen Demand          | 50          | 25        | 10        | mg/L  | 50             | ND               | 100         | 85-115         |     |              |
| Matrix Spike (BJ43022-MS2)      |             | Source: 1 | 410748-10 |       | Prepared 8     | Analyzed:        | 10/30/14 14 | :30            |     |              |
| Chemical Oxygen Demand          | 54          | 25        | 10        | mg/L  | 50             | ND               | 108         | 85-115         |     |              |
| Matrix Spike Dup (BJ43022-MSD1) |             | Source: 1 | 410747-10 |       | Prepared 8     | Analyzed:        | 10/30/14 14 | :30            |     |              |
| Chemical Oxygen Demand          | 52          | 25        | 10        | mg/L  | 50             | ND               | 104         | 85-115         | 4   | 32           |
| Matrix Spike Dup (BJ43022-MSD2) |             | Source: 1 | 410748-10 |       | Prepared 8     | Analyzed:        | 10/30/14 14 | :30            |     |              |
| Chemical Oxygen Demand          | 50          | 25        | 10        | mg/L  | 50             | ND               | 100         | 85-115         | 8   | 32           |
| Batch BJ43023 - Ion Chromatog   | raphy 300.0 | Prep      |           |       |                |                  |             |                |     |              |
| Blank (BJ43023-BLK1)            |             |           |           |       | Prepared 8     | Analyzed:        | 10/30/14 17 | <b>'</b> :07   |     |              |
| Sulfate                         | 0.20 U      | 0.60      | 0.20      | mg/L  |                |                  |             |                |     |              |
| Surrogate: Dichloroacetate      | 0.929       |           |           | mg/L  | 1.0            |                  | 93          | 78-120         |     |              |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### **Inorganics - Quality Control**

| Analyte                    | Result        | PQL       | MDL       | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit |
|----------------------------|---------------|-----------|-----------|-------|----------------|------------------|-------------|----------------|-----|--------------|
| Batch BJ43023 - Ion Chroma | tography 300. | 0 Prep    |           |       |                |                  |             |                |     |              |
| LCS (BJ43023-BS1)          |               |           |           |       | Prepared 8     | & Analyzed:      | 10/30/14 17 | 7:19           |     |              |
| Sulfate                    | 9.60          | 0.60      | 0.20      | mg/L  | 9.0            |                  | 107         | 85-115         |     |              |
| Surrogate: Dichloroacetate | 1.04          |           |           | mg/L  | 1.0            |                  | 104         | 78-120         |     |              |
| LCS Dup (BJ43023-BSD1)     |               |           |           |       | Prepared 8     | & Analyzed:      | 10/30/14 17 | 7:30           |     |              |
| Sulfate                    | 9.55          | 0.60      | 0.20      | mg/L  | 9.0            |                  | 106         | 85-115         | 0.6 | 200          |
| Surrogate: Dichloroacetate | 1.03          |           |           | mg/L  | 1.0            |                  | 103         | 78-120         |     |              |
| Matrix Spike (BJ43023-MS1) |               | Source: 1 | 411273-04 |       | Prepared 8     | & Analyzed:      | 10/30/14 20 | 0:07           |     |              |
| Sulfate                    | 9.73          | 0.60      | 0.20      | mg/L  | 9.0            | 0.930            | 98          | 85-115         |     |              |
| Surrogate: Dichloroacetate | 0.980         |           |           | mg/L  | 1.0            |                  | 98          | 78-120         |     |              |
| Matrix Spike (BJ43023-MS2) |               | Source: 1 | 410747-09 |       | Prepared 8     | & Analyzed:      | 10/30/14 22 | 2:11           |     |              |
| Sulfate                    | 167           | 6.0       | 2.0       | mg/L  | 90             | 70.8             | 107         | 85-115         |     |              |
| Surrogate: Dichloroacetate | 1.06          |           |           | mg/L  | 1.0            |                  | 106         | 78-120         |     |              |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### Inorganic, Dissolved - Quality Control

