ION CHROMATOGRAPHY (IC)

Note: Make enough copies of Pages 1-12 to assess each test method in use at the laboratory, one method at a time

CHEMISTRY TEST METHOD EVALUATED: ________________________________

___ 5.5.4.1.2(a) Does the laboratory have an in-house methods manual for each accredited analyte or method

 Note: This manual may consist of copies of published or referenced test methods

___ 5.5.4.1.2(b) Does the laboratory clearly indicate in its methods manual any modifications made to the referenced test method and describe any changes or clarifications where the referenced test method is ambiguous or provides insufficient detail

Does each test method in the in-house methods manual include or reference, where applicable:

___ 5.5.4.1.2(b)(1) Identification of the test method
___ 5.5.4.1.2(b)(2) Applicable matrix or matrices
___ 5.5.4.1.2(b)(3) Method Detection Limit
___ 5.5.4.1.2(b)(4) Scope & application, including components to be analyzed
___ 5.5.4.1.2(b)(5) Summary of the test method
___ 5.5.4.1.2(b)(6) Definitions
___ 5.5.4.1.2(b)(7) Interferences
___ 5.5.4.1.2(b)(8) Safety
___ 5.5.4.1.2(b)(9) Equipment & supplies
___ 5.5.4.1.2(b)(10) Reagents & standards
___ 5.5.4.1.2(b)(11) Sample collection, preservation, shipment, & storage
___ 5.5.4.1.2(b)(12) Quality control
___ 5.5.4.1.2(b)(13) Calibration & standardization
___ 5.5.4.1.2(b)(14) Procedure
___ 5.5.4.1.2(b)(15) Calculations
___ 5.5.4.1.2(b)(16) Method performance
___ 5.5.4.1.2(b)(17) Pollution prevention
___ 5.5.4.1.2(b)(18) Data assessment & acceptance criteria for quality control measures
___ 5.5.4.1.2(b)(19) Corrective actions for out-of-control data
___ 5.5.4.1.2(b)(20) Contingencies for handling out-of-control or unacceptable data
___ 5.5.4.1.2(b)(21) Waste management
___ 5.5.4.1.2(b)(22) References
___ 5.5.4.1.2(b)(23) Tables, diagrams, flowcharts, validation data

___ D Does the laboratory ensure that the essential standards outlined in Appendix D are incorporated into the method manuals and/or Quality Manual

COMMENTS:
CHEMISTRY TEST METHOD EVALUATED: ________________________________

--- 5.5.5.2.2 Do the laboratory's initial & continuing instrument calibration verifications meet the requirements in mandated test methods & regulations (see pages 14-15 for acceptance criteria and the number of standards required)

Note: If it is not apparent which standard is more stringent, then the requirements of the regulation or the mandated test method are to be followed

--- 5.5.5.2.2.1(a) Does the laboratory's test method SOP include or reference details of the initial instrument calibration procedures

Note: This includes calculations, integrations, & associated statistics
Note: If the test method is referenced for initial instrument calibration procedures, the laboratory must have this method & make it available for review

--- 5.5.5.2.2.1(b) Does the laboratory retain sufficient raw data records to permit reconstruction of the initial instrument calibration

Note: Examples of such data records include calibration date, test method, instrument, analysis date, each analyte name, analyst initials or signature, concentration & response, calibration curve or response factor, and unique equation or coefficient used to reduce instrument responses to concentration

--- 5.5.5.2.2.1(c) Does the laboratory quantitate sample results only from the initial instrument calibration and not from any continuing instrument calibration verifications, unless required by regulation, method, or program

--- 5.5.5.2.2.1(d) Does the laboratory verify all initial instrument calibrations with a standard obtained from a second manufacturer or lot if the lot can be demonstrated from the manufacturer as prepared independently from other lots

Note: When commercially available, traceability shall be to a national standard

--- 5.5.5.2.2.1(e) Has the laboratory established criteria for the acceptance of an initial instrument calibration

Note: Examples include linear regression correlation coefficient & response factor %RSD
Note: The acceptance criteria must be appropriate to the calibration technique employed

--- 5.5.5.2.2.1(f) For purposes of establishing the working calibration range, is the lowest calibration standard concentration the lower limit of quantitation

--- 5.5.5.2.2.1(f) Is all data reported below the lower limit of quantitation reported using defined qualifiers or flags or explained in the case narrative

--- 5.5.5.2.2.1(g) Is the highest calibration standard the highest concentration for which quantitative data are to be reported

--- 5.5.5.2.2.1(g) Is all data reported above the highest calibration standard reported using defined qualifiers or flags or explained in the case narrative

--- 5.5.5.2.2.1(h) Does the laboratory report measured concentrations outside the working calibration range as having less certainty & using defined qualifiers or flags or explained in the case narrative

--- 5.5.5.2.2.1(h) Is the lowest calibration standard above the limit of detection for each analyte
CHEMISTRY TEST METHOD EVALUATED: ________________________________

Note: For instrument technologies (e.g., ICP, ICP/MS) with validated techniques from manufacturers or methods employing standardization with a zero point & a single-point calibration std., the following must occur:

___ 5.5.2.2.1(h)(1) Prior to the analysis of samples, are the **zero point & single point calibration analyzed**, and the **linear range of the instrument established** by analyzing a series of standards, one of which must be at the lowest quantitation level

