

Florida Department of Health Bureau of Environmental Health Onsite Sewage Programs Research Review and Advisory Committee Meeting

DATE AND TIME:September 11, 2013 at 1:00 p.m. ETPLACE:Florida Department of Health Southwood Complex
4025 Esplanade Way, Room #130 L
Tallahassee, FL 32399

Or via conference call / web conference: Toll free call in number: 1-888-670-3525 Conference pass code: 8605907413 Website: http://connectpro22543231.na5.acrobat.com/rrac_new/

This meeting is open to the public

AGENDA:	FINAL	
1:00 – 1:10		Introductions and Housekeeping
1:10 – 2:00		Discussion on Draft Passive Nitrogen Reduction Strategies Phase II Report for the Nitrogen Study
2:00 - 2:45		Task Updates and Discussion on Nitrogen Study
2:45 – 2:55		Updates on Other Projects
2:55 – 3:10		Other Business
3:10 – 3:25		Public Comment
3:25 – 3:30		Closing Comments, Next Meeting, and Adjournment

NOTE: Time slots are approximate and may be subject to change.

Florida Department of Health Research Review and Advisory Committee Division of Disease Control and Health Protection Bureau of Environmental Health - Onsite Sewage Programs Section

Approved Minutes of the Meeting held at the Southwood Office Complex, Tallahassee, FL September 11, 2013

In attendance:

- Committee Members and Alternates:
 - In person:
 - Bill Melton (member, Consumer)

Via teleconference:

- Quentin (Bob) Beitel (member, Real Estate Profession)
- Taylor Brown (alternate, Division of Environmental Health)
- Wayne (W.B.) Crotty (member, Septic Tank Industry)
- Paul Davis (member, Division of Environmental Health)
- Craig Diamond (member, Environmental Interest Group)
- Carl Ludecke (vice-chairman, member, Home Building Industry)
- Bob Himschoot (alternate, Septic Tank Industry)
- Jim Peters (alternate, Professional Engineer)
- Clay Tappan (chairman, member, Professional Engineer)

Absent members and alternates:

- Ed Dion (alternate, Home Building Industry)
- John Dryden (alternate, State University System)
- Nancy Gallinaro (alternate, Local Government)
- Tom Higginbotham (alternate, Division of Environmental Health)
- Geoff Luebkemann (member, Restaurant Industry)
- Tony Macaluso (alternate, Real Estate Profession)
- Susan McKinley (alternate, Restaurant Industry)
- Eanix Poole (alternate, Consumer)
- David Richardson (member, Local Government)
- John Schert (member, State University System)
- Visitors:
 - In person:
 - Damann Anderson (Hazen and Sawyer)
 - Charles Gauthier (DEP)
 - Rick Hicks (DEP)

Via teleconference:

- Ann-Marie Norman
- Alice Berkley (Orange County Commissioner Brummer's office)
- Stephen Cioccia (DEP)
- Rick Hicks (DEP)
- Josefin Hirst (Hazen and Sawyer)

- Josefin Hirst (Hazen and Sawyer)
- Johnny Richardson (Leon County)
- Daniel Smith (AET)
- Sean McGlynn
- Andrea Samson
- Patti Sanzone
- Shannin Speas-Frost
- Jonathan Till (Rep. Bryan Nelson's office)
- Pam Tucker
- Department of Health (DOH), Onsite Sewage Program Section: In person:
 - Eberhard Roeder, Professional Engineer
 - Elke Ursin, Environmental Health Program Consultant

Florida Department of Health Research Review and Advisory Committee Division of Disease Control and Health Protection Bureau of Environmental Health - Onsite Sewage Programs Section

- 1. Introductions Seven out of ten groups were present, representing a quorum. The groups that were not represented were local governments, the state university system, and the restaurant industry. Vice Chairman Ludecke called the meeting to order shortly after 1 p.m. The agenda was outlined, introductions were made, and some housekeeping issues were discussed.
- 2. Discussion on Draft Passive Nitrogen Reduction Strategies Phase II Report for the Nitrogen Study Elke Ursin gave a brief overview of the overall nitrogen study and then introduced Damann Anderson, the contract provider for the project to provide a discussion on the draft report for the results of phase II of the passive nitrogen reduction strategies study. Mr. Anderson presented a background of the project, summarized the results, outlined the next steps, and responded to any questions and answers. The work was done as a follow-up on the promising results of phase I of this work performed under a previous contract. The results of this work will provide design guidelines for the full-scale systems installed at actual home sites in another task for the project. He described the test facility set-up and construction, the various nitrification media used, the process groups established for the study, and the monitoring frequency. The results were given for each process group. The next steps are to use the results to guide the design for the full-scale systems. There were several questions asked during the presentation. Comments on the report are due on September 19, 2013 and are to be emailed to Elke Ursin. Paul Davis congratulated Mr. Anderson on a great report that has national implications.
- 3. Task Updates and Discussion on Potential Nitrogen Study Contract Amendments Damann Anderson presented on the current project status. He went through the major project tasks: Task A –Pilot scale passive nitrogen systems, Task B –Full-scale passive nitrogen systems, Task C –Soil and groundwater monitoring, and Task D –Modeling of nitrogen in the soil and groundwater. Within each of the major project tasks he outlined what work has been completed, what work is in progress, and what work still needs to get started. Mr. Anderson said that there are several changes that will be proposed in an upcoming contract amendment to be discussed at the next meeting. Elke Ursin presented on the 2013-2014 legislative session results for the project. Funds in the amount of \$700,000 were provided for this fiscal year. The funds are to be spent on field monitoring performance and cost of technologies, sampling of the soil and groundwater, refinement of the nitrogen models, final reporting, and that a final report on the project is to be submitted when the project is done. A table was shown outlining the funding history and required funding that is subject to legislative appropriation.
- 4. Other Business No other business was presented.
- 5. Public Comment The public were allowed to comment throughout the meeting.
- 6. Closing Comments, Next Meeting, and Adjournment The next RRAC meeting will be determined in the future to discuss any contract amendments for the nitrogen study. Bill Melton made a motion to adjourn, seconded by Quentin Beitel. The meeting adjourned at 3:00 p.m.

Research Review & Advisory Committee September 11, 2013

Elke Ursin Florida Department of Health Bureau of Environmental Health Onsite Sewage Programs Florida HEALTH

Agenda

- 1:00 1:10 Introductions and Housekeeping
- 1:10 2:00 Discussion on Draft Passive Nitrogen Reduction Strategies Phase II Report for the Nitrogen Study
- 2:00 2:45 Task Updates and Discussion on Potential Nitrogen Study Contract Amendments
- 2:45 2:55 Updates on Other Projects
- 2:55 3:10 Other Business
- 3:10 3:25 Public Comment
- 3:25 3:30 Closing Comments, Next Meeting, and Adjournment

Introductions & Housekeeping

- Committee roll call
- Identification of audience
- How to view web conference
- Mute / unmute phone line = *6
- Do not put phone on hold
- Download meeting material: http://www.myfloridaeh.com/ostds/research/Index.html

Study Purpose:

- Develop passive strategies for nitrogen reduction
- Complement use of conventional systems
- Develop cost-effective nitrogen reduction strategies

Discussion on Draft Passive Nitrogen Reduction Strategies Phase II Report

Task Updates and Discussion

Mute / Unmute line = * 6

2013-2014 Legislative Language

- \$700,000 provided
- Spend funds on:
 - Field monitoring performance and cost of technologies
 - Sampling soil and groundwater
 - Refine models
 - Final reporting on all tasks
 - Submit final report on project

Fiscal Year	Cash Appropriations	Budget Authority	Encumbered for Contract	Encumbered for DOH	Balance	
2008-2009	\$900,000	\$900,000	\$213,727	\$21,029	\$665,244	
2009-2010	\$0	\$540,000	\$485,720	\$6,845	\$172,679	
2010-2011	\$2,000,000	\$2,000,000	\$742,016	\$4,153	\$1,426,510	
2011-2012	\$0	\$2,725,000	\$678,773	\$29,467	\$718,270	
2012-2013	\$1,500,000	\$1,500,000	\$1,103,566	\$38,506	\$679,764	
2013-2014	\$700,000	\$1,000,000	\$1,000,000	\$0	\$379,764	
2014-2015	\$394,434*	\$776,198*	\$776,198*	\$0	\$0	
TOTAL	\$5,100,000		\$5,000,000	\$100,000		
* FY 2014-2015 subject to legislative appropriation						

Mute / Unmute line = * 6

Updates on Other Projects

Mute / Unmute line = * 6

Other Business

Public Comment

Mute / Unmute line = * 6

Next Meeting Information

Upcoming meeting topics:

- Nitrogen Study task updates
- Discussion on ongoing research projects

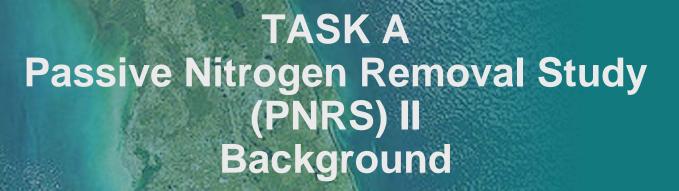
Proposed dates for next meeting:

• To be determined via email in the future

Closing Comments and Adjournment

FLORIDA ONSITE SEWAGE NITROGEN REDUCTION STRATEGIES (FOSNRS) STUDY

PNRS II Draft Report


RRAC Meeting Presentation September 11, 2013

Presentation overview

- PNRS II Background
- PNRS II Results
- Next Steps
- Questions and Answers

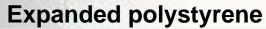
HAZEN AND SAWYER Environmental Engineers & Scientists