|                                 |              |           |            |             | Spike       | Source      |             | %REC   |     | RPD   |
|---------------------------------|--------------|-----------|------------|-------------|-------------|-------------|-------------|--------|-----|-------|
| Analyte                         | Result       | PQL       | MDL        | Units       | Level       | Result      | %REC        | Limits | RPD | Limit |
| Batch BJ42405 - Nitrite SM 450  | 0NO2-B by se | al        |            |             |             |             |             |        |     |       |
| Blank (BJ42405-BLK1)            |              |           |            |             | Prepared 8  | & Analyzed: | 10/24/14 10 | ):54   |     |       |
| Nitrite (as N)                  | 0.01 U       | 0.04      | 0.01       | mg/L        |             |             |             |        |     |       |
| Blank (BJ42405-BLK2)            |              |           |            |             | Prepared 8  | & Analyzed: | 10/24/14 16 | 3:09   |     |       |
| Nitrite (as N)                  | 0.01 U       | 0.04      | 0.01       | mg/L        |             |             |             |        |     |       |
| LCS (BJ42405-BS1)               |              |           |            |             | Prepared 8  | & Analyzed: | 10/24/14 10 | ):55   |     |       |
| Nitrite (as N)                  | 0.0774       | 0.04      | 0.01       | mg/L        | 0.080       |             | 97          | 90-110 |     |       |
| LCS (BJ42405-BS2)               |              |           |            |             | Prepared 8  | & Analyzed: | 10/24/14 16 | 3:39   |     |       |
| Nitrite (as N)                  | 0.0974       | 0.04      | 0.01       | mg/L        | 0.10        |             | 97          | 90-110 |     |       |
| Matrix Spike (BJ42405-MS1)      |              | Source: 1 | 410747-01  |             | Prepared 8  | & Analyzed: | 10/24/14 10 | ):56   |     |       |
| Nitrite (as N)                  | 0.0905 J2    | 0.04      | 0.01       | mg/L        | 0.10        | 0.0990      | NR          | 77-119 |     |       |
| Matrix Spike (BJ42405-MS2)      |              | Source: 1 | 410752-07  |             | Prepared 8  | & Analyzed: | 10/24/14 11 | :01    |     |       |
| Nitrite (as N)                  | 0.0905       | 0.04      | 0.01       | mg/L        | 0.10        | ND          | 90          | 77-119 |     |       |
| Matrix Spike (BJ42405-MS3)      |              | Source: 1 | 410752-10  |             | Prepared 8  | & Analyzed: | 10/24/14 11 | :08    |     |       |
| Nitrite (as N)                  | 0.112        | 0.04      | 0.01       | mg/L        | 0.10        | 0.0356      | 77          | 77-119 |     |       |
| Matrix Spike Dup (BJ42405-MSD1) |              | Source: 1 | 410747-01  |             | Prepared 8  | & Analyzed: | 10/24/14 10 | ):56   |     |       |
| Nitrite (as N)                  | 0.162 J2     | 0.04      | 0.01       | mg/L        | 0.10        | 0.0990      | 63          | 77-119 | 57  | 20    |
| Matrix Spike Dup (BJ42405-MSD2) |              | Source: 1 | 410752-07  |             | Prepared 8  | & Analyzed: | 10/24/14 11 | :02    |     |       |
| Nitrite (as N)                  | 0.0926       | 0.04      | 0.01       | mg/L        | 0.10        | ND          | 93          | 77-119 | 2   | 20    |
| Matrix Spike Dup (BJ42405-MSD3) | 410752-10    |           | Prepared 8 | & Analyzed: | 10/24/14 11 | :09         |             |        |     |       |
| Nitrite (as N)                  | 0.117        | 0.04      | 0.01       | mg/L        | 0.10        | 0.0356      | 82          | 77-119 | 4   | 20    |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### Inorganic, Dissolved - Quality Control

