Site Evaluation Requirements

Audra Burchfield
Environmental Health Program Consultant
Florida Department of Health
Division of Disease Control and Health Protection
Bureau of Environmental Health
Onsite Sewage Programs
What we will cover

- Net Usable Lot Area Validation
- Unobstructed Area Determination
- Establishing a Benchmark
- Sloping Lots
- System Setbacks Validation
- Excavation and Fill Determinations
- Frequent Flooding
- Soil Sizing Criteria
- Surface Water Boundaries (MAFL/MHWL)
Site Evaluations
Site Evaluation
Form DH 4015 (3 of 4)

- Estimated sewage flow, authorized sewage flow, unobstructed area
- Benchmark/reference point
- Setbacks to pertinent features
- Flooding Determination
- 2 Soil profiles, estimated wet season water table elevation (WSWT) and documentation and elevations
- Loading rate, restrictive layers and excavation
- Drainfield configuration (trench vs bed)
- Good for life of permit and 180 days prior to application

(Note: the separation from the bottom of the drainfield to the WSWT is 24 inches)
Site Evaluation
DH 4015 (3 of 4)

STATE OF FLORIDA
DEPARTMENT OF HEALTH
ONSITE SEWAGE TREATMENT AND DISPOSAL SYSTEM
SITE EVALUATION AND SYSTEM SPECIFICATIONS

APPLICANT: ________________________ AGENT: ________________________
LOT: ________________________ BLOCK: ________________________ SUBDIVISION: ________________________
PROPERTY ID #: ________________________

PROPERTY SIZE CONFORMS TO SITE PLAN: [] YES [] NO. NET USABLE AREA AVAILABLE: ________________________ ACRES.
TOTAL ESTIMATED SEWAGE FLOW: ________________________ GALLONS PER DAY. [RESIDENCES-TABLE 1/OTHER-TABLES]
AUTHORIZED SEWAGE FLOW: ________________________ GALLONS PER DAY. [1500 GPD/ACRE OR 2500 GPD/ACRE]
UNOBSTRUCTED AREA AVAILABLE: ________________________ SQFT. UNOBSTRUCTED AREA REQUIRED: ________________________ SQFT.

BENCHMARK/REFERENCE POINT LOCATION:
ELEVATION OF PROPOSED SYSTEM SITE IS ________________________ [INCHES/FT] [ABOVE/BELOW] BENCHMARK/REFERENCE POINT

THE MINIMUM SETBACK WHICH CAN BE MAINTAINED FROM THE PROPOSED SYSTEM TO THE FOLLOWING FEATURES
SURFACE WATER: ________________________ FT. DITCHES/SNAKES: ________________________ FT. NORMALLY WET? [] YES [] NO
WELLS: ________________________ PUBLIC [] FT. LIMITED USE: ________________________ FT. PRIVATE [] FT.
BUILDING FOUNDATIONS: ________________________ FT. PROPERTY LINES: ________________________ FT. POTABLE WATER LINES: ________________________ FT.

SITE SUBJECT TO FLOODING: [] YES [] NO. 10 YEAR FLOODING? [] YES [] NO. 10 YEAR FLOOD ELEVATION FOR SITE: ________________________ FT MSL/HVD. SITE ELEVATION: ________________________ FT MSL/HVD.

SOIL PROFILE INFORMATION SITE 1

<table>
<thead>
<tr>
<th>M Unsell #/COLOR</th>
<th>TEXTURE</th>
<th>DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

USDA SOIL SERIES:

OBSERVED WATER TABLE: ________________________ INCHES. [ABOVE / BELOW] EXISTING GRADE. TYPE: [PERCHED / APPARENT]
ESTIMATED WET SEASON WATER TABLE ELEVATION: ________________________ INCHES [ABOVE / BELOW] EXITING GRADE
HIGH WATER TABLE VEGETATION: [] YES [] NO. MOTTLING: [] YES [] NO. DEPTH: ________________________ INCHES
SOIL TEXTURE/LOADING RATE FOR SYSTEM SIZING: ________________________ DEPTH OF EXCAVATION: ________________________ INCHES
DRAINFIELD CONFIGURATION: [] TRENCH [] BED [] OTHER (SPECIFY)

REMARKS/ADDITIONAL CRITERIA:

SITE EVALUATED BY: ________________________ DATE: ________________________

dm 4015, 08/99 (replaces previous editions which may not be used) Incorporate 54C-6.001.FAC Page 3 of 4
Net Usable Lot Area
Net usable area is used to calculate the authorized sewage flow for the subject property.
“Contiguous unpaved and non-compacted road rights-of-way, and easements with no subsurface obstructions that would affect the operation of drainfield systems, shall be included in total lot size calculations. Where an unobstructed easement is contiguous to two or more lots, each lot shall receive its pro rata share of the area contained in the easement. Surface water bodies shall not be included in total lot size calculations. subsection 64E-6.008(1), F.A.C., Table I, shall be used for determining estimated average daily sewage flows.”
Net Usable Lot Area
64E-6.005 (7)
Unobstructed Area Determinations
Unobstructed Area Determinations
64E-6.005 (4)

- Minimum 1.5 X the drainfield area
- Be contiguous (gravity and lift dosed systems)
- Does not include any tanks nor 18 inches from tank
- 100% must meet the same setbacks as the drainfield

Note: Area between drain trenches shall be included in the unobstructed area calculation.
Unobstructed Area Examples

200 gpd / 0.60 gal. per sq.ft. per day for bed configuration = 334 sq.ft. drainfield

unobstructed area = (334 x 1.5) 500 sqft

or 200 gpd / 0.80 gal. per sq.ft. per day for trench configuration = 250 sq.ft. drainfield

unobstructed area = (250 x 1.5) 375 sqft
200 gpd x 0.8 g/sf/day = 250 sf

250 sf x 1.5 = 375 sf

This area must meet all the required setbacks.
Chapter 64E-6.004(3)(f), FAC and s. 381.0065(4), Florida Statues (FS)

Part of the application information required for permitting.

Established per s. 161.053, FS

See Memos 06-004 and 07-007
Coastal Construction Control Line
Chapter 62B-33, FAC

• Provides the design and siting requirements that must be met to obtain a coastal construction control line permit.