Note: Sample results within the established linear range will not require data qualifier flags

___ 5.5.2.2.1(h)(2) Are the zero point & single point calibration standard analyzed **with each analytical batch**

___ 5.5.2.2.1(h)(3) Is a standard corresponding to the **limit of quantitation** analyzed with each analytical batch & meet established acceptance criteria

___ 5.5.2.2.1(h)(4) Is the **linearity verified** at a frequency established by the test method and/or the manufacturer

___ 5.5.2.2.1(i) Does the laboratory **perform corrective actions** & reanalyze all associated samples if the initial instrument calibration results are **outside established acceptance criteria**

___ 5.5.2.2.1(i) When reanalysis is not possible, does the laboratory **report sample data** associated with unacceptable initial instrument calibrations **with appropriate data qualifiers**

Note: NELAC Standards 5.5.2.2.1(h) & (i) may need to be assessed **in conjunction with** the Quality Systems data audit

___ 5.5.2.2.1(j) Does the laboratory have a standard operating procedure for **determining the number of points** for establishing the initial instrument calibration

___ 5.5.2.2.1(j) Does the laboratory use a **minimum of two calibration standards** (not including blanks or a zero standard) for performing an initial instrument calibration

Note: This Standard applies if a reference or mandated method does not specify the number of calibration standards

Note: One of the standards must be at the limit of quantitation

Note: This Standard does not apply to instrument technologies for which it has been established by methodologies & procedures that a zero & a single point standard are appropriate for calibrations (see Section 5.5.2.2.1(h))

COMMENTS:

___ 5.5.10 Does the laboratory **verify** the validity of the initial calibration by a **continuing instrument calibration verification** with **each analytical batch, prior to sample analyses**, whenever an initial instrument calibration is not performed on the day of analysis

___ 5.5.10(a) Are the **details** of the continuing instrument calibration verification **procedure, calculations, & associated statistics** included or referenced in the **test method SOP**

___ 5.5.10(b) Is calibration verified **for each compound, element, or other discrete chemical species**

Note: For multi-component analytes such as Aroclors, Total Petroleum Hydrocarbons, or Toxaphene, a representative chemical related substance or mixture can be used
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.10(c)(1)</td>
<td>Is the instrument calibration verification performed at the beginning & end of each analytical batch
Note: Only one verification needs to be performed at the beginning of the analytical batch if an internal standard is used</td>
</tr>
<tr>
<td>5.5.10(c)(2)</td>
<td>Is the instrument calibration verification performed whenever it is expected that the analytical system may be out of calibration or might not meet the verification acceptance criteria</td>
</tr>
<tr>
<td>5.5.10(c)(3)</td>
<td>Is the instrument calibration verification performed if the time period for calibration or the most previous calibration verification has expired</td>
</tr>
<tr>
<td>5.5.10(c)(4)</td>
<td>Is the instrument calibration verification performed for analytical systems that contain a calibration verification requirement</td>
</tr>
<tr>
<td>5.5.10(d)</td>
<td>Does the laboratory retain sufficient raw data records to permit reconstruction of the continuing instrument calibration verification
Note: Such records include test method, instrument, analysis date, name of each analyte, concentration & response, calibration curve or response factor, or unique equations or coefficients used to convert instrument responses into concentrations</td>
</tr>
<tr>
<td>5.5.10(d)</td>
<td>Does the laboratory’s continuing calibration verification records explicitly connect the continuing verification data to the initial instrument calibration</td>
</tr>
<tr>
<td>5.5.10(e)</td>
<td>Has the laboratory established criteria for the acceptance of a continuing instrument calibration verification (e.g. relative percent difference)</td>
</tr>
<tr>
<td>5.5.10(e)</td>
<td>Does the laboratory perform corrective actions if the continuing instrument calibration verification results are outside established acceptance criteria</td>
</tr>
<tr>
<td>5.5.10(e)</td>
<td>Does the laboratory perform a new initial instrument calibration if the routine corrective action procedures fail to produce a second consecutive (immediate) calibration verification within acceptance criteria
Note: Alternatively, the laboratory can demonstrate acceptable performance after correction with 2 consecutive calibration verifications</td>
</tr>
<tr>
<td>5.5.10(e)</td>
<td>If the laboratory has not verified calibration, do sample analyses not occur until the analytical system is calibrated or calibration verified
Note: For sample data associated with an unacceptable calibration verification, the results must be flagged but the data may be useable under the following special conditions:
- Non-detects for analytes in associated samples where the acceptance criteria for the continuing calibration verifications are exceeded high
- Any test result for an analyte that indicates exceedence of a maximum regulatory limit or decision level, when the acceptance criteria for the continuing calibration verification for that analyte is exceeded low
Any samples with test results that do not meet either of the above criteria must be re-analyzed after a new initial instrument calibration has been established, evaluated, & accepted</td>
</tr>
</tbody>
</table>

COMMENTS:
CHEMISTRY TEST METHOD EVALUATED: ____________________________

5.5.4.2.2(a) C.1

Has the laboratory performed a **satisfactory demonstration of method capability** prior to the acceptance & institution of this test method

Note: Demonstrations of capability are done in an applicable & available **clean quality system matrix sample** in a quality system matrix where **no target analytes or interferences present** at concentrations that impact the results of a specific test method

Note: These following steps are **may not be applicable** for tests with which **spiking is not an option** and for which Quality Control samples are **not readily available**