|                               |           |           |           |       | Spike                               | Source      |             | %REC        |     | RPD   |
|-------------------------------|-----------|-----------|-----------|-------|-------------------------------------|-------------|-------------|-------------|-----|-------|
| Analyte                       | Result    | PQL       | MDL       | Units | Level                               | Result      | %REC        | Limits      | RPD | Limit |
| Batch BJ42416 - Nitrate 353.  | 2 by seal |           |           |       |                                     |             |             |             |     |       |
| Blank (BJ42416-BLK1)          |           |           |           |       | Prepared 8                          | & Analyzed: | 10/24/14 12 | 2:08        |     |       |
| Nitrate+Nitrite (N)           | 0.01 U    | 0.04      | 0.01      | mg/L  |                                     |             |             |             |     |       |
| LCS (BJ42416-BS1)             |           |           |           |       | Prepared 8                          | & Analyzed: | 10/24/14 12 | 2:10        |     |       |
| Nitrate+Nitrite (N)           | 0.797     | 0.04      | 0.01      | mg/L  | 0.80                                |             | 100         | 90-110      |     |       |
| Matrix Spike (BJ42416-MS1)    |           | Source: 1 | 410747-03 |       | Prepared 8                          | & Analyzed: | 10/24/14 15 | 5:17        |     |       |
| Nitrate+Nitrite (N)           | 49.2 L2   | 4.8       | 1.2       | mg/L  | 1.0                                 | 55.0        | NR          | 80-120      |     |       |
| Matrix Spike (BJ42416-MS2)    |           | Source: 1 | 410747-06 |       | Prepared 8                          | & Analyzed: | 10/24/14 14 | 4:11        |     |       |
| Nitrate+Nitrite (N)           | 12.6 L2   | 0.96      | 0.24      | mg/L  | 1.0                                 | 12.8        | NR          | 80-120      |     |       |
| Matrix Spike Dup (BJ42416-MSI | 01)       | Source: 1 | 410747-03 |       | Prepared 8                          | & Analyzed: | 10/24/14 15 | 5:18        |     |       |
| Nitrate+Nitrite (N)           | 50.5 L2   | 4.8       | 1.2       | mg/L  | 1.0                                 | 55.0        | NR          | 80-120      | 3   | 20    |
| Matrix Spike Dup (BJ42416-MSI | 02)       | Source: 1 | 410747-06 |       | Prepared & Analyzed: 10/24/14 14:12 |             |             |             |     |       |
| Nitrate+Nitrite (N)           | 12.4 L2   | 0.96      | 0.24      | mg/L  | 1.0                                 | 12.8        | NR          | 80-120      | 1   | 20    |
| Batch BJ42420 - BOD Disso     | lved      |           |           |       |                                     |             |             |             |     |       |
| Blank (BJ42420-BLK1)          |           |           |           |       | Prepared:                           | 10/24/14 An | alyzed: 10/ | 29/14 13:47 |     |       |
| Carbonaceous BOD              | 2 U       | 2         | 2         | mg/L  |                                     |             |             |             |     |       |
| LCS (BJ42420-BS1)             |           |           |           |       | Prepared:                           | 10/24/14 An | alyzed: 10/ | 29/14 13:47 |     |       |
| Carbonaceous BOD              | 201       | 2         | 2         | mg/L  | 200                                 |             | 101         | 85-115      |     |       |
| LCS Dup (BJ42420-BSD1)        |           |           |           |       | Prepared:                           | 10/24/14 An | alyzed: 10/ | 29/14 13:47 |     |       |
| Carbonaceous BOD              | 194       | 2         | 2         | mg/L  | 200                                 |             | 97          | 85-115      | 4   | 200   |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### Inorganic, Dissolved - Quality Control