• Approval or denial of a permit application is based upon a review of the potential impacts to the beach dune system, adjacent properties, native salt resistant vegetation, and marine turtles.
Coastal Construction Control Line Program

The Coastal Construction Control Line (CCCL) Program regulates structures and activities which can cause beach erosion, destabilize dunes, damage upland properties, or interfere with public access. CCCL permits also protect sea turtles and dune plants. Here you will find CCCL Program topics to help guide CCCL permit applicants, and educate the public on the coastal construction permit program. You can also give us a call (850-245-8338) or contact us via email:

Get More Information or Help with CCCL Issues

LOCATE the CCCL and other geographic information

ASK and get answers to your coastal construction related questions

APPLY and receive assistance with the CCCL application process

CCCL Permit Managers

CCCL Field Inspectors

The Coastal Construction Control Line (CCCL) Program is an essential element of Florida’s coastal management program, protecting Florida’s beaches and dunes while ensuring reasonable use of private property. Recognizing the value of the state’s beaches, the Florida Legislature initiated the CCCL Program to protect the coastal system from improperly sited and designed
Coastal Construction Control Line 64E-6.004(3)(f), FAC

• Permit or exemption notice required if any part of the system will be seaward of the CCCL.

• If you cannot definitively make a determination using the tools on DEP website, then the applicant must provide survey by certified professional surveyor or mapper showing the location of the CCCL on the property.
Coastal Construction Control Line s.381.0065(4), FS

The department may issue permits to carry out this section, but shall not make the issuance of such permits contingent upon prior approval by the Department of Environmental Protection, **except** that the issuance of a permit for work seaward of the coastal construction control line established under s. 161.053 shall be contingent upon receipt of any required coastal construction control line permit from the Department of Environmental Protection.
Coastal Construction Control Line

- Where the DEP permits construction seaward of the CCCL, the area landward of the construction setback line can be calculated as unobstructed area.

- Where DEP does not allow construction seaward of the CCCL, only that area landward of the CCCL can be calculated as unobstructed area.
Benchmarks
Benchmark/Fixed Point of Reference

Benchmark- “A mark on a permanent object of predetermined position and elevation used as a reference point.”

Reference Point- “A specific location (in plan elevation) to which measurements are referred.”
Establishing a Benchmark/Reference Point

- Choose a fixed point/location.
- Put an identifying mark.
- Identify the specific location on the site plan and on the form DH 4015 (3 of 4).
- Establish water table and property (at the site of the soil profiles) elevations using the benchmark or reference point.
41” – 8” = 33”

Site is 33” below the Benchmark/Reference Point
Shooting a Benchmark/Reference Point
Shooting a Benchmark/Reference Point
Lot Slopes
Lot Slopes

Slope: An elevation change over a specified distance.

Calculation:

\[\frac{\Delta E}{\Delta D} \]

where \(\Delta \) = change in; \(E = \) elevation;
\(D = \) distance

Also calculated as Rise/Run
Lot Slopes

Example: $\Delta E=15''$ over $\Delta D=75'$

- First make all units the same, convert to inches or feet (since we normally work in inches this would be best)

So: $75' = 75' \times 12''/1' = 900''$

Slope = $\Delta E/\Delta D = 15/900 = 0.0167$ or 1.67%
Lot Slopes

This equals: 0.84” per 50” (4’2”)

or 0.42” per 25” (2’1”)

or 0.167” per 10”

or 0.40” per 24” (2’)

(2’ is the minimum distance between trenches)
Lot Slopes

Calculate by comparison:

\[
\frac{\Delta E}{\Delta D} = \frac{1.67''}{100''} = \frac{x''}{24''}
\]

\[
1.67 \times \frac{24}{100} = x'' = 40.08'' / 100 = x''
\]

\[
X'' = 0.4008'', \text{ or } 0.40''
\]
Lot Slopes

Need more profiles uphill and downhill
Use worst-case scenario from all sites.
Write special instructions in remarks section of the site evaluation form.
System Setbacks
(64E-6.005 and 64E-6.009)
Setbacks must be verified at the time of the site evaluation.

The actual measurements must be recorded on the form.

The property lines should be located/marked prior to the site evaluation.

For those features that are “proposed” and not on site at the time of the evaluation setbacks would be recorded based on the submitted site plan.
System Setbacks

64E-6.005 (1)(2) & (3)

- Private potable wells (75 ft), non potable (50 ft)
- Public drinking water wells (100 – 200 ft)
- Monitoring wells (5 ft)
- Storm sewer pipe (10 ft or max possible, not <5 ft)
- Dry - ponds/drainage features, retention areas (15 ft)
- Building foundations, pilings, mobile home walls, swimming pool walls, property lines (5 ft)
- Drainfields shall not be installed below, sidewalks, decks and patios. Mound drainfield, (4 ft) from these features (the shoulder shall not be covered).
System Setbacks

- Potable water lines (10 ft) or not less than (2 ft) if double sleeved or consist of schedule 40 PVC or stronger.
- Non-potable water lines (2 ft) and (<2 ft) if backflow devices.
- Groundwater interceptor drains (15 ft)
- Effluent transmission lines (schedule 40 PVC) – to private potable wells, irrigation wells and surface water bodies not less than (25 ft)
- Effluent transmission lines (schedule 40 PVC) – to property lines and building foundations not less than (2 ft)
- Effluent transmission lines (schedule 40 PVC or double sleeved) – potable water lines and storm sewer lines not less than (5 ft) see 64E-6.007(8)
Entering a Soil Profile into the Environmental Health Database (EHD)

(formerly called “Rehost”)
State of Florida
Department Of Health
Onsite Sewage
Treatment and Disposal
System
Site Evaluation and
Specifications

Application Information:
Applicant's Name: Gainesville Church of God
Agent's Name: Lee, Johnie
Lot: Block: A-21
Subdivision:
Property ID: 06187-002-000
Application Document Nbr: AP833509

Soil Profile Information:
Profile 1

<table>
<thead>
<tr>
<th>Munsell #</th>
<th>Color</th>
<th>Texture</th>
<th>Depth</th>
<th>Edit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADD</td>
</tr>
</tbody>
</table>