PNRS II test facility was developed

- Follow up to PNRS I with larger, pilot scale units and various media combinations
- Established test facility at Gulf Coast Education and Research Center (University of Florida IFAS)
- Test program for in-vessel and in-situ pilot systems
- Various nitrification and denitrification biofilters tested
- Operated on septic tank effluent for 12+ months
- Produce scalable design criteria from pilot scale biofilters for subsequent full-scale testing

Test facility included numerous treatment trains

- All used two-stage biofilters:
 - Stage 1 Nitrification
 - Stage 2 Denitrification
- Stage 1 unsaturated filters included 2 media layers and evaluated 15" and 30" media depths
- We also evaluated single pass vs recirculating stage 1 biofilters
- For denitrification, we evaluated both lignocellulosic and sulphur denitrification biofilters
- We also tested reactive media in a more in-situ/in-ground system approach


Various nitrification media were studied

Examples of Stage 1 Media

Zeo-Pure clinoptilolite

Filter sand

Expanded rclay Engineers & Scientists

Various denitrification media were studied

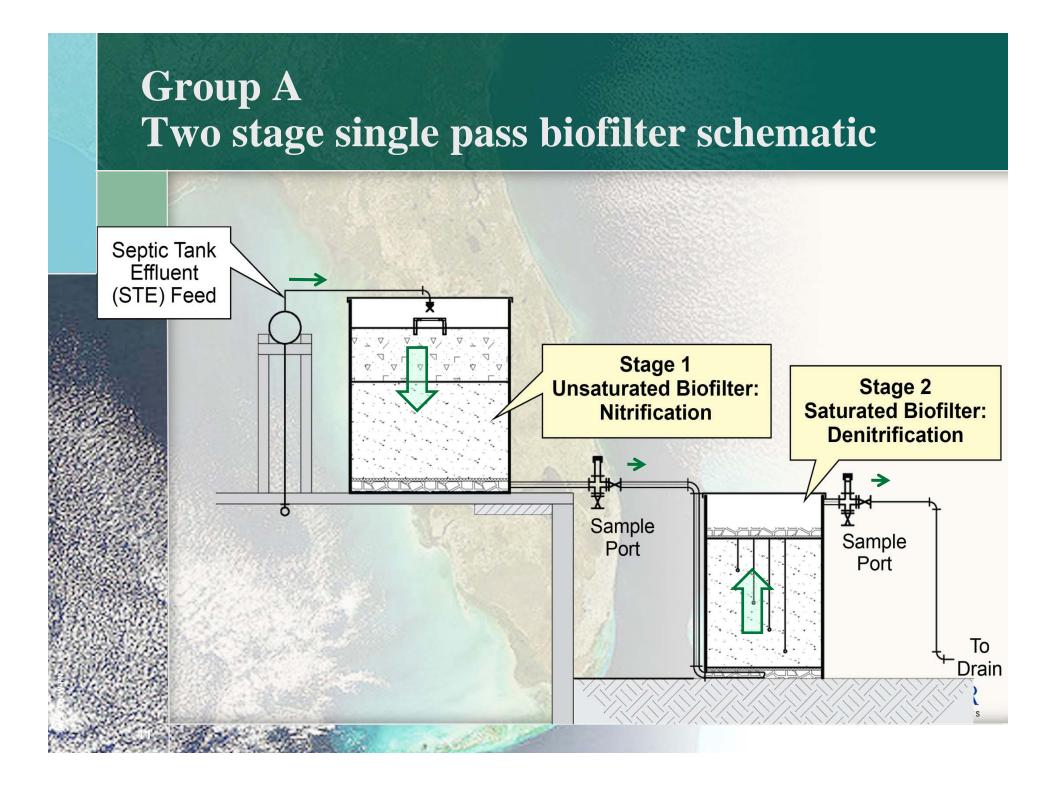