| Analyte                        | Result     | PQL       | MDL        | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit |
|--------------------------------|------------|-----------|------------|-------|----------------|------------------|-------------|----------------|-----|--------------|
| Batch BJ42420 - BOD Dissolv    | ed         |           |            |       |                |                  |             |                |     |              |
| Duplicate (BJ42420-DUP1)       |            | Source: 1 | 1410747-02 |       | Prepared:      | 10/24/14 An      | alyzed: 10/ | 29/14 13:47    |     |              |
| Carbonaceous BOD               | 84         | 2         | 2          | mg/L  |                | 87               |             |                | 4   | 25           |
| Batch BJ42906 - Digestion for  | TP and TKN |           |            |       |                |                  |             |                |     |              |
| Blank (BJ42906-BLK1)           |            |           |            |       | Prepared 8     | & Analyzed:      | 10/29/14 17 | 7:16           |     |              |
| Total Kjeldahl Nitrogen        | 0.050 U    | 0.20      | 0.050      | mg/L  |                |                  |             |                |     |              |
| LCS (BJ42906-BS1)              |            |           |            |       | Prepared 8     | & Analyzed:      | 10/29/14 17 | 7:16           |     |              |
| Total Kjeldahl Nitrogen        | 1.06       | 0.20      | 0.050      | mg/L  | 1.0            |                  | 106         | 90-110         |     |              |
| Matrix Spike (BJ42906-MS1)     |            | Source: 1 | 1410747-07 |       | Prepared 8     | & Analyzed:      | 10/29/14 17 | 7:16           |     |              |
| Total Kjeldahl Nitrogen        | 4.72       | 0.20      | 0.050      | mg/L  | 1.0            | 3.65             | 107         | 90-110         |     |              |
| Matrix Spike Dup (BJ42906-MSD1 | )          | Source: 1 | 1410747-07 |       | Prepared 8     | & Analyzed:      | 10/29/14 17 | 7:16           |     |              |
| Total Kjeldahl Nitrogen        | 4.63       | 0.20      | 0.050      | mg/L  | 1.0            | 3.65             | 98          | 90-110         | 2   | 20           |
| Batch BJ42924 - Ammonia by     | SEAL       |           |            |       |                |                  |             |                |     |              |
| Blank (BJ42924-BLK1)           |            |           |            |       | Prepared 8     | & Analyzed:      | 10/31/14 10 | 0:16           |     |              |
| Ammonia as N                   | 0.009 U    | 0.040     | 0.009      | mg/L  |                |                  |             |                |     |              |
| LCS (BJ42924-BS1)              |            |           |            |       | Prepared 8     | & Analyzed:      | 10/31/14 10 | 0:17           |     |              |
| Ammonia as N                   | 0.47       | 0.040     | 0.009      | mg/L  | 0.50           |                  | 93          | 90-110         |     |              |
| Matrix Spike (BJ42924-MS1)     |            | Source: 1 | 1410919-08 |       | Prepared 8     | & Analyzed:      | 10/31/14 10 | D:19           |     |              |
| Ammonia as N                   | 0.47 J2    | 0.040     | 0.009      | mg/L  | 0.50           | ND               | 94          | 90-110         |     | <u> </u>     |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

Inorganic, Dissolved - Quality Control

| Analyte                         | Result  | PQL       | MDL       | Units  | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit |
|---------------------------------|---------|-----------|-----------|--------|----------------|------------------|-------------|----------------|-----|--------------|
| Tilalyte                        | resur   | 1 &L      |           | Orinto | LCVCI          | rtcourt          | 701120      | Limito         | TUB |              |
| Batch BJ42924 - Ammonia by S    | EAL     |           |           |        |                |                  |             |                |     |              |
| Matrix Spike (BJ42924-MS2)      |         | Source: 1 | 410919-13 |        | Prepared 8     | & Analyzed:      | 10/31/14 10 | 0:31           |     |              |
| Ammonia as N                    | 0.51    | 0.040     | 0.009     | mg/L   | 0.50           | 0.018            | 98          | 90-110         |     |              |
| Matrix Spike Dup (BJ42924-MSD1) |         | Source: 1 | 410919-08 |        | Prepared 8     | & Analyzed:      | 10/31/14 10 | 0:21           |     |              |
| Ammonia as N                    | 0.44 J2 | 0.040     | 0.009     | mg/L   | 0.50           | ND               | 88          | 90-110         | 7   | 10           |
| Matrix Spike Dup (BJ42924-MSD2) |         | Source: 1 | 410919-13 |        | Prepared 8     | & Analyzed:      | 10/31/14 13 | 3:58           |     |              |
| Ammonia as N                    | 0.51    | 0.040     | 0.009     | mg/L   | 0.50           | 0.018            | 98          | 90-110         | 0.4 | 10           |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### **Microbiology - Quality Control**