Add additional horizons for profile 1: ADD
USDA Soil Series: Unassigned

Profile 2

<table>
<thead>
<tr>
<th>Munsell #</th>
<th>Color</th>
<th>Texture</th>
<th>Depth</th>
<th>Edit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADD</td>
</tr>
</tbody>
</table>

Add additional horizons for profile 2: ADD
USDA Soil Series: Unassigned

Click on “Add” button
This is what appears
Click on Drop Down Menu For the Munsell Information
Click on Drop Down Menu For the Soil Texture
Click on “Add New” Button

Insert the Depths

Profile 1

Munsell #	Color	Texture	Depth	Edit

Add additional horizons for profile 1: ADD

USDA Soil Series: Unassigned

Profile 2

Munsell #	Color	Texture	Depth	Edit

Add additional horizons for profile 2: ADD

USDA Soil Series: Unassigned
Notice that this box reappears
Documenting a Redox Feature Within the Profile
Finish the Profile Information then Click Add and Close
Application Information:
- **Applicant's Name:** Gainesville Church of God
- **Agent's Name:** Lee, Johnie
- **Lot:** A21
- **Subdivision:**
- **Property ID:** 06187-002-000
- **Application Document No.:** AP935505

Soil Profile Information:

Profile 1

<table>
<thead>
<tr>
<th>Munsell #</th>
<th>Color</th>
<th>Texture</th>
<th>Depth</th>
<th>Edit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10YR 5/1</td>
<td>Gray</td>
<td>Fine Sand</td>
<td>0 TO</td>
<td>7</td>
</tr>
<tr>
<td>10YR 7/4</td>
<td>Very Pale Brown</td>
<td>Fine Sand</td>
<td>7 TO</td>
<td>28</td>
</tr>
<tr>
<td>10YR 6/3</td>
<td>Pale Brown</td>
<td>Fine Sand</td>
<td>28 TO</td>
<td>35</td>
</tr>
<tr>
<td>10YR 7/3</td>
<td>Very Pale Brown</td>
<td>Fine Sand</td>
<td>35 TO</td>
<td>45</td>
</tr>
<tr>
<td>10YR 7/4</td>
<td>Very Pale Brown</td>
<td>Sandy Loam</td>
<td>45 TO</td>
<td>54</td>
</tr>
<tr>
<td>10YR 5/1</td>
<td>Gray</td>
<td>CMN/DST RF</td>
<td>45 TO</td>
<td>54</td>
</tr>
<tr>
<td>10YR 7/2</td>
<td>Light Gray</td>
<td>Sandy Clay Loam</td>
<td>54 TO</td>
<td>72</td>
</tr>
</tbody>
</table>

USDA Soil Series: Unassigned

Finished Profile
Soil Profile Information:

Profile 1

<table>
<thead>
<tr>
<th>Munsell #</th>
<th>Color</th>
<th>Texture</th>
<th>Depth</th>
<th>Edit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10YR 5/1</td>
<td>Gray</td>
<td>Fine Sand</td>
<td>0 TO 7</td>
<td>X</td>
</tr>
<tr>
<td>10YR 7/4</td>
<td>Very Pale Brown</td>
<td>Fine Sand</td>
<td>7 TO 28</td>
<td>X</td>
</tr>
<tr>
<td>10YR 6/3</td>
<td>Pale Brown</td>
<td>Fine Sand</td>
<td>28 TO 35</td>
<td>X</td>
</tr>
<tr>
<td>10YR 7/3</td>
<td>Very Pale Brown</td>
<td>Fine Sand</td>
<td>35 TO 45</td>
<td>X</td>
</tr>
<tr>
<td>10YR 7/4</td>
<td>Very Pale Brown</td>
<td>Sandy Loam</td>
<td>45 TO 54</td>
<td>X</td>
</tr>
<tr>
<td>10YR 5/1</td>
<td>Gray</td>
<td>CMN/DST RF</td>
<td>45 TO 54</td>
<td>X</td>
</tr>
<tr>
<td>10YR 7/2</td>
<td>Light Gray</td>
<td>Sandy Clay Loam</td>
<td>54 TO 72</td>
<td>X</td>
</tr>
</tbody>
</table>

USDA Soil Series: Unassigned
Click on Series Name
Soil Profile Information

Profile 1

<table>
<thead>
<tr>
<th>Munsell #</th>
<th>Color</th>
<th>Texture</th>
<th>Depth</th>
<th>Edit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10YR 5/1</td>
<td>Gray</td>
<td>Fine Sand</td>
<td>0 TO</td>
<td>7</td>
</tr>
<tr>
<td>10YR 7/4</td>
<td>Very Pale Brown</td>
<td>Fine Sand</td>
<td>7 TO</td>
<td>28</td>
</tr>
<tr>
<td>10YR 6/3</td>
<td>Pale Brown</td>
<td>Fine Sand</td>
<td>28 TO</td>
<td>35</td>
</tr>
<tr>
<td>10YR 7/3</td>
<td>Very Pale Brown</td>
<td>Fine Sand</td>
<td>35 TO</td>
<td>45</td>
</tr>
<tr>
<td>10YR 7/4</td>
<td>Very Pale Brown</td>
<td>Sandy Loam</td>
<td>45 TO</td>
<td>54</td>
</tr>
<tr>
<td>10YR 5/1</td>
<td>Gray</td>
<td>CMN/DST RF</td>
<td>45 TO</td>
<td>54</td>
</tr>
<tr>
<td>10YR 7/2</td>
<td>Light Gray</td>
<td>Sandy Clay Loam</td>
<td>54 TO</td>
<td>72</td>
</tr>
</tbody>
</table>

Profile 2

<table>
<thead>
<tr>
<th>Munsell #</th>
<th>Color</th>
<th>Texture</th>
<th>Depth</th>
<th>Edit</th>
</tr>
</thead>
</table>

Add additional horizons for profile 1: ADD

USDA Soil Series: Millhopper

Add additional horizons for profile 2: ADD

USDA Soil Series: Unassigned

Florida HEALTH

Click to Move to the Next Page
Application Information:

- **Applicant's Name:** Gainesville Church of God
- **Agent's Name:** Lee, Johnie
- **Lot:** Block: A-21
- **Subdivision:**
- **Property ID:** 05187-002-000
- **Application Document Nbr:** AP933509