Examples of Stage 2 Media

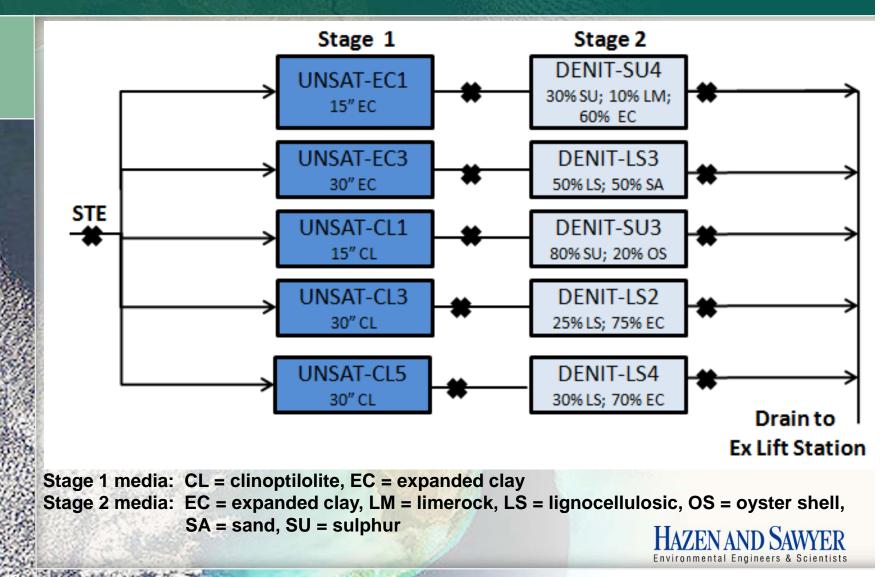
Lignocellulosics

Expanded Clay

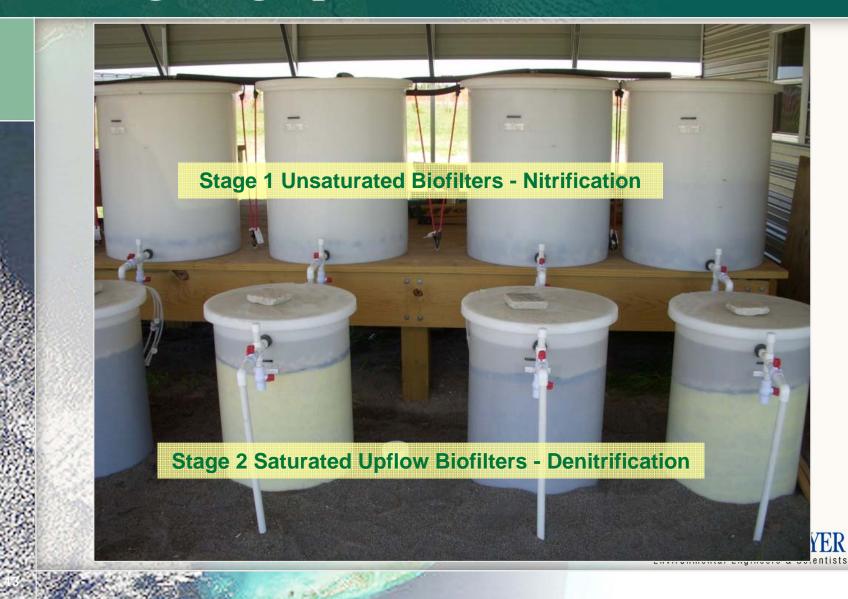
Elemental Sulphur

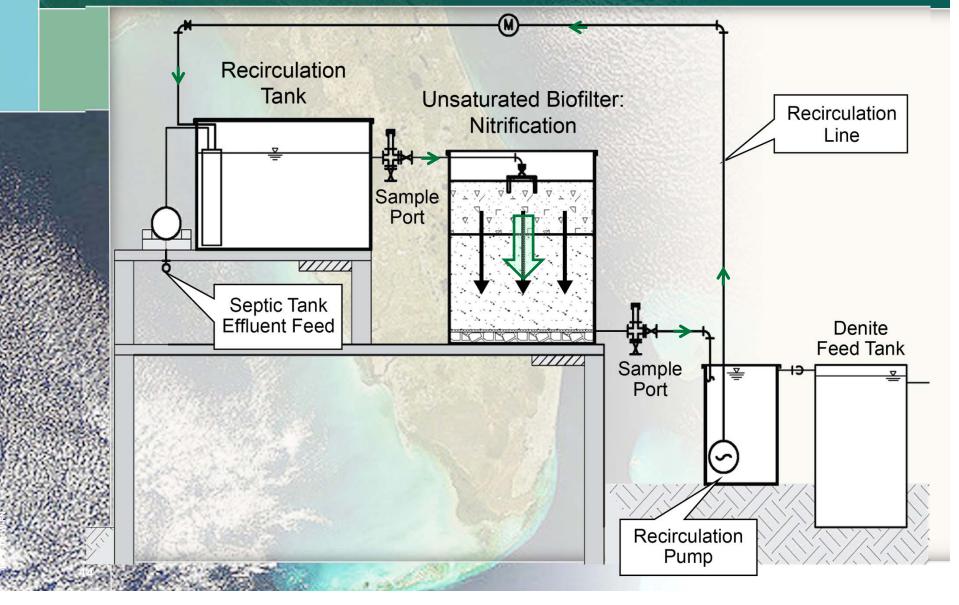
PNRS II test facility construction

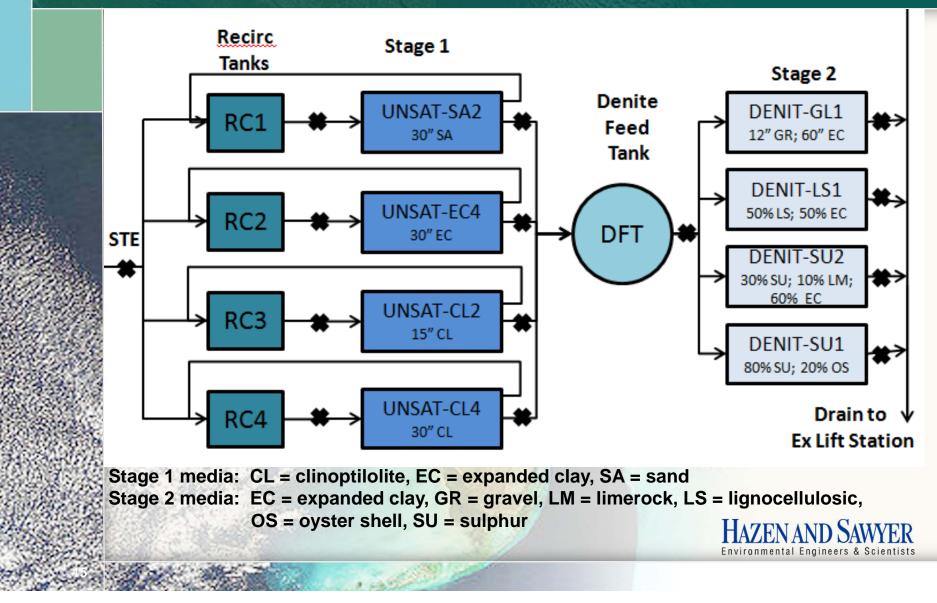

Placing media in tanks

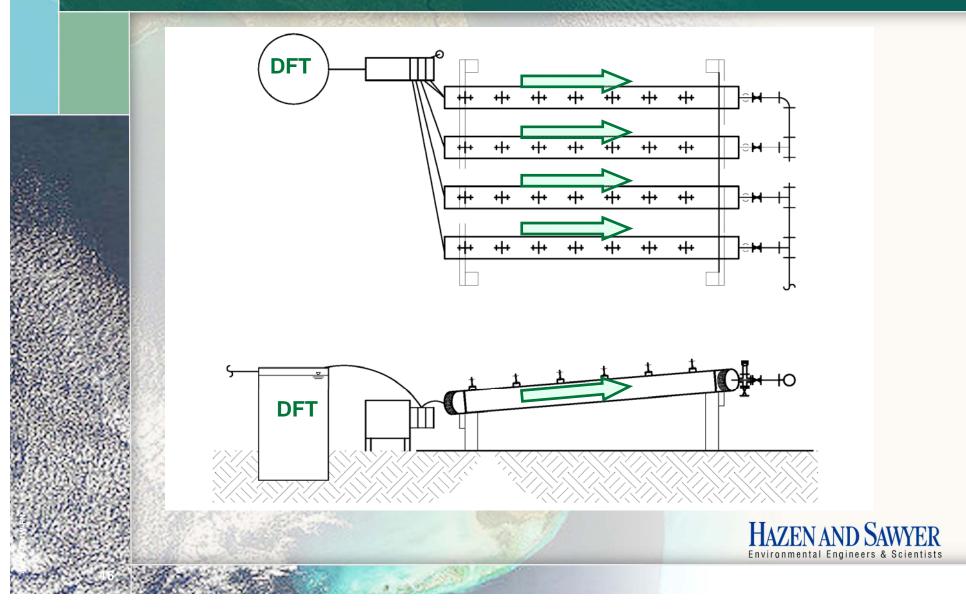

Four process groups established for study

- Group A Systems (5): Single pass Stage 1 Biofilters directly connected to Stage 2 Upflow Biofilters
- Group B Systems (4): Recirculating Stage 1 Biofilters
- Group C Systems (4): Horizontal Stage 2 Biofilters
- Group D Systems (4): Stacked Unsaturated/Saturated (in situ) Biofilters

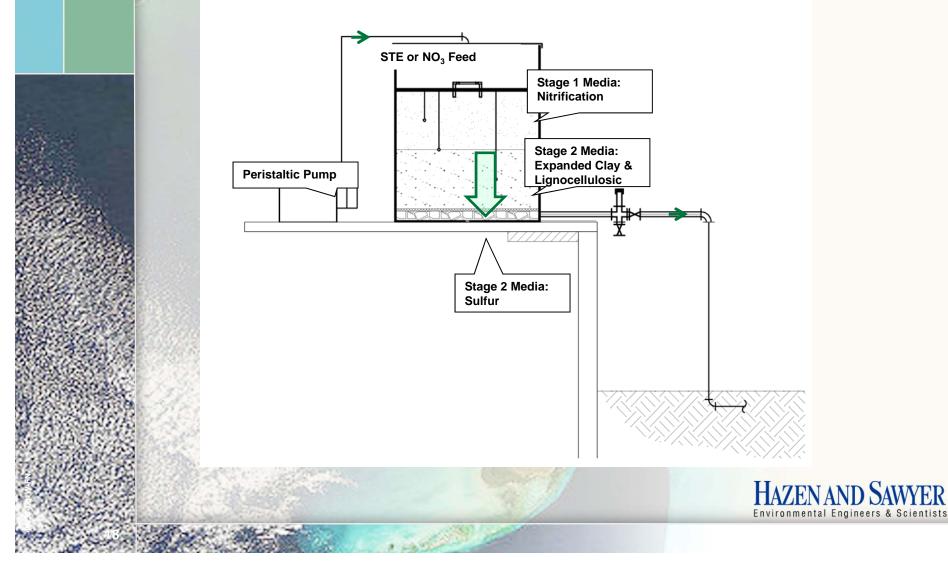


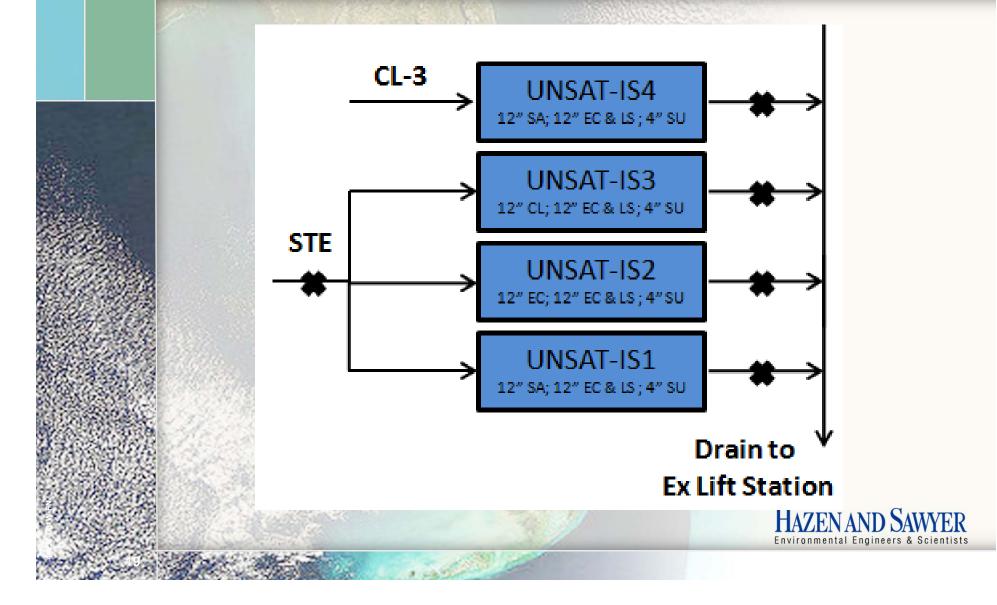

Group A Two-stage single pass treatment trains


Group A Two-stage single pass biofilters


Group B Stage 1 recirculating biofilters schematic

Group B (recirculating Stage 1 biofilters) and Group C (saturated Stage 2 biofilters)


Group C Horizontal Stage 2 biofilters schematic

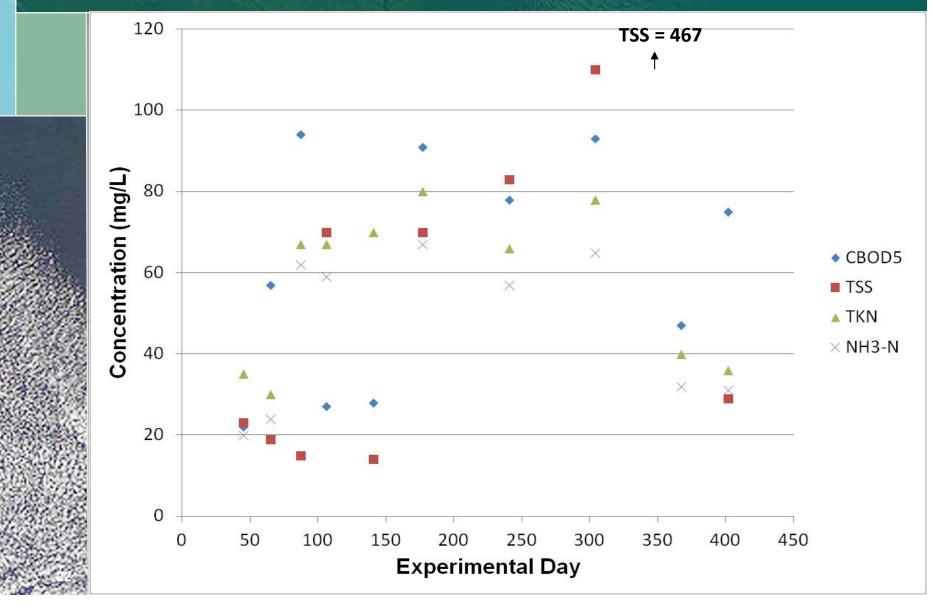

Group B (Stage 1 recirculating biofilters) & Group C (Stage 2 saturated biofilters)