|                          |        |           |         |           | Spike     | Source      |              | %REC        |     | RPD   |
|--------------------------|--------|-----------|---------|-----------|-----------|-------------|--------------|-------------|-----|-------|
| Analyte                  | Result | PQL       | MDL     | Units     | Level     | Result      | %REC         | Limits      | RPD | Limit |
| Batch BJ42339 - FC-MF    |        |           |         |           |           |             |              |             |     |       |
| Blank (BJ42339-BLK1)     |        |           |         |           | Prepared: | 10/23/14 An | alyzed: 10/2 | 24/14 14:22 |     |       |
| Fecal Coliforms          | 1 U    | 1         | 1       | CFU/100 i | ml        |             |              |             |     |       |
| Duplicate (BJ42339-DUP1) |        | Source: 1 | 410752- | 27        | Prepared: | 10/23/14 An | alyzed: 10/  | 24/14 14:22 |     |       |
| Fecal Coliforms          | 1 U    | 1         | 1       | CFU/100 i | ml        | ND          |              |             |     | 200   |
| Duplicate (BJ42339-DUP2) |        | Source: 1 | 410747- | 10        | Prepared: | 10/23/14 An | alyzed: 10/  | 24/14 14:22 |     |       |
| Fecal Coliforms          | 1 U    | 1         | 1       | CFU/100 i | ml        | ND          |              |             |     | 200   |

Florida Certification Number: E84129

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 FAX 813-855-2218



Hazen and Sawyer 10002 Princess Palm Ave, Suite 200 Tampa, FL 33619 November 12, 2014 Work Order: 1410747

#### \* Qualifiers, Notes and Definitions

Results followed by a "U" indicate that the sample was analyzed but the compound was not detected. Results followed by "I" indicate that the reported value is between the laboratory method detection limts and the laboratory practical quantitation limit.

A statement of estimated uncertainty of test results is available upon request.

For methods marked with \*\*, all QC criteria have been met for this method which is equivalent to a SAL certified method.

Test results in this report meet all the requirements of the NELAC standards. Any applicable qualifiers are shown below.

- V Analyte was detected in both the sample and the associated method blank.
- L2 Analyte level in sample invalidated Matrix Spike.
- J3 Quality control value for precision was outside control limits.
- J2 Quality control value for accuracy was outside control limits.

Questions regarding this report should be directed to :

Kathryn Nordmark
Telephone (813) 855-1844 FAX (813) 855-2218
Kathryn@southernanalyticallabs.com