Note: Actual sample spike results, such as **4 consecutive matrix spikes** (or quality control samples of analytes that do not lend themselves to spiking), within the **last 12 months** may be used to show that a demonstration of capability is not required

Note: A demonstration of capability is **not required** in cases where samples are analyzed with this test method in use by the laboratory **before July 1999** & where there have been **no significant changes** in instrument type, personnel, or test method, in which case the analyst’s documentation of continued proficiency is acceptable (the laboratory must have records on file to show that a demonstration of capability is not required)

Note: **Continuing demonstration of method performance,** per the QC requirements in App. D (e.g., laboratory control samples), is required thereafter

C.1

Does the laboratory **document** in its Quality Manual **other adequate approaches to Demonstration of Capability** if the procedure below is **not required** by the mandated test method or regulation and if the laboratory **elects not to perform** this procedure

C.1(a)

Is the **quality control sample** used for this Demonstration of Capability obtained from an **outside source**

Note: If an outside source is not available, the laboratory may prepare this sample with stock standards that are **prepared independently** from those used in instrument calibration

C.1(b)

Are the analytes diluted in a volume of **clean quality system matrix** sufficient to prepare **4 aliquots** at the **specified concentration** or to a concentration approximately **1-4 times** the **limit of quantitation**

C.1(c)

Are **at least 4 such aliquots prepared & analyzed** according to the test method

Note: These analyses may occur either concurrently or over a period of days

C.1(d)

Does the laboratory **calculate the mean recovery** in the appropriate reporting units & the **standard deviation** of the population sample (n-1) in the same units for each **parameter of interest** using **all of the analysis results obtained**

Note: When it is not possible to assess mean & standard deviation, such as for **presence-absence & logarithmic values,** the laboratory must assess performance against established & documented criteria

C.1(e)

Are the mean and standard deviation for each parameter **compared** to the corresponding **acceptance criteria for precision & accuracy** in the test method (if applicable) or in laboratory-generated acceptance criteria (if the method or analyte is non-standard)

C.1(f)

Does the laboratory consider the performance unacceptable & **not analyze actual samples** for parameters that **fail the acceptance criteria**

C.1(f)

When one or more parameters **fail** at least one of the **acceptance criteria,** does the analyst:
- **Locate & correct** the source of the problem, then **repeat the test** for all parameters of interest, **OR**
- **Repeat the test** for all parameters that failed to meet criteria

Note: Repeated failure from employing the second option above indicates a general problem with the entire measurement system, and the analyst must then perform the first option above
CHEMISTRY TEST METHOD ASSESSED: ________________________________

--- C.1 ---

Is an initial evaluation performed for all analytes to be added to an existing accredited test method (for analytes not currently found on the laboratory’s list of accredited analytes)

--- 5.5.2.6(c)(3) ---

Does each Analyst have documentation of continued proficiency by at least one of the following once per year:

- Acceptable performance of a blind sample (single blind to the analyst)
- An initial measurement system evaluation or another demonstration of capability
- Successful performance of a blind performance sample on a similar test method using the same technology (acceptable limits must be determined prior to analysis)
- At least 4 consecutive laboratory control samples with acceptable levels of precision & accuracy (the acceptable limits must be determined prior to analysis)
- Analysis of authentic samples that have been analyzed by another trained analyst with statistically indistinguishable results

--- 5.5.4.2.2(d) ---

Does the laboratory use the NELAC-specified certification statement to document the completion of each Demonstration of Capability (initial & continuing)

--- C.2 ---

Are copies of these certification statements retained in the personnel records of each employee performing the test method

--- 5.5.4.2.2(d) ---

Does the laboratory retain & make available all associated supporting data necessary to reproduce the analytical results summarized in the appropriate certification statement

--- 5.5.4.2.2(e) ---

Does the laboratory complete a demonstration of capability each time there is a change in instrument type, personnel, or test method

--- 5.5.4.2.2(f) ---

Does the laboratory fully document the achievement of demonstration of capability requirements for each specialized work cell

Note: A work cell is defined as a group of analysts with specifically defined tasks that together perform the test method

--- 5.5.4.2.2(g) ---

Does the laboratory demonstrate & document acceptable performance through acceptable continuing performance checks (e.g. laboratory control samples) each time that membership in a work cell changes

--- 5.5.4.2.2(g) ---

Do the new members of the work cell work with experienced analysts in the specialty area

--- 5.5.4.2.2(g) ---

Does the laboratory repeat a Demonstration of Capability with the new work cell if the first 4 continuing performance checks following the change in personnel produce a failure in any sample batch acceptance criteria

--- 5.5.4.2.2(g) ---

Does the laboratory repeat a Demonstration of Capability if the entire work cell is changed or replaced

--- 5.5.4.2.2(h) ---

Is the performance of the work cell as a group linked to the training records of the individual members of the work cell

--- 5.1.1 ---

Does the laboratory’s procedure for demonstrating its capability to perform the method, the analyst’s capability to perform the method, or the acceptance criteria for precision & accuracy comply with the requirements specified in the mandated test method

Note: See page 15 for such Demonstration of Capability procedural requirements & acceptance criteria
Does the laboratory have procedures for developing acceptance/rejection criteria for each Chemistry test method (where no regulatory or method criteria exist)

Does the laboratory assess & evaluate all quality control measures on an on-going basis