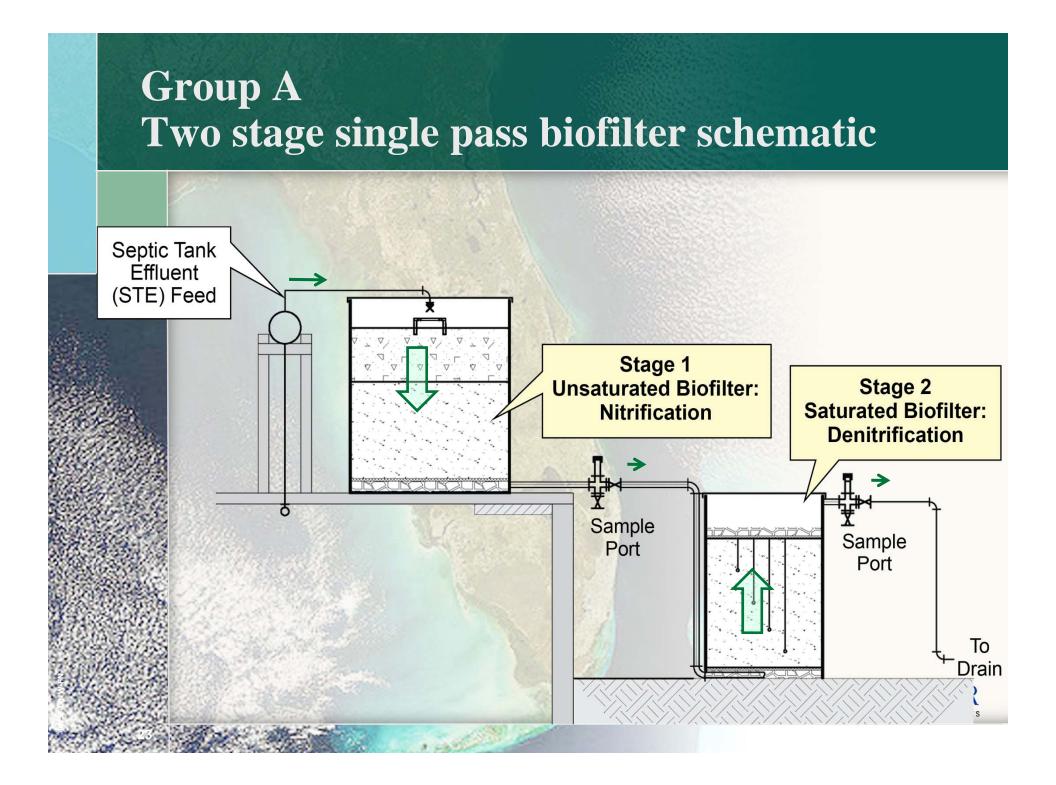
Group D Stacked saturated/unsaturated (*in situ*) biofilter schematic

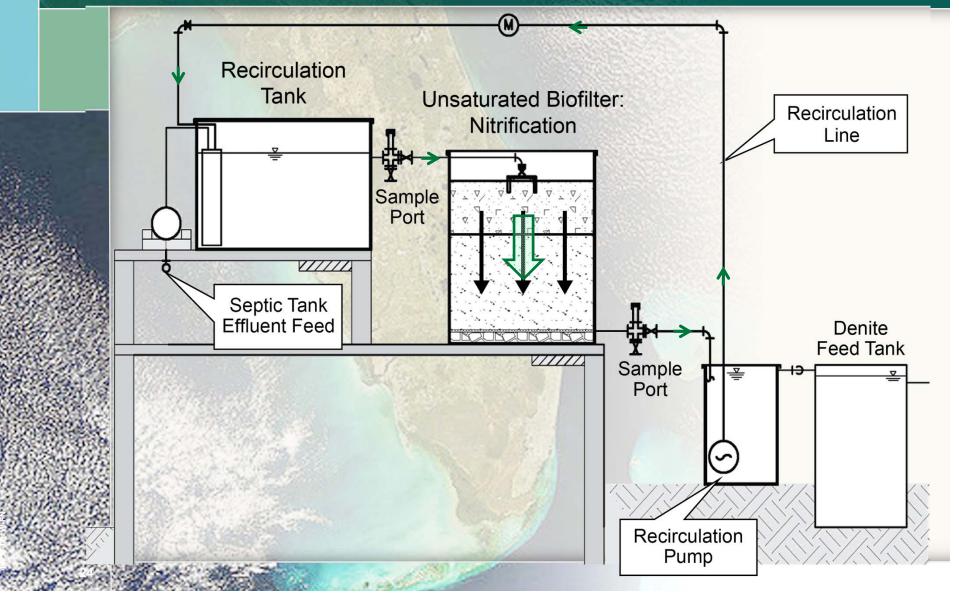
Group D Stacked saturated/unsaturated (*in situ*) biofilters

PNRS II monitoring

Sample Event	Date	Experimental Day
Start-up	May 17, 2010	0
Sample Event 1	July 1, 2010	45
Sample Event 2	August 31, 2010	106
Sample Event 3	November 10, 2010	177
Sample Event 4	January 13, 2011	241
Sample Event 5	March 17, 2011	304
Sample Event 6	May 19, 2011	367
Sample Event 7	June 23, 2011	402
Sample Event 8	June 28, 2011	407
Sample Event 9	September 15, 2011	486
Sample Event 10	March 20, 2013	1,038