Finder

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 fax 813-855-2218

| Client                          | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |           |        |           |        |                                                                       |                                                                                  |                                                                          |                                                  |                    | Contact /                                                       | Phone:                                                                            |                        |             |              |             |              |      |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|-----------|--------|-----------|--------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------|--------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|-------------|--------------|-------------|--------------|------|
| Project                         | Hazen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and Sa  | awye          | <u>r</u>  |        |           |        |                                                                       |                                                                                  |                                                                          |                                                  |                    | ļ                                                               |                                                                                   |                        |             |              |             |              |      |
| rojec                           | ct Name / Location B-HS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SE#11   |               |           |        |           |        |                                                                       |                                                                                  |                                                                          |                                                  |                    |                                                                 |                                                                                   |                        |             |              | _           |              |      |
| Samp                            | lers: (Signature)  April  Apri |         |               |           |        |           |        |                                                                       |                                                                                  |                                                                          |                                                  | P,                 | ARAMETE                                                         | R / CONT                                                                          | AINER DESCRI           | PTION       |              |             |              |      |
| SAL<br>Use<br>Only<br>Sample    | Matrix Codes: DW-Drinking Water WW-Wastewater SW-SurfaceWater SL-Sludge SO-Soil GW-Groundwater SA-Saline Water O-Other R-Reagent Water  Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date    |               | Time      | Matrix | Composite | Grab   | 125mLP, Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>FC-MF, FC-QT | SDUMLP, Cool<br>Total Alkalinity, TSS,<br>VSS, CBOD, NOx, OP,<br>SO <sub>4</sub> | 125mLP, H <sub>2</sub> SO <sub>4</sub><br>COD, TKN, NH <sub>3</sub> , TP | 500mLP, NaOH & Zn<br>Acetate<br>H <sub>2</sub> S | 40mLaV, HCI<br>TOC | 500mLP, Cool<br>Lab Filter(CBOD, TKN,<br>NH <sub>3</sub> , NOx) | 500mLP, Cool<br>Lab Filter(CBOD, TKN,<br>NH <sub>3</sub> , NOx, SO <sub>4</sub> ) |                        |             | Ha           | Temperature | Conductivity | 0    |
| 01_                             | BHS4-STE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/2    | 23/6          | 9:20      | ww     |           | x      | 4_                                                                    | 2                                                                                | 1                                                                        | 1                                                | 2                  |                                                                 |                                                                                   |                        | _           | 6.79         | 24.53       | 1278         | 0,08 |
| 02                              | BHS4-STE-FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | '       |               | 9:20      | w      | Γ         | x      |                                                                       |                                                                                  |                                                                          |                                                  |                    | 1                                                               |                                                                                   |                        |             | 6.79         | 2453        | (738         | 0.08 |
| 03                              | BHS4-ST1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |               | 8:55      | ww     |           | х      | 4                                                                     | 2                                                                                | 1                                                                        | 1                                                | 2                  |                                                                 |                                                                                   |                        |             | 7.31         | 25.4        | 1317         | 4.14 |
| 04                              | BHS4-ST1-DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |               | 9:00      | w      | $\prod$   | X      | 4                                                                     | 2                                                                                | 1                                                                        |                                                  | 2                  |                                                                 |                                                                                   |                        |             | 3.21         | 25,7        | 1317         | 4.14 |
| 05                              | BHS4-ST1-FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |               | 8:27      | ww     |           | Х      |                                                                       |                                                                                  |                                                                          |                                                  |                    | 1                                                               |                                                                                   |                        |             | 7,21         | 25.4        | 1317         | 4.19 |
| 06                              | BSH4-LIGNO-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |               | 8:54      | ww     |           | x      | 4                                                                     | 2                                                                                | 1                                                                        | 1                                                | 2                  |                                                                 |                                                                                   |                        |             | 6.34         | 25.73       | 1149         | 1.57 |
| 07                              | BSH4-LIGNO-0-FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | П       |               | 8.54      | ww     |           | х      |                                                                       |                                                                                  |                                                                          |                                                  |                    | 1                                                               |                                                                                   |                        |             | 6.54         |             |              | 1.57 |
| 08                              | BHS4-ST2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |               | 8:52      | ww     |           | х      | 4                                                                     | 2                                                                                | 1                                                                        | 1                                                | 2                  | iye.                                                            |                                                                                   |                        |             | 6.58         | 24.88       | 1200         | 0.29 |
| 09                              | BHS4-ST2-FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |               | 8:32      | ww     | Ι         | Х      |                                                                       |                                                                                  |                                                                          |                                                  |                    |                                                                 | 1                                                                                 |                        |             | 658          | 24.38       | 1206         | 0,29 |
| 10                              | BHS4-ER FB (field blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | /             | 9:45      | R      |           | X      | 4                                                                     | 2                                                                                | 1                                                                        | 1                                                | 2                  |                                                                 |                                                                                   |                        |             | 6.27         | 20.3        | 2.03         | 8.39 |
|                                 | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y       |               |           |        |           |        |                                                                       |                                                                                  |                                                                          |                                                  |                    |                                                                 |                                                                                   |                        |             |              |             |              |      |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |           |        |           |        |                                                                       |                                                                                  |                                                                          |                                                  |                    |                                                                 |                                                                                   |                        |             |              |             |              |      |
| Contair<br>Relinqui<br>Relinqui | ished: Date/Time: 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Receiv  | red:          | 10 W      | 9      | 1         | te/Tim | 0814                                                                  |                                                                                  | 300                                                                      |                                                  | es intact u        | ipon arrival?                                                   | ?                                                                                 | Y N <b>6</b><br>O N NA | Instruction | s / Remarks: |             |              |      |
| Religa                          | 102314<br>Date/Time: 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Receive | ed #          | 1000      |        | Dat       | te/Tim | - <u>と</u> ) ~                                                        | 1.1.                                                                             |                                                                          | Receiv                                           | ed on ice          | r lemp                                                          |                                                                                   | N NVA                  |             |              |             |              | :    |
|                                 | 10-23-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K       | $\mathcal{L}$ | 100-10    | a a l  | ,         | //\    | <br>122//                                                             | 4 145                                                                            | 58                                                                       | Proper                                           | preserva           | itives indica                                                   | ted?                                                                              | Ø N NVA                |             |              |             |              |      |
| Relinqu                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Receiv  | red:          | ra (BIVI) | reur   | Dat       | te/Inm | ie:                                                                   |                                                                                  | <del></del>                                                              |                                                  |                    | ding time?                                                      | pace?                                                                             | Y N WA                 |             |              |             |              |      |
| Retinqu                         | lished; Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Receiv  | red:          |           |        | Dat       | le/Tim | ie:                                                                   |                                                                                  |                                                                          | Proper                                           | containe           | rs used?                                                        |                                                                                   | O' NA                  |             |              |             |              |      |
| Chain of C                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •       |               |           |        |           | _      |                                                                       |                                                                                  |                                                                          | 1                                                |                    |                                                                 |                                                                                   | Chain of C             | `ustody A   |              |             |              |      |