Additional Information

- **Observed Water Table:**
 - **Type:**
 - **Existing Grade:**
 - **Inches:**

- **Estimated Wet Season Water Table Elevation:**
 - **Inches**
 - **Below:**

- **Existing Grade:**
 - **High Water Table Vegetation:**
 - **No**
 - **Depth:**
 - **Inches**

- **Soil Replacement Type:**
 - **No Replacement**

- **Soil Texture for System Sizing:**
 - **Fine Sand**

- **Loading Rate for System Sizing:**
 - **Depth of Excavation:**
 - **Inches**

- **Drainfield Configuration:**
 - **Drainfield Type:**
 - **SubSurface**

- **Remarks/Additional Criteria:**
 - **10YR 5/1 CMN/DIST/RF starting at 45”**

Site Evaluated By:
- Bennett, Fred (Environmental Specialist I)
Date: 9/3/2009

Application Completed Date: 9/2/2009
Residential Buildings

<table>
<thead>
<tr>
<th># of Occupants</th>
<th># of Bedrooms</th>
<th>Sq Feet</th>
<th>Total Flow GPD</th>
<th>Sel/Del</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>1056</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

Commercial Buildings

Building Add Ons

- [] Floor / Equipment Drains
- Others

Comments:

- [] County Custom Fields:
 - CountyPermNum: 00-353-09

Status:

- [] Complete

Application Date

- [] 8/21/2009

Application Complete Date

- [] 8/24/2009

Ready to Issue Date

- []

- [] Save Complete
- [] Create New Application

- [] Create New Application at the Same Site

- [] Print
- [] Back To Search

- [] New Site Evaluation
- [] Collect Money

Migration Comments

- []
Need More Help?

- Application
 - AP933502, OSTDS Repair
 - Manage Bills
 - Manage PDFs
 - Variance
- Repair/Existing
 - RE237927
- Site Evaluation
 - SE795155, 08/24/2009
 - SE822479, 01/01/1901
- Permit
 - PR783041, 08/25/2009
 - Repair Certification
 - RC - Inspections
 - Permit - Inspections
 - F1761461, 09/03/2009
Excavation and Fill Determinations

FOOTNOTES TO TABLE III
For the purposes of the Permit Form

- Excavation is from natural grade down.

- Fill is from natural grade up.
STATE OF FLORIDA
DEPARTMENT OF HEALTH
ONSITE SEWAGE TREATMENT AND DISPOSAL SYSTEM CONSTRUCTION PERMIT

CONSTRUCTION PERMIT FOR:
[x] New System [] Existing System [] Holding Tank [] Innovative
[] Repair [] Abandonment [] Temporary

APPLICANT: Tom Smith

PROPERTY ADDRESS: 312 Cypress Ave., Geneva, FL 32765

LOT: 5 BLOCK: NA SUBDIVISION: Oviedo Oaks
PROPERTY ID #: 293031000782

SYSTEM MUST BE CONSTRUCTED IN ACCORDANCE WITH SPECIFICATIONS AND STANDARDS OF SECTION 381.0065, F.S., AND CHAPTER 64E-6, F.A.C. DEPARTMENT APPROVAL OF SYSTEM DOES NOT GUARANTEE SATISFACTORY PERFORMANCE FOR ANY SPECIFIC PERIOD OF TIME. ANY CHANGE IN MATERIAL FACTS, WHICH SERVED AS A BASIS FOR ISSUANCE OF THIS PERMIT, REQUIRE THE APPLICANT TO MODIFY THE PERMIT APPLICATION. SUCH MODIFICATIONS MAY RESULT IN THIS PERMIT BEING MADE NULL AND VOID. ISSUANCE OF THIS PERMIT DOES NOT EXEMPT THE APPLICANT FROM COMPLIANCE WITH OTHER FEDERAL, STATE, OR LOCAL PERMITTING REQUIRED FOR DEVELOPMENT OF THIS PROPERTY.

SYSTEM DESIGN AND SPECIFICATIONS

T [900] GALLONS / GPD SEPTIC TANK/AEROBIC UNIT CAPACITY MULTI-CHAMBERED/IN-SERIES [x]
A [] GALLONS / GPD CAPACITY MULTI-CHAMBERED/IN-SERIES []
N [] GALLONS GREASE INTERCEPTOR CAPACITY [] MAXIMUM CAPACITY SINGLE TANK: 1250 GALLONS
K [] GALLONS DOSING TANK CAPACITY [] GALLONS 8 [] DOSES PER 24 HRS # PUMPS []

D [250] SQUARE FEET PRIMARY DRAINFIELD SYSTEM
R [] SQUARE FEET SYSTEM
A TYPE SYSTEM: [] STANDARD [] FILLED [] MOUND []
I CONFIGURATION: [] TRENCH [] BED []
N
F LOCATION OF BENCHMARK: Disc in CL of Road near SE property corner
I ELEVATION OF PROPOSED SYSTEM SITE (12.00) [INCHES/FT] [ABOVE/BELLOW] BENCHMARK/REFERENCE POINT
K BOTTOM OF DRAINFIELD TO BE (30.00) [INCHES/FT] [ABOVE/BELLOW] BENCHMARK/REFERENCE POINT
I FILL REQUIRED: (36.00) INCHES EXCAVATION REQUIRED: (48.00) INCHES

O The licensed contractor installing the system is responsible for installing the minimum
category of tank in accordance with s. 54E-6.013(3)(f), F.A.C.

SPECIFICATIONS BY: Carroll Sweet TITLE: Environmental Specialist I

APPROVED BY: John Forrest, RS TITLE: Environmental Manager

DATE ISSUED: 7/6/2010 EXPIRATION DATE: 1/2/2012

DH 4016, 08/09 (Obsolete all previous editions which may not be used)
Incorporated: 64E-6.003, F.A.C.

Page 1 of 3
Effective Soil Depth

64E-6.006(1) “The effective soil depth throughout the drainfield installed extends 42 inches or more below the bottom surface of the drainfield.”
3. “When all other site conditions are favorable, horizons or strata of moderately or severely limited soil may be replaced with slightly limited soil or soil of the same texture as the satisfactory slightly limited permeable layer lying below the replaced layer. The slightly limited permeable layer below the replaced layer shall be identified within the soil profile which was submitted as part of the permit application.”
Excavation

• Must be **complete removal** of moderately or severely limited soil layer being replaced.