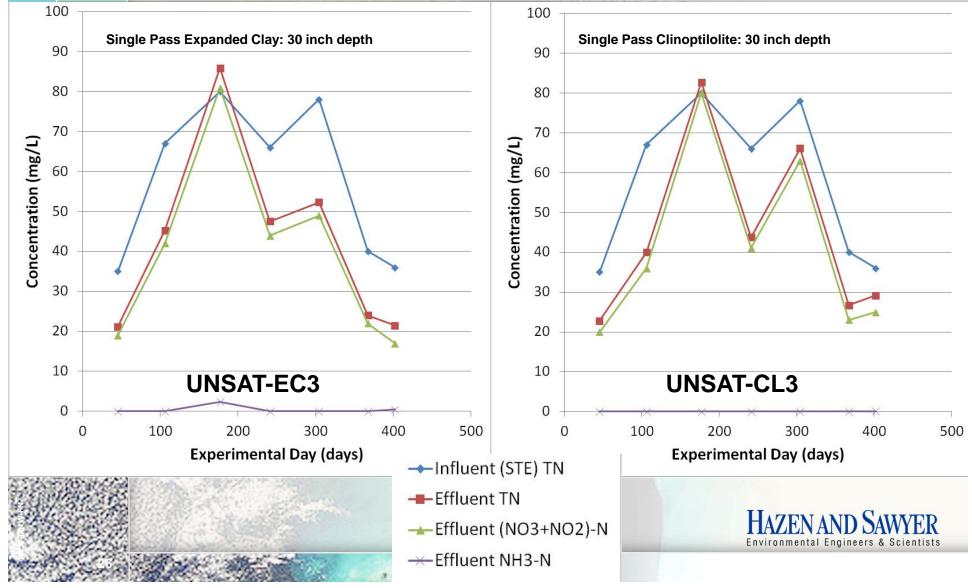



PNRS II Results

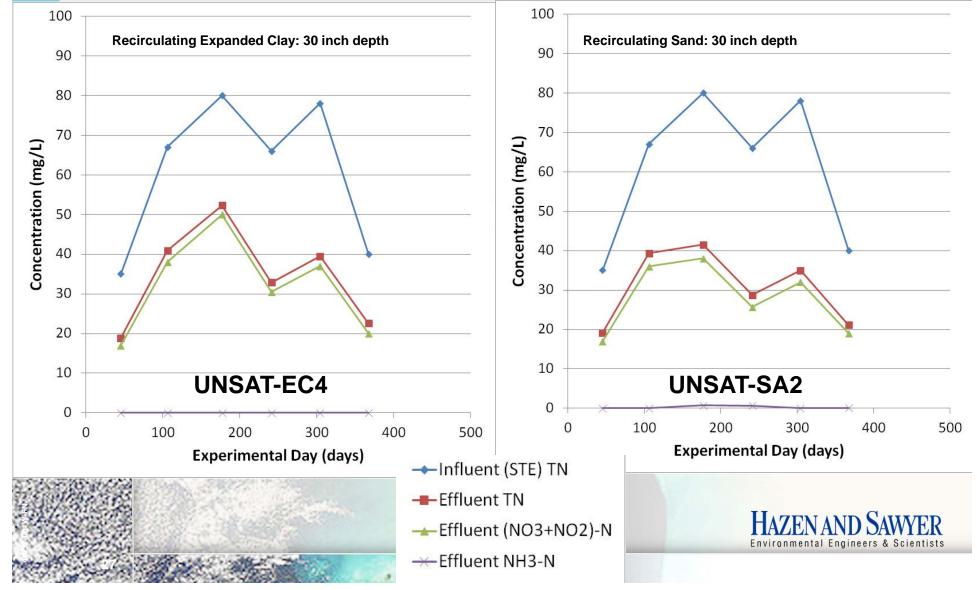

Applied Environmental Technology

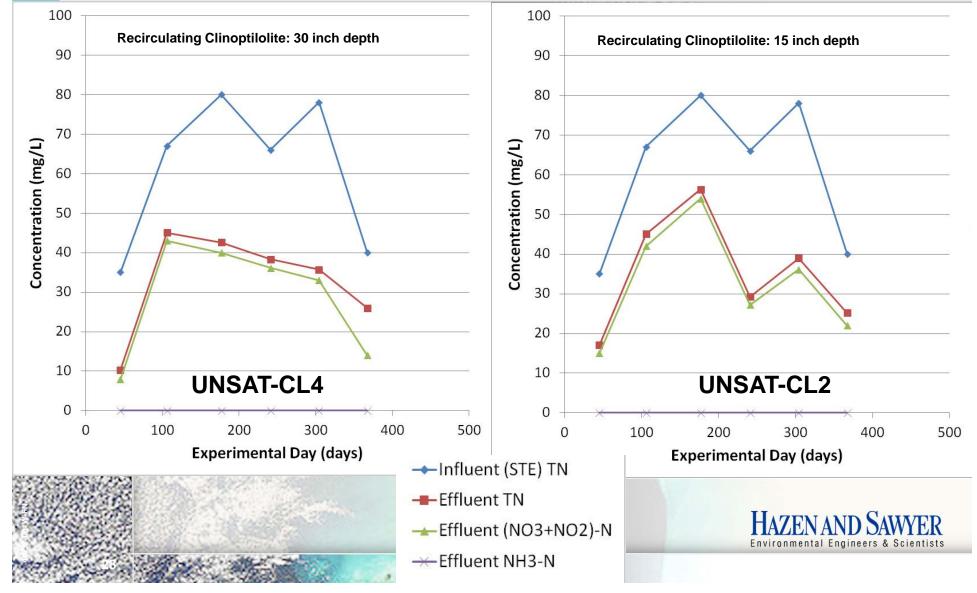
PNRS II primary effluent quality

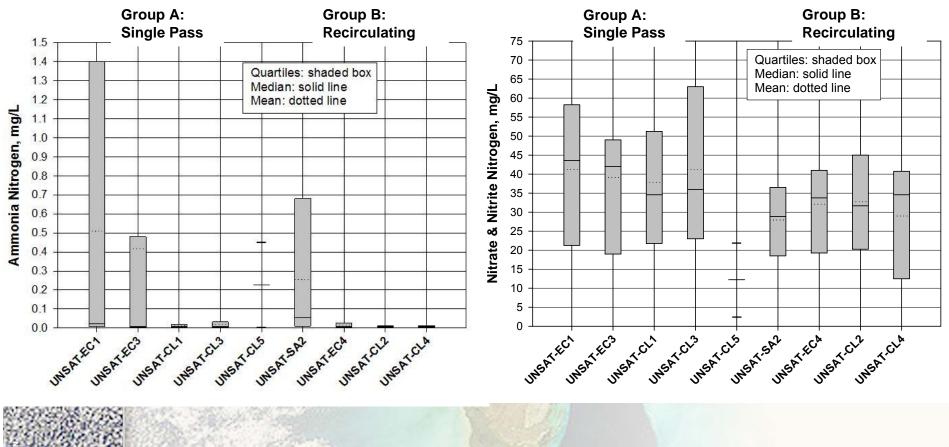
Group B Stage 1 recirculating biofilters schematic

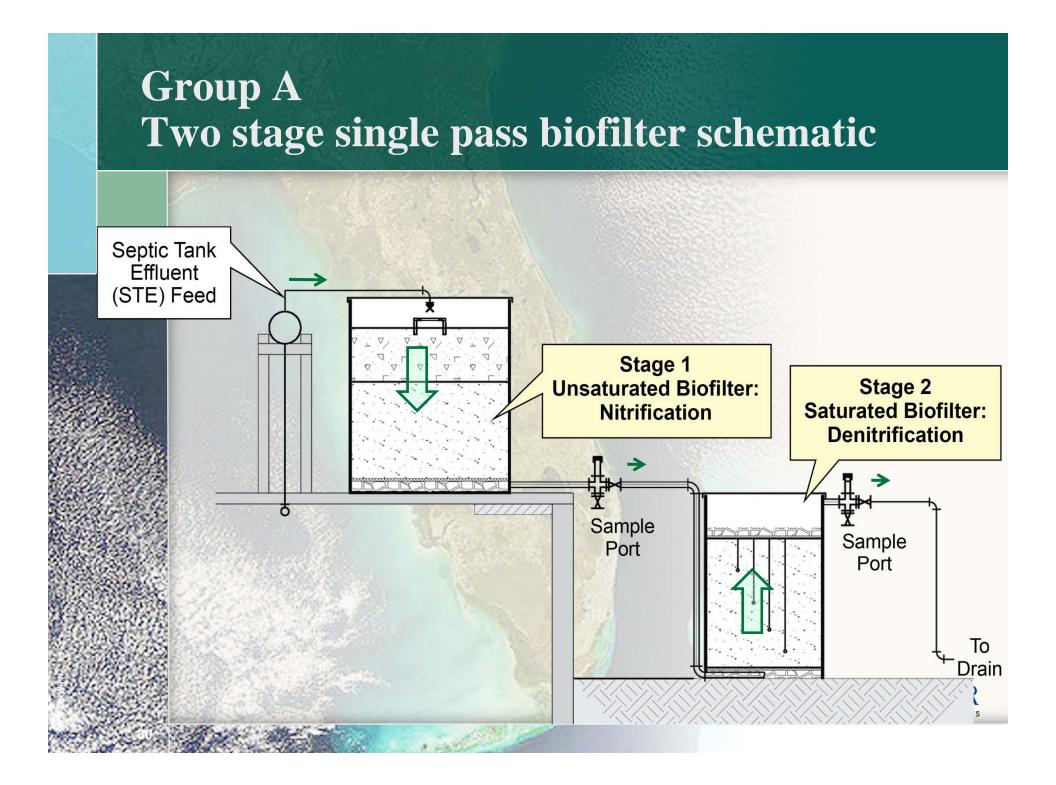


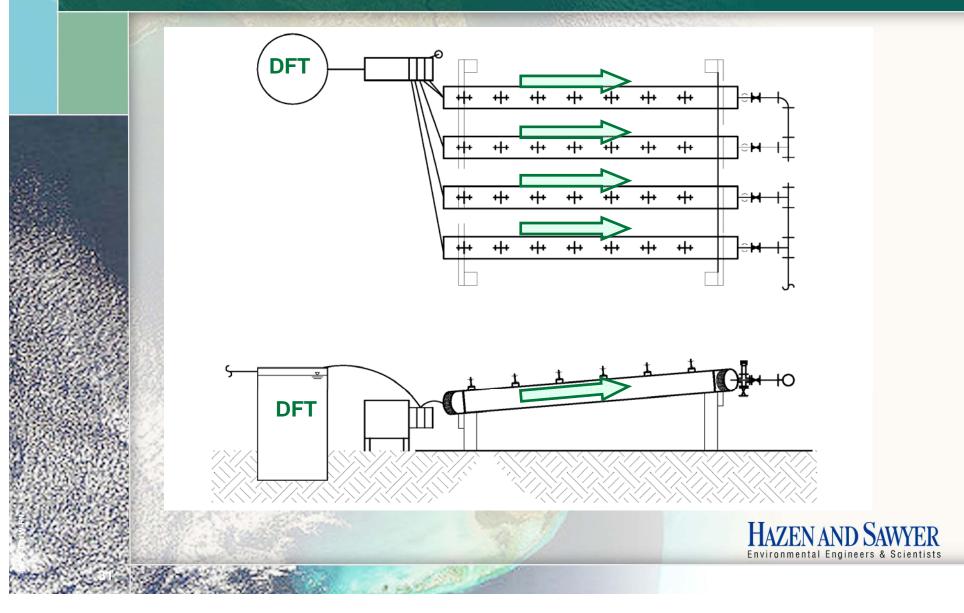
Stage 1 (unsaturated) biofilters Mean effluent values