Chain of Custody

1410747

Page 24 of 24



# **Appendix B: Operation & Maintenance Log**

Table B.1
Operation and Maintenance Log

|            | Operation and Maintenance Log                                           |
|------------|-------------------------------------------------------------------------|
| Date       | Description                                                             |
| 6/19/2013  | Construction - Stage 1 and Stage 2 tank installed                       |
| 6/20/2013  | Construction - drainfield installed                                     |
| 6/21/2013  | Construction - electrical work                                          |
| 7/9/2013   | System Start-up                                                         |
|            | Bull run valve switched from drainfield to Stage 1 biofilter            |
| 7/17/2013  | Site visit. System ok.                                                  |
| 7/23/2013  | Construction - sod installation                                         |
| 7/29/2013  | Preliminary sampling event                                              |
| 8/6/2013   | Site visit.                                                             |
|            | Back-up in STE tank, water level above outlet effluent screen           |
| 8/12/2013  | Back-up in STE tank again, removed filter screen                        |
|            | Lift station pump causing lots of mixing in STE tank                    |
|            | Shortened float swing on lift station pump to reduce pump runtime       |
|            | Lots of solids in Stage 1 Biofilter                                     |
|            | During lift station pump dose, ponding in Stage 1 biofilter             |
| 8/15/2013  | Bull run valve switched to drainfield                                   |
| 9/5/2013   | Lift station pump replaced with smaller pump                            |
|            | Smaller pump installed in second chamber of old septic tank             |
|            | Switched bull run valve to PNRS system                                  |
| 9/10/2013  | Site visit. System ok.                                                  |
| 9/30/2013  | Sample Event No. 1                                                      |
| 11/8/2013  | Site visit. System ok.                                                  |
| 11/27/2013 | Site visit. System ok.                                                  |
| 12/2/2013  | Sample Event No. 2                                                      |
|            | Cleaned STE effluent filter screen                                      |
|            | A little bit of ponding in Stage 1 biofilter influent side              |
|            | No ponding in all 4 drainfield observation ports                        |
|            | *homeowners were out of town for Thanksgiving holiday                   |
| 12/23/2013 | Site visit. System ok. No ponding in all 4 drainfield observation ports |
| 1/23/2014  | Site visit.                                                             |