• Must be satisfactory to a **minimum** depth of 54 inches beneath the bottom surface of the proposed drainfield.
Excavation

1) 33% replaced area middle of drainfield

2) 33% replaced area at end of drainfield

Table III, Footnote 3.
When the 33% replacement is conducted for excavations, it has been conducted in 2 ways:
1) Down the middle of the drainfield,
2) At the end of the drainfield

When replacing moderately limiting soils
Excavation

• When removing severely limited soil textures, removal must be 100% down to slightly limiting soil textures.

• Slightly limited soil horizon below the moderately or severely limited soil horizons must be at least 6” in thickness.
64E-6.008 Table III, Footnotes to Table III

4. Where coarse sand, gravel, or oolitic limestone directly underlies the drainfield area, the site shall be approved provided a minimum depth of 42 inches of the rapidly percolating soil beneath the bottom absorption surface of the drainfield and a minimum 12 inches of rapidly percolating soil contiguous to the drainfield sidewall absorption surfaces, is replaced with slightly limited soil material.
Excavation

What is not considered and excavation:

Removal of the “O” horizon. For the purposes of OSTDS regulations, this means the organic parts of original topsoil and vegetation, including leaf litter, roots, and grass.

Removing poor fill that is on the site above the original natural soil surface.
Site Evaluation

Form 4015 (3 of 4)
Effective Soil Depth Criteria

In order to meet the effective soil depth criteria for our example the two alternatives are:

1-Excavation and Removal of the spodic horizon using Footnote 3, Table III, Chapter 64E-6,FAC

or

2-Elevation of the system to provide 42 inches of effective soil above the spodic horizon (or severely limited soil).
What would be the minimum depth of excavation required for our example?

Complete removal of the spodic horizon which extends to **48 inches below existing grade**, based on the soil profiles (worst case).

Remember the width of the replacement area shall be at least two feet wider and longer than the proposed drain trench or absorption bed.
STATE OF FLORIDA
DEPARTMENT OF HEALTH
ONSITE SEWAGE TREATMENT AND DISPOSAL SYSTEM
SITE EVALUATION AND SYSTEM SPECIFICATIONS

APPLICANT: Tom Smith
AGENT: Sunshine Septic Company

LOT: 5
BLOCK: NA
SUBDIVISION: Oviedo Oaks

PROPERTY ID #: [Section/Township/Parcel No. or Tax ID Number]

TO BE COMPLETED BY ENGINEER, HEALTH DEPARTMENT EMPLOYEE, OR OTHER QUALIFIED PERSON. ENGINEERS MUST PROVIDE REGISTRATION NUMBER AND SIGN AND SEAL EACH PAGE OF SUBMITTAL. COMPLETE ALL ITEMS:

PROPERTY SIZE CONFORMS TO SITE PLAN: [x] YES [] NO
NET USABLE AREA AVAILABLE: 0.37 ACRES

TOTAL ESTIMATED SEWAGE FLOW: 200 GALLONS PER DAY [RESIDENCES-TABLE 1/OTHER-TABLE2]
AUTHORIZED SEWAGE FLOW: 554.41 GALLONS PER DAY [1500 GPD/ACRE 08 2500 GPD/ACRE]

UNOBSTRUCTED AREA AVAILABLE: 3375.00 SQFT
UNOBSTRUCTED AREA REQUIRED: 375.00 SQFT

BENCHMARK/REFERENCE POINT LOCATION: disc on CL of RD near SE corner of property

ELEVATION OF PROPOSED SYSTEM SITE IS: 12 [INCHES/FT] [ABOVE/BELLOW] BENCHMARK/REFERENCE POINT

THE MINIMUM SETBACK WHICH CAN BE MAINTAINED FROM THE PROPOSED SYSTEM TO THE FOLLOWING FEATURES:
- SURFACE WATER: 80 FT
- DITCHES/SWALES: 35 FT
- NORMALLY WET? [] YES [x] NO
- WELLS: PUBLIC: NA FT
 LIMITED USE: NA FT
 PRIVATE: 85 FT
- NON-POTABLE: 73 FT
- BUILDING FOUNDATIONS: 10 FT
 PROPERTY LINES: 17 FT
 POTABLE WATER LINES: 14 FT

SITE SUBJECT TO FREQUENT FLOODING: [] YES [x] NO
10 YEAR FLOODING? [] YES [x] NO
10 YEAR FLOOD ELEVATION FOR SITE: NA FT MSL/NGVD
SITE ELEVATION: NA FT MSL/NGVD

SOIL PROFILE INFORMATION SITE 1

<table>
<thead>
<tr>
<th>MUNSELL #/COLOR</th>
<th>TEXTURE</th>
<th>DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>10YR 2/1 Blk</td>
<td>FS</td>
<td>6</td>
</tr>
<tr>
<td>10YR 3/1 Br</td>
<td>FS spodic</td>
<td>32</td>
</tr>
<tr>
<td>10YR 5/1 Br</td>
<td>FS</td>
<td>45</td>
</tr>
<tr>
<td>TO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USDA SOIL SERIES: similar to Myakka</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOIL PROFILE INFORMATION SITE 2

<table>
<thead>
<tr>
<th>MUNSELL #/COLOR</th>
<th>TEXTURE</th>
<th>DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>10YR 2/1 Blk</td>
<td>FS</td>
<td>6</td>
</tr>
<tr>
<td>10YR 3/1 Br</td>
<td>FS spodic</td>
<td>32</td>
</tr>
<tr>
<td>10YR 5/1 Br</td>
<td>FS</td>
<td>45</td>
</tr>
<tr>
<td>TO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USDA SOIL SERIES: similar to Myakka</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBSERVED WATER TABLE: 16 INCHES [ABOVE / BELOW] EXISTING GRADE.
TYPE: [PERCHED / APPARENT]

ESTIMATED WET SEASON WATER TABLE ELEVATION: 6 INCHES [ABOVE / BELOW] EXISTING GRADE

HIGH WATER TABLE VEGETATION: [x] YES [] NO
NOTTLING: [x] YES [] NO
DEPTH: 6 INCHES

SOIL TEXTURE/LOADING RATE FOR SYSTEM SIZING: FS/0.89
DEPTH OF EXCAVATION: 48 INCHES

DRAINFIELD CONFIGURATION: [x] TRENCH [] BED [] OTHER (SPECIFY)

REMARKS/ADDITIONAL CRITERIA:
Soil profile #1 is 12" above RP. Soil profile #2 is 13" above RP.
Stripping at 6" below grade "10YR 7/1 in 5'1 matrix."