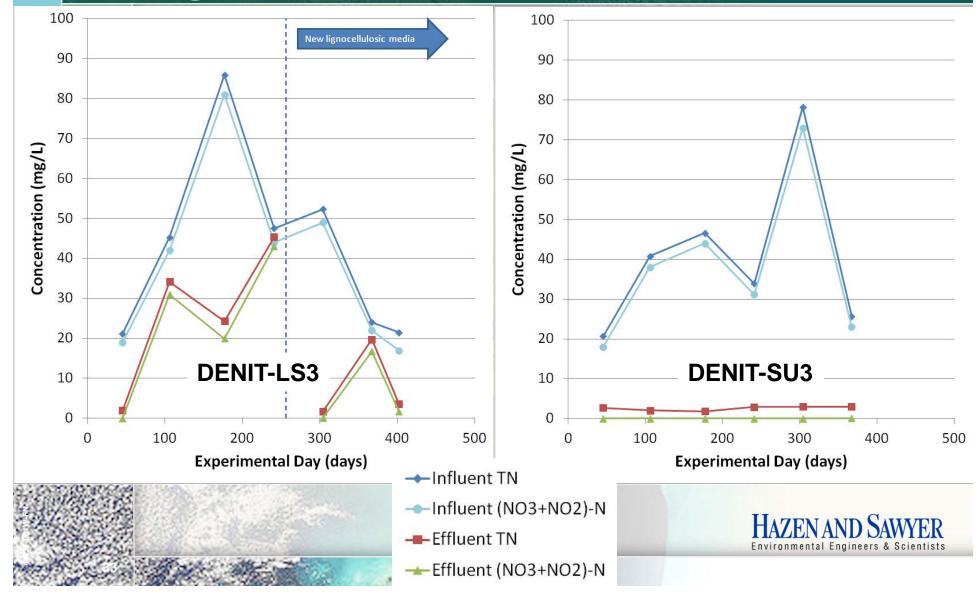

	Biofilter	C-BOD₅	COD	TSS	TN	TKN	Organic N	NH3-N	(NO ₃ +NO ₂) -N	Dissolved Oxygen	рН	Total Alkalinity	Fecal coliform, cfu/100 ml
	UNSAT-EC1 (15")	2.0	10.0	1.2	44.7	3.5	3.0	0.510	41.2	6.6	7.0	152	1,307
T SS	UNSAT-EC3 <mark>(</mark> 30")	2.0	13.3	1.5	42.5	3.4	3.0	0.417	39.1	6.9	<mark>6.8</mark>	177	2
Group A Single Pass	UNSAT-CL1 (15")	2.0	17.0	2.2	41.0	3.1	3.1	0.012	37.9	6.3	7.4	207	44
Si	UNSAT-CL3 (30")	2.0	20.0	1.3	44.5	3.3	3.3	0.020	41.2	7.6	7.7	282	38
	UNSAT-CL5 (30")	2.0	-	1.0	15.2	2.9	2.7	0.228	12.3	6.8	7.8	280	24
	UNSAT-SA2 (30")	2.2	17.3	4.0	30.8	2.9	2.6	0.255	28.0	6.9	6.8	128	21
Group B Recirculating	UNSAT-EC4 (30")	2.0	14.3	2.2	34.5	2.4	2.4	0.015	32.1	7.9	7.1	137	8
Gro Recirc	UNSAT-CL2 (15")	2.2	21.0	2.3	35.3	2.6	2.6	0.010	32.7	6.0	7.3	163	251
27.689JA	UNSAT-CL4 (30")	2.0	13.3	2.5	33.0	4.0	4.0	0.010	29.0	8.1	7.4	192	7

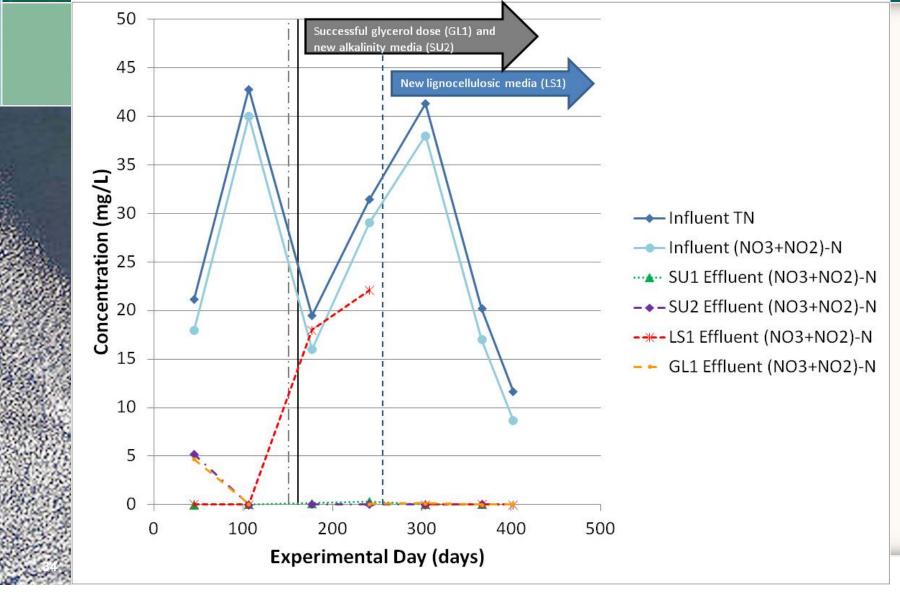

Group A Stage 1 (unsaturated) single pass biofilters Nitrogen time series


Group B Stage 1 (Unsaturated) recirculating biofilters Nitrogen time series

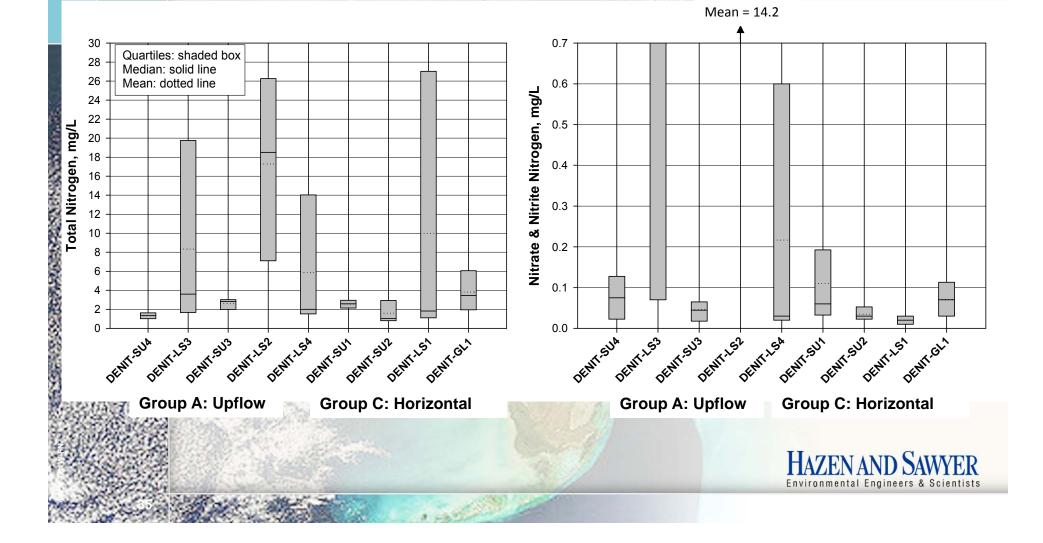

Group B Stage 1 (unsaturated) recirculating biofilters Nitrogen time series

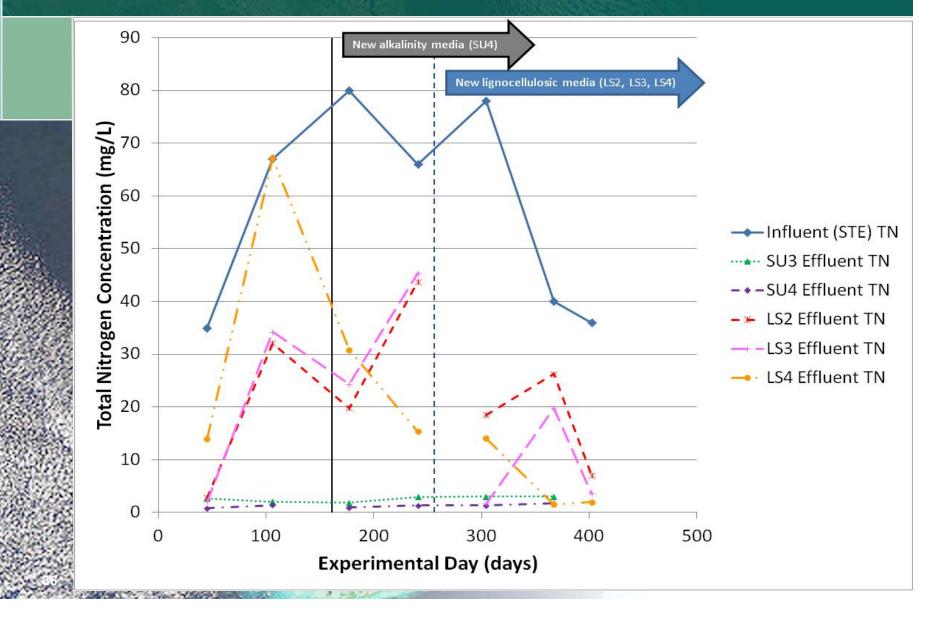

Groups A and B Stage 1 (unsaturated) biofilters Effluent nitrogen: box and whisker plots