Does the laboratory use quality control acceptance criteria to determine the validity of the data

Does the laboratory’s Chemistry data indicate that the quality control protocols in the test methods manual are being followed (by all analysts)

Does the laboratory’s acceptance criteria for blanks, laboratory control samples, duplicates, & matrix spikes fulfill the requirements in mandated test methods

Note: See page 16 for acceptance criteria

Does the laboratory fulfill additional requirements specified in the mandated test method or regulation

Note: See page 17 for the additional requirements stated in test methods

Does the laboratory process the method blank along with & under the same conditions as the associated samples to include all steps in the analytical procedure

Does the laboratory have procedures in place to determine if a method blank is contaminated

Does the laboratory analyze method blanks at a frequency of at least one per preparation batch or one per 20 environmental samples analyzed together with the same method & personnel using the same lots of reagents

Does the method blank consist of a quality system matrix similar to associated samples & known to be free of the analytes of interest

Does the laboratory critically evaluate each method blank as to the nature of any interferences & the effect on the analyses of each sample within the batch

Is the source of the contamination investigated & measures taken to minimize or eliminate the problem

Are all samples associated with a contaminated blank reprocessed for analysis or reported with appropriate data qualifying codes

Note: Such sample results can be reported with data qualifiers:
- If the analyte concentration in the blank is at or above the reporting limit AND is greater than 1/10 of the amount measured in any sample OR
- If the method blank contamination affects the sample results as per test method requirements or individual project data quality objectives

Does the laboratory document all corrective actions taken with respect to a contaminated blank
CHEMISTRY TEST METHOD ASSESSED: ________________________________

__ D.1.1.2(b) Does the laboratory analyze at least one laboratory control sample (LCS or QC Check Sample) per preparation batch or one per 20 environmental samples analyzed together with the same method & personnel using the same lots of reagents.

Note: This Standard does not apply to analytes for which spiking solutions are not available (e.g., Total Suspended Solids, Total Dissolved Solids, Total Volatile Solids, Total Solids, pH, Color, Odor, Temperature, Dissolved Oxygen, or Turbidity).

Note: The matrix spike may be used in place of this control sample as long as the acceptance criteria are as stringent as for the laboratory control sample.

Note: The LCS may consist of media containing known & verified concentrations of analytes or as a Certified Reference Material.

__ D.1.1.2(c) Does the laboratory include all target analytes in the LCS spike mixture over a 2-year period.

__ D.1.1.2(c) Are all analyte concentrations in the LCS within the calibration range of the test method.

__ D.1.1.2(c) Are the components spiked into the LCS as specified by the mandated test method or other regulatory requirement or as requested by the client.

Note: In the absence of such requirements, the minimum number of analytes to spike are:
- For methods with 1-10 target analytes, spike all analytes.
- For methods with 11-20 analytes, spike at least 10 analytes or 80%, whichever is greater.
- For methods with more than 20 target analytes, spike at least 16 analytes.

Note: The laboratory must document the method used to establish internal LCS recovery limits.

Note: The analytes selected for spiking must be representative of all analytes reported & must represent the chemistries and elution patterns of the components to be reported, when some components interfere with accurate assessment (e.g., simultaneously spiking technical Chlordane, Toxaphene, & PCB’s).

__ D.1.1.2(d) Does the laboratory document the calculations for percent recovery of the individual batch LCS.

__ D.1.1.2(d) Are the individual analyte percent recoveries compared to the acceptance criteria published in the mandated test method or, where such criteria are not established, to client-specified acceptance criteria or to internal criteria determined at the laboratory.

Note: The laboratory must document the method used to establish internal LCS recovery limits.

__ D.1.1.2(d) Are all samples associated with an out-of-control LCS reprocessed for analysis or reported with appropriate data qualifying codes.

__ D.1.1.2(e) For large number of analytes in the LCS, does the laboratory take corrective actions if acceptance criteria (3 standard deviations) are not achieved:
- for 2 analytes when the LCS contains 11-30 analytes
- for 3 analytes when the LCS contains 31-50 analytes
- for 4 analytes when the LCS contains 51-70 analytes
- for 5 analytes when the LCS contains 71-90 analytes
- for 6 analytes when the LCS contains over 90 analytes

__ D.1.1.2(e) Does the laboratory locate the source of error & take corrective action if the same analyte exceeds LCS control limits repeatedly.

__ D.1.1.2(e) Does the laboratory have a written procedure to monitor the application of marginal exceedance allowances to LCS control limits to ensure random behavior.
CHEMISTRY TEST METHOD ASSESSED: ________________________________

D.1.1.3 Does the laboratory document procedures for determining the effect of the sample matrix on test method performance

Note: These procedures relate to the analysis of quality system matrix specific QC samples & could be data quality indicators for a specific sample using a designated test method; these controls alone are not used to judge laboratory performance

D.1.1.3 Does the laboratory have procedures in place for tracking, managing, & handling matrix-specific QC criteria

Note: These procedures must include spiking appropriate components at appropriate concentrations, calculating recoveries & relative percent difference, and evaluating & reporting results based on performance of the QC samples

D.1.1.3.1(b) Does the laboratory perform matrix spikes (MS) at a frequency specified by the test method

Note: This matrix spike analysis frequency is specified in pages xx-xx

Note: If the test method is not mandated, the laboratory must determine the frequency of matrix spike analysis as part of a systematic planning process (e.g., data quality objectives)