SITE EVALUATED BY: Carroll Sweet, ESI
DATE: 7/2/2010

DH 4015, 09/09 (Replaces previous editions which may not be used)
Incorporated: 64E-8.001, FAC
Page 3 of 4
If Spodic Layer Is Not Removed

To meet the 42 inch effective soil depth, elevate the bottom of drainfield to 24 inches above grade which equates to 36 inches above the benchmark/reference point.
There are two things we call “fill”.

Fill as the replacement material after an excavation (must always be of slightly limited textures)

Fill used to construct the mound/filled systems (can also be some specific moderately limited textures)
Fill

• How do we determine how much fill is required for our example?

• How much if we excavate?
 6” ESHWT = 36” of fill

• How much if we do not excavate?
 Same 6” ESHWT = 42” of fill
Soil Sizing Criteria
Soil Sizing Criteria

TABLE III

For Sizing of Drainfields Other Than Mounds

<table>
<thead>
<tr>
<th>Soil Texture Classification</th>
<th>Maximum Sewage Loading Rate to Trench & Bed Absorption Surface in Gallons Per Square Foot Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand; Coarse Sand not associated with a seasonal water table of less than 48 inches; and Loamy Coarse Sand</td>
<td>Trench 0.80 Bed 0.60</td>
</tr>
<tr>
<td>Slightly limited (Less than 2 Min/inch)</td>
<td></td>
</tr>
<tr>
<td>Loamy Sand; Sandy Loam; Coarse Sandy Loam; and Fine Sand</td>
<td>Slightly limited (2-4 min/inch)</td>
</tr>
<tr>
<td></td>
<td>0.80 0.60</td>
</tr>
<tr>
<td>Loam; Fine Sandy Loam; Silt Loam; Very Fine Sand; Very Fine Sandy Loam; Loamy Fine Sand; Loamy Very Fine Sand; and Sandy Clay Loam Clay Loam; Silty Clay Loam; Sandy Clay;</td>
<td>Moderately limited (5-10 min/inch)</td>
</tr>
<tr>
<td></td>
<td>0.65 0.35</td>
</tr>
<tr>
<td></td>
<td>Moderately limited (Greater than 15)</td>
</tr>
<tr>
<td></td>
<td>0.35 0.20</td>
</tr>
</tbody>
</table>
Soil Sizing Criteria

<table>
<thead>
<tr>
<th>Silty Clay; and Silt</th>
<th>Min/inch but not exceeding 30 min/inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay; Organic Soils; Hardpan; and Bedrock</td>
<td>Severe limited</td>
</tr>
<tr>
<td>Coarse Sand with an estimated wet season High water table within 48 inches of the bottom of the proposed drainfield; Gravel or Fractured Rock or Oolitic Limestone</td>
<td>Severe limited</td>
</tr>
<tr>
<td></td>
<td>Unsatisfactory for standard subsurface System</td>
</tr>
<tr>
<td></td>
<td>Unsatisfactory for standard subsurface System</td>
</tr>
</tbody>
</table>
Soil Sizing Criteria
64E-6.009(3) Mounds

<table>
<thead>
<tr>
<th>Fill Material</th>
<th>Maximum Sewage Loading Rate to Mound Drain Trench Bottom Surface in gallons per square foot per day</th>
<th>Maximum Sewage Loading Rate to Mound Absorption Bed Bottom Surface in gallons per square foot per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand; Coarse Sand; and Loamy Coarse Sand</td>
<td>0.80</td>
<td>0.60</td>
</tr>
<tr>
<td>Fine Sand</td>
<td>0.80</td>
<td>0.60</td>
</tr>
<tr>
<td>Sandy Loam; Coarse Sandy Loam; and Loamy Sand</td>
<td>0.65</td>
<td>0.40</td>
</tr>
<tr>
<td>Fine Sandy Loam; Very Fine Sand; Loamy Fine Sand; and Loamy Very Fine Sand</td>
<td>0.35</td>
<td>0.25</td>
</tr>
</tbody>
</table>
How do you size a system if there was an excavation and replacement material?

(64E-6.008 Footnotes to Table III, 3)

Maximum sewage loading rates for **standard** **subsurface** systems installed in replacement areas shall be **0.80** gallons per square foot per day for trench systems and **0.60** gallons per square foot per day for absorption beds in slightly limited soil textures.
64E-6.008, Footnote to Table III and 64E-6.009(3)

- Where more than one soil texture classification is encountered within a soil profile and it is not removed as part of a replacement, drainfield sizing for standard subsurface drainfield systems and fill drainfield systems shall be based on the most restrictive soil texture encountered within 24 inches of the bottom of the drainfield absorption surface.

- Where moderately limited soils underlie the mound within 36 inches of the bottom of the drainfield, drainfield sizing shall be based on the most restrictive soil texture existing in the profile to a depth of 36 inches below the bottom of the drainfield, using Table III for soil loading rates.

NOTE: If you cannot perform a soil boring to the required 72” depth, you can only size the system based on the information you know within the profile.
Frequent Flooding Determination
Frequent Flooding Determination

64E-6.002(25) Flooding — a covering of soil surface by water from any source, such as streams overflowing their banks, runoff from adjacent or surrounding slopes, elevation of the ground water table exceeding that of the soil surface, or combinations of these. Terms also associated with flooding and used elsewhere in this chapter are:

(a) Frequent – flooding which occurs more than once every two years on the average;

(b) Ten year flood elevation – that flood elevation which has a 10 in 100 probability of being equaled or exceeded in any calendar year.
64E-6.002(46) Regulatory floodway – means the channel of a river or other water course and adjacent land areas that must be reserved in order to discharge the base flood without cumulatively increasing the water surface elevation more than a designated height.

(Suwannee and Aucilla)
How do you know if the lot is subject to frequent flooding?