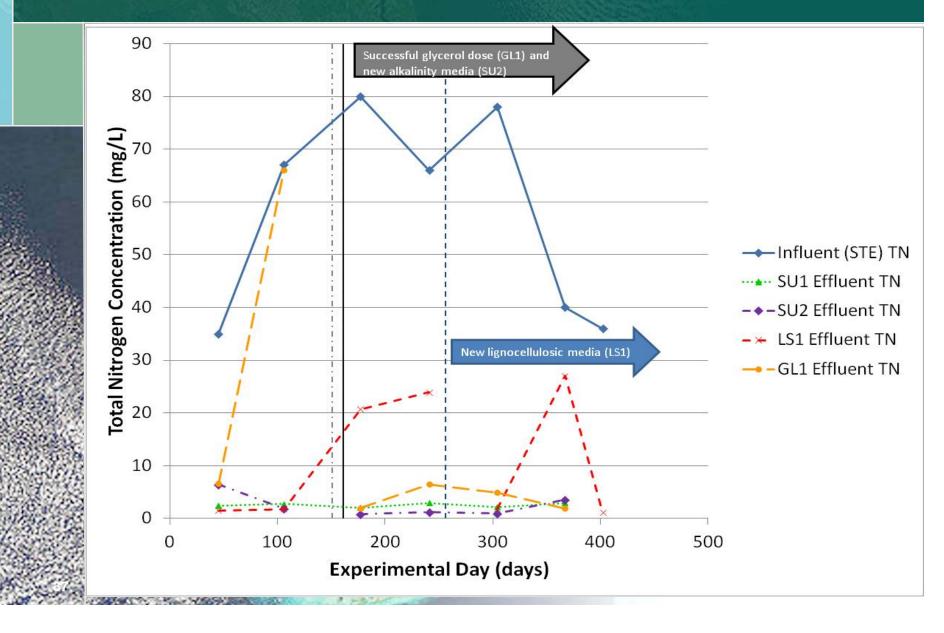

Group C Horizontal Stage 2 biofilters schematic

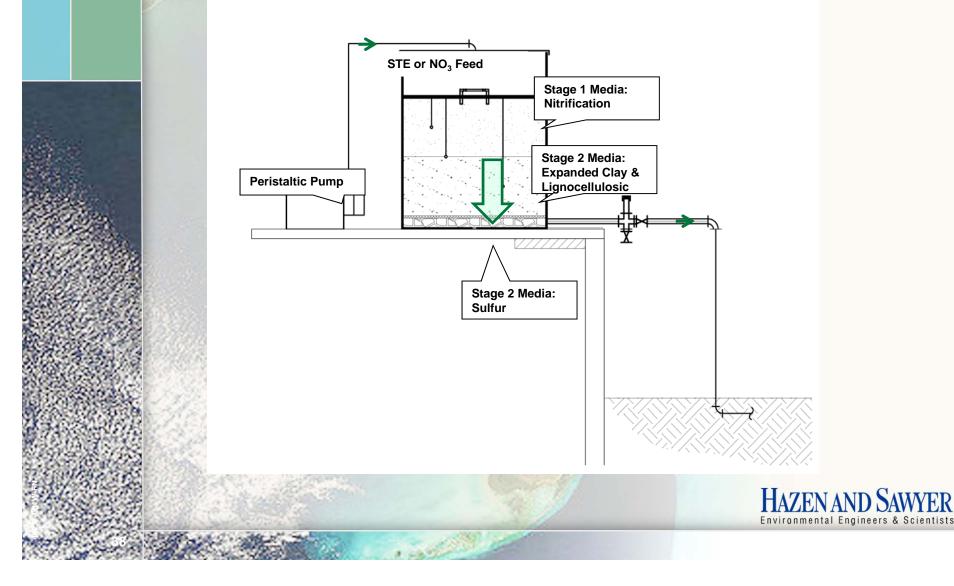

Groups A and C Stage 2 (saturated) biofilters Mean effluent values

	Biofilter	C-BOD₅	COD	TSS	TN	TKN	Organic N	NH ₃ -N	(NO ₃ +NO ₂) - N	Dissolved Oxygen	рН	Total Alkalinity	Fecal coliform, cfu/100 ml
P A	DENIT-SU4	2.0	21.7	2.8	1.3	1.2	0.9	0.32	0.075	2.3	7.1	220	89
Group	DENIT-LS3	61.0	320	1.5	<mark>8.</mark> 3	2.2	1.3	0.87	6.18	2.2	7.1	355	1
134	DENIT-SU3	<mark>6.</mark> 0	38.5	<mark>6.2</mark>	2.6	2.6	1.4	1.14	0.047	1.4	7.1	235	3
	DENIT-LS2	2.0	39.0	3.0	17.3	3.1	2.4	0.62	14.2	3.6	7.9	197	0
C	DENIT-LS4	4.5	90.0	7.5	5.9	5.6	0.9	4.71	0.22	1.3	7.8	315	1
Group	DENIT-SU1	13.3	45.0	1.5	2.5	2.4	1.1	1.35	0.11	0.6	7.0	223	3
	DENIT-SU2	<mark>8</mark> .5	29.7	3.5	1.6	1.6	1.0	0.58	0.035	0.6	7.0	215	2
	DENIT-LS1	89.5	320	13.0	10.0	10.0	9.7	0.27	0.020	0.1	7.2	270	1
	DENIT-GL1	148	257	18.5	3.8	3.8	0.63	3.12	0.07	0.59	6.94	402	600


Group A Stage 2 (saturated) upflow single pass biofilters Nitrogen time series

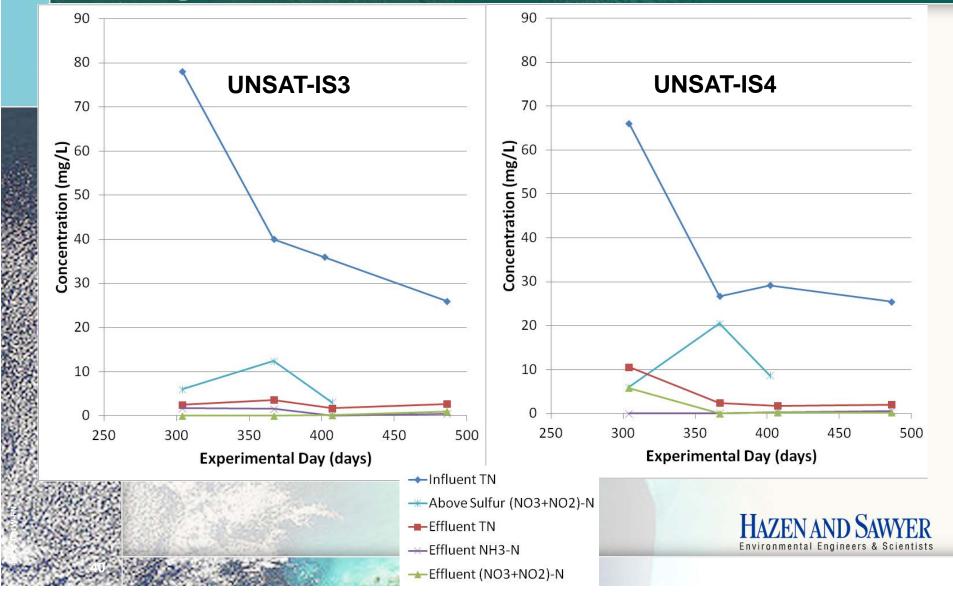

Group C Stage 2 (saturated) horizontal biofilters Nitrate-nitrogen time series


Groups A and C Stage 2 (saturated) biofilters Effluent nitrogen: box and whisker plots

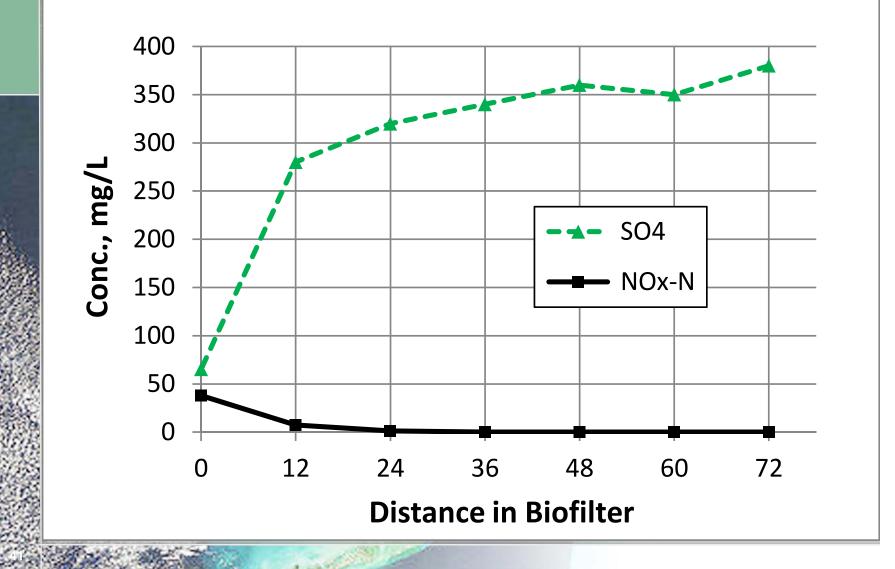

Group A single pass systems Two-stage system: total nitrogen removal

Groups B (recirculating) and C (horizontal) Two-stage system: total nitrogen removal

Group D Stacked saturated/unsaturated (*in situ*) biofilter schematic



Group D Stacked saturated/unsaturated (*in situ*) **biofilters**


Biofilter	Influent	Sample Location	C-BOD₅	COD	TSS	TN	TKN	Organic N	NH3-N	(NO ₃ +NO ₂) - N	Dissolved Oxygen	рН	Total Alkalinity	Fecal coliform, cfu/100 ml
UNSAT-IS1 (12"SA, 12"EC&LS, 4"SU)	Primary Effluent	Final Effluent	62	240	5.0	22.9	20.6	3.6	17.0	2.2	4.1	7.1	320	1
UNSAT-IS2 (12"SA,		Above Sulfur	13	63	2.0	35.4	4.7	1.6	3.10	30.7	1.0	6.4	69	-
12"EC&LS, 4"SU)	Primary Effluent	Final Effluent	11	82	8.5	2 <mark>4.</mark> 5	11.4	4.3	7.05	13.1	5.0	7.2	255	19
UNSAT-IS3 (12"CL,	D.:	Above Sulfur	2.5	120	3.0	13.3	3.4	3.1	0.23	9 <mark>.</mark> 9	3.3	7.1	455	1
12"EC&LS, 4"SU)	Primary Effluent	Final Effluent	4.5	96	4.5	2.6	2.4	1.4	0.98	1.1	5.0	7.3	385	9
UNSAT-IS4 (12"SA,	Nitrified Effluent (UNSAT-CL3)	Above Sulfur	6.0	80	12	12.0	2.9	2.5	0.37	9.1	2.1	7.0	325	1
12"EC&LS, 4"SU)		Final Effluent	24	88	39	2.6	2.4	1.4	0.98	1.1	1.2	6.8	495	7