D.1.1.3.1(c) Are the components spiked into the MS as specified by the mandated test method or other regulatory requirement or as requested by the client

Note: In the absence of such requirements, the minimum number of analytes to spike are:
- For methods with 1-10 target analytes, spike all analytes
- For methods with 11-20 analytes, spike at least 10 analytes or 80%, whichever is greater
- For methods with more than 20 target analytes, spike at least 16 analytes

Note: The analytes selected for spiking should represent the chemistries & elution patterns of components to be reported (e.g., simultaneously spiking Chlordane, Toxaphene, & PCB’s)

D.1.1.3.1(c) Does the laboratory include all target analytes in the MS spike mixture over a 2-year period

D.1.1.3.1(d) Does the laboratory document the calculations for percent recovery & relative percent difference in matrix spikes & matrix spike duplicates

D.1.1.3.1(d) Are the individual analyte percent recoveries compared to the acceptance criteria published in the mandated test method

D.1.1.3.1(d) If there is no established criteria, has the laboratory determined internal criteria & documented the method used to establish the limits

D.1.1.3.1(d) Are all samples associated with matrix spike results outside established criteria documented with corrective actions or reported with appropriate data qualifying codes

COMMENTS:
<table>
<thead>
<tr>
<th>Section</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1.1.3.2(b)</td>
<td>Does the laboratory perform matrix duplicates at a frequency specified by the required mandated test method
Note: This matrix duplicate analysis frequency is specified in pages xx-xx</td>
</tr>
<tr>
<td>D.1.1.3.2(c)</td>
<td>Are matrix duplicates performed on replicate aliquots of actual samples</td>
</tr>
<tr>
<td>D.1.1.3.2(d)</td>
<td>Does the laboratory document the calculations for relative percent difference or other statistical treatments</td>
</tr>
<tr>
<td>D.1.1.3.2(d)</td>
<td>Are the individual analyte duplicate precisions compared to the acceptance criteria published in the mandated test method</td>
</tr>
<tr>
<td>D.1.1.3.2(d)</td>
<td>If there is no established criteria, has the laboratory determined internal criteria & documented the method used to establish the limits</td>
</tr>
<tr>
<td>D.1.1.3.2(d)</td>
<td>Are all samples associated with duplicate precisions outside established criteria documented with corrective actions or reported with appropriate data qualifying codes</td>
</tr>
<tr>
<td>D.1.1.3.3(b)</td>
<td>Does the laboratory add surrogate compounds to all samples, standards, & blanks for all appropriate test methods
Note: This Standard does not apply if the sample matrix precludes the use of surrogates or when a surrogate is not commercially available</td>
</tr>
<tr>
<td>D.1.1.3.3(c)</td>
<td>Do the surrogates represent the various chemistries of the method’s target analytes & deliberately chosen for being unlikely to occur as an environmental contaminant</td>
</tr>
<tr>
<td>D.1.1.3.3(d)</td>
<td>Are the surrogate recoveries compared to the acceptance criteria in the mandated test method</td>
</tr>
<tr>
<td>D.1.1.3.3(d)</td>
<td>Does the laboratory evaluate surrogate recoveries outside acceptance limits for the effect indicated for the individual sample results</td>
</tr>
<tr>
<td>D.1.5(a)</td>
<td>Has the laboratory evaluated selectivity by following the checks established within the method
Note: These evaluations may include mass spectral tuning, second-column confirmation, chromatography retention time windows, ICP inter-element interference checks, sample blanks, spectrochemical absorption or fluorescence profiles, co-precipitation evaluations, & electrode response factors.</td>
</tr>
<tr>
<td>D.1.5(b)</td>
<td>Does the laboratory perform confirmations to verify compound identification when positive results are detected on a sample from a location that has not been previously tested by the laboratory
Note: These confirmations are performed on pesticides, herbicides, acid extractables, or other organic tests, or when recommended by the analytical test method
Note: Confirmation is not required when the analysis involves the use of a mass spectrometer
Note: Confirmation is required unless stipulated in writing by the client</td>
</tr>
<tr>
<td>D.1.5(b)</td>
<td>Does the laboratory document all confirmations of compound identity</td>
</tr>
<tr>
<td>D.1.5(c)</td>
<td>If a mass spectrometer is used, has the laboratory documented acceptance criteria for mass spectral tuning</td>
</tr>
</tbody>
</table>
CHEMISTRY TEST METHOD EVALUATED: ______________________________

D.1.2 Does the laboratory document all procedures & retain all supporting data in determining & verifying limits of detection & limits of quantitation

D.1.2.1 Does this test method provide limits of detection (LOD’s) that are appropriate & relevant for the intended use of the data

D.1.2.1 Has the laboratory determined the limit(s) of detection by the protocol in the mandated test method or applicable regulation

Note: If the protocol for determining LOD’s is not specified, the laboratory must still determine the LOD’s but according to a procedure that reflects instrument limitations & intended application of the test method

Note: In the absence of regulatory or client requirements, an LOD is not required when test results are not reported outside of the calibration range

D.1.2.1(a) Has the laboratory initially determined the detection limits for the compounds of interest in this test method in a quality system matrix in which there are no target analytes or interferences at a concentration that would impact the results

Note: If this is not possible, the laboratory must determine these detection limits in the quality system matrix of interest