(FEMA FLOOD MAPS)
Flood Zone Designations

FEMA website to look up flood information

(www.FloodSmart.Gov)
Flood Zone Designations

B and X (shaded)-Area of moderate flood hazard.
C and X (unshaded)- Area of minimal flood hazard.
A- High Risk Area
AE- High Risk Area
64E-6.006(6) The existing lot elevation at the site of the proposed system installation and any contiguous land referred to in subsection 64E-6.005(4), F.A.C., shall not be subject to frequent flooding. Except for areas affected by Section 381.0065(4)(t), F.S., fill material, *if permitted*, shall be placed in the area for the system and contiguous unobstructed area to raise the lot elevation above the 2 year flood.
Surface Water Boundaries
Surface Water Boundaries
Mean Annual Flood Line (MAFL) and Mean High Water Line (MHWL)

In **1999** the Legislation amended s. 381.0065, F.S.; defining

"mean annual flood line" (MAFL)
"permanent nontidal surface water body"
"tidally influenced surface water body"

DOH shall not make the issuance of permits contingent on DEP approval

The reason was because of consistency between the CHDs
MEAN ANNUAL FLOOD LINE (MAFL)
s. 381.0065(2)(i), FS

Boundary of Permanent Non Tidal Surface Water Bodies
Permanent nontidal surface water body (PNSWB) s. 381.0065(2)(k), FS

- PERENNIAL / INTERMITTENT STREAM
- PERENNIAL RIVER
- PERENNIAL LAKE
- SUBMERGED MARSH OR SWAMP
- SUBMERGED WOODED MARSH OR SWAMP
- SPRINGS
- SEEPS
Must be identified on the most recent quadrangle map, **7.5 minute series** (topographic), produced by the United States Geological Survey.
NOTE that the quad sheets cannot be used to determine the mean annual flood line. The MAFL may encompass areas that are actually distant from the PNSWB identified on the quad sheet.
All CHD’s should have the most recent quad sheets at this time. Additionally they should have the pamphlet on “Topographic Map Symbols” which is the legend for identification of features on the quad sheet.
https://viewer.nationalmap.gov/basic/?basemap=b1&category=histtopo,ustopo&title=Map%20View
7.5 minute Topographic Quad Sheet
The legend for the Quad Sheets

Web soil survey now allows you to look at the area of interest with an overlay of the topographic maps.
It also means:

an artificial surface water body that does not have an **impermeable** bottom and side and that is designed to hold, or does hold, visible standing water for at least 180 days of the year.

Impermeable - a condition where the maximum hydraulic conductivity is less than or equal to 1×10^{-7} cm/s
This Means:

Creeks, pond, gully, etc. could fit where the 180 day criteria is met on an annual basis, based on the artificial surface water body definition.
MEAN ANNUAL FLOOD LINE (MAFL) s. 381.0065(2)(i), FS

• 10 years of recorded data

• Field verify using one or more of the 7 indicators

• Combination of both
The 7 Indicators

1. Water stains
2. Hydric adventitious roots
3. Drift lines
4. Rafted debris
5. Aquatic mosses and liverworts
6. Moss collars
7. Lichen lines
Aquatic mosses or liverworts

Elevated Lichen Lines

Aquatic moss
Fontinalis sp.

Drift Lines

Drift line in a salt marsh, Choctawhatchee Bay
Who can determine the MAFL?

• A certified professional surveyor and mapper with experience in the determination of flood water elevation lines

OR

• Department personnel (this is at the option of the applicant)
MAFL Alternate Surface Water Boundary Delineation Procedure (ASWB)

- Applicant makes request for CHD determination in writing (see attachment in Memorandum HSES 11-006)
- If done in conjunction with CHD site evaluation, no additional fees charged.
- Applicant must mark property lines
- CHD will field verify the MAFL and clearly mark the indicator and document their determination.
- The highest indicator will be used to set the ASWB line by using basic geometric shapes whose areas can easily be calculated.
- This area will be subtracted from the total lot size to determine the net usable area and authorized sewage flow.
- If this determination means that the authorized sewage flow will be exceeded the CHD would inform the applicant that they must obtain the services of a certified professional surveyor or mapper to determine the area.
- If the applicant declines obtaining the services of a certified professional surveyor or mapper, the CHD would deny the permit based on the CHD determination.

Note that setbacks will be from the actual MAFL indicator that creates the shortest distance and not from the ASWB.
Current regulations require a 75-foot setback from the surface water body boundary. Rule 64E-6.015, Table V, provides repair system setback requirements. Lots platted prior to 1972 are subject to a minimum 50-foot setback.

Table: Area Calculations

<table>
<thead>
<tr>
<th>Area Description</th>
<th>ASWB</th>
<th>ASWB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Area of The Lot</td>
<td>210' x 210' = 44100 sq ft</td>
<td>210' x 210' = 44100 sq ft</td>
</tr>
<tr>
<td>Area "A": Small pond in SW corner of lot</td>
<td>90' x 70' = 6300 sq ft</td>
<td>90' x 70' = 6300 sq ft</td>
</tr>
<tr>
<td>Area "B": Rear 18' of the northern boundary of the lot</td>
<td>210' x 18' = 3780 sq ft</td>
<td></td>
</tr>
<tr>
<td>Area "C": Triangular area at the western boundary of the lot that begins at the water stain indicator and runs 75' north to within 15' of the northern property line and 89' northeast of the indicator.</td>
<td>75' + b² = 5609 sq ft</td>
<td>75' + b² = 7921 sq ft</td>
</tr>
<tr>
<td></td>
<td>9529 + b² = 7921 sq ft</td>
<td>9529 + b² = 7921 sq ft</td>
</tr>
<tr>
<td></td>
<td>b² = 2296</td>
<td>b² = 2296</td>
</tr>
<tr>
<td></td>
<td>b = 47</td>
<td>b = 48</td>
</tr>
<tr>
<td></td>
<td>1/2(75')(48') = 1800 sq ft</td>
<td>1/2(75')(48') = 1800 sq ft</td>
</tr>
<tr>
<td>Area "D": Large triangular area which begins at the water stain indicator and extends north to the northwest property corner and northeast to the northeast corner of the property.</td>
<td>3150 sq ft</td>
<td>9450 sq ft</td>
</tr>
<tr>
<td></td>
<td>4900 sq ft</td>
<td>9450 sq ft</td>
</tr>
<tr>
<td></td>
<td>1800 sq ft</td>
<td>14350 sq ft</td>
</tr>
<tr>
<td></td>
<td>9550 sq ft</td>
<td></td>
</tr>
<tr>
<td>Total ASWB Area</td>
<td></td>
<td>9450 sq ft</td>
</tr>
<tr>
<td>Net Usable Area</td>
<td>44100 sq ft</td>
<td>44100 sq ft</td>
</tr>
<tr>
<td></td>
<td>39550 sq ft</td>
<td>14350 sq ft</td>
</tr>
<tr>
<td></td>
<td>8950 sq ft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34250 sq ft</td>
<td>29750 sq ft</td>
</tr>
<tr>
<td></td>
<td>795 Acre</td>
<td>683 Acre</td>
</tr>
<tr>
<td>Authorized Sewage Flow</td>
<td>1500 gpd/Acre x .780 Acre</td>
<td>1500 gpd/Acre x .683 Acre</td>
</tr>
<tr>
<td></td>
<td>1179 gpd</td>
<td>1024 gpd</td>
</tr>
</tbody>
</table>
ASWB-Example 1