Group D Stacked saturated/unsaturated biofilters Nitrogen time series

Solute profile in DENIT-SU2 experimental day 305

Group A – Stage 1 single pass biofilters increased hydraulic loading rate

Group B – Stage 1 recirculating biofilters increased hydraulic loading rate

Preliminary guidance recommendations for full-scale testing of passive systems

Unsaturated Recycle (Stage 1)

Saturated (Stage 2)

Media	Hydraulic Loading	Total Media	Media Stratifi	cation and Particle S	Size Distribution			Total Media	Empty Bed	Media Particle Size Distribution
	Rate, gal/ft ² - day	Depth, inch	Layer	Depth, inch	Particle Size Spec, mm	Media	%	Depth, inch	Residence Time, hour	Particle Size Spec,
	12.0	. 24	Upper	≥8	≥1.53	Elemental				mm 2.0 - 3.36
Expanded Clay	≤ 3.0	≥ 24	Lower	≥16	<1.53	Sulfur	≥ 50	≥24	≥30	<0.5% fines
Clinentilelite	< 2.0	> 24	Upper	≥8	≥1.4 - 2.3	Limestone or	0-20 ¹	≥ 24	≥ 50	0.5 - 5
Clinoptilolite	≤ 3.0	≥ 24	Lower	≥16	0.5 - 1.5	oyster shell				
			Upper	≥8	E.S. ≥ 0.8-1.2 U.C.≤4	Lignocellulosic media (SYP)	80-100	≥24	≥ 120	1 - 30
Sand	≤ 3.0	≥24	Lower	≥16	E.S. 0.45 - 0.55 U.C.≤4		al ci			
Unsaturated S	Single Pass (S	Stage 1)								
	Forward Flow		Media Stratifi	cation and Particle S	Size Distribution					
Media	Hydraulic Loading Rate, gal/ft ² - day	Total Media Depth, inch	Layer	Depth, inch	Particle Size Spec, mm					
	12.0		Upper	≥8	≥1.53	Do				
Expanded Clay	≤ 3.0	≥ 24	Lower	≥16	<1.53			11		Cutter
Clinentilelite	< 2.0	> 24	Upper	≥8	≥ 1.4 - 2.3				AZEN AND	
Clinoptilolite	≤ 3.0	≥24	Lower	≥ 16	0.5 - 1.5					

B-HS2 construction photos

Questions?

Applied Environmental Technology

FOSNRS Project Status

OTIS ENVIRONMENTAL CONSULTANTS

IIF

FLORIDA Gulf Coast Research

> **RRAC Meeting Presentation September 11, 2013**

Task A Deliverables

	Task	Completed	Remaining
A	A.1 Draft Lit Review	V	
A	.2 Final Lit Review	\checkmark	
A	A.3 Draft Classification of Tech	\checkmark	
A	.4 Draft Tech Ranking Criteria	\checkmark	
A	.5 Draft Priority List for Testing	\checkmark	
A	A.6 Tech Class., Ranking & Prioritization Workshop	\checkmark	
A	A.7 Final Classification of Tech	\checkmark	
A	.8 Final Tech Ranking Criteria	\checkmark	
А 💭	.9 Final Priority List for Testing	\checkmark	
A	10 Draft Innovative Systems Application		1
A	11 Final Innovative Systems Application		1
A 💭	12 Identification of Test Facility Sites	\checkmark	
A	.13 Draft QAPP PNRS II	\checkmark	
🛞 А	14 Recommendation for Process Forward	\checkmark	
A	.15 Final QAPP PNRS II	\checkmark	
A	16 Materials Testing for FDOH Additives Rule	\checkmark	
A	17 PNRS II Specification Reports	\checkmark	
Contra 1			

Task A (continued)

	Task	Completed	Remaining
	A.18 PNRS II Test Facility Design 50%	V	
	A.19 PNRS II Test Facility Design 100%	\checkmark	
	A.20 PNRS II Test Facility Construction Support & Admin	V	
	A.21 PNRS II Test Facility Construction 50%	\checkmark	
	A.22 PNRS II Test Facility Construction 100%	\checkmark	
	A.23 PNRS II Test Facility Construction Sub. Completion	V	
	A.24 PNRS II Test Facility Accept Construction	\checkmark	
教会	A.25 Monitoring and Sample Event Reports	\checkmark	
	A.26 Data Summary Report	\checkmark	
	A.27 Draft PNRS II Report	\checkmark	
	A.28 Final PNRS II Report		1
法	A.29 Draft Task A Final Report		1
	A.30 Task A Final Report		1
	A.31 Change-order Allowance	70%	30%

Task B Deliverables

	Task	Completed	Remaining
	B.1 Identification of Home Sites	1	
	B.2 Vendor Agreement Report	1	1
	B.3 Draft QAPP for Field Testing	\checkmark	
	B.4 Recommendation for Process Forward	\checkmark	
	B.5 Final QAPP for Field Testing	\checkmark	
	B.6 Field System Installation Report	5	2
	B.7 Field System Monitoring Report	12	44
	B.8 Field System Op., Maintenance & Repairs Report		7
	B.9 Technical Description of Nitrogen Reduction Tech. Report		1
	B.10 Acceptance of System by Owner Report		7
	B.11 Draft LCAA Template Report		1
	B.12 Final LCCA Template Report		1
	B.13 LCCA Report (per system)		7
	B.14 Draft Task B Final Report		1
	B.15 Task B Final Report		1
	B.16 Change-order Allowance	50%	50%
1			

Task C Deliverables

	Task	Completed	Remaining
	C.1 Draft Literature Review on N Reduction in Soil	V	
	C.2 Final Literature Review on N Reduction in Soil	\checkmark	
	C.3 Draft QAPP Eval. of N Red. by Soils & Shallow GW	\checkmark	
	C.4 Recommendation for Process Forward	\checkmark	
	C.5 Final QAPP Eval. of N Red. by Soils & Shallow GW	\checkmark	
	C.6 S&GW Test Facility Design 50%	\checkmark	
	C.7 S&GW Test Facility Design 100%	\checkmark	
	C.8 S&GW Test Facility Design Final	\checkmark	
	C.9 S&GW Construction Support & Admin.	\checkmark	
10	C.10 S&GW Test Facility Construction 50%	\checkmark	
	C.11 S&GW Test Facility Construction 100%	\checkmark	
	C.12 S&GW Test Facility Con. Substantial Completion	\checkmark	
	C.13 S&GW Test Facility Accept Construction	\checkmark	
議会	C.14 Soils & Hydrogeologic & Monitoring Plan for S&GW	50%	50%
	C.15 Tracer Testing at GCREC	2	1
	C.16 S&GW Sample Event Reports	\checkmark	

Task C (continued)

	193321212	
Task	Completed	Remaining
C.17 S&GW Data Summary Report	5	1
C.18 Test Facility Closeout Report		1
C.19 Field Site Selection	V	
C.20 Instrumentation of GCREC Mound System	\checkmark	
C.21 GCREC Mound Sample Event Report	\checkmark	
C.22 GCREC Mound Data Summary Report	\checkmark	
C.23 Instrumentation of Remaining Field Sites Report	\checkmark	
C.24 Field Sites Sample Event Reports	11	2
C.25 Field Sites Data Summary Report	11	2
C.26 Draft Site Summary and Close-Out Report	1	4
C.27 Final Site Close-Out Report	1	4
C.28 Draft Task C Final Report		1
C.29 Task C Final Report		1
C.30 Change-order Allowance	0	100%
	HAZEN	AND SAWYER

Environmental Engineers & Scientists

Task D Deliverables

	Task	Completed	Remaining
	D.1 Draft Lit Review on N Fate & Transport Model	\checkmark	
	D.2 Final Lit Review on N Fate & Transport Model	\checkmark	
	D.3 Selection of Existing Data Set for Calibration	\checkmark	
	D.4 Draft QAPP N Fate & Transport Models	\checkmark	
	D.5 Recommendation for Process Forward	\checkmark	
	D.6 Final QAPP N Fate & Transport Models	\checkmark	
	D.7 Simple Soil Tools	70%	30%
	D.8 Complex Soil Model	80%	20%
ġ.,	D.9 Complex Soil Model Performance Evaluation		1
	D.10 Validate/Refine Complex Soil Model		1
	D.11 Aquifer Model Combined with Complex Soil Model Development	50%	50%
110	D.12 Aquifer-Complex Soil Model Performance Evaluation		1
	D.13 Validate/Refine Aquifer-Complex Soil Model w/ Data Collection from Task C		1
	D.14 Dev. of Aquifer-Complex Soil Model for Multiple Spatial Inputs		1
	D.15 Decision-Making Framework Considering Uncertainty		1
	D.16 Task D Guidance Manual (Draft)		1
	D.17 Task D Guidance Manual (Final)		1
	D.18 Change-order Allowance		100%

Task E Deliverables

Task	Completed	Remaining
E.1 Project Kick-Off Meeting	V	
E.2 PM – Project Progress Reports	20	3
E.3 RRAC or TRAP Presentation	5	3
E.4 RRAC or TRAP Meeting Attendance	3	5
E.5 PAC Meeting		1

Questions?