D.1.2.1(b) Does the laboratory determine LOD’s each time there is a change in the test method that affects how the test is performed or when a change in instrumentation occurs that affects the sensitivity of the analysis

D.1.2.1(c) Does the laboratory have established procedures to relate LOD’s with Limits of Quantitation (LOQ’s)

D.1.2.1(d) Has the laboratory verified the LOD annually for each quality system matrix, test method, & analyte

Note: All sample processing steps of the analytical method must be included in the determination of the LOD

Note: Validity of the LOD is confirmed by qualitative identification of the analyte(s) in a quality control sample in each quality system matrix containing the analyte at no more than 2-3x the LOD for single-analyte tests and 1-4x the LOD for multiple analyte tests

Note: LOD verification must be performed on every instrument that is to be used for analysis of samples & reporting of data

Note: LOD study is not required for any component for which spiking solutions or quality control samples are not available (e.g., Temperature), or when test results are not to be reported to the LOD (versus the Limit of Quantitation or working range of instrument calibration according to Appendices D.1.2, D.4.5, D.5.4, and D.6.6 to NELAC Chapter 5).
CHEMISTRY TEST METHOD EVALUATED: ________________________________

D.1.2.2(a) Are all established LOQ’s above the LOD’s for each analyte

D.1.2.2(b) Has the laboratory verified the LOQ annually for each quality system matrix, test method, & analyte

Note: The LOQ study is not required for any component or property for which spiking solutions or quality control samples are not commercially available or otherwise inappropriate (e.g., pH).

Note: The validity of the LOQ is confirmed by successful analysis of a quality control sample, containing the analytes of concern in each quality system matrix at 1-2 times the claimed LOQ.

Note: A successful analysis is one where the recovery of each analyte is within the established test method acceptance criteria or client data quality objectives for accuracy.

Note: This single analysis is not required if the bias & precision of the measurement system are evaluated at the LOQ.

Note: The LOQ verification is not required if the LOD is re-evaluated or verified.

5.1.1 Do the laboratory’s limits of detection fulfill the requirements of mandated test methods or regulations

Note: US EPA’s Safe Drinking Water Act (SDWA) & Clean Water Act (CWA) regulations require determination of Method Detection Limits according to the procedures & criteria in 40 CFR Part 136, Appendix B.

Note: See page 17 for SDWA Maximum Contaminant Levels & RCRA Toxicity Characteristics, which the LOD, LOQ, or the lowest-concentration calibration standard must be reliably & consistently below.

Note: Other regulations (including state regulations) & permits may contain additional requirements for Reporting Limits, Minimum Levels, Lower Limits of Detection, & other criteria.

COMMENTS: List analytes for which the above requirements for measurement sensitivity have not been fulfilled.
ION CHROMATOGRAPHY (IC)

REQUIRED REAGANTS & STANDARDS

Br-, Cl-, F-, NO3-, NO2-, HPO4=, SO4= - EPA 300.0, 300.1, 9056, 9057; SM4110B; ASTM D4327-97; AOAC 993.30
HPLC with anion exchange column, suppressor, & conductivity detector
Sulfuric Acid or alternate column regenerating system
Sodium Bicarbonate & Sodium Carbonate mobile phase

HPLC with cation exchange column & conductivity detector
Sodium, Barium, or Tetramethylammonium Hydroxides, or alternate column regenerating system
Hydrochloric Acid & m-Phenylenediamine mobile phase

Ca++, NH4+, Mg++, K+, Na+ - ASTM D6919-03
HPLC with cation exchange column & conductivity detector
Sodium Bicarbonate & Sodium Carbonate mobile phase

Chromium(VI) – EPA 218.6, 7199; SM3500Cr E (19th ed.), SM3500Cr C (20th ed.); ASTM D5257-93; AOAC 993.23
HPLC with anion exchange column & UV detector (530 nm)
Ammonium Sulfate & Ammonia-water eluent & buffer to adjust sample pH to 9.0-9.5
1,5-Diphenylcarbazide post-column colorimetric reagent

Ammonium Sulfate & Ammonia-water eluent & buffer to adjust sample pH to 9.0-9.5
1,5-Diphenylcarbazide post-column colorimetric reagent

Oxyhalides Disinfection By-Products (Br-, BrO3-, ClO2-, ClO3-) – EPA 317.0, 326.0 (also see EPA 300.1)
HPLC with anion exchange column, suppressor, conductivity detector, post-column derivatization, & UV-VIS detector (450 nm for EPA 317.0, 352 nm for EPA 326.0)

EPA 300.1: BrO3- & ClO2- must be analyzed separately from F-, Cl-, NO3-, NO2-, & SO4=
EPA 317.0, 326.0: Chlorite & Bromate must be analyzed separately (ClO2- overwhelms PCR/UV-VIS response)
HNO3, KBr, & o-Dianisidine post-column derivatizing agent for Bromate (EPA 317.0), prepared fresh daily
Potassium Iodide post-column derivatization agent, with Ammonium Molybdate catalyst, for Bromate (EPA 326.0)
Sodium Carbonate mobile phase
Dichloroacetic Acid surrogate
Ethylendiamine preservation solution, also chelates iron interference & binds free chlorine

Perchlorate – EPA 314.0
HPLC with anion exchange column & conductivity detector
Anion suppressant or alternate column regenerating system
Sodium Hydroxide mobile phase
Chloride, Sulfate, & Carbonate (sodium salts) for synthetic sample matrix solution