Total Area of The Lot (L x W)
210’ x 210’ = 44100 sq ft

Area “A”: Small pond in SW corner of lot (L x W)
70’ x 70’ = 4900 sq ft

Area “B”: Rear 15’ of the northern boundary of the lot (L x W)
210’ x 15’ = 3150 sq ft

Area “C”: Triangular area at the western boundary of the lot that begins at the water stain indicator and runs 75’ north to within 15’ of the northern property line and 89’ northeast of the indicator.

\[
\frac{a^2 + b^2}{c^2} \quad \text{and} \quad \left(\frac{1}{2} \cdot b \cdot h\right)
\]

\[
75^2 + b^2 = 89^2
5625 + b^2 = 7921
b^2 = 2296
b = 48
\]

\[
\frac{1}{2} \cdot (75')(48') = 1800 \text{ sq ft}
\]

Total ASWB Area
4900 sq ft
3150 sq ft
+ 1800 sq ft

9850 sq ft

Net Usable Area
44100 sq ft
- 9850 sq ft

34250 sq ft / 43560 sq ft
0.786 Acre

Authorized Sewage Flow
1500 gpd/Acre
x 0.786 Acre

1179 gpd
ASWB- Example 2

Total Area of The Lot (L x W)

210' x 210' = 44100 sq ft

Area "A": Small pond in SW corner of lot (L x W)

70' x 70' = 4900 sq ft

Area "D": Large triangular area which begins at the water stain indicator and extends north to the northwest property corner and northeast to the northeast corner of the property.

\[
\frac{1}{2} b \times h = \frac{1}{2} (210')(90') = 9450 \text{ sq ft}
\]

Total ASWB Area

9450 sq ft + 4900 sq ft = 14350 sq ft

Net Usable Area

44100 sq ft - 14350 sq ft = 29750 sq ft / 43560 sq ft = 0.683 Acre

Authorized Sewage Flow

1500 gpd/Acre x 0.683 Acre = 1024 gpd
Mean High Water Line
MHWL

Governed by Chapter 177, Florida Statues

Boundary of tidally influenced surface water bodies,
defined in s. 177.27(15)
Tidally influenced surface water body s. 381.0065(2)(o), FS

Means a body of water that is subject to the ebb and flow of the tides
Who can determine the MHWL?

• Professional Surveyor or Mapper

• Representative of U.S. Government (when approved by DEP to perform this determination)
Mean High Water Line

Safe Uplands Line
More restrictive alternative to determining the MHWL.

A surveyor is still required.

Determined by adding 0.5ft to the nearest tidal datum point (within ½ mile radius of the established safe uplands line).
Mean High Water Line

Sea Wall or Canal Wall

Top of wall can be used as more restrictive alternative to MHWL

Elevation of top of wall established by surveyor or mapper must be higher than the tidal datum point within ½ mile of the wall otherwise MHWL must be established by surveyor or mapper.
Mean High Water Line

• DEP maintains information on MHWLs

• DEP also allows mathematical calculations, but a letter from DEP is necessary to validate.

More information can be found in LABINS or by calling or emailing Mr. Lamar Evers at 850-245-2606, lamar.evers@dep.state.fl.us

See interoffice memorandum 11-006 for more detail.
Jurisdictional Areas
• Memo 00-014 and 11-006 describes some instances where other agencies may have jurisdiction.

• They also establish a uniform policy for implementing 64E-6.006(2) and (6), FAC.
Permitting Coordination in Jurisdictional Areas

• For permit applications where the wet season water table is determined to be at or above the elevation of existing ground surface, the permit shall be issued requiring sufficient fill to provide a 24 inch separation from the bottom of the drainfield to the wet season water table elevation.

• For permit applications where the proposed system site is subject to frequent flooding, the permit shall be issued requiring sufficient fill be placed in the area of the system and contiguous unobstructed area to raise the lot elevation above the 2 year flood elevation.

• Where the wet season water table is not at or above the elevation of the existing ground surface, but the area may be under the regulatory authority of another agency, the permit shall be issued under current rule specifications.
Permitting Coordination in Jurisdictional Areas

• The applicant shall be notified of the jurisdictional issues in writing.

• The appropriate regulatory agencies shall be notified of the permit issuance by copy of the letter to the applicant. In these cases, it is not appropriate to “hold” an application pending action by another regulatory agency.
Permitting Coordination in Jurisdictional Areas

Dear Applicant:

The above referenced permit has been issued on property that may contain areas under the regulatory authority of the Florida Department of Environmental Protection, U.S. Corps of Engineers, or a local permitting agency, such as your county building department or local environmental program. The above referenced permit does not authorize you either to excavate or to place fill in a jurisdictional area. If applicable, you must obtain the necessary permit from the appropriate regulatory agency.

By copy of this letter, we are advising the appropriate regulatory agencies and the local building department that we have issued a construction permit for an onsite sewage treatment and disposal system on a site that may be under their regulatory authority.

If you have any questions on this matter please call our office at 999-9999.

Sincerely,

Environmental Health Director

Copy to:
Florida Department of Environmental Protection (appropriate district)
U.S. Corps of Engineers
XXXXXXX Building Department

This letter is available through the EHD
Questions?