Appendix B November 2014

| Date      | Description                                                                 |
|-----------|-----------------------------------------------------------------------------|
| 1/23/2014 | Ponding near Stage 1 d-box, adjusted pipe and raked media                   |
|           | No ponding in all 4 drainfield observation ports                            |
| 1/31/2014 | Site visit.                                                                 |
|           | Fixed Stage 1 biofilter distribution pipe (east side) which was off support |
|           | No ponding in all 4 drainfield observation ports                            |
| 2/3/2014  | Sample Event No. 3                                                          |
|           | No ponding in all 4 drainfield observation ports                            |
| 2/4/2014  | Sample Event No. 4                                                          |
|           | No ponding in all 4 drainfield observation ports                            |
| 2/5/2014  | Sample Event No. 5                                                          |
|           | No ponding in all 4 drainfield observation ports                            |
| 2/6/2014  | Sample Event No. 6                                                          |
|           | No ponding in all 4 drainfield observation ports                            |
| 2/7/2014  | Sample Event No. 7                                                          |
|           | No ponding in all 4 drainfield observation ports                            |
| 2/12/2014 | Site visit. System ok. No visible ponding in Stage 1 biofilter.             |
| 3/14/2014 | Site visit. System ok. No visible ponding in Stage 1 biofilter.             |
| 4/3/2014  | Sample Event No. 8                                                          |
|           | No ponding in all 4 drainfield observation ports                            |
|           | No visible ponding in Stage 1 biofilter.                                    |
|           | High power meter reading. Checked lift station pump which was ok.           |
| 4/25/2014 | Site visit. System ok.                                                      |
|           | Installed piezometer in Stage 1 biofilter to monitor water level.           |
|           | Leveled Stage 1 biofilter distribution pipes                                |
|           | Adjusted weirs inside Stage 1 d-box                                         |
| 4/29/2014 | Site visit. System ok.                                                      |
|           | Installed third Stage 1 distribution pipe along centerline of biofilter     |
| 5/19/2014 | Septic tank effluent screen severely clogged.                               |
|           | Cleaned STE effluent screen                                                 |
|           | Also cleared clog within ball valve from lift station                       |
| 5/29/2014 | Sample Event No. 9                                                          |
|           | No ponding in all 4 drainfield observation ports                            |
|           | No visible ponding in Stage 1 biofilter.                                    |
| 6/9/2014  | Re-sampled B-HS4-ST2 for toxicity testing.                                  |
|           | Measured lift station dose runtime                                          |
| 7/11/2014 | Site visit.                                                                 |

Appendix B November 2014

| Date       | Description                                                          |
|------------|----------------------------------------------------------------------|
| 7/11/2014  | STE effluent screen severely clogged again.                          |
|            | Cleaned STE effluent screen                                          |
| 7/29/2014  | Site visit. System ok.                                               |
|            | Cleaned STE effluent screen, it was not severely clogged.            |
|            | Black biomat present in Stage 1                                      |
| 8/22/2014  | Sample Event No. 10                                                  |
|            | Cleaned STE effluent screen, it was not severely clogged.            |
|            | Repositioned Stage 1 center distribution pipe.                       |
|            | Stage 1 center distribution pipe seal in d-box needs to be replaced. |
|            | No ponding in all 4 drainfield observation ports                     |
| 9/19/2014  | Site visit. System ok.                                               |
|            | Cleaned STE effluent screen.                                         |
|            | Black biomat present in Stage 1                                      |
| 10/23/2014 | Sample Event No. 11                                                  |
|            | Cleaned STE effluent screen, it was not severely clogged.            |
|            | No ponding in all 4 drainfield observation ports                     |