Bromate (IC / ICP-MS) – EPA 321.8
HPLC with anion exchange column & ICP/MS detector (m/z 79 & 81, but m/z 81 has Ar2H+ interference)
Anion suppressant or alternate column regenerating system
Pre-treatment cartridge, to remove trihaloacetic acid interferences
Ammonium Nitrate / Nitric Acid mobile phase
Bromate also used as MS tuning solution & instrument drift solution

Perchlorate (IC / MS) – EPA 331.0, 332.0
HPLC with anion exchange column, negative electrospray ionization interface, & MS detector
(m/z 99 & 101 parent ions for the SIM mode, m/z 83 & 85 daughter ions for the MRM mode (EPA 331.0))
Anion suppressant (EPA 332.0)
Oxygen-18 labeled internal standard (m/z 107 & 109 for SIM mode, m/z 89 & 91 for MRM mode)
Methylamine solution (EPA 331.0) or Potassium Hydroxide (EPA 332.0) as mobile phase
Chloride, Sulfate, & Bicarbonate (or Carbonate (EPA 332.0)) (sodium salts) for synthetic sample matrix solution
HOLDING TIME, SAMPLE CONTAINER, & SAMPLE PRESERVATION REQUIREMENTS

Analyze Immediately in the field or upon arrival at the laboratory, plastic or glass containers
Orthophosphate (filtration step only)

24-Hour Holding Time, plastic or glass containers, 4 C
Chromium(VI)

48-Hour Holding Time, plastic or glass containers, 4 C, unpreserved
Nitrate, Nitrite, Orthophosphate

14-Day Holding Time, plastic or glass containers, 4 C
Nitrate (SDWA chlorinated samples)

14 Day Holding Time, Opaque containers, 4 C
SDWA Chlorite

28-Day Holding Time, plastic or glass containers, 4 C
Bromide, Chloride, Sulfate
Perchlorate (must be <10 C during 1st 48 hr after collection)

28 Day Holding Time, Opaque containers, 4 C
SDWA Bromate

28-Day Holding Time, plastic container (only)
Fluoride

28-Day Holding Time, plastic or glass containers, 4 C, Sulfuric Acid to pH<2
Total Nitrate-Nitrite

6-Month Holding Time, plastic or glass containers, Nitric Acid to pH<2
Metals (add HNO3 if sample unpreserved analysis)

INITIAL INSTRUMENT CALIBRATION ACCEPTANCE CRITERIA FOR MANDATED TEST METHODS

3 standards + blank
SM1020B, 5, applies to all mandated SM methods
EPA 300.0, 10.2
EPA 300.1, 314.0, 317.0, 10.2.2, 5 stds. required if > 2 orders of magnitude in conc.,
CF (if used) < 15% RSD
EPA 7199, 7.2
EPA 9056, 7.1.2
D5257-93, 10.2

5 standards + blank
EPA 300.7, 9.6.1
EPA 326.0, 10.2.3-10.2.4
EPA 331.0, 10.3.1
EPA 332.0, 10.3.3, each concentration level > MRL must be within 80-120% of resultant regression curve value,
50-150% for concentration level < MRL
CALIBRATION VERIFICATION ACCEPTANCE CRITERIA FOR MANDATED TEST METHODS

Recovery 80-120%
 EPA 331.0, 332.0, 10.4, for Mid-point Std., Std. also required at or below MRL with recovery 50-150%, also after every 10 samples & end of run

Recovery 85-115%
 EPA 300.1, 10.5.1, 75-125% allowed for conc. 1-100x the MDL
 EPA 314.0, 317.0, 326.0, 10.3.2, 75-125% allowed at MRL, also after every 10 samples & end of run,
 CCB also required for EPA 314.0 & 317.0

Recovery 90-110%
 EPA 300.0, 9.3.4 after every 10 samples & end of run, calibration blank analysis also required each time
 EPA 7199, 7.3, also every 10 samples & end of run
 EPA 9056, 7.1.4 & 8.2, plus after every 10 samples, recalibrate if not within 5% of previous result

Recovery 95-105%
 EPA 218.6, 9.3.4 for midpoint std. every 10 samples

Inclusion of both Standard & Calibration Blank Analysis
 EPA 300.7, 10.5 (including end of the run)

PRECISION & ACCURACY ACCEPTANCE CRITERIA FOR MANDATED TEST METHODS
(INITIAL DEMONSTRATION OF CAPABILITY)

Method Detection Limits & Linear Dynamic Range (or Linear Calibration Range) evaluations required for each analyte – upper limit within 10% of extrapolated value
 EPA 218.6, 10.2.3, 5 stds. needed with log-log plot slope within 0.98-1.02
 EPA 300.0, 9.2.2, 3 stds. needed & verified at least every 6 months
 EPA 321.8, 9.2.2 & 9.2.4

Method Detection Limit required for each analyte
 EPA 300.1, 9.2.3
 EPA 314.0, 317.0, 9.2.6
 EPA 326.0, 9.2.4

Matrix Conductivity Threshold (MCT) evaluation
 EPA 314.0, 9.2.8 & 9.3.2, at 25 ug/L ClO4- under increasing anion concentrations,
 MCT verified each batch

Mean Accuracy 80-120%; Precision RSD < 20%
 EPA 331.0, 332.0, 9.2, from 7 replicates, required from both Fortified Blanks & Fortified Synthetic Sample
 Matrices, MRL verification also required

Mean Accuracy 85-115%; Precision RSD < 20%
 EPA 317.0, 326.0, 9.2, from 7 replicates

Mean Accuracy 90-110%, Precision RSD < 10%
 EPA 314.0, 9.2.3 & 9.2.4, from 7 replicates
 EPA 321.8, 9.2.3, from 3 replicates (no precision criteria specified)
QUALITY CONTROL ACCEPTANCE CRITERIA FOR MANDATED TEST METHODS

QC Check Sample Recoveries within 80-120%
EPA 331.0, 332.0, 9.3.3, for concentrations > MRL, 50-150% for concentrations < MRL

QC Check Sample Recoveries within 85-115%
EPA 300.1, 317.0, 9.3.2, 75-125% allowed for concentrations 1-100 times the MDL
EPA 314.0, 321.8, 9.3.3
EPA 326.0, 9.6, 75-125% allowed for concentrations 1-2 times the MRL

QC Check Sample Recoveries within 90-110%
EPA 218.6, 10.3.3
EPA 300.0, 9.3.2-9.3.3 (Inorganics)
EPA 9057, 8.1.1, analyzed every 10 samples & end of run

External QC Check Sample Recoveries within 80-120%
EPA 317.0, 9.2.5, analyzed quarterly

External QC Check Sample Recoveries within 85-115%
EPA 326.0, 9.11, analyzed quarterly and each time new calibration stds. are prepared

External QC Check Sample Recoveries within 90-110%
EPA 314.0, 9.2.5

EPA QC Check Sample Recoveries within 90-110%
EPA 218.6, 10.5 analyzed quarterly
EPA 300.0, 9.2.3 analyzed quarterly (Inorganics)

Matrix Spike Recoveries within 70-130%
EPA 321.8, 9.4, analyzed every 10 samples

Matrix Spike Recoveries within 75-125%
EPA 300.1, 9.4.1, analyzed every 10 samples
EPA 317.0, 9.4.1, analyzed every 20 samples or batch
EPA 326.0, 9.8, analyzed every 20 samples or batch

Matrix Spike Recoveries within 80-120%
EPA 314.0, 9.4.1, every 20 samples or batch

Matrix Spike Recoveries within 90-110%
EPA 218.6, 10.4, analyzed every 10 samples
EPA 300.0, 9.4, analyzed every 10 samples (Inorganics)

Duplicate Precisions within 15%
EPA 314.0, 9.4.2, analyzed every 20 samples or batch

Duplicate Precisions within 10%
EPA 300.1, 9.4.3, 20% allowed for conc. 1-100x the MDL, analyzed every 10 samples or batch
EPA 317.0, 9.4.3, 20% allowed for conc. 1-5x the MRL, analyzed every 20 samples or batch
EPA 326.0, 9.9, 20% allowed for conc. 1-5x the MRL, analyzed every 20 samples or batch

Surrogate Recoveries within 90-115%
EPA 300.1, 317.0, 9.4.2, for Dichloroacetic Acid as surrogate
EPA 326.0, 9.7, for Dichloroacetic Acid as surrogate
EPA REGULATORY LEVELS REQUIRING SPECIFIC DETECTION LIMITS

SDWA MAXIMUM CONTAMINANT LEVELS

Nitrate 10.0 mg/L as N
Nitrite 1.0 mg/L as N
Fluoride 4.0 mg/L
Chlorite 1.0 mg/L
Bromate 0.010 mg/L

ADDITIONAL REQUIREMENTS

Matrix Spike every 10 samples, or Matrix Spike & Duplicate every 20 samples
SM1020B, 2 (applies to all SM methods unless more stringent requirements appear elsewhere)

Duplicate every 10 samples or analytical batch
EPA 9056, 8.3, not necessarily required each batch

Matrix Spike & Sample Duplicate every 20 samples
EPA 331.0, 332.0, 9.3.7-9.3.8, or batch, MSD allowed in lieu of sample duplicate
EPA 7199, 8.6 or batch

Matrix Spike & Matrix Spike Duplicate each batch of 20 samples or fewer
40 CFR 141.40, App. A, 6, must also alternate between mid- & low-level concentrations for spikes
(applies to SDWA Unregulated Contaminants)

Internal Standard Responses
EPA 331.0, 332.0, 9.3.4, 70-130% from last Calib. Verification

Peak Gaussian Factor evaluated each analytical batch
EPA 300.1, 317.0, 9.3.3
EPA 326.0, 9.10

Analysis of Synthetic Sample Matrix Blank & Fortified Synthetic Sample Matrix quarterly
EPA 331.0, 332.0, 9.4

Criteria for Qualitative Identification of Perchlorate (EPA 331.0, 332.0)
GC retention times for target analytes agree match the retention times for the isotopically labeled analogs (within 2%)
Integrated peak areas for both quantitation mass ions meet isotope abundance ratio criteria (within 25%)

Minimum Reporting Level (MRL) Standard each analytical batch for Bromate & Chlorite
40 CFR 141.131(b)(2)(iv), 50-150% at 20.0 ug/L Chlorite and 5.0 ug/L Bromate
(1.0 ug/L Bromate for EPA 317.0, 326.0, 321.8)